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Chapter 1
Introduction

Since its introduction in 1995, Java has created quite a buzz in the computer science
education community. If you look, for example, at the names of programming languages
appearing in the titles of papers accepted for the SIGCSE annual symposium over the
past eight years, references to Java outnumber those of all other programming languages
combined. The trend toward the use of Java as the language for introductory computer
science courses was evident as early as 1998 [Stevenson98] and has since gathered
additional momentum, bolstered in part by the decision of the College Board to move the
Advanced Placement Computer Science program to Java in the 2003-04 academic year
[Astrachan00]. Some authors have suggested that Java has achieved a position of
prominence within the academic community similar to that of Pascal in the 1980s,
arguing that “we should shift our attention from the whether Java question to the if Java,
then how question.” [Wallace97]

Despite the fact that an increasing number of institutions are moving to adopt Java in
their introductory curriculum, those institutions do not by any means report universal
satisfaction with Java as a teaching language. The problems that arise in using Java at the
introductory level were analyzed in more detail in a paper by Eric Roberts at SIGCSE
2004 [RobertsO4a], which concluded that the observed difficulties in teaching Java are
representative of a more general challenge facing computer science education. At its
essence, that challenge arises from two self-reinforcing characteristics of modern
programming languages that have a profoundly negative effect on pedagogy:

e Complexity. The number of details that students must master, particularly in the
Application Programmer Interfaces (APIs) supplied along with the language itself, has
grown much faster than the corresponding number of high-level concepts.

e [Instability. The languages, APIs, and tools on which introductory computer science
education depends are changing more rapidly than they have in the past.

To address the problems involved in using Java at the introductory level, the ACM
Education Board initiated the ACM Java Task Force in the fall of 2003 with the
following general charter:

To review the Java language, APIs, and tools from the perspective of introductory
computing education and to develop a stable collection of pedagogical resources
that will make it easier to teach Java to first-year computing students without
having those students overwhelmed by its complexity. [RobertsO4b]

This report is the second public draft of the “Project Rationale” document produced by
the Java Task Force; the first draft appeared on February 1, 2005. The purpose of the
rationale document is to describe the design decisions we chose to make and the reasons
that underlie those decisions. Chapter 2 outlines the principles adopted by the Task Force
along with a summary of how we have carried out our work. Chapter 3 goes on to present
a detailed analysis of the problems that face teachers who use Java at the introductory
level.

The general taxonomy of problems from Chapter 3 revealed four significant challenges
that instructors face teaching Java, along with several smaller ones. Those four
challenges, shown here with their identifying labels from the taxonomy, are as follows:
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L1. Static methods, including main

Al. Lack of a simple input mechanism

A2. Conceptual difficulty of the graphics model
A3. GUI components inappropriate for beginners

To provide some help in reducing the many difficulties associated with problem L1
(Static methods, including main), the Task Force has developed the acm.program
package. This package defines a hierarchy of program classes that simplify the creation
of programs and encourage students to work in an object-based environment rather than a
static environment. The package, moreover, makes it possible to unify the concepts of
applets and applications and provides support to application writers that is ordinarily not
available. Because the description of the acm.program package depends on several of
the other proposed packages, the detailed discussion of acm.program appears in Chapter
6, following the descriptions of the packages on which it depends.

Our approach to addressing problem A1l (Lack of a simple input mechanism) is to
produce an acm.io package that offers two principal classes: an ToConsole class that
offers simple input/output operations in the context of a traditional line-oriented console
and an 10Dialog class that implements these operations using a popup dialog. These two
share a common interface, which makes it easy to substitute one model for the other. The
acm. io package is described in detail in Chapter 4.

Problem A2 (Conceptual difficulty of the graphics model) represents the area in which
we invested the greatest part of our effort. We examined several models suggested by
members of the computer science education community [BruceO4a, ParlanteO4a,
SandersK04a] and used those as models for an acm.graphics package that combines the
best features of each. The acm.graphics package is covered in Chapter 5.

As of the first draft of this rationale document, the Task Force had chosen not to
propose a new package to address problem A3 (GUI components inappropriate for
beginners). The feedback we received over the next few months, however, made it clear
that we needed to try harder to come up with a solution. The community clearly
identified the difficulty of building graphical user interfaces (GUIs) to be a significant
barrier to the effective use of Java in introductory courses. The Task Force continued its
deliberation and reviewed in more detail several of the proposed solution strategies
[LambertO4a, SandersD04b, RasalaO4a]. The product of that review was a new acm.gui
package described in Chapter 7 along with a set of useful extensions to the Program class
described in section 6.5.

The feedback we received on our initial proposal led to yet another change in the
design of the various ACM packages. In the first public draft of this rationale document,
the Task Force had coded the library packages so as to maintain compatibility with Java
versions extending all the way back to release 1.1 of the Java Development Kit (JDK),
which appeared in April 1997. The purpose of that decision was to ensure that programs
built using the Task Force libraries could run in old browsers, including most of those
currently deployed at commercial Internet-access sites. Even though that decision in no
way limited the features that adopters might themselves choose to use when building
applications on top of our packages, the choice made those packages appear obsolete and
was all too often criticized on that basis. In part to forestall that criticism—and in part
because the acm.gui package made it more difficult to continue with our original
strategy —the new versions of the Task Force packages use JDK 1.4 as their foundation.
The reasons behind that decision and the strategies we now use for maintaining
compatibility with older browsers are described in Chapter 9, which also identifies the
subset of Java classes that the Task Force recommends for use with the ACM packages.
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Chapter 2
Principles and Methodology

The ACM Java Task Force has held five face-to-face meetings since its inception:

AN W N =

5.

January 2004 (Washington, DC)
May 2004 (Pittsburgh, PA)
September 2004 (Palo Alto, CA)
December 2004 (Cambridge, MA)
June 2005 (Chicago, IL)

These meetings were supported by grants from the National Science Foundation, the
ACM Education Board, and the SIGCSE Special Projects Fund. As is typical of this style
of committee, however, much of the work of the Task Force took place between the
meetings, which were used primarily to allow for the high-bandwidth, focused discussion
that is difficult to achieve in online forums. In particular, these meetings allowed the
members of the Task Force to reach consensus on several basic principles of operation.

2.1 Principles adopted by the Task Force

At our first two meetings of 2004, the Task Force was able to reach consensus on the
following general principles:

1.

2.

Design for an object-oriented approach. In our work, the Java Task Force has been
guided by the prospect of an “objects-first” approach to the introductory curriculum,
as defined by in the joint ACM/IEEE-CS Computing Curricula 2001 report
[ACMO1]. The tools and packages that we have designed therefore emphasize object-
oriented design and adopt an object-oriented usage paradigm. At the same time, we
have made every effort to ensure that our library packages and tools are usable with
other pedagogical approaches.

Adopt a minimalist strategy. To avoid the proliferation of complex tools that do little
to address the scale problems of Java, the Task Force has sought to minimize both the
number and conceptual complexity of our packages. There are, for example, only four
packages in the ACM collection. These packages, moreover, are specifically chosen
to address the high-level problems outlined in Chapter 3. Although the temptation
was often strong to provide additional functionality beyond what we needed to solve
the reported problems, we chose to limit our concern to those areas that currently
constitute stumbling blocks to the effective use of Java.

. Promote flexibility for adopters. Introductory courses in computer science vary

widely in philosophy, topic coverage, and approach. For those of us on the Java Task
Force, such diversity is a very good thing. We are not interested in defining any sort
of rigid standard, but are instead seeking to empower teachers and students by
providing tools to extend their reach. To some extent, our design philosophy is
aligned with the maxim formulated by the designers of the X Windows System, who
sought to provide “mechanism, not policy.” The packages in the ACM collection are
intentionally general enough to support a wide variety of programming styles.

. Maintain conformance with the Java standard. Throughout our design, the Task

Force sought to use the standard Application Programmer Interfaces (APIs) provided
by Sun Microsystems. The only occasions in which we have proposed alternative
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APIs are those for which there was clear evidence that the existing facilities were not
working well at the introductory level. We have also made the ACM packages
separable to make sure that no one is required to adopt parts of the nonstandard
packages that they regard as unnecessary. For each of the domains covered by the
ACM packages—simplified input/output operations, object-based graphics, and the
common applet/application framework —there is always an alternative approach that
remains within the official Java standard.

5. Retain compatibility with earlier releases of Java. In order to be forward-looking and
to ensure that our resources remain current for as long as possible, our baseline
version of Java will be Standard Edition 5.0 of the Java 2 Platform (J2SE 5.0), which
was released under the code name “Tiger” in September 2004 [Sun04]. We
recognize, however, that many institutions will not be in a position to adopt Java 5.0
by the time at which our materials are released, and possibly not for some time to
come. Moreover, many browsers—and particularly those installed at commercial
Internet-access outlets like Kinko’s and EasylInternetCafe which still operate in the
JDK 1.1 world—run considerably older versions of the Java environment. To ensure
that applications and applets built with our tools run on as many platforms as
possible, we have made available a version of the acm.jar library that allows
programs compiled using it to run with any version of the Java Development Kit from
1.1 on, assuming that they use only the classes identified as part of the JTF subset in
Chapter 9.

6. Support multiple environments. The Task Force has not designed its packages with
any particular programming environment in mind but has instead sought to ensure
that our packages work in all major development environments.

2.2 Methodology for soliciting feedback

The Java Task Force sought community feedback at several points during the course of
the project. The formation of the Task Force was announced officially at SIGCSE 2004,
when we issued a call for input from the community on the nature of the problems that
arise in teaching Java at the introductory level and on any successful strategies developed
to address those problems. We used this feedback to guide the development of the Java
Task Force packages, which we then described in the initial draft of this rationale
document in February 2005. We then solicited feedback on the initial design in the form
of a web-based discussion board announced at SIGCSE 2005. The subsections that
follow describe the feedback we received in each of these phases of the project.

Soliciting reports of problems and proposed solutions

The Java Task Force adopted two strategies for identifying the problems that arise in
teaching Java at the introductory level and for determining what solution strategies had
been attempted:

1. From January to March, we conducted an extensive review of the computer science
education literature to see what problems had been reported. The results of that
review are presented in Chapter 3 along with an analysis of how those problems
interrelate.

2. After publishing a draft of the problem taxonomy that came out of the literature
review, we solicited input from the community as to what problems they had
encountered in teaching Java and what solutions they had found. That call was issued
as part of the Task Force presentation at SIGCSE 2004 and then followed up by the
posting to SIGCSE-MEMBERS shown in Figure 2-1.
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Figure 2-1. Java Task Force call for proposals

To: SIGCSE-MEMBERSQ@ACM.ORG

From: Eric Roberts <eroberts@cs.stanford.edu>
Subject: ACM Java Task Force announcement
Date: Wed, 17 Mar 2004 11:43:10 -0800

Everyone,

The growth in popularity of the object-oriented paradigm and the
decision by the College Board to move the Advanced Placement Computer
Science program to Java have led an increasing number of universities,
colleges, and high schools to adopt Java as the programming language for
their introductory computer science course. At the same time, many of
those institutions report finding Java difficult to teach, partly
because of its significant detail complexity and its tendency to evolve
rapidly over time.

To help address these concerns, the ACM Education Board has recently
appointed a new task force with the following charter:

To review the Java language, APIs, and tools from the
perspective of introductory computing education and to
develop a stable collection of pedagogical resources that
will make it easier to teach Java to first-year computing
students without having those students overwhelmed by its
complexity.

The formation of the ACM Java Task Force was officially announced at the
recent SIGCSE symposium in Norfolk, Virginia. The background materials
and symposium presentations are available on the task force web site at

http://www.sigcse.org/topics/javataskforce/

The Java Task Force held its initial meeting on January 31st in
Washington D.C. and identified a set of challenges that arise in
teaching Java based on a review of the literature and our experiences.
These challenges are summarized in a draft report entitled "Taxonomy of
Problems in Teaching Java," which is available on the web site.

At this point in the process, we are seeking contributions from the
computing education community in the following two categories:

1. A description of any additional challenges you have beyond
those identified in our taxonomy.

2. A description of any solutions you have developed in response
to these challenges.

We have established a process for submitting materials to the Task Force.
Please refer to the submission requirements page at

http://www.sigcse.org/topics/javataskforce/Submissions.shtml

To give the community more time to respond, we have extended the submission
deadline until Friday, April 30, 2004.

-- The ACM Java Task Force
Eric Roberts (chair), Stanford University
Kim Bruce, Williams College
James Cross, Auburn University
Scott Grissom, Grand Valley State University
Karl Klee, Alfred State College
Susan Rodger, Duke University
Fran Trees, Drew University
Ian Utting, University of Kent
Frank Yellin, Sun Microsystems
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Interestingly, those who responded to the Task Force’s call for input did not identify
any major problems beyond the ones already uncovered in the literature review. Instead,
the 33 submissions we received focused on solution strategies. The most common themes
for these submissions were graphics, the creation of graphical user interfaces (GUIs), and
simple I/0. Although the Task Force did not adopt any of these solution strategies in the
precise form given in the submission, the submissions we received provided extremely
useful models that guided the Task Force toward the development of an integrated set of
packages that could address these problems in a consistent way. Those packages are
described in Chapters 4 through 8.

Soliciting feedback on the first release

The Java Task Force posted the first version of this rationale document and the associated
library packages on February 1, 2005. After a couple of days to make sure that we had
the feedback site ready to go, we sent a message to the SIGCSE-MEMBERS list
announcing the availability of the new draft on February 3. That release message appears
in Figure 2-2. The web forum opened the following day.

Discussion on the web forum was never particularly intense, although we received a
modest but steady stream of feedback, with a total of 62 messages posted to the forum.
The forum was organized by topic, and it is interesting to consider which topics attracted
the most attention. The statistics for the responses posted on the forum appear in Figure
2-3, which shows both the number of separate topic threads and the total number of
postings. The following topic areas received ten or more postings:

¢ Chapter 6—The Program Hierarchy. This chapter covers the Program class, which
was introduced to simplify the creation of programs that could run as both applets and
applications. This chapter, however, also included the discussion of why the Task
Force had decided against adding special GUI support, and a significant fraction of the
postings address this concern.

e Chapter 4—Simplified Input and Output. The high level of interest in this topic
presumably simply reflects the fact that the problem of teaching I/O was the most
frequently cited problem to appear in the review of the literature described in
Chapter 3. Few suggestions for changes were offered. The only modification that we
made to the acm.io package in response to the feedback on the web forum was to
allow programmers to specify optional range limits in the readInt and readDouble
methods, as suggested by Alice Brady [Brady05].

* General Info about Task Force. The major item of discussion under this topic was
the question of license restrictions for the package. The first release was issued under
a more restrictive licence than the Task Force intends to use for the final release. Our
concern at the time was to discourage anyone working with the initial release from
publishing programs derived from that early version of the library packages. Allowing
people to build too freely on top of the first release would create barriers to change in
subsequent releases. The public license for the final release will allow anyone to
develop software of any kind using the ACM packages and will protect only the
ACM’s interest in the package code itself. The danger of not having this minimal level
of protection is that someone else could come along and seek to assert intellectual
property rights over the ACM code.

Several of the topic areas on the web forum received no posts at all. It is unclear whether
the lack of response in these areas indicated that the ideas were uncontroversial or merely
uninteresting. The Task Force did take some satisfaction in the fact that there were no
postings for the topic “Installing the Libraries,” which suggests that readers of the forum
were able to download the packages without too much difficulty.
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Figure 2-2. Announcement of initial release and request for feedback

To: SIGCSE-MEMBERSQ@ACM.ORG

From: Eric Roberts <eroberts@cs.stanford.edu>
Subject: ACM Java Task Force draft release
Date: Thu, 3 Feb 2005 12:48:46 -0800

Dear SIGCSE members and colleagues,

At the SIGCSE Symposium in Norfolk in 2004, the ACM Education Board
announced the formation of the ACM Java Task Force and assigned it
the following charge:

To review the Java language, APIs, and tools from the
perspective of introductory computing education and to
develop a stable collection of pedagogical resources that
will make it easier to teach Java to first-year computing
students without having those students overwhelmed by its
complexity.

The Task Force issued a request last spring to the SIGCSE community
seeking feedback on the problems people have encountered in teaching
Java and the solutions they have developed in response. We spent the
remainder of the year (and the first month of this one) reviewing
those suggestions and using them to guide the design of a small set
of packages intended to simplify the use of Java in introductory
courses. Although the Task Force will not complete its work until
the summer, we are ready to solicit more extensive community feedback
and have released our first public draft, which is available on the
web at

http://www.acm.org/education/jtf/

The web site includes both source and compiled versions of the proposed
new packages, a gallery of demo programs, documentation trees offering
both a complete description of the package and an abridged student view,
and an extensive rationale document outlining the reasons for our design
decisions.

We hope that you will look over the materials available on that site and
give us feedback. There will be a report and feedback session at SIGCSE
2005 in St. Louis, which is scheduled for 10:30am on Thursday, February
24,

In the next few days, we will complete the installation of a new
threaded discussion group for the Task Force recommendations. That
discussion group will be available at the following web site:

http://www.cs.duke.edu/phpbbjtf/

We will send a second announcement to the SIGCSE lists when that site is
enabled. 1In the meantime, you can send mail to the Java Task Force at
the following address:

java-task-force@cs.stanford.edu

We plan to collect feedback through March 31 and then use that feedback
to guide further development of the materials prior to the final release
in June.

We look forward to your comments.

—- Eric Roberts
for the ACM Java Task Force
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Figure 2-3. Response rate for each topic on the feedback site
Forum Topics | Posts
Java Task Force
I,.f'_x General Info about Forum READ FIRST BEFORE POSTING
@ Information about creating accounts and posting messages. 4 6
READ THIS FIRST before posting messages.
I,s'_x General info about Task Force
u This forum describes general information about the Java Task Force 4 10
I,s'_x Chapter 1 —Introduction
@ Comment on Chapter 1 of the JTF Document 0 0
I,s'_x Chapter 2—Principles and Methodology
u Comment on Chapter 2 of the JTF Document 0 0
I...f'_x Chapter 3—Taxomomy of Problems in Teaching Java
@ Comment on Chapter 3 of the JTF Document 0 0
I,-f'_x Chapter 4—Simplified Input and Output
"x,_,.f': Comment on Chapter 4 of the JTF Document 3 10
I,-*'_“: Chapter 5—Object-Oriented Graphics
I‘*«_,-"': Comment on Chapter 5 of the JTF Document 2 5
£ Chapter 6—The Program Hierarchy
u Comment on Chapter 6 of the JTF Document 3 14
I,s'_x Chapter 7—Utilities
@ Comment on Chapter 7 of the JTF Document 0 0
I,s'_x Chapter 8 —Subsetting the Java API
u Comment on Chapter 8 of the JTF Document 2 5
I,-f'_x JTF Installing the Libraries
@ Ask questions here if you are having problems installing the acm libraries. 0 0
I,x'_'x JTF Demo Programs
"x,_,.f': Comment on Demo Programs 2 5
I,.f'—x Other Topics
@ Post here if your posting does not fit into any other category 5 7

The members of the Java Task Force presented the highlights of the Task Force report at
the SIGCSE 2005 symposium on February 24. The response was overwhelmingly
positive and provided considerable encouragement that we were on the right track. The
changes that were necessary after the first release, unfortunately, took considerably
longer than the Task Force had initially hoped. The original schedule, however, was
unduly aggressive and did not include sufficient time to refine the design after the
feedback phase.
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Chapter 3
Taxonomy of Problems in Teaching Java

Before it is possible to search for solutions to the problems involved in teaching Java at
the introductory level, it is essential to know what those problems are. To this end, one
of the first tasks that the Java Task Force undertook was to survey the literature of
computer science education in an attempt to identify the problems that have generated the
greatest level of concern.

On the basis of that survey, we have divided the pedagogical problems associated with
Java into three categories: high-level issues that are in some sense beyond the details of
the language itself, language issues that arise from the design of Java itself, and API
issues associated with the application programmer interfaces provided as part of Sun’s
standard Java releases. The issues in each of these categories are shown in Figure 3-1
along with a capsule assessment of their current status as problems for the community.

As the annotations in the right-hand column indicate, many of the problems with Java
reported in the literature have been at least partially addressed, either by incremental
improvements over time or by new releases of the Java environment. Version 1.4 of the
Java Development Kit (JDK), for example, added an assertion mechanism to Java,
thereby enabling the specification of preconditions [Zukowski02]. The many changes —
parameterized types, enumeration types, boxing and unboxing of primitive data, an
extension to the for statement syntax to support iteration, and new APIs to support
concurrency and formatted I/O—introduced in Java 5.0 [AustinO4, HeissO03] will have an
even more dramatic effect on pedagogy.

Figure 3-1. Summary of issues identified by the Java Task Force

High-level issues:
H1. Scale (remains a concern)
H2. Instability (remains a concern)
H3. Speed of execution (improving over time)
H4. Lack of good textbooks and environments (improving over time)

Language issues:
L1. Static methods, including main (remains a concern)
L2. Exceptions (remains a concern)
L3. Poor separation of interface and implementation  (partly addressed by tools)
L4. Wrapper classes (added in Java 5.0)
L5. Lack of parameterized classes (templates) (added in Java 5.0)
L6. Lack of enumerated types (added in Java 5.0)
L7. Inability to code preconditions (added in JDK 1.4)
L8. Lack of an iterator syntax (added in Java 5.0)
L9. Low-level concerns (disposition varies)

API issues:
Al. Lack of a simple input mechanism (remains a concern)
A2. Conceptual difficulty of the graphics model (remains a concern)
A3. GUI components inappropriate for beginners (remains a concern)
A4. Inadequate support for event-driven code (remains a concern)
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While the release of Java 5.0 is likely to solve several problems, its adoption in the
near term represents a significant challenge to the educational community. Sun released
Standard Edition 5.0 of the Java 2 Platform (J2SE 5.0) only in September 2004, and it
remains unclear how quickly educational institutions will be able to adopt it. Moreover,
given that we have very little experience teaching using the new language features
included in Java 5.0, there is no direct evidence to indicate how well the new facilities
will work in the classroom. In light of this uncertainty, the Java Task Force has decided
that its recommendations must be implementable, at least in part, by those who continue
to use earlier versions of Java.

The sections that follow offer additional details on the set of problems we have
identified from the literature.

3.1 High-level issues

This section outlines those challenges that in some sense transcend the details of the Java
language and its libraries. These concerns therefore represent a set of meta-level issues
that as often as not are intrinsic to the character of modern programming languages. They
are nonetheless quite important in terms of their practical impact on teaching Java.

H1. Scale

At some level, the most serious problem facing instructors who try to teach Java—or any
modern industrial-strength language for that matter—is the problem of scale. While such
languages may themselves be reasonably simple, writing any useful programs requires
the use of classes supplied as application programmer interfaces (APIs) along with the
language. For modern languages, such API collections are vast. The existence of these
huge libraries makes it difficult for students and teachers to learn the language without
suffering from conceptual overload. This point was made elegantly in Niklaus Wirth’s
invited address at ITICSE’02 [WirthO2] and has also been addressed by other writers in
recent years [Hadjerrouit98, RobertsO1, RobertsO4a].

The problem of overwhelming scale is also unlikely to diminish as time goes on. Each
release of Java is larger than its predecessor, which only adds to the scale problem. Java
5.0 [Austin04, Heiss03], in particular, adds considerable complexity to the language,
even as it addresses many of the problems identified in earlier versions. Some critics of
Java 5.0 have gone so far as to argue that the added complexity in the new release might
spell the “end of Java” [Cooper03], although the jury is clearly still out on this question.

We believe that the best way to address the problem of scale is to define a subset of
Java and its APIs that reduce the level of detail complexity while enabling a variety of
approaches to introductory computer science education. This goal is reflected in the first
two deliverables as described in the summary of the special session on the Java Task
Force at SIGCSE’04 [Roberts04b]:

1. A definition of a subset of the standard Java APIs appropriate for first-year computer
science. This subset would involve restricting both the number of classes used as well
as the number of public methods made visible within those classes. Note that this
subset must be sufficient to have students write significant applications using Java. To
this end, it will presumably be a superset of the AP Java subset [Astrachan00] which
seeks to define what aspects of the language will be tested on the AP exam.

2. A public web site containing an updated JavaDoc reference manual for the approved
Java subset. This web site would make it possible for students to browse the standard
classes and methods defined in the subset without being overwhelmed by classes,
methods, and concepts they are unlikely to use. For the classes and methods that are
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included, the web site will contain more examples and tutorial material than is
currently supplied with the Java APIs.

It is important to understand that the Task Force is not seeking to define a minimal
subset, but rather a subset that is rich enough to support different pedagogical strategies
while still providing some relief from the overwhelming scale and complexity that adhere
to the full-blown releases of Java. There is, moreover, nothing to prevent an individual
instructor from venturing beyond the limits provided by the subset. In fact, we encourage
instructors to experiment with Java classes—whether home-grown or part of the standard
Java release —whenever such classes can be used to advance computer science pedagogy.

H2. Instability

The problem of scale is reinforced by the fact that Java continues to evolve rapidly. As a
result, pedagogical materials must be redesigned on an ongoing basis, making it difficult
for both those who create those materials and those who try to use them. One of the goals
of the ACM Java Task Force is to provide a modicum of stability by defining the
standard Java subset in a way that insulates adopters from at least some of the rapid
evolution going on in the Java community. A more complete discussion of the nature of
this instability along with some of the underlying reasons why it occurs can be found in
the background paper presented at SIGCSE’04 [RobertsO4a].

H3. Speed of execution

Many of the early papers describing classroom experience with Java [Bergin98, King97,
Tyma98] cite the relatively slow execution time of Java programs as a problem. Because
Java is compiled to a virtual machine rather than the instruction set of the underlying
hardware, Java will never have the runtime efficiency of programs in C or C++. Even so,
the situation has improved markedly since the early days of Java. If nothing else, the
increase in processor speed means that most users now see much faster execution times
than they did a few years ago. In addition, the development of just-in-time compiler
technology (JIC) means that the Java runtime environment tends to run much faster on
frequently executed portions of code.

H4. Lack of good textbooks and environments

Most of the early adopters of Java complained about the shortage of usable textbooks and
teaching environments, but that problem has certainly been alleviated in recent years. At
this point in time, there are far too many Java textbooks to list, many of which have been
used effectively in introductory courses. There are, moreover, a number of Java-based
environments that have been used successfully in the classroom, including Bluel
[K6lling00], DrJava [Allen02], and JGRASP [Cross04]. It does not seem appropriate for
the ACM Java Task Force to endorse any specific textbooks or commercial development
environments. At the same time, it is important to ensure that the strategies we
recommend work in as many of the leading environments as possible.

3.2 Language issues

The following problems arise from the details of the Java language itself, as opposed to
the associated APIs. Because it is generally harder to change the language definition than
it is to provide an alternative for an API, these problems are likely to be more difficult to
solve than those described in section 3.2 on “API issues.”

L1. Static methods (including main)

One of the common complaints about Java to emerge in papers from recent years is the
fact that beginning students must come to grips with static methods too early in the first
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course [Biddle98, Martin98, Reges00, Reges02]. Part of the problem comes from the fact
that the standard mathematical functions are implemented as static methods in the Math
class, forcing students to understand that the call Math.sqrt (x), for example, is different
from most method invocations in that there is no object to which a message is sent. For
better or worse, Java 5.0 allows one to import all static methods and constants from a
class. Thus, if the programmer includes the line

import static Math.*;

one can subsequently drop the Math prefix and simply invoke sqrt (x). While such a
change may make the resulting code easier for students, the conceptual distinction has not
gone away, and it is still necessary to explain the differences between static and nonstatic
method invocation.

The heart of the problem, however, is not the existence of static methods in the public
APIs as much as the fact that Java applications, as opposed to applets, are invoked
statically through a call to the method

public static void main(String[] args)

The need to include a main method introduces —presumably on day one of the course—a
whole host of confusing issues including the keywords public, static, and void, the
class string, and the empty-bracket syntax for designating an array parameter. To some
extent, these problems can be finessed simply by declaring the syntax to be a bit of arcane
boilerplate whose meaning will become clear in the fullness of time. The more difficult
problem is that the main method is invoked without instantiating an object, which means
that any subsidiary methods must also be declared as static. Moreover, the entire idea of
object-oriented behavior is undermined through this mechanism.

The situation is very different with applets. When you execute an applet, the browser
creates a new object of the appropriate applet subclass and then sends messages like init
and start to the newly instantiated object. The applet paradigm is thus considerably
more object-oriented, although it has other problems of its own. Developing a mechanism
to make application invocation more object-oriented and to reduce the asymmetry
between the two models would be of considerable pedagogic value.

L2. Exceptions

Many of the early reports on using Java as an introductory language express concern
about the fact that the definitions of various library APIs make it impossible to ignore the
concept of exceptions, even in simple examples [Biddle98, Hosch96, Weiss98,
RobertsO1]. The classic illustration of this problem occurs when the programmer wants to
specify a delay in execution. The static method Thread.sleep offers the necessary
functionality, but it is not possible to write

Thread.sleep (time) ;

because Thread.sleep can throw InterruptedException, which must be caught by the
client, as follows:

try {
Thread.sleep (time) ;

} catch (InterruptedException ex) {
This exception is typically ignored.
}

Similar problems with exceptions also occur during I/O operations, which exacerbates the
problems that arise under topic A1 (Lack of a simple input mechanism).
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The rules concerning exceptions and the list of exceptions raised by the existing Java
APIs are beyond the boundaries of what this Task Force can change. The only thing that
the Task Force can do—as many who have implemented Java libraries have done—is to
provide additional mechanism that allow novices to accomplish the most common
operations without having to deal with the exceptions. The graphics libraries developed at
Williams [BruceO1] and Stanford [Roberts98], for example, both include a pause method
whose implementation encapsulates the exception-handling phase of the Thread.sleep
call.

L3. Poor separation of interface and implementation

Several of the critical reviews of Java as a teaching language point out that Java makes it
harder to separate the high-level specification of what a class does from the low-level
implementation that determines how it does it [Biddle98, Hosch96, RobertsO1]. The crux
of the problem is that Java classes, unlike those of C++, do not have a separate
specification section that includes the prototypes of the methods but not their bodies. As a
result, anyone who looks at the code for a class is forced to see all of the detail rather than
a more abstract specification indicating what the client needs to know.

While it is impossible to fix this problem within the confines of the Java definition,
sensitivity to the value of separating interface-level specification from the underlying
implementation has an effect both on pedagogical strategy and the design of new classes
for teaching. Abstract classes and interfaces each provide some level of relief from this
concern. Another approach altogether is to rely on documentation tools (such as
javadoc) and programming environments to provide the conceptual separation between
specification and implementation that the language lacks.

L4. Wrapper classes

At the language level, one of the most often cited concerns in the past has been the
distinction between primitive types such as int, boolean, and double from the
corresponding full-fledged counterparts (typically called wrapper classes) Integer,
Boolean, and Double [Biddle98, Reges02, RobertsO1]. The problem with the distinction
between these two categories is partly the conceptual overload students feel when they try
to understand why there are two distinct flavors of what seem to be the same thing. In
practical terms, working with primitive types introduces considerable extra complexity
whenever those values are introduced into a container. It is, for example, impossible to
add an int value n to an array list using the otherwise intuitive code

list.add(n);

because the value of n is a primitive type rather than an object. Historically, Java has
insisted that the programmer explicitly allocate the corresponding Integer object before
invoking add, as follows:

list.add(new Integer(n));

Similarly, the programmer must also specify the corresponding reverse conversion when
removing a primitive value from a collection. To retrieve the first integer from list and
assign it to the variable first requires the incantation

first = ((Integer) list.get(0)).intValue();

which is certain to confuse most novices.

Fortunately, this problem—particularly when one also makes use of the template
mechanism described in the following section—goes away in Java 5.0. The new 5.0
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release includes automatic “boxing” and “unboxing” of the primitive types so that the
preceding insertion and selection operations can be reduced to

list.add(n);
and
first = list.get(0);

assuming that 1ist is declared as an ArrayList<Integer>.

LS. Lack of parameterized classes

Another widespread complaint about Java is that the language does not support strongly
typed collections because it lacks a counterpart to the C++ template facility [Biddle98,
Hadjerrouit98, Hosch96, Martin98]. Java 5.0 introduces a structure for parameterized
types in a way that eliminates many problems associated with the C++ implementation of
this mechanism while retaining the convenience of the syntax. This mechanism, which is
usually called generics in Java, has also been retrofitted into the Java collection
framework so that it is possible, for example, to declare an array list of integers by
writing

ArrayList<Integer> list;
or a hash table containing strings by
HashMap<String> dictionary;

Judging from the documentation and examples, parameterized types in Java
unfortunately introduce a number of complex and potentially confusing issues, but it
should be possible to avoid such complexity in classroom settings either by limiting their
use to the standard collections framework or by imposing judicious restrictions on the
ways in which type parameters can be used. It is, however, difficult to assess whether
generics will succeed with an introductory audience until people have had a chance to
experiment with it.

L6. Lack of enumerated types

Another weakness in the Java type system that has attracted wide attention is the lack of
enumerated types of the sort available in Pascal, C, and C++ [Biddle98, Hosch96,
Reges02]. Java 5.0 introduces enumerated types, and it should be possible for instructors
to use these in much the same way that they have in those other languages.

L7. Inability to code preconditions

In one of the very early papers to discuss Java as a teaching language, Frederick Hosch
expressed concern that Java included no mechanism for specifying runtime assertions to
check the preconditions of a method, such as those provided in C and C++ by the assert
facility [Hosch96]. Assertions have become part of Java as of release 1.4, so that this
problem is now historical. Interestingly, however, the documentation of release 1.4
specifically discourages the use of assert to enforce preconditions, arguing that such
failures are more properly handled by raising an illegal argument exception.

L8. Lack of an iterator syntax

In his comparison of Java and C#, Stuart Reges expresses a fondness for the foreach
statement in C# [Reges02]. Other writers have expressed similar views about the
pedagogic value of including syntactic support for iteration [RobertsO1]. Java 5.0
includes a new syntax for iteration based on the for statement, making it possible, for



ACM Java Task Force Rationale - 15-
Second Public Draft (23-Feb-06)

example, to iterate over the elements in a variable 1ist of type ArrayList<Integer> by
writing

for (Integer i : list) {
Body of loop
}

L9. Low-level concerns

In the interest of completeness, it is useful to identify a few other features of Java that
have been cited in the literature as problems:

* Holdovers from C and C++. Several writers complained about features of Java that are
simply the result of its historical roots as a descendant of C and C++. These concerns
include, for example, the fact that it is possible to fall through from one case clause to
the next in a switch statement, that the distinction between = and == is confusing for
novices, and that the language lacks call-by-reference [Biddle98, King97, Martin98,
Reges02, Weiss98].

* Ambiguities in equality testing. In an early critique of Java in the instructional
environment, Robert Biddle and Ewan Tempero express concern that the semantics of
the == operator are confusing when the operands are objects [Biddle98]. The problem
is particularly annoying in the case of the string class, where students can easily be
misled by the fact that the Java interpretation (reference equality) often gives correct
results, given Java’s propensity for storing a single copy of each string value.
Similarly, the default implementation of the equals method in the object class can
lead to surprising behavior if subclasses fail to override it when appropriate.

* Default visibility specification. A couple of early papers point out that the default
visibility for methods is not the same as that imposed by any of the explicit modifiers
public, private, or protected [Biddle98, Hosch96]. As a result, students who do
not include an explicit visibility specifier will have difficulty understanding exactly
what classes have access to that method. Since many of those students will also be
writing classes as part of the unnamed “anonymous” package, the default visibility is
effectively public, which undermines the philosophy of information hiding.

Each of these concerns represents an issue that is on the one hand deeply embedded in
the design of Java and on the other hand of relatively minor consequence. The Java Task
Force has no plans to address these concerns other than by encouraging the use of coding
styles that minimize the associated problems.

3.3 APl issues

This final category of documented problems in Java concerns the limitations of the
existing APIs.

Al. Lack of a simple input mechanism

By far the most widely cited problem in papers about Java is the lack of any simple
facility for accepting input from the user [Grissom00, KoffmanO1, Martin98, Reges02,
RobertsO1, Wallace99, Weiss98, Wolz99]. Many textbook authors have developed
packages that offer a simple input mechanism, but these have met with resistance from
the marketplace because they are not part of the Java standard. Others have suggested that
a console-like input facility is a throwback to an out-of-date procedural programming
style and that such techniques should be replaced by dialog input that fits the more
modern, interactive style.
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With the release of Java 5.0, console-style user input—for those who want it—is less
of a problem. The new scanner class in the java.util package makes it relatively easy
to read input values from a stream using the following code:

Scanner sc = new Scanner(System.in);
int n = sc.nextInt();

Unlike the stream operations defined in the java.io package, the Scanner abstraction
does not throw exceptions that the client code must catch, thereby simplifying the
required code enormously.

A2. Conceptual difficulty of the graphics model

Ever since the technology has made it possible, many instructors have included graphical
applications in their introductory programming courses because such applications
generate so much excitement in students even as they illustrate important programming
concepts. Although the Java APIs offer extensive graphical capabilities, it is often
difficult for novices to master the Java graphics model [BruceO1, Martin98]. In a 1998
paper [Roberts98], Eric Roberts identified three problems in the Java graphics model that
make it difficult to use for beginning students:

1. Forgetful bitmaps. Under the Java graphics model, each component has the
responsibility to respond to update events, which generate calls to paint (or
paintComponent under Swing). Implementing those repainting methods requires
students to maintain enough state information to regenerate the image. Designing the
data structure to maintain this state is much more difficult than calling a set of
methods to create a static display. This problem can be solved through a technique
called double-buffering, in which the user’s program draws into an offscreen memory
buffer that can be copied to the screen whenever an update event occurs.

2. Statelessness of the graphics context. In Java, the graphics context preserves
relatively little state from call to call, which forces programmers to maintain more
state in their code. In particular, Java does not maintain the notion of a current point,
which forces students to specify the endpoints of each line segment explicitly rather
than chaining together a set of vector displacements.

3. An unfamiliar definition of the coordinate system. Java’s standard coordinate system
differs from traditional mathematical coordinates in three ways: (1) it uses integers
rather than real numbers to specify points, (2) coordinate values depend on the device
resolution, and (3) the axes are not arranged in the familiar Cartesian form. Each of
these differences makes it more difficult for the student to use the graphics model.

A3. GUI components inappropriate for beginners

The standard interactor classes provided by the Java Swing library are often difficult for
novices to use. To overcome this problem, several institutions that have adopted Java
have developed new interactive toolkits to provide similar functionality in a form more
easily understood by introductory students. The toolkits include the Java Power Tools
collection developed at Northeastern [Raab00, Rasala00] and the simpleIo package
developed by Ursula Wolz and Elliot Koffman [Wolz99]. The advantages of such a
approach are illustrated in the following list of goals for the Java Power Tools package,
which seeks to provide

* An infrastructure for creating well designed programs that illustrates the concepts of
computer science and its practical applications

* An environment for learning the basic ideas of interface design and for experimenting
with a variety of designs
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* A paradigm for building interfaces in Java that scales from individual data items to
large structures, using recursively displayable container classes [Raab00]

A4. Inadequate support for event-driven code

Given that most computer science instructors are more familiar with such an approach,
many institutions have continued to teach their introductory courses in a procedural style,
even if they have adopted Java as the language of instruction. In fact, the Computing
Curriculum 2001 report [ACMO1] found that most courses we surveyed operated under a
traditional procedural paradigm, even if they used an object-oriented language to do so. A
few particularly forward-looking institutions were experimenting with alternative
curriculum designs in which students are taught the object-oriented paradigm from the
very beginning. Such strategies typically begin with simple objects that respond to
messages generated either by asynchronous events or through interaction with other
objects. Creating programs in this style gives students a much deeper perspective on the
philosophy of object-oriented design.

Unfortunately, such approaches can be difficult to implement in standard Java because
of the complexity of the event model and the difficulties involved in coding concurrent
programs [Bergin98, Hartley98]. To get around these problems, some institutions —
notably Williams [BruceO1] and MIT [Stein98]—have experimented with toolkits that
support highly interactive, event-driven programs. To allow more institutions to use
similar curricular strategies that emphasize an object-oriented approach, it will be useful
to make this sort of toolkit more widely available.

The Java 5.0 release does include a new toolkit for concurrency based on earlier work
by Doug Lea [Lea99]. While this new API will provide much better support for
concurrency in Java, it is not clear to what extent this package will prove useful in the
introductory course.
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Chapter 4
The acm. io Package

The survey of problems presented in Chapter 3 notes that the problem most often cited by
those attempting to teach Java to novices is the lack of a simple input mechanism, either
through a traditional text-stream interface or a more modern dialog-based approach.
Although this problem —identified as Al in the taxonomy—is partly addressed by the
introduction of the Scanner class in Java 5.0 and the JoptionPane class in Swing, the
Task Force concluded that it would be worth introducing a package that offered an
integrated approach to user input that would provide both traditional and dialog-based
input options in a simple, consistent way. In the Java Task Force release, this capability
is provided by the acm. io package, which contains two public classes:

1. An 10console class that supports traditional text-based interaction within the
standard Java window-system hierarchy.

2. An 1opialog class that offers similar functionality to the JoptionPane class in a
significantly simplified form.

In addition to these classes, the aem.io package defines an 10Model interface that
specifies the input and output operations common to I0Console and IODialog. The
sections that follow describe the two public classes in more detail.

4.1 Console-based I/0

One of the most common strategies used by Java textbook authors to address the problem
of user input is to create an 10Console class that provides interactive text-based 1/0O
within the framework of the standard Java graphical APIs. As examples, the Java
textbooks published by Holt Software Associates [HumeOO] and the web-based textbook
written by David Eck [Eck02] define their own classes that provide this functionality.
Similar packages not linked to textbooks have also been proposed, including those
developed by Ron Poet [Poet00] and Eric Roberts [Roberts04d].

While the large number of existing implementations clearly indicate that an
I0Console class enjoys a certain popularity in the community, its inclusion in the JTF
packages has generated a certain amount of controversy. The principal objection to
having such a class is that the underlying computational paradigm is not representative of
the event-driven, interactive user interfaces for which the object-oriented paradigm is so
well suited. In the papers surveyed for the problem taxonomy presented in Chapter 3,
several authors argue that Java programs should avoid such traditional modes of
interaction and instead make use of dialogs that fit more closely with modern paradigms
of interactive programming. After extensive discussion, the Java Task Force decided that
the acm.io package should support both console- and dialog-based I/O, but only if the
two models could implement a single interface, which would allow easy transition from
one paradigm to the other. Our reasons for retaining the console-based model include:

* The console-based model has significant utility in its own right. The I0Console class
has many uses beyond its obvious role as a framework for traditional procedural
programs. Interpreters, for example, can use it to provide a read-eval-print mechanism,
which serves as a powerful interactive tool.

* Including both paradigms makes it easier to support automated testing. It is often
harder to design test programs for an interactive environment, particularly if such tests
are automated. Consider, for example, traditional stream-based programs written for
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the Unix/Linux domain (or, equivalently, Mac OS X). It is usually easy to test such
programs by using redirection to supply an input script and an output log. That style
of testing is typically unavailable under an interactive, dialog-based paradigm. By
including compatible console- and dialog-based I/O facilities, however, the ACM
packages support such testing strategies under either input model.

The existence of a console mechanism enables teachers without object-oriented
programming experience to teach Java more effectively. Many computer science
teachers, particularly at the secondary school level, have little experience with Java
and event-driven, interactive programs, but considerable familiarity with programs that
use console-based interaction. The Task Force concluded that it would be valuable to
offer teachers a mechanism that falls within their domain of expertise, at least as an
interim measure until object-oriented programming skills are more widely distributed.

As a simple illustration, the code shown in Figure 4-1 shows the Java code necessary

to create a Swing application that adds two numbers using the 10console class. The
following screen snapshot shows how this program appears when running on a Macintosh

under Mac OS X:

eOe Add2

This program adds two numbers.
Enter nl: 17

Enter n2: 25

The total is 42.

-4

Figure 4-1. Swing application to add two numbers

/*

* This file contains a Swing application that uses an IOConsole
* object to request two numbers from the user and then print

* their sum.

*/

import acm.io.*;
import java.awt.*;
import javax.swing.*;

/** Application to add two numbers */
public class Add2Application {
public static void main(String[] argv) {

JFrame frame = new JFrame("Add2Application");
IOConsole console = new IOConsole();
frame.getContentPane () .add(BorderLayout.CENTER, console);
frame.setSize (500, 300);
frame.show();
console.println("This program adds two numbers.");

int nl = console.readInt("Enter nl: ");

int n2 = console.readInt("Enter n2: ");

int total = nl + n2;

console.println("The total is " + total + ".");
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The code in Figure 4-1 can be simplified substantially by using the ConsoleProgram
class described in Chapter 6. The intent of this example is to illustrate the use of
I0Console as a standalone tool.

The public methods in the Toconsole class are shown in Figure 4-2. The only new
methods in the class added since the first release are the versions of readInt and
readDouble that include a range specification. These methods were added in response to
the following comment on the JTF web forum by Alyce Brady:

I was wondering . . . whether the Task Force also considered (and possibly
rejected) the possibility of straightforward range checking for int and
double types? This is easy to support if both the lower- and upper-bounds
are required — just provide an additional method for each that takes the two
bounds as parameters. This is much cleaner than requiring the students to
do range-checking within a loop. Of course, they should eventually be able
to do this, but to provide range-checking would seem to be consistent with
the type-checking that is already being done. [Brady05]

Given that Toconsole derives its inspiration from the familiar paradigm of text-based,
synchronous interaction, the design of the class is relatively straightforward. Even
though the underlying paradigm is familiar, there are nonetheless several important
features of the Toconsole class that are worth highlighting:

* The console mechanism supported by the package is part of the component hierarchy.
One of the common areas of confusion in discussing this proposal was that the
I0Console class is part of the window system hierarchy and not simply a layered
structure on top of the standard I/O streams System. in and System.out. Making the
console facility part of the standard windowing system increases the flexibility of the
package and makes it usable in both the application and applet worlds. In many
browsers, the standard I/O streams are not normally displayed, which makes them very
difficult for students to use.

* The console facility makes it possible to differentiate user input and error messages
from program output. The 10Console class makes it possible for students to tell the
difference between user input and program output. The methods setInputColor and
setInputStyle set these properties for user input, while setErrorcolor and
setErrorsStyle do the same for error messages. Output text is displayed in the style
and color given by the font and foreground settings and can therefore be manipulated
by calling setFont and setForeground. By default, user input is shown in blue, and
error messages appear in red. One of the principal advantages of making these
distinctions 1is that the pattern of user interaction is obvious when the program is
displayed on a classroom projection screen.

* The package includes support for menu bars that support printing and saving the
contents of the console, along with standard editing operations. When an 10Console
object acquires the keyboard focus, it looks to see whether a menu bar has been
installed in the frame and, if not, creates a menu bar with standard File and Edit menus.
In either case, the menu bar is set to direct its actions to that console. This feature is
described in more detail in section 6.6.

* The input and output streams for a console are available as readers and writers. The
10Cconsole class defines the methods getReader and getWriter, which return a
BufferedReader and a PrintWriter, respectively. These objects can therefore serve
as character-stream versions of the Ssystem. in and System.out objects, which rely on
the less portable byte-stream protocol. Moreover, the 10Console class defines a
special constant SYSTEM_CONSOLE, which reads and writes to the standard System. in
and system.out streams, thereby providing access to these streams using the more
modern discipline of readers and writers as opposed to byte streams.



ACM Java Task Force Rationale -21-
Second Public Draft (23-Feb-06)

Figure 4-2. Public methods in the T0Console class

Constructor
IOConsole()
Creates a new console object, which is a lightweight component capable of text I/O.

Output methods
void print (any value)
Writes the value to the console with no terminating newline.
void println(any value)
Writes the value to the console followed by a newline.
void println()
Returns the cursor on the console to the beginning of the next line.
void showErrorMessage(String msgq)
Displays an error message on the console.

Input methods
String readLine() or readLine(String prompt)
Reads and returns a line of text from the console without the terminating newline.
int readInt() or readInt(int min, int max) or
readInt (String prompt) or readInt(String prompt, int min, int max)
Reads and returns an int value, with optional specification of a prompt and limits.
double readDouble() or readDouble(double min, double max) or
readDouble(String prompt) or
readDouble(String prompt, double min, double max)
Reads and returns a double value, with optional specification of a prompt and limits.
boolean readBoolean() or readBoolean(String prompt)
Reads and returns a boolean value (true or false) from the console.
boolean readBoolean(String prompt, String trueLabel, String falseLabel)
Reads a boolean value by matching the user input against the specified labels.

Additional methods (most of which are unlikely to be used by novices)
void setFont(Font font) or void setFont(String str)

Sets the overall font for the console, which may also be specified as a string.
void setInputStyle(int style) and int getInputStyle()

Sets (or retrieves) the font style for user input, which can be different from the output style.
void setInputColor(Color color) and int getInputStyle()

Sets (or retrieves) the font color for user input, which can be different from the output color.
void setErrorStyle(int style) and int getErrorStyle()

Sets (or retrieves) the font style for error messages.
void setErrorColor(Color color) and int getErrorStyle()

Sets (or retrieves) the font color for error messages.
void setExceptionOnError (boolean flag)

Sets the error-handling mode: false means retry on error, true means raise an exception.
boolean getExceptionOnError ()

Returns the error-handling mode, as defined in setExceptionOnError.
PrintWriter getWriter()

Returns a writer that can be used to write to the console (analogous to System.out).
BufferedReader getReader()

Returns a reader that can be used to read from the console (analogous to System. in).
void setInputScript(BufferedReader rd)

Sets the console so that it reads its input from the specified reader rather than the user.
BufferedReader getInputScript()

Returns the current input script from which the console is reading.
void clear()

Clears the console screen.
void save(Writer wr)

Saves the contents of the console to the specified writer.
void print(PrintJob pj)

Prints the contents of the console to the printer as specified by pj.
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4.2 Dialog-based I/0

The 10console class—useful though it is—does not in any sense constitute a complete
solution to the user-input problem. Most instructors are looking for some way to support
dialog-based I/O that is simple enough for students to use. As noted in the discussion of
this problem in Chapter 3, several mechanisms have been proposed to address this
problem, including the Java Power Tools project developed at Northeastern [Raab00,
Rasala00] and the simplezo package developed by Ursula Wolz and Elliot Koffman
[Wolz99].

The standard Java APIs, of course, include many methods for constructing user
dialogs. In fact, since Swing was introduced as part of JDK 1.2, the Java APIs have
included the JoptionPane class that makes it possible to put up simple dialogs to request
basic data types from the users. Many instructors have used JoptionPane successfully,
and it appears to be the most common paradigm for this style of user interaction.

Unfortunately, the JoptionPane mechanism has several weaknesses that make it
problematic for novice users. Of these deficiencies, the most serious are the following:

e The API is complex. The JoptionPane class includes seven different variants of the
constructor, 37 public fields, and 61 public methods. When printed, the online
documentation runs 50 pages. While students clearly don’t need to understand the
entire structure, the danger of information overload is significant.

e The typical usage paradigm involves static methods. The JoptionPane class adopts a
curious mix of the object-based and procedural paradigms. While the displayed
dialogs are objects of class JoptionPane, the methods that create those dialogs and
request input from them are static methods in the JoptionPane class. As a result,
students are easily confused about the paradigm. Instead of creating an object and then
sending it a message requesting user input, the student must instead make static calls
on the class.

* Many of the more useful interaction styles require students to use arrays. Any
JoptionPane dialog that provides options outside the default set must supply those
options as an array of objects. At the beginning of an introductory programming
course, students have not yet learned about arrays, but it is precisely during this period
that dialog-based input would be most useful.

The 10Dialog class in the acm.io package is designed to solve each of these
problems. The customary paradigm is to create an 10pDialog object and then invoke
methods on that object to display information, request input, or report errors. As with
JoptionPane (Which is used internally in the implementation as long as Swing is
available), these three styles of use generate slightly different dialog formats, as shown in
Figure 4-4.

Figure 4-4. The three styles of T10Dialog interactors

=2 Message [; Error

o Enter an integer:
Il Process complete | | Illegal operation

OK OK OK
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The code that produces this series of dialogs looks like this:

IODialog dialog = new IODialog();
dialog.showMessage ("Process complete");
int n = dialog.readInt("Enter an integer:
dialog.showErrorMessage("Illegal operation

)i
")i
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The public methods in the 10pialog class are shown in Figure 4-5. As the small
number of entries in the table makes clear, the 10pialog class is vastly simpler than the
JoptionPane facility and should prove much easier for students to use.

One of the design goals for the acm.io package was to have the 10console and
I0Dialog classes implement the same interface so that students could easily switch back
and forth between the two modes. In the acm.io design, that common behavior is

Figure 4-5. Public methods in the I0Dialog class

Constructor

IODialog()
Creates a new IODialog object that supports dialog-based interaction.

Output methods

void print(any value)
Adds the string to a message that will be displayed when the line is complete.

void println(any value)
Displays the value in a dialog box.

void println()
Displays any text in the dialog box so far.

void showErrorMessage(String msgq)
Displays an error message in a dialog box.

Input

methods

String readLine() or readLine(String prompt)

Pops up a dialog asking the user to enter a line of text (returned with no terminating newline).

int readInt() or readInt(int min, int max) or
readInt (String prompt) or readInt(String prompt, int min, int max)
Pops up a dialog asking the user to enter an int, with optional prompt and limits.

double readDouble() or readDouble(double min, double max) or
readDouble(String prompt) or
readDouble (String prompt, double min, double max)
Pops up a dialog asking the user to enter a double, with optional prompt and limits.

int readInt() or readInt(String prompt)
Pops up a dialog asking the user to enter an integer value.

double readDouble() or readDouble(String prompt)
Pops up a dialog asking the user to enter a double-precision value.

boolean readBoolean() or readBoolean(String prompt)
Pops up a dialog asking the user to select a true/false value.

boolean readBoolean(String prompt, String trueLabel, String falseLabel)
Pops up a dialog asking the user to choose one of the specified labels.

Additional methods (most of which are unlikely to be used by novices)

void setExceptionOnError(boolean flag)

Sets the error-handling mode: false means retry on error, true means raise an exception.

boolean getExceptionOnError ()
Returns the error-handling mode, as defined in setExceptionOnError.

void setAllowCancel (boolean flag)
Sets the cancel mode: true adds a “Cancel” button that throws an exception.

boolean getAllowCancel ()
Returns the error-handling mode, as defined in setAllowCancel.
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specified by the ToModel interface, which includes the input and output methods common
to the two classes. The existence of this interface makes it possible for code to remain
insensitive to the interaction model. Consider, for example, the following method
definition:

void showArray(IOModel io, int[] array) {
io.print("[");
for (int i = 0; i < array.length; i++) {
if (1 > 0) io.print(", ");
io.print(array[i]);
}
io.println("1");
}

The important idea to notice here is that the first argument to showArray can be either an
I0Console Or an IODialog object; since both implement the 10Model interface, the
implementation doesn’t care.

Designing 1obpialog so that it provides a reasonable implementation of T0Model turns
out to be harder than it looks. The input side is easy, because both consoles and dialogs
wait for the user to supply a single input value. The output side is more difficult, largely
because a dialog is not a stream device. Having each call to print display a separate
dialog box is not a good choice, particularly for methods like showArray that assemble
the output in pieces. Displaying each individual value and comma in a separate dialog
box would destroy the conceptual integrity of the output and render the entire mechanism
unusable. A more satisfactory approach is to have print buffer the output inside the
dialog until a call to print1n arrives to signal the end of the line. This interpretation has
the effect, therefore, of allowing

int array = {2, 3, 5, 7, 11};
showDialog(new IODialog(), array);

to generate a single dialog box, as follows:
E2 Message X]

L)
0 2, 3, 5, 7, 11]

OK

Similar care must be applied if calls to print are followed by an input operation
before a println call occurs. In such situations, the buffered output is added at the
beginning of the prompt string. This treatment provides a sensible interpretation for code
in which the programmer explicitly prints a prompt rather than including it as a parameter
to the input call.

Another difficult decision in the design of both 10pialog and I0Console was the
question of how to handle illegal input data. For novices, the best strategy is for the input
method simply to display an error message and request new input, either by bringing up
another dlalog or by repeatlng the prompt on the console. For more sophlstlcated users,
however, it is more appropriate to allow the program to gain control at this point. By
default, both the 10pialog and I0console classes adopt the novice-friendly approach
and request new input. The more advanced programmer, however, can change this
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behavior by calling setExceptionOnError (true), in which case the input methods
throw an ErrorException on invalid input.

A related issue arises in defining reasonable semantics for the “Cancel” button, which
is part of the typical input dialog mechanism available with JoptionPane. In this case, it
is not appropriate to have the program bring up a new dialog after the user clicks the
“Cancel” button, which is presumably exactly what the user did not want. To avoid this
conceptual problem, the 10pialog mechanism does not display “Cancel” buttons as part
of the dialog unless the client has made it clear that special handling of dialog
cancellation is desired. If the client calls setAllowCancel (true), the input methods
display a “Cancel” button that throws a cancelledException when it is clicked.
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Chapter 5
The acm.graphics Package

One of the most widely cited problems in teaching Java—identified as problem A2 in the
taxonomy from Chapter 3 —is the lack of a graphics facility that is simple enough for
novices to use. This problem has been identified as critical by several authors [BruceOl,
Martin98, Roberts98]; Nick Parlante goes so far as to suggest that it is the only problem
that rises above his critical threshold:

Java has many little features that I thought might be a problem in CS1,
but in almost every case they worked out fine. Graphics was the one
exception. [ParlanteO4a]

Given the perceived importance of the problem, we were not surprised to find that
graphical packages were heavily represented among the solution strategies submitted to
the Java Task Force. These packages fall into three categories:

1. Object-based packages in which the user creates objects that draw themselves in a
window [BruceO4a, ParlanteO4a, SandersK04a, SandersK04b]

2. Packages that present graphics in the context of a “microworld” [Lambert04b,
SandersD04a]

3. Packages that offer a traditional Cartesian-based graphical model [RobertsO4e]

After discussing these strategies at a Task Force meeting, we decided to pursue only
the first approach, although we also provide enabling technology for “turtle graphics”
along the lines suggested by Ken Lambert and Martin Osborne in their submission to the
Task Force [Lambert04b]. The problem with adopting a complete microworld
implementation is that there are many existing designs, and it does not seem appropriate
for the Java Task Force to privilege one model over the others. In addition, most
microworld packages are stand-alone and can be adopted easily even if the Java Task
Force does not include them in its collection of APIs. Our reason for rejecting the
Cartesian-based package is simply that it differs too radically from Java’s own design.
Teaching students a graphics model that differs from Java’s in any substantive way runs
the risk of confusing them all the more when they start to use the facilities in the standard
Java packages.

We were, however, convinced of the value of supporting a simple, object-based
graphics facility that allows students to assemble figures by creating a graphical canvas
and then adding graphical objects to it. The advantages of having such a package
include:

* It enables students to use graphics from the very beginning of the first course.
Students today, having grown up with graphical interfaces, are much more interested
in this type of program than they are in the more traditional input/process/output style
of program.

* An object-based graphics model simplifies enormously the task of responding to
repaint requests. In both the Abstract Windowing Toolkit (AWT) and the more
powerful model provided by Swing, the programmer is responsible for repainting the
contents of a window whenever an update is necessary. Implementing that repaint
operation under the standard graphics model forces students to maintain enough state
information to regenerate the display, which typically requires some sophistication
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with data structures. Our graphical objects, however, are designed so that they repaint
themselves, thereby automating the repaint process.

* A graphical object hierarchy provides a compelling illustration of how object-oriented
programming works. If the package is well designed, it can serve as an early
illustration of general notions like subclassing and inheritance along with more
specific implementation strategies such as abstract classes and interfaces. The desire
to use the graphics class hierarchy as a pedagogical tool provides a strong incentive to
keep the package small and consistent in its design.

Although we were convinced that an object-based graphics package had to be one of
our deliverables, none of the submissions in response to our call for proposals was in fact
ideal. Each of these proposals has strengths and weaknesses, as outlined in Figure 5-1.
The proposals therefore served as a foundation for the design of a new package that
incorporates the best features of each. The result of that design effort is the
acm.graphics package, which defines an extensible hierarchy of graphical objects
rooted at the cobject class. The subsections that follow offer an overview of
acm.graphics and describe the design decisions involved in its development.

5.1 The coordinate system

One of the fundamental design decisions in the development of any graphics package is
the choice of the graphical model, primarily in terms of its coordinate system. Although
one of the proposals [RobertsO4e] argued for changing the coordinate system to a
Cartesian framework similar to that used in Adobe PostScript, the consensus of the Task
Force was that such a model represented too much of a change from the standard Java
approach and would therefore force students to learn two incompatible graphics models.

Figure 5-1. Strengths and weaknesses of the proposed graphics packages

Successful experience at multiple institutions
Clean and consistent animation model
Sufficient functionality to define interesting pictures

Ho+ 4+

biectd Mouse events are available through subclassing, but not by using listeners
objectdraw
[BJruce04a] — Package is relatively large (44 classes and interfaces)

Naming conventions are not consistent
Class hierarchy is not intuitive (FramedOval extends Rect, for example)
— Drawable classes are not easily extendable by students

Successful experience at multiple institutions
Reasonably small (20 classes and interfaces of which students use eight)

Ho+ +

OOPS
[SandersK04a]

Mouse events are available through subclassing, but not by using listeners

— Some classes (QuitButton, ConversationBubble) don’t fit the model.
Some names clash with those in standard libraries (Frame, Image, Shape)
The package has no general mechanism for displaying strings

— Extending the set of graphical objects requires knowledge of Graphics2D

Successful experience (but only at Stanford)

Very small (six classes) and easy to learn

Consistent naming scheme for graphical object classes
Stanford Graphics Easily extended by students to create new DShape objects

[Parlante04a]

H o+ + + +

Allows composition, but permits non-intuitive containment

Missing some basic functionality, such as drawing lines and arcs
— Rectangles and ovals are always filled, never outlined
— Objects cannot field mouse events
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We therefore made the decision to stick with a graphics model that for the most part
matches that used in Java: origin in the upper-left corner, y values increasing downward,
and coordinates measured in pixels.

There was, however, one change that the Task Force decided —after extensive
debate—would be worth adopting. All but one of the graphics proposals we received
chose to use doubles rather than ints to specify coordinate values. The principal
advantage in adopting a double-based paradigm is that the abstract model typically
makes more sense in a real-valued world. Physics, after all, operates in the continuous
space of real numbers and not in the discrete world of integers, which is simply an artifact
of the pixel-based character of graphical displays. Animating an object so that it has
velocity or acceleration pretty much forces the programmer to work with real numbers at
some point. Keeping track of object coordinates in double-precision typically makes it
possible for programmers to use the stored coordinates of a graphical object as the sole
description of its position. If the position of a graphical object is stored as an integer,
many applications will require the programmer to keep track of an equivalent real-valued
position somewhere else within the structure. On the other hand, the disadvantage of
using real-valued coordinates is that doing so represents something of a break from the
standard Java model (although less of one that it might at first appear, as discussed later
in this section).

The Task Force gave detailed consideration to three options for the coordinate system:

1. The all-integer model. In this model, coordinate values are stored as ints, just as they
are in the methods provided by the Graphics class in java.awt. Locations, sizes,
and bounds for graphical objects are stored using the standard Point, Dimension, and
Rectangle classes, which use integer-valued coordinates. This option is the easiest
to implement and maintains consistency with the methods provided in the Graphics
class. At the same time, it suffers from the serious deficiency of forcing students to
maintain a parallel set of double-valued parameters for any applications that involve
animation or have other dependencies on a mathematically precise physical world.

2. The all-double model. In this model, coordinate values are stored as doubles, thereby
making it possible for students to store locations and sizes in double-precision so that
the values can correspond with parameters in the physical world. This model requires
aggregate structures that describe locations, sizes, and bounds in double precision and
that are therefore analogous to Point, Dimension, and Rectangle in the integer
world. Although double-valued implementations of these types exist in the
java.awt.geom package, the class names Point2D.Double, Dimension2D.Double,
and Rectangle2D.Double seem certain to generate confusion. If nothing else, these
names expose the notion of inner classes, which is not generally taken to be an
introductory concept. In light of that complexity, the acm.graphics package
includes definitions for the classes GPoint, GDimension, and GRectangle, which
provide the same functionality.

3. The doubles-only-for-individual-coordinates model. As a compromise between the
two earlier strategies, the committee also considered an intermediate position in
which individual coordinates are stored using type double, but without carrying that
decision through to the aggregate values. Under this model, individual coordinates
and sizes would be available to the client in double-precision using the methods getx,
getY, getWidth, and getHeight. The built-in methods getLocation, getSize, and
getBounds, however, would return standard Point, Dimension, and Rectangle
values in which the coordinates are rounded to the closest integer.

The Task Force experimented with each of these options but ultimately chose to go
with Option #2. Although the introduction of the new double-precision classes GPoint,
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GDimension, and GRectangle adds some complexity, the conceptual integrity of using
doubles consistently throughout the implementation ended up carrying the day.

5.2 The graphics class hierarchy

The classes that make up the acm.graphics hierarchy are shown in Figure 5-2. The
central class in the hierarchy shown in the diagram is the abstract Gobject class, which is
the common superclass of all graphical objects that can be displayed on a graphical
canvas. The implementation for the graphical canvas is in turn supplied by the Gcanvas
class, which is described in section 5.5. Descending from Gobject is a set of classes—
collectively referred to as shape classes—that correspond to the figures one can draw in
the original definition of the java.awt.Graphics class. Thus, if the Graphics class
includes a draw—— method for some figure —, the acm.graphics package includes a
corresponding Gobject subclass with the name é——. The only deviation from this
naming convention arose primarily for nontechnical reasons: a majority of the Task Force
felt that it was prudent to substitute the name GLabel for Gstring, both to avoid the
slightly racy interpretation and to emphasize that a GLabel object is not really a String.
After making this substitution, the hierarchy includes nine shape classes, which constitute
the built-in set of graphical objects: GArc, GImage, GLabel, GLine, GOval, GPolygon,
GRect, GRoundRect, and G3DRect.

The design of the hierarchy, however, was not without controversy. Because many of
the shape classes share common structural characteristics (GImage, Goval, and GRect, for
example, all share rectangular frames), changing the class hierarchy to reflect those
similarities offers an opportunity for code sharing. To take advantage of that opportunity,
both the OOPS and objectdraw submissions include intermediate classes that enable
code-sharing for those classes that support common operations. This strategy leads to a

Figure 5-2. Class diagram for the acm.graphics package
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hierarchy that includes ovals and images under an abstract intermediate class, which is
called Rectangularshape in OOPS and Rect in the submitted version of objectdraw.

The Task Force concluded that the definition of such intermediate classes was
problematic for the following reasons:

1. The resulting hierarchy is counterintuitive, particular for novices who are struggling
to understand the conceptual model of inheritance. On the one hand, it seems
reasonable for a GRoundRect to be a subclass of GRect because a rounded rectangle is
still conceptually a rectangle. On the other hand, having coval be a subclass of
GRect (or even of RectangularShape) violates that intuition because an oval is not a
rectangle.

2. The additional classes increase the complexity of the package structure, which
reduces its accessibility to introductory students.

3. Organizing the shape classes according to their common method suites does not yield
a linear hierarchy. A GPolygon, for example, has significant similarities to Goval and
GRect in the sense that all three classes represent closed, fillable shapes. Despite
those similarities, GPolygon responds to a different set of methods from the other
two. As an example, the bounds for a Goval or a GRect are established by specifying
the enclosing rectangle, which is not a useful strategy for the GPolygon class.
Conversely, the GImage type takes rectangular bounds in exactly the way that coval
and GRect do but does not support filling. The fact that the hierarchy is not linear
reduces the attractiveness of using intermediate classes, given that Java does not
support multiple inheritance, which would allow classes to inherit methods from more
than one superclass.

Given these concerns, the design we finally adopted has the simple class hierarchy
shown in Figure 5-2. No intermediate classes exist in the package, thereby simplifying
its conceptual structure. The common characteristics shared by sets of classes are instead
specified by the interfaces GFillable, GResizable, and GScalable, which are discussed
in section 5.3.

The shape classes included in the acm.graphics package do not by themselves
constitute a complete graphics framework. In order to display a cobject on the screen,
the student needs to add it to some sort of “canvas” that is part of the standard window
system. That role is fulfilled in acm.graphics by the Gcanvas class, which is described
in section 5.5. We expect most adopters of the package to use the Gcanvas that is
automatically provided by the GraphicsProgram class, which is part of the Program
class hierarchy described in Chapter 6. It is, however, straightforward to instantiate a
Gcanvas and then embed it inside a standard JFrame.

The aem.graphics package diagram shown in Figure 5-2 contains several additional
classes beyond those that have already been described. The eMath class provides an
extended set of mathematical methods that are useful for graphical programs and is
described in section 5.4. The Gcompound class makes it possible to define one Gobject
as a collection of others. This facility is described in section 5.7. The GPen class
provides a simple mechanism for constructing line drawings that adopts a conceptual
model of a pen drawing on the canvas. The GTurtle class is similar in many respects,
but offers a somewhat more restricted (and arguably more intuitive) graphical model
based on the “turtle graphics” paradigm described in Seymour Papert’s Mindstorms
[Papert80]. Each of these classes is described in section 5.9.
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5.3 The GObject class

The question of what methods graphical objects should support required considerable
time for the Task Force to reach closure. The first step toward determining the
appropriate functionality for graphical objects was to survey the capabilities of the
various graphics packages that had been proposed. From there, our next challenge was to
understand how best to implement that functionality in a way that would be simple,
consistent, and versatile. The next two subsections describe each of these activities in
more detail, and the remaining subsections describe design decisions associated with
specific shape classes.

Survey of operations provided by the graphics proposals

The proposals received by the Java Task Force differ in many respects, but nonetheless
share a similar underlying model. In each of the submitted designs, the student creates
pictures by instantiating graphical objects, installing them (sometimes implicitly by
including the canvas as a parameter to the constructor) on a canvas of some sort, and then
manipulating the display by sending messages to the objects to change their state and
appearance.

A comparison of the methods available to graphical objects in the various models
appears in Figure 5-3. As the table shows, every package made it possible for the student
to specify the location, size, and color of an object. Beyond those basic capabilities,
however, the methods supported by the individual packages differed in many ways.
What the Task Force sought to do was to choose the best features of each proposed
package, as long as those features could be implemented consistently and cleanly. The
acm.graphics package supports all the features shown in Figure 5-3 with the exception

Figure 5-3. Comparison of features provided in the submissions

objectdraw OOPS Stanford Graphics
[BruceO4a] [SandersK04a] [ParlanteO4a]
Reset location and size yes yes yes
Set object color yes yes yes

Set fil1 | fill is fixed for class yes, with independent

. no
FramedRect/FilledRect fill and border color
Set visibility | Y5> but uses deprecated | yes, but uses deprecated 1o
names show and hide | names show and hide
Check containment yes yes no
Change z-ordering | Y¢S» but you can’t find no no

out what the z-order is

yes, but not with yes, but not with

Respond to mouse events . .
P standard Java listeners | standard Java listeners

click-to-proceed only

Features not adOP_fed overlaps method supports rotation inset method
Jor acm.graphics can set frame thickness | all objects are nestable
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of those in the last line, which were not included in the final package design for the
following reasons:

* The objectdraw package allows an object to determine whether its bounding box
overlaps that of another through the inclusion of an overlaps method. This method
would be straightforward to add, but the functionality is easily obtainable by calling
intersects on the bounding rectangles returned by getBounds. Making the user
retrieve the bounding box has the advantage that the definition of overlap is then more
explicit. The fact that two circles can “overlap” in objectdraw even when they are not
touching (the bounding boxes will typically overlap before the circles do) seems likely
to cause confusion.

* The ability to rotate arbitrary objects as in OOPS would be useful, but it depends on
using Graphics2D for its internal operation. Using the Graphics2b interface instead
of the more primitive Graphics interface has two downsides. First, writing code that
uses it becomes more difficult, particularly in terms of its mathematical sophistication.
That fact makes it unlikely that students would be able to write their own shape
classes. Second, many browsers supply graphics contexts that don’t implement
Graphics2D, which limits the range of platforms on which such code can run. In the
acm.graphics design, only the GPolygon class supports rotation, where it can be
implemented without recourse to Graphics2p. The capability of changing the size of
the frame seems to move the package away from the model provided by
java.awt.Graphics and does not appear to generate benefits that are worth the cost.

e The Stanford Graphics proposal includes an inset (dx, dy) method that shrinks an
object by the specified displacements along each edge. This method is therefore
analogous to—but opposite in direction from—the grow method in Rectangle
(suggesting at a minimum that it be replaced by one with a more standard name). The
underlying function, however, seems of minor utility and can easily be achieved by
calling

gobj.setBounds (gobj.getBounds () .grow(-dx, -dy));

That proposal also makes every graphical object capable of containing other graphical
objects. The notion of nested graphical objects seems defensible as an idea, but not in
such an undisciplined way. The Task Force strategy for implementing nested objects
is outlined in section 5.8.

When we adopted features from the various submissions, we often implemented them
in a somewhat different way than the initial conception. Our principal reasons for
making such changes were to provide more extensive functionality or to maintain greater
consistency among the different parts of the package. The most important design
decisions along these lines are as follows:

* Mouse interaction. In contrast to the packages submitted to the Task Force, the
acm.graphics package allows graphical objects to respond to mouse events in exactly
the way that components do. That mechanism and its underlying rationale are
discussed in section 5.6.

* Method naming. The method names used in all acm.graphics classes follow as
closely as possible the patterns for method naming used in modern releases of the
JDK. Several of the submissions used method names that have been deprecated for the
Component class, such as show and hide, which are particularly problematic. The
acm.graphics package replaces show and hide with setvisible, which has been the
standard name for this operation since JDK 1.1. Similarly, all mutator and accessor
methods follow the Java Bean convention of using the set and get prefixes (plus is
for booleans).
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e Filling. The model for filling an object differs in the various submissions. The
minimalist Stanford Graphics proposal ignores the issue entirely: all shapes are filled.
OOPS uses a model similar to the one proposed here in which students can turn filling
off for individual objects; it also provides methods to set the fill color independently
from that of the frame, which has been adopted for acm.graphics. The objectdraw
package provides two parallel sets of classes, one filled and one framed, which seems
unnecessarily complicated.

Designing the functionality of the cobject class

One of the central issues in the design of the cobject class and the standard shape
classes arises from the fact that the various shape classes have different behavioral
characteristics and therefore require individualized sets of methods. Although it makes
perfect sense to fill a GRect or Goval, filling is not appropriate for GImage or GLabel.
Several members of the Java Task Force felt it was important to define each shape class
so that it responded only to messages appropriate to graphical objects of that type. Such a
design makes it possible to catch at compile time any attempts to invoke inappropriate
methods. Adopting that principle ruled out an earlier design in which the Gobject class
defined an expansive set of methods, with each subclass either ignoring or generating
runtime errors for methods that were inappropriate to that class.

The strategy that we eventually adopted was to include in Gobject only those methods
that are common to all graphical objects and to defer to each subclass the additional
methods that make sense only in that domain. These additional methods are collected
into standard suites identified by interfaces. As an example, the shape classes that
implement GFillable respond to the methods setFilled, isFilled, setFillColor,
and getFillcolor. The public methods defined for all graphical objects appear in
Figure 5-4, and the additional methods specified by interfaces appear in Figure 5-5.

Note that the collection of methods enumerated in Figure 5-4 includes a set of static
methods to simplify trigonometric calculations. The reason for including these methods
(which are also defined in the GraphicsProgram class defined in Chapter 6) is that many
graphical figures are defined most naturally in terms of trigonometric specification.
Unfortunately, these calculations are made more complicated for novices by the fact that
the Math class introduces additional complexity. One of the problems is that using the
mathematical functions in the Math class forces students to learn a new syntax for the
invocation of static methods; if the student reasons by analogy to other invocations, the
expression Math.sin(theta) seems to be sending the sin message to an object named
Math, when in fact something quite different is occurring. A second problem is that the
trigonometric functions in the Math class use radian measure instead of the degree-based
geometry used in the graphics library. Adding the static methods in Figure 5-4 reduces
the severity of these problems.

The crect class and its subclasses

The simplest and most intuitive of the shape classes defined in acm.graphics is the
GRect class, which represents a rectangular box. This class implements the GFillable,
GResizable, and GScalable interfaces, but otherwise includes no other methods except
its constructors.

The one important design decision to observe in the implementation not only of GRect
but the other shape classes as well concerns the relationship between the screen area
covered by the filled and outlined versions of the corresponding shapes. In the standard
Graphics class, a rectangle outlined using drawRect does not cover the same pixels as
the one generated by fillRect; the filled rectangle is one pixel smaller in each
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Figure 5-4. Methods common to all graphical objects

Methods to set and retrieve standard properties of the object

void setLocation(double x, double y) or setLocation(GPoint pt)
Sets the location of this object to the specified point.

void move(double dx, double dy)
Moves the object using the displacements dx and dy.

void movePolar (double r, double theta)
Moves the object r units in direction theta, measured in degrees.

double getX()
Returns the x-coordinate of the object.

double getY¥Y()
Returns the y-coordinate of the object.

double getWidth()
Returns the width of the object.

double getHeight ()
Returns the height of the object.

GPoint getLocation()
Returns the location of this object as a GPoint.

GDimension getSize()
Returns the size of this object as a GDimension.

GRectangle getBounds ()
Returns the bounding box of this object (the smallest rectangle that covers the figure).

boolean contains(double x, double y) or contains(GPoint pt)
Checks to see whether a point is inside the object.

void setColor(Color c)
Sets the color of the object.

Color getColor()
Returns the object color. If this value is null, the package uses the color of the container.

void setVisible(boolean visible)
Sets whether this object is visible.

boolean isVisible()
Returns true if this object is visible.

Methods to allow objects to respond to events

void addMouseListener (MouseListener listener)
Specifies a listener to process mouse events for this graphical object.

void removeMouseListener (MouseListener listener)
Removes the specified mouse listener from this graphical object.

void addMouseMotionListener (MouseMotionListener listener)
Specifies a listener to process mouse motion events for this graphical object.

void removeMouseMotionListener (MouseMotionListener listener)
Removes the specified mouse motion listener from this graphical object.

void addActionListener(ActionListener listener)
Specifies a listener to process action events for this graphical object.

void removeActionListener (ActionListener listener)
Removes the specified action listener from this graphical object.

void fireActionEvent (String actionCommand) or fireActionEvent(ActionEvent e)
Notifies any registered listeners that an action event has occurred.

Miscellaneous methods

abstract void paint(Graphics g)
Paints the object using the graphics context g. This operation is usually invisible to students.

void pause(double milliseconds)
Delays the caller for the specified interval (like Thread. sleep but without any exceptions).

GContainer getParent()
Returns the parent of this object, which is the container in which it is enclosed.

void sendToFront() or sendToBack()
Moves this object to the front (or back) of its container.

void sendForward() or sendBackward()
Moves this object forward (or backward) one position in the z ordering.
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Figure 5-5. Additional methods specified by interfaces

GFillable (implemented by GArc, GOval, GPen, GPolygon, and GRect)
void setFilled(boolean fill)
Sets whether this object is filled (true means filled, false means outlined).
boolean isFilled()
Returns true if the object is filled.
void setFillColor(Color c)
Sets the color used to fill this object. If the color is null, filling uses the color of the object.
Color getFillColor ()
Returns the color used to fill this object.

GResizable (implemented by GImage, GOval, and GRect)
void setSize(double width, double height)
Changes the size of this object to the specified width and height.
void setSize(GDimension size)
Changes the size of this object as specified by the GDimension parameter.
void setBounds(double x, double y, double width, double height)
Changes the bounds of this object as specified by the individual parameters.
void setBounds (GRectangle bounds)
Changes the bounds of this object as specified by the GRectangle parameter.

GScalable (implemented by GArc, GCompound, GImage, GLine, GOval, GPolygon, and GRect)
void scale(double sf)

Resizes the object by applying the scale factor in each dimension, leaving the location fixed.
void scale(double sx, double sy)

Scales the object independently in the x and y dimensions by the specified scale factors.

dimension because the filled figure does not include the framing pixels on the right and
bottom edges of the outline. In the acm.graphics package, a filled shape is, in essence,
both framed and filled, and therefore covers exactly the same pixels in either mode. This
definition was necessary to support separate fill and frame colors and is also likely to
generate less confusion for students.

The two specialized forms of rectangles—GRoundRect and G3DRect —appear in the
hierarchy as subclasses of GRect. The purpose of introducing this additional layer in the
hierarchy (which could equally easily have been implemented as a flat collection of the
various shapes) was to provide an intuitively compelling illustration of the nested
hierarchies. Just as all the shape classes are graphical objects (and therefore subclasses of
Gobject), the GRoundRect and G3DRect classes are graphical rectangles (and therefore
subclasses of GRect). Organizing the hierarchy in this way emphasizes the is-a
relationship that defines subclassing.

The GRoundRect and G3DRect classes include additional method definitions that allow
clients to set and retrieve the properties that define their visual appearance. For
GRoundRect, these properties are the specifications of corner curvature, expressed exactly
as in the drawRoundRect method; for 3DRect, the additional methods allow the client to
indicate whether the rectangle should appear raised.

The coval class

The goval class represent an elliptical shape which is defined so that the parameters of its
constructor match the arguments to the drawoval and filloval methods in the standard
Java eraphics class. Once students understand that an oval is specified by its bounding
rectangle and not by its center point, using the Goval class is quite straightforward. Like
GRect, the Goval class implements the GFillable, GResizable, and GScalable
interfaces but otherwise includes no methods that are specific to the class.
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The complication in Goval lies in its implementation. In many implementations of the
Java Graphics class across a range of platforms, the pixels drawn by a call to filloval
do not precisely match the pixels in the interior of the shape drawn by drawoval. As a
result, it is often the case that a filled coval rendered using the standard methods from
the Java Graphics class ends up with unpainted pixels just inside the boundary. When
we discovered this problem, the Task Force decided that we had to fix things so that ovals
and arcs were always completely filled. Adopters of the package would undoubtedly
regard the unsatisfying appearance of ovals and arcs as a bug in the ACM libraries, even
if the actual source of that bug was inside the standard Java libraries.

To circumvent this rendering bug, the acm.graphics package ordinarily draws Govals
and GArcs and GRoundRects using polygons rather than the native methods. The result is
a much more consistent screen image, potentially at a small cost in execution efficiency.
The Gcanvas class includes an option setting to disable this behavior.

The GLine class

The GLine class makes it possible for clients of the acm.graphics package to construct
arbitrary line drawings and seems to be an important capability for any graphics package
to support, even though lines are different in many respects from the other shape classes.
This difference in conceptual model is reflected in the methods supported by the GLine
class, which implements Gscalable (relative to the starting point of the line), but not
GFillable Or GResizable. It is, moreover, important to modify the notion of
containment for lines, since the idea of being within the boundary of the line is not well
defined. In the abstract, of course, a line is infinitely thin and therefore contains no points
in its interior. In practice, however, it makes sense to define a point as being contained
within a line if it is “close enough” to be considered as part of that line. The motivation
for this definition comes from the fact that one of the central uses of the contains
method is to determine whether a mouse click applies to a particular object. As is the
case in any drawing program, selecting a line with the mouse is indicated by clicking
within some pixel distance of the abstract line. In the acm.graphics package, that
distance is specified by the constant LINE_TOLERANCE in the GLine class, which is
defined to be a pixel and a half.

Given that some students are likely to have preconceptions that the “width” of a line
refers to its thickness, it is important to emphasize that the methods getwidth,
getHeight, and getsize are defined for the GLine class in precisely the way that they
are for all other cobjects. Thus, these methods return the appropriate dimensions of the
bounding box that encloses the line.

The GLine class also contains several methods for determining and changing the
endpoints of the line. The setstartPoint method allows clients to change the first
endpoint of the line without changing the second; conversely, setEndPoint gives
clients access to the second endpoint without affecting the first. These methods are
therefore different in their operation from setLocation, which moves the entire line
without changing its length and orientation.

Unfilled arc

The carc class

The Garc class raises a variety of interesting design issues, particularly in terms of
seeking to understand the relationship between a filled arc and an unfilled one. To
ease the transition to the standard Java graphics model, we chose to implement the
GArc class so that its operation was as consistent as possible with the drawarc and
fillAarc methods in the standard Graphics class. An unfilled arc, therefore,
displays only the pixels on the arc boundary; a filled arc fills the entire wedge-
shaped region, as shown on the right.

Filled arc
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Adopting the standard Java interpretation of arc filling has implications for the design
of the earc object. Most notably, the contains method for the Garc class returns a
result that depends on whether the arc is filled. For an unfilled arc, containment implies
that the arc point is actually on the arc, subject to the same interpretation of “closeness”
as described for lines in the preceding section. For a filled arc, containment implies
inclusion in the wedge. This definition of containment is necessary to ensure that mouse
events are transmitted to the arc in a way that matches the user’s intuition.

To match Java’s interpretation, the bounds for a GArc object are indicated by
specifying the enclosing rectangle along with the starting angle and sweep extent of the
arc. The constructor for GArc therefore has the following signature:

public GArc(double x, double y, double width, double height,
double start, double sweep)

Given that the constructor specifies rectangular bounds, it would at first seem appropriate
to have GArc implement GResizable and support operations like setsize and
setBounds. Doing so, however, could easily create confusion. In contrast to the
situation for ovals, rectangles, and images, the rectangle used to define the size of a Garc
is not the same as the bounding box for that object. Thus, supporting the method
setBounds in the obvious way would generate the surprising situation that a subsequent
call to getBounds would typically return a smaller rectangle.

To avoid this possible source of confusion, GArc does not implement GResizable, but
instead implements the methods setFrameRectangle and getFrameRectangle. These
methods allow clients to change or retrieve the rectangle that defines the arc while
minimizing the likelihood of confusion with getBounds, which is defined in the
acm.graphics package to return the bounding box.

The Garc class includes methods that enable clients to manipulate the angles defining
the arc (setStartAngle, getStartAngle, setSweepAngle, and getSweepAngle) as well
as methods to return the points at the beginning and end of the arc (getStartPoint and
getEndPoint).

The cimage class

The cImage class turns out to be relatively easy to design. In Java, the bounds of an
image are specified by a rectangle, which makes it easy to define GImage class so that it
implements both GResizable and GScalable, but not GFillable, which doesn’t make
sense in the context of an image. Resizing or scaling an image has the effect of stretching
or compressing the pixels in the image and is implemented by the standard drawImage
code in java.awt.graphics.

One interesting question that arose in the Task Force discussion was what effect, if
any, the setcolor method should have for the GImage class. Initially, some members of
the Task Force had suggested that the inclusion of the GImage class in the hierarchy
meant that we needed to define an interface called Gcolorable that all shape classes
except GImage would implement. It turns out, however, that the drawImage method in
the Graphics class offers a straightforward interpretation of the color of an image as the
background color that shows through any transparent or translucent pixels. By using the
color of the object to specify this background, clients can use setColor to tint an image
as long as that image includes pixels that are less than fully opaque. If the image contains
only opaque pixels, setting its color has no effect.

In contrast to the design of the abstract interface, the implementation of GImage
involves some complexity, mostly in terms of having the package know how to load
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images from the environment. The implementation of search paths for images and the
associated mechanisms to ensure that images work in both applet and application
contexts is described in the discussion of the MediaTools class in Chapter 8.

The GLabel class

The GLabel class differs in almost every respect from the other classes in the
acm.graphics package. As we have chosen to implement it, GLabel implements none of
the standard GFillable, GResizable, and GScalable interfaces. The size of a label is
determined instead by setting its font, just as is done in Java either for the drawString
method in Graphics or for the gLabel class in the Swing hierarchy. Objects of type
GLabel, therefore, must respond to the methods setFont and getFont, just as a JLabel
does. Moreover, to simplify positioning text strings on the display, the GLabel class
includes methods to return information about the font metrics (getAscent, getDescent,
and getLeading). The width and height of the entire string are available through the
standard cobject methods getwidth and getHeight. Making this information
accessible directly makes it possible for students to use the GLabel class without having
to understand how FontMetrics works.

To provide yet another simplification for introductory students, the GLabel class
includes an overloaded definition of setFont that takes a string rather than a Font object.
The string is interpreted in the manner specified by Font.decode. Thus, to set the font of
a GLabel variable called 1abel to be an 18-point, boldface, sans-serif font (typically
Helvetica), the student could simply write

label.setFont ("SansSerif-bold-18");

As an extension to the semantics of Font.decode, the setFont method interprets an
asterisk in the string as signifying the previous value. Thus, students can set the style of a
label to be italic by writing

label.setFont ("*-italic-*");

without changing its family or size.

The ePolygon class

The shape that represents the greatest deviation from the traditional Java model is the
GPolygon class, which is used to draw closed polygonal shapes. Although the inspiration
for GPolygon comes from the drawPolygon method in the standard Graphics class, the
acm.graphics package does not adopt the same model as java.awt, for a variety of
sound pedagogical reasons:

1. The Polygon class in java.awt uses integer coordinates. This design is incompatible
with the overall paradigm used in the acm.graphics package in which coordinate
values are specified using doubles. The use of doubles is arguably more important
for the GPolygon class than for any other part of the package because it is particularly
hard for students to define a closed polygon using integer arithmetic.

2. The polygon class uses parallel arrays to hold the points. This design is inappropriate
for the acm.graphics package, both because novices may not have learned about
arrays and because it seems clearly more appropriate to use an array of points here.

3. The vertices in a Polygon object are specified using absolute coordinates. This
design is much harder to use than one in which the polygon has its own origin, and
the vertices are defined relative to that origin.

The GPolygon class adopts a model that avoids each of these problems. The basic idea is
that the student creates a GPolygon, which is initially empty. Starting with that empty
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polygon, the student adds new vertices using a set of methods (addvertex, addEdge, and
addPolarEdge) that add vertices to the polygon.

These methods are easiest to illustrate by example. The simplest method to
explain is addvertex(x, y), which adds a vertex at the point (x,y) relative to the
location of the polygon. For example, the following code defines a diamond-shaped
polygon in terms of its vertices, as shown in the diagram at the right:

GPolygon diamond = new GPolygon();
diamond.addVertex(-22, 0);
diamond.addVertex (0, 36);
diamond.addVertex (22, 0);
diamond.addVertex (0, -36);

The diamond is drawn so that its center is at the point (0, 0) in the coordinate space of the
polygon. Thus, if you were to add diamond to a GCanvas and set its location to the point
(300, 200), the diamond would be centered at that location.

The addEdge (dx, dy) method is similar to addvertex, except that the parameters
specify the displacement from the previous vertex to the current one. One could therefore
draw the same diamond by making the following sequence of calls:

GPolygon diamond = new GPolygon();
diamond.addVertex (-22, 0);
diamond.addEdge (22, 36);
diamond.addEdge (22, -36);
diamond.addEdge(-22, -36);
diamond.addEdge(-22, 36);

Note that the first vertex must still be added using addvertex, but that subsequent ones
can be defined by specifying the edge displacements. Moreover, the final edge is not
explicitly necessary because the polygon is automatically closed before it is drawn.

Some polygons are easier to define by specifying vertices; others are more easily
represented by edges. For many polygonal figures, however, it is even more
convenient to express edges in polar coordinates. This mode of specification is
supported in the GPolygon class by the method addPolarEdge, which is identical to
addEdge except that its arguments are the length of the edge and its direction
expressed in degrees counterclockwise from the +x axis. This method makes it easy to
create figures with more sophisticated structure, such as the centered hexagon generated
by the following method (as shown on the right using 36 pixels as the value of side):

GPolygon createHexagon(double side) {
GPolygon hex = new GPolygon();
hex.addvVertex(-side, 0);
for (int 1 = 0; i < 6; i++) {

hex.addPolarEdge(side, 60 - i * 60);
}

return hex;

}

The GPolygon class implements the GFillable and GScalable interfaces, but not
GResizable. It also supports the method rotate (theta), which rotates the polygon
theta degrees counterclockwise around its origin.

One of the most important applications of the GPolygon class consists of creating
extended Gobject subclasses that have a particular shape. That technique is described in
section 5.8.
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5.4 Static definitions and the GMath class

In the February 2005 release of the acm.graphics package, the Gobject class included a
number of static constant definitions (primarily the color names such as RED) along with a
collection of static methods intended to make it easier for students to calculate
trigonometric relationships for angles measured in degrees. In the current release, the
constants have been eliminated, and the static methods have been moved into a separate
class called eMath, which exports the methods shown in Figure 5-6. The reasons that led
us to make these change are as follows:

e The small simplification one gains by allowing students to write RED instead of
Color.RED is overwhelmed by the problems that arise once students begin to write
their own classes and no longer have direct access to the constant definitions in
Gobject. Based on the experience of the early users, it is far better to have students
use the fully qualified names from the beginning

* Declaring static constants and methods requires code duplication, given that students
expect these definitions to appear not only in Gobject, but also in the Gcanvas and
GraphicsProgram classes as well.

* The eMath class is more closely parallel to the standard Math class in java.lang.
Although having to write GMath.sinDegrees (theta) is a little more cumbersome
than sinDegrees (theta), students quickly get used to including the name of the class
in static method calls. Such calls do not seem to represent a significant source of
confusion.

* Including static methods in class definitions made it more difficult to use those classes
with the BlueJ environment. To minimize this incompatibility, we moved most static
methods into classes of their own.

e Java Standard Edition 5.0 includes the new import static feature, which makes it
possible to eliminate the class name on static methods and fields. As Java SE 5.0
becomes more widespread, the problem of forcing students to write qualified constant
and method names will presumably begin to disappear.

Figure 5-6. Static methods in the GMath class

Trigonometric methods in degrees
static double sinDegrees(double angle)

Returns the trigonometric sine of an angle measured in degrees.
static double cosDegrees(double angle)

Returns the trigonometric cosine of an angle measured in degrees.
static double tanDegrees(double angle)

Returns the trigonometric tangent of an angle measured in degrees.
static double toDegrees (double radians)

Converts an angle from radians to degrees.
static double toRadians(double degrees)

Converts an angle from degrees to radians.

Polar coordinate conversion methods
double distance(double x, double y)
Returns the distance from the origin to the point (x,y).
double distance(double x0, double yO, double x1, double yl)
Returns the distance between the points (x0, y0) and (x1, y1).
double angle(double x, double y)
Returns the angle between the origin and the point (x, y), measured in degrees.

Convenience method for rounding to an integer
static int round(double x)
Rounds a double to the nearest int (rather than to a long as in the Math class).
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5.5 The GCanvas class

The ecanvas class provides the link between the world of graphical objects and the Java
windowing system. Conceptually, the Gcanvas class acts as a container for graphical
objects and allows clients of the package to add and remove elements of type Gobject
from an internal display list. When the Gcanvas is repainted, it forwards paint messages
to each of the graphical objects it contains. Metaphorically, the Gcanvas class acts as the
background for a collage in which the student, acting in the role of the artist, positions
shapes of various colors, sizes, and styles.

The methods supported by the implementation of the Gcanvas class in the
acm.graphics package are shown in Figure 5-7.

Figure 5-7. Public methods in the GCanvas class

Constructor
GCanvas ()
Creates a new GCanvas that contains no objects.

Methods to add and remove graphical elements from a canvas
void add(GObject gobj)
Adds a graphical object to the canvas.
void add(GObject gobj, double x, double y) or add(GObject gobj, GPoint pt)
Adds a graphical object to the canvas at the specified location.
void remove (GObject gobj)
Removes the specified graphical object from the canvas.
void removeAll()
Removes all graphical objects and components from the canvas.

Methods to add and remove components from the canvas

void add(Component c)
Adds a component to the canvas, where it floats above the graphical elements.

void add(Component c, double x, double y) or add(Component c, GPoint pt)
Adds a component to the canvas at the specified location.

void remove (Component c)
Removes the specified component from the canvas.

Methods to determine the contents of the canvas
Iterator iterator()
Returns an iterator that runs through the graphical elements from back to front.
Iterator iterator(int direction)
Returns an iterator that runs in the specified direction (BACK_TO_ FRONT or FRONT TO BACK).
int getElementCount ()
Returns the number of graphical objects contained on the canvas.
GObject getElement (int i)
Returns the graphical object at the specified index, numbering from back to front.
GObject getElementAt(double x, double y) or getElementAt(GPoint pt)
Returns the topmost object containing the specified point, or null if no such object exists.

Option setting
void setAutoRepaintFlag(boolean state)

Determines whether repaint requests occur automatically when a graphical object changes.
boolean getAutoRepaintFlag()

Returns whether automatic repainting is enabled.
void setNativeArcFlag(boolean state)

Determines whether arcs and ovals are rendered using polygons (false) or the JDK (true).
boolean getNativeArcFlag()

Returns whether arcs and ovals are rendered using polygons (£alse) or the JDK (true).
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Adding and removing objects from a canvas

The first set of methods in Figure 5-7 is straightforward given the fact that a Gcanvas is
conceptually a container for object values. The container metaphor explains the
functionality provided by the add, remove, and removeall methods in Figure 5-7, which
are analogous to the identically named methods in JComponent Or Container.

Interestingly, none of the three submitted proposals chose to implement the
relationship between graphical objects and their canvases using this metaphor of adding
objects to a container. In each of the packages, the container is specified —implicitly in
the case of OOPS —at the time the graphical object is constructed. Such an design seems
less than ideal for three reasons. First, the strategy runs counter to the model provided by
components and containers and will therefore provide no help when the student moves on
Swing. Second, such a restriction seems to violate the intuitive notion of a collage, in
which one creates freestanding objects and then pastes them on a canvas. Third, you
often need to have the object to know where to put it in the container, as illustrated by the
following code, which centers a GLabel object in the Gcanvas named gc:

GLabel glabel = new GLabel("Hello");

double x = (gc.getWidth() - glabel.getwidth()) / 2;
double y = (gc.getHeight() - glabel.getHeight()) / 2;
gc.add(glabel, x, y);

It’s not clear how you would put the object in the right place without being able to
instantiate the freestanding object. The best you could do would be add it somewhere
else (possibly invisibly, as in OOPS) and then move it to the center.

Adding and removing components to a canvas

The next set of methods from Figure 5-7 provide analogous
capabilities for adding and removing an AWT or Swing
component from a Gcanvas. Students who have gotten into
the habit of adding a cobject to a Gcanvas will find it

natural to add some other graphical object—a JButton T
est
perhaps—to a Gcanvas as well. As an example, the code Q
JButton test = new JButton("Test");

test.setLocation (75, 50);
gc.add(test);

produces a display such as the one shown on the right. The
JButton is fully active and can accept listeners, just as it can in any other context.

Given that gcanvas is a subclass of container, the simple versions of the add and
remove methods already exist by inheritance, although it is useful to reimplement these
methods slightly to give them more useful semantics. The first change is that ccanvas
objects should use null as their default layout manager so that the positioning of the
components is under client control, just as is true for graphical objects. Second, the add
method must check the size of the component and set it to its preferred size if its bounds
are empty. These simple changes seem to do exactly what students would want.

Determining the contents of a canvas

The third set of methods in Figure 5-7 make it possible for clients to figure out what
graphical elements have been added to a Gcanvas and provide a couple of approaches for
doing so. The strategy that fits best with modern disciplines for using Java is to use an
iterator that runs through the elements of a collection. The iterator provides that
functionality in the conventional Java form, making it possible to write
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for (Iterator i = gc.iterator(); i.hasNext(); ) {
GObject gobj = (GObject) i.next();
... code for this element . . .

}
or, in Java 5.0, the abbreviated form

for (GObject gobj : gc) {
... code for this element . . .
code

Unfortunately, there are two reasonable orders in which to process the elements of a
Gcanvas. If you are doing something analogous to painting, you want to go through the
elements from back to front so that the elements at the front of the stacking order
correctly obscure those behind them. On the other hand, if you are fielding mouse
events, you want to go through the elements from front to back so that primacy on
receiving the event goes to the graphical objects in front. (Both painting and mouse-
event dispatching are provided by the package, so students need not code these two
mechanisms, but might sometime want to do something similar.) To permit both
strategies, the iterator method takes an optional argument that can be either
BACK_TO_FRONT Or FRONT_TO_BACK to specify the desired order along the z-axis. The
default is BACK_TO_FRONT.

To support instructors who choose not to introduce iterators as early as they cover the
acm.graphics package, the Gcanvas class also exports the methods getElementCount
and getElement, which make it possible to sequence through the elements in any order.

5.6 Responding to mouse events

The evolutionary history of Java provides two distinct models for responding to mouse
events. The model that was defined for JDK 1.0 was based on callback methods whose
behavior was defined through subclassing. Thus, to detect a mouse click on a
component, you need to define a subclass that overrides the definition of mousebown with
a new implementation having the desired behavior. That model was abandoned in JDK
1.1 in favor of a new model based on event listeners. Under this paradigm, you add the
necessary suite of methods to implement MouseListener to some class and then add
some object of that class as a listener on the component whose events you want to catch.
These models are quite different, and there is no obvious sense in which learning one
helps prepare you to learn the other.

The two submitted packages that offer mouse support each provide a mechanism for
responding to mouse events whose design use a callback model rather than listeners. The
graphical object types in the OOPS proposal, for example, define methods for
mousePressed, mouseReleased, mouseClicked, and mouseDragged (but not,
interestingly, mouseMoved, mouseEntered, Or mouseExited) that are invoked whenever
the specified event is detected over that object. In objectdraw, mouse events generated on
the graphical canvas are eventually handled in methods contained in class
WindowController, which is the extension of Japplet that contains that canvas.
Students write a class extending windowController and then override the event-
handling methods whose behavior they wish to specify.

There are certainly some ways in which the callback strategy is simpler for novices.
At the same time, we believe that many potential adopters will insist on using Java’s
event listeners to ensure that students can more easily make the transition to the standard
Java paradigm. It is, of course, possible to use listeners under any of these packages
simply by adding the appropriate listener to whatever class plays the role of the canvas
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and fielding the events from there. The difficulty, however, is that the most intuitive
model for event handling—and the one that corresponds to the behavior of the
Jcomponent hierarchy —would have the graphical objects be the source for the events
rather than the canvas in which those objects are contained.

To illustrate the distinction, it is useful to consider how one might use the
mouseEntered and mouseExited methods in a canvas-based listener. Although one can
construct situations in which you need to notice that the mouse has entered the canvas,
what most students are likely to want is some way of detecting when the mouse has
entered one of their objects. Such a capability enables, for example, the simulation of
roll-over buttons, which students seem to love.

To support that style of interaction, the acm.graphics enables mouse event listening
for the cobject class. As an illustration of this behavior, the methods

public void mouseEntered (MouseEvent e) {
((GObject) e.getSource()).setColor(Color.RED);

public void mouseExited (MouseEvent e) {
((GObject) e.getSource()).setColor(Color.BLACK);

}

define listener methods that implement rollover behavior for any cobject that adds a
mouse listener containing this code. Moving the mouse into the containment region of
the object turns the object red; moving the mouse out again turns it black.

Figure 5-8 provides a more extensive example of the use of mouse events in objects by
presenting the complete code for an application that installs two shapes—a red rectangle
and a green oval—and allows the user to drag either shape using the mouse. The
program also illustrates z-ordering by moving the current object to the front on a mouse
click. This demo is available as an applet on the JTF web site.

From the programmer’s perspective, the design of the event-handling mechanism in
the acm.graphics package remains unchanged from what it was at the time of the
February 2005 draft. The underlying implementation, however, is considerably more
efficient. In the initial release, the location of each mouse event was checked against
every Gobject in the canvas to see if it was interested. The new release maintains a
separate data structure of Gobjects that are listening for mouse events, resulting in a
much faster search.

5.7 The GCompound class

The shape classes that appear at the bottom of Figure 5-2 represent “atomic” shapes that
have no internal components. Although the ccanvas class makes it possible to position
these shapes on the display, it is often useful to assemble several atomic shapes into a
“molecule” that you can then manipulate as a unit. The need to construct this type of
compound units provides the motivation behind the inclusion of the GCompound class, in
the acm.graphics package. The methods available for GCompound are in some sense the
union of those available to the Gobject and Gcanvas classes. As a Gobject, a
GCompound responds to method calls like setLocation and scale; as an implementer
(like ecanvas) of the Gcontainer interface, it supports methods like add and remove.
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Figure 5-8. Program to illustrate mouse dragging in an application

/** This class displays a mouse-draggable rectangle and oval */
public class ObjectDragExample extends JFrame
implements MouseListener, MouseMotionListener {

/** Initializes and installs the objects in the JFrame */

public ObjectDragExample() {
gc = new GCanvas();
GRect rect = new GRect (100, 100, 150, 100);
rect.setFilled(true);
rect.setColor (Color.RED);
rect.addMouseListener (this);
rect.addMouseMotionListener (this);
gc.add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor (Color.GREEN) ;
oval.addMouseListener (this);
oval.addMouseMotionListener (this);
gc.add(oval);
getContentPane () .add (BorderLayout.CENTER, gc);
setSize (500, 300);

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed (MouseEvent e) {
last = new GPoint(e.getPoint());

}

/** Called on mouse drag to reposition the object */
public void mouseDragged (MouseEvent e) {
GObject gobj = (GObject) e.getSource();
GPoint pt = new GPoint(e.getPoint());
gobj.move(pt.getX() - last.getX(), pt.get¥Y() - last.get¥());
last = pt;
}

/** Called on mouse click to move this object to the front */
public void mouseClicked (MouseEvent e) {
((GObject) e.getSource()).sendToFront();

public void mouseReleased(MouseEvent e) { }
public void mouseEntered (MouseEvent e) { }
public void mouseExited (MouseEvent e) { }
public void mouseMoved(MouseEvent e) { }

/** Standard entry point for the application */
public static void main(String[] args) {
new ObjectDragExample () .show();

}

/* Private state */
private GCanvas gc;
private GPoint last;
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A simple example of Gcompound

To understand how the Gcompound class works, it is easiest to start with a simple
example. Imagine that you wanted to assemble the following face on the canvas:

0 0
A

——

For the most part, this figure is easy to create. All you need to do is create a new Goval
for the head, two Govals for the eyes, a GRect for the mouth, and a GPolygon for the
nose. If you put each of these objects on the canvas individually, however, it will be hard
to manipulate the face as a whole. Suppose, for example, that you wanted to move the
face around as a unit. Doing so would require moving every piece independently. It
would be better simply to tell the entire face to move.

The code in Figure 5-9 uses the Gcompound class to define a GFace class that contains
the necessary components. These components are created and then added in the
appropriate places as part of the GFace constructor. Once you have defined the class, you
could construct a new GFace object and add it to the center of the canvas using the
following code:

GFace face = new GFace (100, 150);
add(face, getWidth() / 2, getHeight() / 2);

The ccompound coordinate system

The general paradigm for using GCompound is to create an empty instance of the class and
then to add other graphical objects to it. The coordinates at which these objects appear
are expressed relative to the origin of the Gcompound itself, and not to the canvas in which
the compound will eventually appear. This strategy means that you can add a compound
object to a canvas and the move all its elements as a unit simply by setting the location of
the compound. Thus, once you had created the GFace object described in the preceding
section, you could move the entire face 20 pixels to the right by executing the following
method:

face.move (20, 0);

In some cases—most notably when you need to translate the coordinates of a mouse
click, which are expressed in the global coordinate space of the canvas—it is useful to be
able to convert coordinates from the local coordinate space provided by the GCompound to
the coordinate space of the enclosing canvas, and vice versa. These conversions are
implemented by the methods

GPoint getCanvasPoint (localPoint)
and
GPoint getLocalPoint (canvasPoint)

The complete set of methods available for the Gcompound class appears in Figure 5-10.
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Figure 5-9. Program to create a GFace class by extending GCompound

/*

* File: GFace.java

* This file defines a compound GFace class.
*/

import acm.graphics.*;

/**

* This code defines a new class called GFace, which is a compound
* object consisting of an outline, two eyes, a nose, and a mouth.
* The origin point for the face is the center of the figure.

*/

public class GFace extends GCompound {

/** Construct a new GFace object with the specified dimensions. */
public GFace(double width, double height) {
head = new GOval (width, height);
leftEye = new GOval(EYE WIDTH * width, EYE HEIGHT * height);
rightEye = new GOval (EYE WIDTH * width, EYE HEIGHT * height);
nose = createNose(NOSE WIDTH * width, NOSE HEIGHT * height);
mouth = new GRect (MOUTH WIDTH * width, MOUTH HEIGHT * height);
add(head, -width / 2, -height / 2);
add(leftEye, -0.25 * width - EYE WIDTH * width / 2,
-0.25 * height - EYE HEIGHT * height / 2);
add(rightEye, 0.25 * width - EYE WIDTH * width / 2,
-0.25 * height - EYE HEIGHT * height / 2);
add (nose, 0, 0);
add (mouth, -MOUTH WIDTH * width / 2,
0.25 * height - MOUTH HEIGHT * height / 2);

}

/** Creates a triangle for the nose */
private GPolygon createNose(double width, double height) {
GPolygon poly = new GPolygon();
poly.addvVertex (0, -height / 2);
poly.addVertex(width / 2, height / 2);
poly.addvVertex(-width / 2, height / 2);
return poly;

}
/* Constants specifying feature size as a fraction of the head size

private static final double EYE WIDTH = 0.15;
private static final double EYE HEIGHT = 0.15;
private static final double NOSE WIDTH = 0.15;
private static final double NOSE HEIGHT = 0.10;
private static final double MOUTH WIDTH = 0.50;
private static final double MOUTH_ HEIGHT = 0.03;

/* Private instance variables */
private GOval head;
private GOval leftEye, rightEye;
private GPolygon nose;
private GRect mouth;

*/
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Figure 5-10. Public methods in the GCompound class (plus those inherited from Gobject)

Constructor
GCompound ()
Creates a new GCompound that contains no objects.

Methods specified by GScalable
void scale(double sf)

Resizes the compound by applying the scale factor in each dimension relative to its origin.
void scale(double sx, double sy)

Resizes the compound independently in the x and y dimensions by the specified scale factors.

Methods to add and remove graphical objects from a compound
void add(GObject gobj)
Adds a graphical object to the compound.
void add(GObject gobj, double x, double y) or add(GObject gobj, GPoint pt)
Adds a graphical object to the compound at the specified location.
void remove (GObject gobj)
Removes the specified graphical object from the compound.
void removeAll ()
Removes all graphical objects and components from the compound.

Methods to determine the contents of the compound
Iterator iterator()
Returns an iterator that runs through the graphical objects from back to front.
Iterator iterator(int direction)
Returns an iterator that runs in the specified direction (BACK_TO FRONT or FRONT TO BACK).
int getElementCount ()
Returns the number of graphical objects contained in the compound.
GObject getElement(int i)
Returns the graphical object at the specified index, numbering from back to front.
GObject getElementAt(double x, double y) or getElementAt(GPoint pt)
Returns the topmost object containing the specified point, or null if no such object exists.

Miscellaneous methods
void markAsComplete()
Marks this compound as complete to prohibit any further changes to its contents.
GPoint getLocalPoint(double x, double y) or getLocalPoint(GPoint pt)
Returns the point in the local coordinate space corresponding to pt in the canvas.
GPoint getCanvasPoint (double x, double y) or getCanvasPoint(GPoint pt)
Returns the point on the canvas corresponding to pt in the local coordinate space.

The argument for including the Gcompound class

The question of whether to include GCompound in the acm.graphics package prompted
considerable discussion within the Java Task Force. The arguments against including it
are predicated largely on the principle of minimizing complexity: all other things being
equal, it’s best to define as few classes as possible to achieve the desired goal of
producing a usable object-based graphics package. The Gcompound class, by definition,
provides no new capabilities in terms of what clients of the package can draw on the
screen. By contrast, the arguments in its favor are:

* The Gcompound class provides a powerful abstraction mechanism for creating new
objects that maintain their conceptual integrity.

* GCompound serves as the base class for a wide spectrum of useful classes that many
adopters might want to use (such as the Gvariable class used in Figure 5-12 later in
this chapter). The online tutorial supplied with the ACM libraries uses many of these.
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* GCompound serves as the base class for a wide spectrum of useful classes that many
adopters might want to use, such as the Gvariable class used in the example. The
online tutorial supplied with the ACM libraries uses many of these.

* The ccompound class makes it possible to shift the virtual origin of any of the other
figures. If you wanted, for example, to define an object whose appearance was a circle
with its origin at the center, you could not rely simply on the Goval class because
doing so would leave the origin in the upper-left corner of the bounding box.
However, you can achieve the desired effect by embedding a goval at the appropriate
location within a GCompound. In essence, this strategy relies on the fact that
GCompound objects define their own local coordinate system, which offers significant
expressive power.

* The inclusion of this class and the associated GContainer interface make it possible
for teachers to use the acm.graphics package as a paradigmatic example of
containment as well as subclassing. The understanding that students gain through this
process will help them understand the relationship between the component and
Container classes in the AWT, which is directly parallel to this design. A container
1S a Component that also contains Components, just as a GCompound iS a GObject that
also contains GObjects.

e It is not really possible to add the GCompound class as an independent extension
because the design of the rest of the package depends to a certain extent on whether the
GCompound class exists. If there were no GCompound class, for example, there would
be no obvious need for the Gcontainer interface, even though that interface is integral
to a clean design of the compound object facility. The only possible parent for a
Gobject would be the Gcanvas in which it resides, and it would be difficult to explain
the existence of the GContainer interface except as a gateway to future extensions
“left to the reader as an exercise.” Such a package would appear unfinished.

e There are many aspects of the design and implementation of GCompound that are hard
to get right, and it seems dangerous to have such a useful facility implemented
independently by individual adopters of the package. In particular, handling mouse
events that occur in the region of a compound object requires some subtlety to retain
consistent semantics.

5.8 Extensibility

With only 18 classes and four interfaces, the acm.graphics package is small enough for
teachers and students to understand the whole of the design in a relatively short amount
of time. Despite its modest size, however, the facilities provided by the package enable
students to construct extremely sophisticated designs. For simple applications, the
classes provided by the package are sufficient. As applications become larger and more
complex, clients of the acm.graphics package will find it useful to extend the basic
functionality by defining new classes that build on the existing ones. The next few
subsections describe four strategies for extending the predefined object hierarchy, as
follows:

1. Extending the existing shape classes

2. Extending the GPolygon class

3. Creating compound objects using GCompound
4. Deriving subclasses directly from Gobject

Extending the existing shape classes

The simplest form of extension available to students is creating subclasses of the existing
shapes. Such subclasses are useful, for example, in those applications in which you need
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to create many shapes that share a common property. Such properties can be set in the
subclass constructor, thereby freeing you from the need to set them for each individual
object. Consider, for example, the following pair of class definitions:

class GFilledSquare extends GRect {
public GFilledSquare(double x, double y, double size) {
super(x, y, size, size);
setFilled(true);

}

class GRedSquare extends GFilledSquare {
public GRedSquare(double x, double y, double size) {
super(x, y, size);
setColor (Color.RED);

}

In this example, the class GFilledsquare represents a rectangle object that is initially
square (in the sense that only a single dimension is required for both width and height)
and filled; GRedsquare extends that class to create a filled square that is initially red.

While this simple style of extension is accessible to introductory students, it is
problematic for two reasons. First, its use is limited to those cases in which an existing
class can be made to draw the desired figure. Second, this extension model creates class
names that imply properties for an object without any guarantee that those properties can
be maintained. Since GFilledSquare and GRedSquare both inherit all the methods of
GRect and Gobject, clients would be able to change the initial properties at will. Thus,
an object declared to be a GRedsquare could end up being a green rectangle after a
couple of client calls. It therefore seems preferable —at least for pedagogical reasons —to
adopt one of the alternative extension models described in a subsequent section.

Extending the GPolygon class

As it turns out, the extension style that has proven to be most useful in
practice consists of defining new subclasses of GPolygon, which was
described in section 5.3. The basic strategy is to use the GPolygon class
as the base class for a new shape class whose outline is a polygonal

region. This technique is illustrated by the estar class in Figure 5-11,
which draws the five-pointed star shown on the right. The only
complicated part of the class definition is the geometry required to
compute the coordinates of the starting point of the figure. This code also
illustrates two other useful strategies, as follows:

* The figure is drawn inside a unit square and then scaled to the size
given in the parameters. This strategy for figure drawing is common in PostScript and
emphasizes the idea that a figure can be drawn independent of scale.

* The constructor for the gstar class includes a call to the protected GPolygon method
markAsComplete, Which prohibits clients from adding more vertices to the polygon.
This call protects the integrity of the class and makes it impossible for clients to
change the shape of a gstar object to something else.

Creating compound objects using GCompound

Although the GPolygon class is useful in a variety of contexts, it is limited to those
applications in which the desired graphical object can be described as a simple closed
polygon. Many graphical objects that one might want to define don’t fit this model.
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Figure 5-11. Class definition for a five-pointed star

/** Defines a graphical object that appears as a five-pointed star */
public class GStar extends GPolygon {

/** Constructs a star centered in a square of the specified size */
public GStar(double size) {
double sinTheta = GMath.sinDegrees(18);
double b = 0.5 * sinTheta / (1.0 + sinTheta);
double edge = 0.5 - b;
addVertex(-0.5, -b);
int angle = 0;
for (int 1 = 0; i < 5; i++) {
addPolarEdge (edge, angle);
addPolarEdge (edge, angle + 72);
angle -= 72;
}
scale(size);
markAsComplete();

}

/** Constructs a star centered at (x, y) */
public GStar(double x, double y, double size) {
this(size);
setLocation(x, y);

Fortunately, the Gcompound class described in section 5.7 provides the basis for a much
more powerful extension mechanism. Given that the predefined shape classes defined in
acm.graphics are precisely aligned with the drawing capabilities available in the
Graphics class from java.awt, anything that one could draw using the traditional Java
paradigm can be described as a collection of shape objects, which makes it possible to use
Gcompound to encapsulate figure Java could draw as a single graphical object.

As a practical application of the extension capabilities provide by GCompound,  taxiNumber
consider the code in Figure 5-12. The idea behind the Gvariable class is to
create a new graphical object that represents a traditional box diagram of a 1729

variable, such as the one shown at the right. In terms of its graphical
representation, the Gvariable has three components: a GRect that displays the box, a
GLabel to display the variable name, and another GLabel representing the value. To the
client, however, the gvariable offers a conceptual interface that supports setting and
retrieving the value of the variable, which is represented as an arbitrary object. The box
diagram shown, for example, might be generated by the following statements:

GVariable taxiNumber = new GVariable("taxiNumber");
taxiNumber.setValue (new Integer(1729));

Deriving subclasses directly from Gobject

The strategies presented earlier all have the advantage —particularly for novices —that
they allow subclass designers to remain entirely in the aem.graphics world, without
exposing the implementation structures underneath. It is also possible to extend Gobject
directly. In this case, however, the subclass must provide a definition of the method

public abstract void paint(Graphics g);
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which means that whoever writes that subclass has to understand java.awt’s Graphics
class and its methods. That said, it turns out to be relatively straightforward to write such
classes, and we certainly expect teachers and more advanced students to do so.

Figure 5-12. The Gvariable class implemented using GCompound

/* Class: GVariable */
/**
* This class represents a labeled box with contents that can be
* set and retrieved by the client. It is intended for displaying
* the value of a variable.
*/
class GVariable extends GCompound {

public static final double VARIABLE WIDTH = 75;

public static final double VARIABLE HEIGHT = 25;

public static final Font FONT = new Font ("Monospaced",
Font.BOLD, 10);

/** Constructs a GVariable object with the specified name. */
public GVariable(String name) {
GRect box = new GRect (VARIABLE WIDTH, VARIABLE HEIGHT);
box.setFilled(true);
box.setFillColor (Color.white);
add (box) ;
GLabel label = new GLabel (name);
label.setFont (FONT) ;
label.setLocation(0, -label.getDescent() - 1);
add(label);
contents = new GLabel("");
contents.setFont (FONT) ;
add (contents) ;
centerContents () ;
markAsComplete () ;

}

/** Sets the value of the variable. */
public void setValue(Object value) {
this.value = value;
contents.setLabel (value.toString());
centerContents();

}

/** Returns the value of the variable. */
public Object getValue() {
return value;

}

/** Centers the contents string in the variable box. */
private void centerContents() {
double x = (VARIABLE WIDTH - contents.getWidth()) / 2;
double y = (VARIABLE HEIGHT + contents.getAscent()) / 2;
contents.setLocation(x, y);

}

/* Private instance variables */
private GLabel label, contents;
private Object value;
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To offer at least one example of how such extensions might work, the code in Figure
5-13 reimplements the Gvariable example from the preceding section as a direct
subclass of gobject. Much of the code is the same. The difference is that the painting of
the object (including the centering of the value string) is now supplied by an explicit
paint method. For Java programmers, the resulting code is not too difficult. The class

Figure 5-13. The Gvariable class implemented as a direct GObject subclass

/* Class: GVariable */
/[ **
* This class represents a labeled box with contents that can be
* set and retrieved by the client. It is intended for displaying
* the value of a variable.
*/
class GVariable extends GObject {

public static final double VARIABLE WIDTH = 75;

public static final double VARIABLE HEIGHT = 25;

public static final Font FONT = new Font ("Monospaced",
Font.BOLD, 10);

/** Constructs a GVariable object with the specified name. */
public GVariable(String name) {
setSize (VARIABLE WIDTH, VARIABLE HEIGHT);
this.name = name;
value = null;

}

/** Sets the value of the variable. */
public void setValue(Object value) {
this.value = value;
repaint();

}

/** Returns the value of the variable. */
public Object getValue() {
return value;

}

/** Draws the object using the graphics context g. */

public void paint (Graphics g) {
Rectangle r = getBounds().toRectangle();
g.setColor (Color.white);
g.fillRect(r.x, r.y, r.width, r.height);
g.setColor (getColor());
g.drawRect(r.x, r.y, r.width, r.height);
g.setFont (FONT) ;
FontMetrics fm = g.getFontMetrics();
g.drawString(name, r.x, r.y - fm.getDescent() - 1);
String str = (value == null) ? "" : value.toString();
int x = r.x + (r.width - fm.stringWidth(str)) / 2;
int y = r.y + (r.height + fm.getAscent()) / 2;
g.drawString(str, x, y);

}

/* Private instance variables */
private String name;
private Object value;
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definition still fits on one page, and the implementation of paint is reasonably
straightforward. For a novice, however, this implementation requires coming to
understand several new concepts, including the classes Graphics and FontMetrics; the
code based on Gcompound hides these implementation details.

Managing extensions

The existence of any strategy for defining new Gobject subclasses, whether or not a
GCompound class exists, invites adopters of the package to create new classes, some of
which will undoubtedly be of interest to the broader community. One of the lessons of
the extensible language movements of the 1970s—and indeed one of the underlying
reasons for the success of very rich software development environments like the JDK —is
that programmers are generally less concerned with extensibility than they are with
extensions. Being able to build your own extensions is of interest to some; picking up
extensions that someone else has developed is of great interest to a much broader
spectrum of users. It therefore seems reasonable to expect that educators (and possibly
others) who adopt the acm.graphics package will be willing both to supply new
Gobject classes to a common repository and to make use of ones that others put there.

Understanding how to manage such a repository needs to be part of the follow-on work
envisioned by the Java Task Force. Presumably, it would make sense to establish some
vetting process by which submissions could be evaluated and checked for consistency.
Those that pass muster—and that come with a required set of materials including a
javadoc description and source code distributable under some form of open source
license—could then be put into a repository somewhere. Such a repository would
increase community buy-in to the ACM libraries generally and make available an array of
tools beyond anything that the Task Force itself could undertake to do.

At the same time, it seems important that the extended classes in the repository not
become part of the acm.graphics package but remain as compatible supplements to it.
Trying to manage a series of staged releases to accommodate new community-supplied
classes seems like a fool’s errand and would reintroduce the instability that has plagued
Java itself. As long as they stay within the 18 classes defined in the acm.graphics
package, textbook authors and other resource developers can feel confident that the
materials they develop will not quickly become dated. Similarly, teachers will not have
to worry that the curricular materials they develop during one year might become
obsolete in the next.

5.9 The GPen and GTurtle classes

The remaining two classes in the acm.graphics package are the GPen and GTurtle
classes, which don’t really fit into the other categories. Their purpose is to provide
students with a simple mechanism for drawing figures using a paradigm that is more
aligned with the pen-on-paper model that the felt-board model used in the rest of the
package. The two models, however, are integrated in the sense that GPen and GTurtle
keep track of their own path and can therefore respond to any repaint requests, just as the
other graphical object classes do.

The Gpen class

The ePen class models a pen that remembers its current location on the Gcanvas on
which it is installed. The most important methods for GPen are setLocation (or move to
specify relative motion) and drawLine. The former corresponds to picking up the pen
and moving it to a new location; the latter represents motion with the pen against the
canvas, thereby drawing a line. Each subsequent line begins where the last one ended,
which makes it very easy to draw connected figures. The GPen object also remembers the
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path it has drawn, making it possible to redraw the path when repaint requests occur. The
full set of methods for the Pen class are shown in Figure 5-14.

The graphics model provided by the GPen class provides a straightforward mechanism
for generating a variety of recursive figures, such as the Koch fractal (“snowflake” curve)
or the Sierpinski triangle. The following code, for example, uses the GPen class to draw a
Koch fractal of the indicated order and size (horizontal extent) with its geometric center
at the point (x, y):

void drawKochFractal (double x, double y, double size, int order) {
GPen pen = new GPen(x, Y);
pen.move(-size / 2, -size / (2 * Math.sqrt(3)));
drawFractallLine(pen, size, 0, order);
drawFractallLine(pen, size, -120, order);
drawFractallLine(pen, size, +120, order);

}

Figure 5-14. Public methods in the GPen class

Constructors
GPen()
Creates a new GPen object with an empty path.
GPen (double x, double y)
Creates a new GPen object whose initial location is the point (x, y).

Methods to reposition and draw lines with the pen
void setLocation(double x, double y) or setLocation(GPoint pt)
Moves the pen to the specified absolute location.
void move(double dx, double dy)
Moves the pen using the displacements dx and dy.
void movePolar (double r, double theta)
Moves the pen r units in the direction theta, measured in degrees.
void drawLine(double dx, double dy)
Draws a line with the specified displacements, leaving the pen at the end of that line.
void drawPolarLine(double r, double theta)
Draws a line r units in the direction theta, measured in degrees.

Methods to define a filled region bounded by pen strokes
void startFilledRegion()

Fills the polygon formed by lines drawn between here and the next endFilledRegion.
void endFilledRegion()

Closes and fills the region begun by startFilledRegion.

Miscellaneous methods
void showPen()

Makes the pen itself visible, making it possible to see where the pen moves.
void hidePen()

Makes the pen invisible.
boolean isPenVisible()

Returns true if the pen is visible, and false otherwise.
void setPenImage(Image image)

Sets an image to display the pen. By default, the pen appears as a quill.
Image getPenImage()

Returns the image currently used to display the pen.
void setSpeed(double speed)

Sets the speed of the pen, which must be a number between 0 (slow) and 1 (fast).
double getSpeed()

Returns the speed last set by setSpeed.
void erasePath()

Removes all lines from this pen’s path.
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void drawFractalLine(GPen pen, double len, int theta, int order) {
if (order == 0) {
pen.drawPolarLine(len, theta);
} else {

drawFractalLine(pen, len / 3, theta, order - 1);
drawFractalLine(pen, len / 3, theta + 60, order - 1);
drawFractalLine(pen, len / 3, theta - 60, order - 1);
drawFractalLine(pen, len / 3, theta, order - 1);

}

Calling drawKochFractal (cx, cy, 100, 3) (where cx and cy are the coordinates of
the center of the figure) generates the following picture:

The applet that produces this figure is available on the JTF web site.

Both the GPen class and the gTurtle class described in the following section are often
used to create animated displays. To provide clients with some control over the speed of
the animation, both classes include a setspeed method, which takes a number between
0.0 and 1.0 as its argument. Calling setSpeed(0.0) means that the animation crawls
along at a very slow pace; calling setsSpeed (1.0) makes it proceed as fast as the system
allows. Intermediate values are interpreted so as to provide a smoothly varying speed of
operation. Thus, if the speed value is associated with a scrollbar whose ends represent
the values 0.0 and 1.0, adjusting the scrollbar will cause the animation to speed up or
slow down in a way that seems reasonably natural to users.

The speed mechanism is implemented by delaying the calling thread each time the
GPen Or GTurtle object is moved. If that calling thread is Java’s event-handling thread,
any other user-generated events will be held up during the period in which that thread is
delayed. Given that the delays are relatively short even on the slowest speed, this
implementation does not usually cause problems for novices writing animations. More
sophisticated users, however, should create a separate thread to animate these objects.

The GTurtle class

The GTurtle class is similar to GPen but uses a “turtle graphics” model derived from the
Project Logo turtle described in Seymour Papert’s Mindstorms [Papert80]. In the turtle
graphics world, the conceptual model is that of a turtle moving on a large piece of paper.
A GTurtle object maintains its current location just as a GPen does, but also maintains a
current direction. The primary methods to which a GTurtle responds are
forward (distance) , which moves the turtle forward the specified distance, and the
directional methods left (angle) and right (angle) , which rotate the turtle the indicated
number of degrees in the appropriate direction. The path is created by a pen located at
the center of the turtle. If the pen is down, calls to forward generate a line; if the pen is
up, such calls simply move the turtle without drawing a line. The full list of methods is
shown in Figure 5-15.
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Figure 5-15. Public methods in the GTurtle class

Constructors
GTurtle()
Creates a new .GTurtle object with an empty path.
GTurtle(double x, double y)
Creates a new .GTurtle object whose initial location is the point (x, y).

Methods to move and rotate the turtle
void setLocation(double x, double y) or setLocation(GPoint pt)
Moves the turtle to the specified absolute location without drawing a line.
void forward(double distance)
Moves the turtle distance units in the current direction, drawing a line if the pen is down.
void setDirection(double direction)
Sets the direction (in degrees counterclockwise from the x-axis) in which the turtle is moving.
double getDirection()
Returns the current direction in which the turtle is moving.
void right(double angle) or right()
Turns the turtle direction the specified number of degrees to the right (default is 90).
void left(double angle) or left()
Turns the turtle direction the specified number of degrees to the left (default is 90).

Miscellaneous methods
void penDown ()
Tells the turtle to lower its pen so that it draws a track. The pen is initially up.
void penUp()
Tells the turtle to raise its pen so that it stops drawing a track
boolean isPenDown ()
Returns true if the pen is down, and false otherwise.
void showTurtle()
Makes the turtle visible. The turtle itself is initially visible.
void hideTurtle()
Makes the turtle invisible.
boolean isTurtleVisible()
Returns true if the turtle is visible, and false otherwise.
void setSpeed(double speed)
Sets the speed of the pen, which must be a number between 0 (slow) and 1 (fast).
double getSpeed()
Returns the speed last set by setSpeed.
void erasePath()
Removes all lines from the turtle’s path.

Although GTurtle and GPen have similar capabilities, they are likely to be used in
different ways. The eTurtle class is designed to be used at the very beginning of a
course and must be both simple and evocative as intuitive model. The GTurtle therefore
has somewhat different defaults than its GPen counterpart does. The image of the
GTurtle, for example, is initially visible, while the GPen image is hidden. Moreover, the
GTurtle does not actually draw lines until the pen is lowered. The GPen offers no option;
the pen is always down. These defaults make the Turtle consistent with the Logo
model, in which students move the turtle first and then start drawing pictures with it.

The turtle graphics model is illustrated in section 6.8, which also describes how to use
objects of the GTurtle classes as standalone programs.
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Chapter 6
The acm.program Package

In the taxonomy of problems presented in Chapter 3, one of the issues that rose to the
fore (as part of the discussion under problem L1) is that Java applications start by
invoking a method whose signature is

public static void main(String[] args)

The structure of the main method in an application has several negative effects. One of
the most commonly cited is that the method signature for main includes several
concepts—static methods and array parameters, for example —that are difficult to present
to novices. This shortcoming, however, is only part of the problem. The Java Task Force
views the following problems as being of at least as much concern:

* The use of a static method as the entry point encourages students to operate outside
the object-oriented domain. It is unfortunate that main—which is the first method
students typically write in an application-based introduction to Java—is a static
method. The extent that the main method contains any code other than the
instantiation of some object, that code runs in a purely procedural framework that has
no association with the object-oriented world. Moreover, if the static main method is
decomposed into subsidiary methods, those methods must also be declared as static,
thereby delaying the introduction of the object-oriented approach. To avoid this
problem, the Java Task Force believes strongly that instructors—even if they choose
not to adopt the acm. program package —should encourage their students to code main
so that its only function is to instantiate an object and then pass control to it by
invoking one of its methods.

e The paradigm used to define an application is substantially different from that used for
applets. Instructors who teach applets instead of applications have the advantage that
student code runs in the object-oriented world from the beginning. When a browser
encounters an applet, it instantiates a new instance of that applet and then sends it
messages to trigger its operation. Applets, however, are problematical both because
they are declining in popularity within the Java community and because many
browsers do not support the most recent implementations of Java. These drawbacks
make it impossible to recommend using applets in all contexts, despite their
pedagogical advantages.

* Applications provide little support for many of the facilities that programmers would
like to employ. Although programming environments can in some cases extend the
capabilities of Java applications, programs running in their most basic form look much
more like programs from the 1970s than they resemble programs of the 21* century.
The standard paradigm for an application consists of a single-threaded program whose
only connection to the user’s environment is a set of traditional I/O streams
(System.in, System.out, and System.err). Unless the programmer includes explicit
code to do so, an application creates no windows or interactors of the sort that today’s
students associate with modern applications. And although it is not that difficult to put
up a simple window, creating one that includes, for example, a menu bar is much
harder to achieve.

To minimize these negative effects, the Java Task Force offers a new Program class as
part of its standard library packages. The central idea behind the proposal is simply that
the existence of such a class—coupled with several specific subclasses that define
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specific program types—gives instructors and students a standard framework for creating
better, more functional applications.

We believe that the facilities offered by the acm.program package will have a
profoundly simplifying effect on introductory Java examples. The major advantages
associated with the use of this package can be summarized as follows:

1. The conventional pattern of use associated with the acm.program package moves
students away from the procedural style of public static void main into a more
pedagogically defensible environment in which students are always working in the
context of an object.

2. The program class allows Java applications to double as applets, thereby making it
possible for instructors to use either paradigm in a consistent way. Even for those
instructors that choose to focus on the application paradigm, using the Program class
makes it much easier for students to make their code available on the web. Moreover,
because the Program class is defined to be a subclass of gapplet (and indirectly
therefore from the basic Applet class) applications that extend Program can take
advantage of such applet-based features as loading audio clips and images from a
code base.

3. The program class includes several features that make instruction easier, such as
menu bars that support operations like printing and running programs with an
automated test script.

4. The classes in the acm.program package offer a compelling example of an
inheritance hierarchy that introductory students can understand and appreciate right
from the beginning of their first course.

As is often the case, however, these advantages are much easier to understand if one has
some familiarity with the general idea of the proposal. This chapter, therefore, begins by
illustrating the Program class with a few simple examples, and then describes in more
detail the subclasses available in the standard acm. program hierarchy.

6.1 Simple examples of the Program class

The acm.program package defines a small hierarchy of classes, as illustrated in Figure
6-1. Every class in the package is an abstract class and is therefore instantiated only in
the form of a specific client-defined subclass. A student who writes a program using this
package picks the Program subclass most appropriate for the problem at hand and then
writes a new class definition that extends that base.

Figure 6-1. Class diagram for the acm.program package

javax.swing.JMenuBar javax.swing.JApplet
ProgramMenuBar Program ProgramLayout

ConsoleProgram DialogProgram GraphicsProgram
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As an example, Figure 6-2 shows a program that descends directly from the Program
class and has the effect of reading two integers from the user and displaying their sum.
Because this program makes very little use of the object-oriented paradigm, it is by no
means representative of the program that the Java Task Force encourages, but will
nonetheless serve as a useful baseline for illustrating the operation of the class.

The add2 class in Figure 6-2 defines a single method called run, which specifies the
code that needs to be executed when the program is run. In this example, the run method
reads two integers, adds them together, and displays the result. Because this
implementation is a direct subclass of Program, input is read from the standard input
stream (System. in) and output appears on the standard output stream (System.out). No
windows are created by the Program class itself, which means that the Add2 program
might produce the following typescript in a command-line environment, shown here as it
appears in a terminal window running on Mac OS X:

6 0 6 Terminal — tcsh — 80 x 8

tcsh 1> java Add2

This program adds two numbers.
Enter nl: 17

Enter n2: 25

The total is 42.

tecsh 2>

. |

Figure 6-2. Simple program to add two numbers

/*
* File: Add2.java

* This program adds two numbers and prints their sum.

*/
import acm.program.*;

[ **

* This class adds two numbers entered by the user and displays
* their sum. Because this version is a Program, input and

* output are assigned to System.in and System.out.

*/

public class Add2 extends Program {

/[ **
* Runs the program. Here, the run method adds two numbers
* entered by the user.
*/
public void run() {
println("This program adds two numbers.");
int nl = readInt("Enter nl: ");
int n2 = readInt("Enter n2: ");
int total = nl + n2;
println("The total is " + total + ".");
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The Program subclasses at the bottom of Figure 6-1 make it possible to change the
behavior of this program in relatively small but highly useful ways. If the first line of the
class definition is changed to

public class Add2 extends ConsoleProgram

then the same program runs in a window that contains an 10Console as defined in
Chapter 4. That program might look like this if it were run under Windows XP:

E3 Add2

File Edit

This program adds two numbers. -
Enter nl: 17
Enter n2: 25
The total is 42.

<« D

If the definition of the add2 class were instead changed to extend DialogProgram, the
program would then operate by putting up a series of dialog boxes, as illustrated in Figure
6-3. (The GraphicsProgram class is not appropriate to the add-two-numbers example
and will be discussed in section 6.4.)

6.2 Programs as a paradigm for inheritance

The primary point of introducing the examples in the preceding section is to illustrate an
important pedagogical advantage of the acm.program class hierarchy. One of the
challenges that instructors face in using an objects-first approach is finding examples of
class hierarchies that make sense in the programming domain. The real world has no
shortage of such examples. The classification of the biological kingdom, for example,
offers a wonderful model of the class idea and the notion of subclassing. An individual
horse is an instance of the general class of horses, which is itself a subclass of mammal,
which is in turn a subclass of animal. Students have no trouble understanding the
subclass relationship in the biological context: all horses are mammals, all mammals are

Figure 6-3. Dialogs produced by the DialogProgram version of Add2

[ Message X | W Input
Enter n2:
@ This program adds two numbers. E |729 |
OK OK

E&} Message

3 Input

Enter nl:
| This total is 1729.
1000 |

OK OK
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animals, but there are some mammals that are not horses and some animals that are not
mammals.

So far, so good. The trouble for teachers trying to offer new students a compelling
justification for object-oriented design comes in trying to reflect the intuitive notion of
class hierarchies in a programming context. Textbooks often struggle to find appropriate,
programming-related examples. Most end up relying on a graphical hierarchy similar to
the one outlined in Chapter 5. That hierarchy provides examples that are similar to the
biological model: a gstar (as defined in Figure 5-11) is a subclass of GPolygon, which is
in turn a subclass of Gobject. The structure of the graphics classes supports the intuition
that students derive from real-world hierarchies: all stars are polygons, all polygons are
graphical objects, but not all graphical objects are polygons, let alone stars.

While the hierarchy from acm.graphics works well as an example, the Task Force
believes that it is possible to illustrate this same idea even earlier by making the intuitive
notion of a “program” into a hierarchy in its own right. Students are then exposed to the
notions of objects, classes, and subclass hierarchies as the first concepts they encounter.
By establishing a hierarchy of programs, students can see how their particular program is
an instance of a specific program category, which is itself a subcategory of a larger, more
generic class of programs. In particular, students will quickly come to understand that
every ConsoleProgram is also a Program and can perform the operations that a Program
does, subject to any extensions at the ConsoleProgram level. This understanding of the
fundamental is-a relationship should help to emphasize the idea of inheritance.

6.3 The structure of the acm. program package

The most important thing to understand about the design of the acm.program package is
the merging of the applet and application roles. The Program class extends Japplet, and
is therefore available for use by a web browser. When invoked as an applet, the browser
instantiates an instance of the main applet class and invokes its init method. Each
Program class, however, also includes an implementation of a method with the familiar
signature

public static void main(String[] args)

which allows it to be invoked as an application. As part of its startup operation, the
application version of a Program also calls the init method, which makes it possible to
include initialization code in a way that is analogous to the applet mode of operation.
The main method in the Program class identifies the class that invoked it, instantiates a
new instance of that class, and then calls the init and start methods of that program,
just as a browser running an applet would do. Thus, in both the applet and application
frameworks, the program runs in the context of an instantiated object rather than in the
static domain.

Irrespective of whether the program is invoked as an applet or application, the
initialization code establishes a component hierarchy that matches the one used in the
Swing Japplet class. Moreover, as in Java 2 Standard Edition 5.0, the add methods for
the Program class automatically forward any add requests to the content pane, so that it is
now possible to write

add (component) ;
instead of the novice-unfriendly

getContentPane () .add (component) ;
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By default, the Program class itself doesn’t add anything to the content pane, although
subclasses are free to do so. If the content pane has any components at the end of the
initialization phase, the implementation calls setvisible (true) on the program frame
to display it on the screen. If the content pane is empty, that call does not occur. Thus,
programs that are written to use only the standard input streams or popup dialogs for their
user interactions can run without displaying a window.

Program startup

After setting up the standard Japplet component hierarchy, the Program startup code
executes the following three steps:

1. Calls the init method to initialize the application.

2. Calls validate on the content pane to ensure that its components are arranged
correctly on the screen.

3. Creates a new thread to execute the run method.

Although it can be useful to include both methods in a single program, most student
programs will define either an init method or a run method, but not both. The init
method is used for interactive applications in which the program creates and arranges a
set of components and then waits for the user to trigger some action, typically by clicking
on a button. The run method is intended for programs that have an independent thread of
control unrelated to the actions of the user. Programs that animate a graphical object or
set up a console interaction are usually of this form.

Consider, for example, the add2 program presented at the beginning of this chapter.
That program establishes a dialog with the user through the console that requires
sequential operation and therefore requires a run method, which for the add2 program
looks like this:

public void run() {
println("This program adds two numbers.");
int nl = readInt("Enter nl: ");
int n2 = readInt("Enter n2: ");
int total = nl + n2;
println("The total is " + total + ".");

}

The run method in a Program is analogous to the main method in a Java application.
The key difference is that the run method is not static and therefore has an object to work
with. It can use instance variables in that object and can invoke other methods that are
not themselves static. This change alone represents the central advantage of the
acm.program package.

The rationale behind the init method

The February 2005 release of the acm.program package did not describe the init
method, although it was there as part of the standard applet paradigm. At the time, we
proposed that initialization occur in a constructor for the class. That strategy, however,
did not prove viable. The constructor for a program is invoked very early and therefore
has no access to any contextual information. Inside the constructor, for example, it is
impossible to determine the dimensions of the applet frame, to perform any operations
that require a code base such as loading an image, or even to determine whether one is
running in an application or applet context. Students found these restrictions very
difficult to understand. The init method is invoked after the object has been instantiated
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and installed in the frame, which means that the program has access to the required
information.

Public methods in the program class

A list of the public methods in the Program class appears in Figure 6-4. A large fraction
of these methods implement the ToModel interface or one of the event interfaces from
java.awt.event. To save space in the table, these methods are not described in full.
The details of the ToModel methods are described in Chapter 4.

Input and output from programs

Every Program object is given both an Toconsole and 10Dialog object at initialization
time. By default, the console is T0Console.SYSTEM_CONSOLE and the dialog is a default
instance of 1opialog. Subclasses can substitute specially tailored instances of these
classes by overriding the protected factory methods createConsole and createDialog.
The consoleProgram subclass, for example, overrides createConsole as follows:

protected IOConsole createConsole() {
return new IOConsole();

}

The Program class also defines two public methods—getInputModel and
getOoutputModel —to specify the source and destination for the input and output
methods, respectively. In the Program class itself, these methods return the result of
getConsole. The DialogProgram subclass overrides these methods to return the result
of getbialog instead. Indeed, those two one-line methods are the only code in the
DialogProgram subclass.

The varieties of object-oriented experience

Depending on your perception of what properties make a program object-oriented, the
code for the add2 example presented earlier in this chapter may not seem to meet those
requirements. The method calls in the body of the run method have no explicit receivers,
depending instead on the fact that the Program class itself implements the 10Model
interface and therefore defines methods like println and readint. Such an approach is
simpler for novices—as well as for teachers with little background in the object-oriented
style of programming —but it doesn’t emphasize the idea of sending messages to objects.
It is possible, however, to rewrite the program so that make those object references
explicit. If an instructor chooses to have all method calls be tied to an object, the run
method for add2 could be rewritten like this:

public void run() {
IOModel io = this.getConsole();
io.println("This program adds two numbers.");
int nl = io.readInt("Enter nl: ");
int n2 = io.readInt("Enter n2: ");
int total = nl + n2;
io.println("The total is " + total + ".");

}

Judging from the range of opinions on the Task Force, different instructors will have
strong preferences for one or the other of these paradigms, and it does not seem wise to
allow only one of these styles. The decision to support both approaches is also consistent
with the first principle put forward in Chapter 2, in which we make a commitment “to
ensure that our library packages and tools are usable with other pedagogical approaches”
besides the objects-first approach.
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Figure 6-4. Public methods common to all Program objects

Methods involved in running a program
void run()
Contains the code for the program, which is called after initialization.
void init()
Contains applet-style initialization code; most programming styles will not use this method.
Methods for setting and retrieving the I/0 context of the program
void getConsole(IOConsole console)
Sets the I0Console assigned to this program.
IOConsole getConsole()
Returns the I0Console assigned to this program.
IODialog getDialog()
Returns the T0Dialog assigned to this program.
PrintWriter getWriter()
Returns a writer that can be used to write to the console.
BufferedReader getReader()
Returns a reader that can be used to read from the console.
IOModel getInputModel()
Returns the input model, which is typically either the standard console or dialog.
IOModel getOutputModel ()
Returns the output model, which is typically either the standard console or dialog.

Methods for manipulating layout regions of the program
void setLayout(String region, LayoutManager manager)
Sets the layout manager for the specified program region.
LayoutManager getLayout (String region)
Returns the layout manager for the specified program region.
void removeAll (String region)
Removes all the components from the specified program region.

Miscellaneous methods
void pause(double milliseconds)
Sleeps for the specified number of milliseconds but never throws an exception.
void exit()
Exits from the program.
void setTitle(String title)
Sets the title used for the application title bar.
String getTitle()
Returns the title used for the application title bar.
boolean isAppletMode()
Returns true if this applet is running in a browser (not available in the constructor).
void addActionListeners()
Adds the Program as an ActionListener to every button it contains.

Methods specified by the T0Model interface
void print(...)

void printlng(...)

String readLine(...)

int readInt(...)

double readDouble(...)

boolean readBoolean(...)

void showErrorMessage(String msgqg)

Methods specified by the MouseListener, MouseMotionListener, and ActionListener interfaces
void mouseClicked (MouseEvent e)

void mousePressed(MouseEvent e)

void mouseReleased (MouseEvent e)

void mouseEntered(MouseEvent e)

void mouseExited(MouseEvent e)

void mouseMoved (MouseEvent e)

void mouseDragged (MouseEvent e)

void actionPerformed(ActionEvent e)
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6.4 The GraphicsProgram subclass

The GraphicsProgram subclass simplifies the use of the acm.graphics package from
Chapter 5 and is quite straightforward in its design. During initialization, a
GraphicsProgram allocates a new Gcanvas and installs it in the content pane of the
Program window. Subclasses that extend GraphicsProgram can then use either of two
strategies to gain access to that canvas:

1. Use the getGcanvas method to obtain the Gcanvas and then invoke methods directly
on that canvas.

2. Invoke wrapper methods in the GraphicsProgram class, each of which performs that
delegation automatically.

The first paradigm is illustrated by the following program, which draws the string “Hello,
world.” at the center of the program window:

public class HelloWorld extends GraphicsProgram {
public void run() {
GCanvas gc = this.getGCanvas();
GLabel label = new GLabel("Hello, world.");
gc.add(label, (this.getWidth() - label.getwidth()) / 2,
this.getHeight() / 2);

}

The second paradigm is simpler but uses a seemingly less object-oriented style, given that
the receivers of the messages are all implicit:

public class HelloWorld extends GraphicsProgram {
public void run() {
GLabel label = new GLabel("Hello, world.");
add(label, (getWidth() - label.getWidth()) / 2,
getHeight () / 2);

}

The GraphicsProgram class implements wrappers for all the methods in Gcanvas, with
the exception of the overloaded version of the add method that takes a component instead
of a Gobject. That method would have an ambiguous interpretation, because there
would be no way to differentiate the operation of adding a component to the Gcanvas or
adding that component to the content pane of the program. This method is unlikely to be
used by very many students and can easily be invoked unambiguously by calling

getGCanvas () .add (component) ;

Responding to events in a GraphicsProgram

The GraphicsProgram class supports two models for mouse events. The first is simply
to assign mouse listeners to the graphical objects as described in Chapter 5. The second
model, which may prove easier for students, is to use the GraphicsProgram itself as a
listener. As a convenience for new students, the Program class declares itself to be an
implementor for the standard mouse listeners, even though the methods that implement
each of these interfaces are empty. If a student wants to use a GraphicsProgram subclass
as a listener, the steps required are:

1. Write new versions of any listener methods that need to be overridden for this
particular application.

2. Invoke the method addMouseListeners when enough of the initialization has been
performed to make it safe to call the listeners. Forcing students to include this call
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explicitly eliminates the timing issues that arise in event models based on a callback
strategy.

This event-handling discipline is illustrated in Figure 6-5, which updates the object-
dragging example from Chapter 5 to use this program-based listener model.

Figure 6-5. A rewrite of the object-dragging program that uses the program as a listener

/* File: ObjectDragExample.java */

import java.awt.*;
import java.awt.event.*;
import acm.graphics.*;
import acm.program.*;

/** This class displays a mouse-draggable rectangle and oval */
public class ObjectDragExample extends GraphicsProgram {

/** Runs the program */
public void run() {

GRect rect = new GRect (100, 100, 150, 100);
rect.setFilled(true);
rect.setColor (Color.RED);
add(rect);
GOval oval = new GOval(300, 115, 100, 70);
oval.setFilled(true);
oval.setColor (Color.GREEN) ;
add(oval);
addMouseListeners();

}

/** Called on mouse press to record the coordinates of the click */
public void mousePressed(MouseEvent e) {
last = new GPoint(e.getPoint());
gobj = getElementAt(last);

}

/** Called on mouse drag to reposition the object */
public void mouseDragged (MouseEvent e) {
if (gobj != null) {
gobj.move(e.getX() - last.getX(), e.get¥() - last.get¥());
last = new GPoint(e.getPoint());

}

/** Called on mouse click to move this object to the front */
public void mouseClicked (MouseEvent e) {

if (gobj != null) gobj.sendToFront();
}
/* Private instance variables */
private GObject gobj; /* The object being dragged */
private GPoint last; /* The last mouse position */
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6.5 Layout strategy for the Program class

Much of the development work between the first and second draft releases of the Java
Task Force packages was directed toward finding strategies to simplify the creation of
graphical user interfaces, or GUIs. The results of that work and the rationale that led up
to it are outlined in Chapter 7, which describes the aem.gui package. One aspect of that
design, however, seemed to fit more easily in the acm.program package, because it is
logically associated with the Program class itself. The essential idea behind the design is
that programs often need to be able to create simple control bars that present the user with
a simple list of interactors. Unfortunately, given the facilities provided by the standard
Java packages, building this type of control bar and populating it with interactors is often
too difficult for novices. As at least a partial solution to this problem, the Java Task
Force decided to implement a new layout manager for programs whose primary function
is to simplify the creation of control bars.

The Program class automatically assigns a BorderLayout manager to the content pane
and initializes each of the five components —NORTH, SOUTH, EAST, WEST, and CENTER—tO
be an empty Jranel. The individual JPanel objects are arranged as in the standard
BorderLayout paradigm, which looks like this:

NORTH
w E
E A
s CENTER s
T T
SOUTH

Each of the regions along the edges is assigned its preferred size, which means that it
disappears entirely as long as it is empty. The center region gets all the remaining space.

The program class overrides the standard definitions of the add methods so that
components are added to the center region by default, but to one of the side regions if the
constraint matches the appropriate region constant. Thus, calling

add (new JButton("OK"), SOUTH);
will add a new button labeled ok to the souTH region.

As with any container, the components that makes up the regions of a Program object
are rearranged whenever the container is validated, which happens automatically when
the container is resized but which can also be triggered explicitly by calling validate on
the container. The Program logic automatically calls validate after the init method
returns, which means that most students will never have to worry about forcing an update
of the layout structure.

Each of the gpanels that form the five program regions has a default layout manager,
as follows:
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NORTH, SOUTH | new TableLayout(l, 0, 5, 5) | Single horizontal row.
EAST, WEST new TableLayout(0, 1, 5, 5) | Single vertical column.
CENTER new GridLayout(1l, 0) Equally spaced horizontal row.

You can, however, change any of these layout managers by calling
setLayout (region, layout) ;

The details of the TableLayout class are discussed in Chapter 7.

Simple examples that use the layout regions

The code in Figure 6-6 offers a simple example of the layout strategy provided by the
Program class. The code defines three buttons that simply display their name on the
console whenever they are activated.

The three calls to add in the constructor assign these buttons to the souTH region of the
layout, as specified by the constraint parameter in the add call. Because the default layout
for the sOuTH region is a TableLayout manager with a single row and a five-pixel gap
between adjacent interactors. The result is therefore a program window that looks like
this, which shows the state of the console window after the user has clicked each of the
buttons in order:

Figure 6-6. A ConsoleProgram version of a stoplight

/*
* File: StoplightConsole.java

* This program illustrates the construction of a simple GUI.

*/

import acm.program.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

[ **
* This class displays three buttons at the south edge of the window.
* The name of the button is echoed on the console each time a button
* is pressed.

*/
public class StoplightConsole extends ConsoleProgram {

/** Create the GUI program. */
public StoplightConsole() {
add (new JButton("Green"), SOUTH);
add (new JButton("Yellow"), SOUTH);
add (new JButton("Red"), SOUTH);
addActionListeners();

}

/** Listen for a button action. */
public void actionPerformed(ActionEvent e) {
println(e.getActionCommand());

}
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Positioning interactors around the border is equally useful with Program subclasses
other that consoleProgram. The code in Figure 6-7 shows a similar application
redesigned as a GraphicsProgram in which the stoplight is represented graphically on
the display, like this:

6 O 6 StoplightGraphics
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The code for the stoplight class itself appears in Figure 6-8. The stoplight class
extends GCompound to create an object that responds to the messages setState (color)
and advance().

6.6 Using menu bars with the Program class

Applications that are running in a modern window-based environment typically include
menu bars to give the user ready access to a variety of useful operations, typically
including both file-based operations such as saving or printing and editor-based
operations such as cut, copy, and paste. The Program class makes it very easy to include
menu bars in applications. Every Program instance includes a standard menu bar by
default, and it is easy to extend that menu bar to include application-specific menu items.

The default menu bar

By default, the menu bar associated with each program includes a File and an Edit
menu, which have the structure shown in Figure 6-9. The File menu includes the
following items:

* print. Prints a copy of the window image for the program.

* Print Console. Prints a log of the console, dividing it up into pages as necessary.

* save and save As. Saves the typescript of the console as a text file.

* script. Opens a dialog and allows the user to select a text file. That file is then used
as the source for all console input. That input is echoed to the console window so that
the typescript shows the full session.

The Edit menu includes items for the cut, Copy, Paste, and Select All options, all of
which are standard in modern computing platforms.
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Figure 6-7. A GraphicsProgram version of a stoplight

/*

* File: StoplightGraphics.java

X e — —— i ————

* This program illustrates the construction of a simple GUI using a
* GraphicsProgram as the main class.

*/

import acm.graphics.*;
import acm.program.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/[ **

* This class displays three buttons at the south edge of the window.
* Pressing a button lights the indicated lamp in the stoplight.

*/

public class StoplightGraphics extends GraphicsProgram {

/** Create the GUI program. */
public StoplightGraphics() {
add (new JButton("Green"), SOUTH);
add (new JButton("Yellow"), SOUTH);
add (new JButton("Red"), SOUTH);
add (new JButton("Advance"), SOUTH);

}

/** Runs the program to create the stoplight. */
public void run() {
signal = new Stoplight();
add(signal, getWidth() / 2, getHeight() / 2);
addActionListeners();

}

/** Listen for a button action. */
public void actionPerformed(ActionEvent e) {
String command = e.getActionCommand();
if (command.equals("Advance")) {
signal.advance();
} else if (command.equals("Red")) {
signal.setState(Color.RED);
} else if (command.equals("Yellow")) {
signal.setState(Color.YELLOW);
} else if (command.equals("Green")) {
signal.setState(Color.GREEN);
}
}

/* Private instance variables */

private Stoplight signal;
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Figure 6-8. Graphical implementation of the Stoplight class

/*
* File: Stoplight.java

* This class implements a stoplight as a compound graphical object.
*/

import acm.graphics.*;
import acm.util.*;
import java.awt.*;

[ **

* This class represents a graphical stoplight with its origin point
* at the center. The Stoplight class exports the following methods:
*

* <ul>

* <li>getState() - Returns the current state of the Stoplight

* <li>setState(color) - Sets the Stoplight to the specified state

* <li>advance() - Advances the Stoplight to the next state

* </ul>

*/

public class Stoplight extends GCompound {

/* Public constants for the colors */
public static final Color RED = Color.RED;
public static final Color YELLOW = Color.YELLOW;
public static final Color GREEN = Color.GREEN;

/** Creates a new Stoplight object, which is initially red. */
public Stoplight() {
GRect frame = new GRect (STOPLIGHT WIDTH, STOPLIGHT_ HEIGHT);
frame.setFilled(true);
frame.setColor (Color.DARK_GRAY) ;
add (frame, -STOPLIGHT WIDTH / 2, -STOPLIGHT_HEIGHT / 2);
redLamp = createLamp (0, -STOPLIGHT HEIGHT / 4);
yellowLamp = createLamp(0, 0);
greenLamp = createLamp (0, STOPLIGHT_ HEIGHT / 4);
add (redLamp) ;
add (yellowLamp) ;
add (greenLamp) ;
setState(Color.RED);

}

/** Changes the state of the stoplight to the indicated color */
public void setState(Color color) {
state = color;

redLamp.setColor ((state == RED) ? RED : Color.GRAY);
yellowLamp.setColor((state == YELLOW) ? YELLOW : Color.GRAY);
greenLamp.setColor((state == GREEN) ? GREEN : Color.GRAY);
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Figure 6-8. Graphical implementation of the Stoplight class (continued)

/** Returns the current state of the stoplight */
public Color getState() {
return state;

}

/** Advances the stoplight to the next state */
public void advance() {

if (state == RED) {
setState (GREEN) ;

} else if (state == YELLOW) {
setState (RED) ;

} else if (state == GREEN) {
setState (YELLOW) ;

} else {

throw new ErrorException("Illegal stoplight state");

}
}

/** Creates a new GOval to represent one of the three lamps */
private GOval createLamp(double x, double y) {
GOval lamp = new GOval(x - LAMP_RADIUS, y - LAMP_ RADIUS,
2 * LAMP_RADIUS, 2 * LAMP_RADIUS);
lamp.setFilled(true);
return lamp;

}

/* Private constants */
private static final double STOPLIGHT WIDTH = 50;
private static final double STOPLIGHT HEIGHT = 100;
private static final double LAMP_RADIUS = 10;

/* Private instance variables */
private Color state;
private GOval redLamp;
private GOval yellowLamp;
private GOval greenLamp;

The pPrint and Quit items are handled by the implementation of the Program class
itself. The other menu items are passed to the Toconsole that has the keyboard focus, if
any.

Figure 6-9. Menus provided by the standard Program class
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Extending the menu bar

The menu bar for a program is created by calling the factory method createMenuBar,
which has the following definition in the Program class:

protected ProgramMenuBar createMenuBar () {
return new ProgramMenuBar (this);

}

In order to create a different menu bar, the application programmer can override this
method so that it returns a different ProgramMenuBar, which will typically be an instance
of a programmer-defined subclass of the base class defined in the acm.program package.
For example, a specific application program could redefine the factory method as
protected ProgramMenuBar createMenuBar () {
return new MySpecialMenuBar (this);

}

With this definition, the program would create its menu bar by constructing an instance of
MySpecialMenuBar instead.

The ProgramMenuBar class is a subclass of the standard Swing JMenuBar class. You
can add gMenus and JMenuItems to it, just as you would assemble any menu bar. To
include the standard menu items, you can use any of the convenience methods shown in
Figure 6-10. For example, to include a spell check menu item in the Edit menu, you
could override the createEditMenu method like this:

protected JMenu createEditMenu() {
JMenu menu = new JMenu("Edit");
addEditItems (menu);
menu.addSeparator();
JMenuItem spellCheckItem = new JMenultem("Spell Check");
spellCheckItem.addActionListener (this);
menu.add (spellCheckItem);
return menu;

}

In addition to illustrating how the menu is created, this code example also shows how the
programmer can specify the response to the menu item. As in the standard menu-
handling paradigm in Swing, the strategy is to add an action listener to the menu item.
When the menu item is activated, any associated action listeners will be sent an
actionPerformed method.

Figure 6-10. Methods included in ProgramMenuBar to simplify menu construction

Factory methods to create an entire menu
protected JMenu createFileMenu()

Creates the standard File menu; subclasses can override this method to change this menu.
protected JMenu createEditMenu()

Creates the standard Edit menu; subclasses can override this method to change this menu.

Methods for adding standard menu item sets
protected void addSaveItems(JMenu menu)

Adds the standard save and Save As items to the specified menu.
protected void addPrintItems(JMenu menu)

Adds the standard Print, Print Console, and Script items to the specified menu.
protected void addQuitItem(JMenu menu)

Adds the standard Quit item (called Exit under Windows) to the specified menu.
protected void addEditItem(JMenu menu)

Adds the standard Cut, Copy, Paste, and Select All items to the specified menu.
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Implementation issues with respect to menu bars

Menu bars proved to be one of the most difficult aspect of the acm.program package to
get right. In many ways, the overarching design criterion for menu bars is that they
should behave so intuitively that the user does not have to think about them at all.
Unfortunately, achieving this goal means that menu bars must be implemented in a
system dependent way because each platform has a particular notion of what constitutes
intuitive behavior. On Microsoft Windows and most flavors of Unix that support
window systems, the menu bars are included in the program frame. On the Apple
Macintosh, the menu bar appears at the top of the entire screen. In that context, having
two menu bars—one for the window and one for the application—only generates
confusion. When a program is running as an applet, the appropriate structure for a menu
bar depends on the capabilities of the browser.

At the same time, it is essential to shield that platform dependence from programmers
who are coding at the novice level. The strategy that we eventually chose hides that
complexity in the code for the ProgramMenuBar class. On most systems for which a
JMenuBar is the appropriate structure, the Program class simply installs the menu bar in
the appropriate place in the gFrame used in the application. On the Macintosh, the
Program class installs an AWT MenuBar instead but ensures that the effect of that
MenuBar is what the application designer expects. Each MenuItem in the AWT MenuBar
listens to the corresponding JMenuItem in the ProgramMenuBar and changes when that
item changes. Thus, if the programmer enables or disables a menu item in the
ProgramMenuBar, that change will be reflected in the Macintosh menus as well.

6.7 Other features of the Program class

The Program class includes a few important features beyond those outlined in the
preceding sections. Although each of these features was mentioned briefly at the end of
the introduction to this chapter, it is useful to describe them in more detail.

Automatic identification of the main class

One of the most important simplifications offered by the Program class is the elimination
of the static main method that has been cited by so many instructors as a source of
difficulty. As noted in section 6.4, the Program class includes its own
public static void main method, which students therefore do not have to write. The
implementation of the main method in the Program class executes the following steps:

1. Determines the identity of the actual class that the user intended to run.
Instantiates a new instance of that class by calling its default constructor.
Creates a new JFrame for the program if its content pane has any components.
Resizes the frame as described in the following section.

Invokes the init method, as in the Applet/Japplet paradigm.

Invokes validate to ensure that components are correctly sized in the frame.
Invokes the run method in the Program object being executed.

~N N 0 AW

At the time of the February 2005 release of this rationale document, the Task Force
believed that it was not possible to implement this strategy on all of the major platforms.
The only problematic step is the first: determining the identity of the class that the user
intended to run, which we will identify as the main class. While this problem might seem
straightforward, the current design of Java provides no platform-independent mechanism
to do so. Fortunately, there are platform-specific mechanisms that work for Microsoft
Windows, Mac OS X, and Linux, which are the primary platforms we expect adopters to
use. The current implementation of the Program class supports each of these platforms.
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If you are using a platform not included in this list or are working with an Integrated
Development Environments (IDE) that has not been updated to support the Java Task
Force packages, you may have to adopt a slightly more cumbersome strategy. Even
before attempting its platform-dependent algorithm to identify the main class, the
Program initialization code parses the arguments passed to main. Any parameter that has
the form

name=value

is interpreted as a parameter definition and made available to the program through the
getParameter method defined by the Applet class. The parameters that appear in the
HTML appLET tag are treated specially at startup time and can be used to designate not
only the main class but other such useful parameters as the width and height of the
window. These parameters can be passed explicitly on the command line like this:

> java HelloWorld code=HelloWorld.class width=300 height=200

This strategy can also be used in IDEs that make it possible to pass an explicit list of
command-line arguments to the program being invoked. In those environments, the
instructor can provide students with a template for assignments that includes the code
parameter.

If the strategy of passing parameters does not work, it is always possible to add an
explicit public static void main method to the Program code. The code is entirely
canonical and looks like this:

public static void main(String[] args) {
new MainClass() .start (args);
}

where MainClass is the name of the main class. Including this method ensures maximum
portability but significantly increases the conceptual overhead necessary for students to
write their first programs.

We have also taken steps to ensure that this problem can eventually be solved in a
much cleaner way. Together with Cay Horstmann, we submitted a request to the Java
Community Process to include a new property called java.main that can be obtained
through system.getProperty. The current implementation of the Program class already
looks for this property. When it is implemented, a great deal of unnecessary code can be
eliminated.

Setting the size and location of the application window

In an applet, the size of the window is determined by the width and height parameters to
the applet tag in an HTML file. Applications, however, have no direct counterpart. The
traditional strategy for building applications requires the programmer to set the bounds
explicitly with a setSize or setBounds call applied to the Frame or JFrame object that
encloses the application. When one is using the acm.program package, setting up that
frame is under the control of the Program startup code, which suggests that a different
approach is necessary to setting size and location.

The pProgram startup code chooses the size and location of the frame by applying the
following strategies in order:

1. Look for command-line parameter definitions with the names x, y, width, and
height. If these parameters are supplied, the integer value that follows is used.
Thus, if you invoke an application using

java HelloWorld code=HelloWorld.class width=300 height=200
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the width and height of the application frame will be set to 300 and 200, respectively.

2. If no command line parameters are defined for these values, look for static constant
definitions of the following variables in the main class: APPLICATION_X,
APPLICATION_Y, APPLICATION_WIDTH, and APPLICATION_HEIGHT. If any of these
variables is defined, the program uses its value to set the corresponding parameter.

3. If neither of these strategies succeeds, use default values for these parameters as
specified in the Program class.

Applet capabilities

Because Program is an indirect subclass of applet, programs have access to the methods
provided by Java applets even when they run as applications. Of these capabilities, the
most useful are the following:

* Code base resources. Applets have the ability to read resources —typically images and
audio clips—from their code or document base. When a program runs as an
application, its code and document base are set to the current directory. Although
these facilities do make it possible to load resources in the way that applets
traditionally have, the aem.util package described in Chapter 8 includes a
MediaTools class that offers a more robust set of tools that works in both the applet
and application environments.

» Simplified parameter access. Applets can be given parameters using the param tag in
the HTML file. Programs running as applications automatically scan the command-
line arguments and interpret any argument of the form

name=value

as a parameter definition.

e Status display. The showstatus method in an applet is redefined so that programs
running as applications print the status line on the standard output stream.

6.8 Strategies for using the Program class

One of the most important learning experience to come out of the Task Force was that
different people teaching introductory computer science have widely divergent views
about how to teach programming in an object-oriented language such as Java. Many
instructors put off any significant coverage of objects until late in the introductory course,
after the students have already learned to use the more traditional procedural paradigm.
Even among those who believe that it is important to introduce objects early —the
curriculum strategy that Computing Curricula 2001 [ACMO1] called the objects-first
approach—there are significant strategic and tactical differences as to how to do so.

The central point of contention is which aspects of object-oriented programming need
to be brought out early, and which can be deferred. Some instructors, for example,
believe that it is important to emphasize the notion of message passing and, in particular,
to ensure that students are comfortable with the receiver-based syntax used in object-
oriented languages to invoke a method on an object:

receiver .method (arguments)

For instructors who support this view, the specification of a receiver object is the key
concept to learn early. Some instructors emphasize the role of the receiver by requiring
students to specify this when an object makes calls to its own methods.

Another group of instructors holds that the critical concept to present early is the
overall hierarchical structure of objects and classes. In this view, students should learn
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early the difference between objects and classes along with the idea that objects of one
class are also objects of its various superclasses. This contingent tends to present
examples of inheritance early, emphasizing the notion that subclasses extend the behavior
of their superclasses. By contrast, instructors in the community that focuses on message-
passing typically regard inheritance as less essential in the early part of the term.

Although strong opinions were expressed within the Task Force on both sides of this
debate, it seems clear that each model has been used successfully to introduce object-
oriented programming to students. It would not make sense for the Task Force to endorse
one model over the other. Instead, it is important for the ACM packages to support each
of these models well and enable students to use either style from the very beginning of
the course. The following section offers several implementations of a flower-drawing
program that illustrates each of these styles.

A simple graphical example: Drawing a flower using GTurtle

During the first weeks of an introductory programming course, many instructors
introduce some sort of microworld, such as the LOGO system described by Seymour
Papert in Mindstorms [Papert80] or Richard Pattis’s Karel the Robot [Pattis94].
Although the Task Force did not develop a complete microworld system, the graphical
objects—particularly gTurtle —can fulfill much the same role. Figure 6-11, for
example, shows one approach to writing a graphics program that uses GTurtle to draw a
flower consisting of 36 squares with a 10-degree rotation between each one.

Figure 6-11. A single-method program that draws a turtle flower

* File: DrawTurtleFlower.java

* This program draws a turtle flower using receiver-based
* invocations in a single, undecomposed run method.

*/

import acm.graphics.*;
import acm.program.*;

public class DrawTurtleFlower extends GraphicsProgram {

/

*

Runs the program. This program creates a GTurtle object,
puts it in the center of the screen, and then draws a flower.
The flower consists of 36 squares, with a 10-degree rotation
between each one. The squares, in turn, are drawn by drawing
four line segments interspersed with 90-degree rotations.

* ¥ ok X X * X

~

public void run() {
GTurtle turtle = new GTurtle();
add (turtle, getWidth() / 2, getHeight() / 2);
turtle.penDown () ;
for (int i = 0; i < 36; i++) {
for (int j = 0; j < 4; j++) {
turtle. forward(100);
turtle.left (90);

}
turtle.left (10);
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Although this implementation illustrates the idea of sending a message to a GTurtle
object and gives students practice with for loops, it takes no advantage of the power of
decomposition, which is one of the fundamental programming principles that
microworlds make so easy to illustrate. Unfortunately, breaking the run method down
into components is not as simple as it might appear. The primary issue you need to
resolve is how to share the GTurtle object with the subsidiary methods. Passing it as a
parameter to each level has stylistic advantages but seems likely to add more complexity
than novice programmers can easily assimilate. The other obvious approach is to declare
turtle as an instance variable for the class, which gives rise to the code in Figure 6-12.

Figure 6-12. A first attempt at decomposing the DrawTurtleFlower program

/*

* File: DrawTurtleFlower.java
S

* This program draws a turtle flower using receiver-based
* invocations and two levels of decomposition.

*/

import acm.graphics.*;
import acm.program. *;

public class DrawTurtleFlower extends GraphicsProgram {

/[ **
* Runs the program. This program creates a GTurtle object,
* puts it in the center of the screen, and then draws a flower.
*/
public void run() {
turtle = new GTurtle();
add (turtle, getWidth() / 2, getHeight() / 2);
turtle.penDown();
drawFlower () ;

}

/** Draws a flower with 36 squares separated by 10-degree turns. */
private void drawFlower () {
for (int 1 = 0; i < 36; i++) {
drawSquare() ;
turtle.left (10);

}

/** Draws a square with four lines separated by 90-degree turns. */
private void drawSquare() {
for (int 1 = 0; i < 4; i++) {
turtle.forward(100);
turtle.left (90);

}

/** Holds the GTurtle object as an instance variable */
private GTurtle turtle;
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The problem with this coding is that the structure seems unnatural to programmers
who are predisposed to an early introduction of inheritance. Conceptually, this program
defines a turtle. You tell the turtle to turn left by writing

turtle.left();
but draw a square by writing
drawSquare() ;

The asymmetry is confusing. Why isn’t drawSquare also a message to the turtle in the
way that left is?

The answer, of course, is simply that the methods drawFlower and drawSquare are
defined as methods in the brawTurtleFlower class and not in the GTurtle object stored
in the variable turtle. That object knows how to respond to the 1eft message but not to
the drawFlower message. It is, however, easy enough to reorganize the program so that
the main program instantiates a new FlowerTurtle subclass that has these capabilities.
That program appears in Figure 6-13. Note that the new coding no longer requires an
instance variable and that it has a consistent calling structure. The DrawTurtleFlower
class creates a new FlowerTurtle object and sends it the drawFlower message using the
receiver-based syntax

turtle.drawFlower () ;

Inside the definition of FlowerTurtle, however, all methods are invoked without an
explicit receiver object, because they operate on the current instance of FlowerTurtle.
Some instructors regard this coding as emblematic of good object-oriented design; others
regard the absence of receivers as a sure indication that the program is not really object-
oriented at all. The point is that the two coding styles are likely to appeal to instructors
with different emphases, and it is important for the Java Task Force to support both
constituencies.

Using GTurtle subclasses as standalone programs

Although the code in Figure 6-13 offers an example of how inheritance can be employed
in a useful way, it may be beyond the level of what one can teach at the very beginning of
an introductory course. If nothing else, the program contains two separate classes: the
DrawTurtleFlower class that acts as the main program and FlowerTurtle that extends
GTurtle so that it can draw a flower. It’s hard enough to get new students to understand
a single class at the beginning of the course, and introducing two might send some over
the edge.

To make this style of coding easier for students and teachers to use, the GTurtle class
includes a special hook that allows it to operate as a standalone program. If a GTurtle or
one of its subclasses is specified as the main class, its implementation of main starts up
the program by performing the following operations:

1. Instantiate an object of the desired GTurtle subclass using exactly the strategy
described in the earlier subsection entitled “Automatic identification of the main
class.”

2. Instantiate a new GraphicsProgram object and installing it in the frame, just as if the
main class were itself a graphics program and not a graphical object.

3. Add the gTurtle object at the center of the canvas installed in the GraphicsProgram.
4. Invoke the run method in the GTurtle subclass.
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Figure 6-13. A DrawTurtleFlower implementation using a FlowerTurtle subclass

/*

* File: DrawTurtleFlower.java

K e —— ——

* This program draws a turtle flower using a GTurtle subclass
* that knows how to draw flowers.

*/

import acm.graphics.*;
import acm.program. *;

public class DrawTurtleFlower extends GraphicsProgram {

/**
* Runs the program. This program creates a FlowerTurtle object,
* centers it in the screen, and then asks it to draw a flower.
*/
public void run() {
GTurtle turtle = new FlowerTurtle();
add (turtle, getWidth() / 2, getHeight() / 2);
turtle.penDown () ;
turtle.drawFlower();

}
/**

* A GTurtle subclass that knows how to draw a flower.
*/

class FlowerTurtle extends GTurtle {

/** Draws a flower with 36 squares separated by 10-degree turns. */
public void drawFlower () {
for (int i = 0; i < 36; i++) {
drawSquare();
left (10);

}

/** Draws a square with four lines separated by 90-degree turns. */
private void drawSquare() {
for (int i = 0; i < 4; i++) {
forward (100);
left (90);

This interpretation provides a very simple framework for creating animated graphical
programs in the first few days of the term, as shown in Figure 6-14.
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Figure 6-14. Using the FlowerTurtle subclass as a standalone program

* File: FlowerTurtle.java

This program draws a turtle flower by invoking a GTurtle
* object as if it were a program.

*/
import acm.graphics.*;
public class FlowerTurtle extends GTurtle {

/** Runs the program. */
public void run() {
penDown () ;
drawFlower () ;

}

/** Draws a flower with 36 squares separated by 10-degree turns. */
private void drawFlower () {
for (int i = 0; i < 36; i++) {
drawSquare() ;
left (10);

}

/** Draws a square with four lines separated by 90-degree turns. */
private void drawSquare() {
for (int 1 = 0; i < 4; i++) {
forward (100);
left (90);

6.9 The decision to use the Applet model

As the discussion in this chapter emphasizes, the Program class attempts to combine the
best features of applications and applets and to make the facilities of both mechanisms
available to students. Most development environments today support the application
paradigm, but the ability to run programs as applets offers the obvious advantage of
making it possible to run programs on the web. That capability makes it easier for the
Java Task Force to create demonstration programs, but also holds forth the promise of
enabling students to make their programs easily available to friends and family.

Despite these advantages, the decision to use the applet paradigm flies in the face of
the direction that Java seems to be taking. Support for applets is eroding in the Java
community, as evidenced by the fact that Sun’s Java tutorial no longer uses applets for its
demos. In light of this decline in the fortunes of the applet paradigm, it is important for
us to outline why we have chosen to embrace applets in the design of the acm.program
package. The sections that follow recount the evolution of that decision and offer several
reasons why we believe that this strategy will provide a stable approach to the problem of
creating web-accessible programs.
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The rise and fall of the applet paradigm

Ever since its introduction in 1995, educators have recognized that Java represents an
attractive environment for the development of interactive teaching materials, primarily
because of its integration with the web through the applet mechanism. The ITiCSE
conferences in both 1997 and 1998 included working groups seeking to develop Java as a
resource for creating visualizations and interactive animations for instructional use
[Naps97, Bergin98]. The 1997 report offers the following assessment of the
opportunities that Java provides:

Visualization has long been an important pedagogical tool in CS
education. The widespread use of the Web and the introduction of Java,
with its ability to present interactive animated applets and other types of
animation, all provide opportunities to expand the availability of
visualization-based teaching and learning. [Bergin98]

In recent years, however, the use of web-based resources in Java—and particularly
those based on the applet paradigm—have declined in popularity as it became more
difficult to maintain compatibility among applets running in an ever-expanding array of
browsers that often implement radically different versions of the Java Development Kit
(JDK). These compatibility problems have caused applets to fall out of favor in the Java
community, where they have been replaced in many environments by plug-ins that
implement the Java virtual machine or by the Java Web Start technology supported by
Sun [Sun05]. That compatibility issues and the continuing evolution of the JDK are at the
root of this change is clearly reflected in the following introductory passage from a 2001
article in Java World.:

Java applets fueled Java’s initial growth. The ability to download code
over the network and run it on a variety of desktops offering a rich user
interaction proved quite compelling. However, Java’s Write Once, Run
Anywhere (WORA) promise soon became strained as browsers began to
bloat and several incompatibilities emerged that were caused by the Java
language itself. [SrinivasO1]

The strategy of using Java Web Start or browser-specific plugins does not represent a
real solution to the problem of browser incompatibility. Java Web Start, for example, is
not implemented on all platforms and, even when implemented, typically requires the user
to download and install the appropriate plug-in. More importantly, Java Web Start
applications run only if the version of the Java runtime on the user’s system is up to date
with respect the web-based code. In a sense, the abandonment of the applet paradigm has
not fostered any increase in compatibility but merely made it possible for both Sun
Microsystems and the browser vendors to declare those incompatibilities to be, in effect,
“someone else’s problem.” What has changed is that there is no longer an expectation
that applets will work compatibly in different browsers, forcing the adoption of an
alternate strategy.

Making applets work

The reality of the situation with regard to applets, however, is not quite as gloomy as the
preceding section implies. Although it is impossible to ensure that any Java applet will
run correctly in all browsers, it is possible to engineer specific applets so that they run
acceptably well in most of them. The difficulty, however, lies in the fact that making
applets run in a wide range of browsers forces one to adopt a lowest-common-
denominator strategy that runs counter to the modern approaches to Java that one wants
to offer to students.
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To illustrate the severity of the problem, it is still the case that almost any browser you
encounter in a commercial Internet-access storefront will be running the 1.1 version of
the JDK. If you walk into your local Kinko’s outlet or the nearest easylnternetCafe, JDK
1.1 is all you find. Given that JDK 1.2 was released in December 1998, these browsers
are more than eight years out of date, which is an eternity in the fast-paced world of
computing technology. JDK 1.1 lacks support for Swing, for collections, and for many
other tools that modern Java programmers cannot live without. The cost of living in that
world seems to far outweigh any possible benefits.

It is, of course, quite legitimate to ask why anyone would care about old browsers such
as those in Internet storefronts. That is not, presumably, where most students work, nor is
it the place from which prospective adopters are most likely to look at the Java Task
Force materials. Anyone who is prepared to teach Java must be willing to do so in a
more modern Java environment, and it would be wrong to encourage them to do
otherwise.

That view, however, may be too optimistic. While it is unlikely that students in a well-
endowed university find themselves faced with obsolete technology, the same cannot be
said for schools in low-income areas or institutions that focus on distance-learning and
consequently have less control over the hardware and software environments their
students use. In those environments, it is not at all unlikely that someone will boot up
their machine, invoke the browser that comes for free on the desktop, and discover that it
doesn’t run any of their programs. The failure mode associated with running a new
applet in an old browser is also particularly bad from a pedagogical point of view. The
applet simply fails to load, and the error message—if it is visible at all—tends to be
entirely unhelpful.

But there is yet another consideration that militates in favor of allowing programs to
run in older environments. One of the great things about allowing student programs to
run as applets is that doing so permits them to share those programs easily with relatives
and friends. Think for a moment about a student from the inner city, the first in the
family to attend college, who takes an introductory computing course and completes an
assignment that generates a great deal of pride. Such students should be encouraged to
put their programs up on the web and to tell their parents about them. The parents may
not have access to the web outside of a Kinko’s or a public library, and might very well
be unable to obtain a better, more modern browser. If the student’s applet runs in that
environment, the parents will be able to see it; if not, they are out of luck.

Evolution of the Java Task Force strategy

As noted in Chapter 1, the February 2005 release of the Java Task Force materials used
only JDK 1.1 constructs in the implementation of the library itself, thereby making it
possible for applets built using the libraries to run in the most commonly available
browsers. This approach generated considerable criticism. Much of that criticism
reflected the mistaken belief that this decision in some way constrained adopters to
adhere to the same restrictions. In fact, the initial implementation of the packages did
take advantage of JDK 1.2 features if they were available. If they were not, the packages
tried to do something reasonable to ensure that the programs would run on old browsers
that did not support those features.

At its meeting in June 2005, the Task Force decide that it had to abandon that position
and adopt a more modern Java baseline for its own implementation. After some
deliberation, we chose JDK 1.4 as the appropriate compromise in that it supports more of
Java than our earlier design but does not insist on a version that is still unsupported on
many common platforms. Our reasons for making that decision were as follows:
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e The introduction of the aem.gui package essentially forced us to use some Swing
features. Earlier implementations of the JTF packages did not need to refer to Swing
classes because they worked in what was largely an orthogonal domain. The GUI
components, however, were firmly rooted in the Swing model.

* It was impossible to use the code for the library packages as a model if we continued
to adhere to the JDK 1.1 rule. Although the code used no deprecated features, it also
did not take advantage of newer features that we would like students to use. Moreover,
to the extent that the code attempted to use more advanced features, it did so through
reflection, thereby rendering the code much more difficult to follow.

* We discovered through experience that it was nearly impossible to dispel the
misconceptions about the reasons for adopting the JDK 1.1 strategy. Too many people
decided that our implementation decision inevitably meant that the JTF packages were
obsolete. Although we could convince most detractors otherwise if we had the
opportunity to explain our position on the issue, there was nothing we could do about
potential adopters who chose to reject the JTF packages based on a misconception that
we had no opportunity to correct.

At the same time, we did not wish to abandon the goal of allowing the JTF packages to
function in the widest possible set of browsers. In particular, we wanted to code the
libraries using JDK 1.4 but somehow have it run in JDK 1.1 browsers. At first glance,
this goal sounds impossible. One possible approach that might have succeeded was to
develop two versions of the acm. jar library, one for use with JDK 1.4, and one for use
with JDK 1.1 to provide legacy browser support. That strategy, however, requires
maintaining two separate versions of the library code, which would represent a
maintenance nightmare. We regarded that strategy as unacceptable and did not pursue it.

The best of both worlds

After giving up on the idea of supporting legacy browsers on several occasions, we
eventually hit upon a strategy that provides exceptional browser compatibility while
allowing a modern coding style. Although it at first seems difficult to imagine, the
strategy offers all of the following advantages:

1. The library packages themselves are written in a pure JDK 1.4 style without special
hooks to ensure backward compatibility. As a result, the library packages can serve
as a model for other developers.

2. The code can be compiled in a way that allows it to run in JDK 1.1 browsers.
3. Only one version of the library code exists.

The key to making this strategy work lies in providing additional classes that
implement simplified versions of the JDK 1.4 classes on which the library depends. If
the program and libraries are compiled with these additional classes, the resulting code
runs on JDK 1.1 browsers. If the programs and libraries are compiled alone, the program
relies instead on the system implementation of these classes. Operationally, students can
include the compatibility code by compiling their programs with the acml11.jar file
instead of the standard acm.jar. Because the acm11.jar file includes the additional
classes designed to ensure backward compatibility, the resulting program runs in JDK 1.1
environments.

The essential character of this strategy is easiest to illustrate by example. Suppose that
a student wants to include a button in an application. In any modern version of Java, that
button will be implemented using Swing’s JButton class. Unfortunately, JDK 1.1
browsers don’t know about the JButton class, which was introduced in JDK 1.2. It is
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hardly appropriate to suggest that students use the older Button class instead, because
doing so would require them to use a Java paradigm that has long been obsolete. On the
other hand, it is perfectly acceptable for students to write their code using JButton but to
provide that class in the acm11.jar file. The student’s code is written precisely as it
should be, but compatibility can nonetheless be maintained by simulating the JButton
class in terms of more primitive AWT features.

The acmll.jar file contains implementations for every class that is defined in Chapter
9 as part of the JTF subset but which is not already part of JDK 1.1. These classes
include the collection classes in the java.util package and the most common interactors
defined in javax.swing. It does not, however, need to implement those features of
Swing that lie outside the JTF subset. The resulting simplification turns out to be
enormous. The code to accomplish the goal of simulating the new classes in the JTF
subset, while not at all trivial, is surprisingly small. Given that the subset includes only a
very small fraction of the classes involved in the Swing domain, the basic functionality of
those classes can be simulated using less than two percent of the source code required for
the full implementation of Swing.

In point of fact, this strategy is not quite as easy to implement as it sounds. The new
classes defined as part of the acm11.jar file cannot actually live in the java and javax
package hierarchy because the security manager for applets ordinarily makes it illegal to
load user classes into those packages. (Being able to define new classes in system
packages would indeed represent a significant security loophole in that such classes
would have access to the protected information for that package.) Thus, the new classes
provided by aecm1l.jar—such as the backward-compatible implementation of
JButton—have to live somewhere else. At first glance, that restriction suggests that the
user’s code would need to include additional import statements to gain access to those
classes, which would violate the principle that there be only one version of the source. In
actuality, the problem is even worse than that. If the acm11.jar file did assign the
compatibility classes to a new package, the references to those classes would typically
ambiguous, given that a JButton class, for example, would then exist in both
javax.swing and the package containing the compatibility classes.

There is, however, a simple stratagem that avoids both the ambiguity and the need for
additional import statements. If the compatibility classes are defined in the same
package as the one in which the reference occurs, the compiler will use those definitions
before looking at the imports. The acml1.jar library therefore defines the set of classes
required for compatibility as part of the unnamed package typically used in introductory
courses. If a student program is compiled using the aem.jar library, any references to
JButton will be resolved to the javax.swing package. If the program is instead
compiled with acm11.jar, references to JButton will be resolved within the unnamed
package. The acmll.jar uses a similar strategy to ensure that the code for the ACM
packages themselves have access to the full set of classes in the recommended JTF
subset. If one of the ACM packages uses a class that is not available in JDK 1.1, the
acmll.jar defines a class with that name as part of the appropriate ACM package to
ensure that the code will run on any JDK 1.1 browser.
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Chapter 7
The acm.gui Package

Of all the problems reported by the computing education community that arise from using
Java at the introductory level, the most difficult one for the Task Force to solve was the
lack of appropriate components for creating simple graphical user interfaces, more
commonly known as GUIs. In the taxonomy presented in Chapter 3, this problem was
expressed as follows:

A3. GUI components inappropriate for beginners

From our initial search for strategies to address this problem, we concluded that the
chance of finding a solution that would appeal to any large segment of the education
community was remote and that the tools already provided by Java were likely to prove
more successful than any alternative we could provide. In fact, the original decision of
the Task Force was to abandon the search for a solution to this problem after several
failed attempts to come up with a satisfactory design. In the first draft of this Rationale
document, we summarized our failure to identify a workable solution as follows:

Unfortunately, the Task Force has not been able to come up with a satisfactory
design. What’s more, some members of the Task Force have become convinced
that it is not possible to create a design that a significant fraction of the potential
audience would accept as a standard. That conclusion may be incorrect. There
may be a design out there around which a consensus might emerge. As of this
release, however, the Task Force has not been able to find it.[JTF05]

In the feedback that we received in response to the draft proposal, however, we were
strongly encouraged to look harder for a solution to this problem, which was clearly an
important one for a significant fraction of our prospective audience. In response to that
demand, we went back to the drawing board to see if we could fashion a synthesis of the
sort we had found for the acm.graphics package described in Chapter 5. After
experimenting with several designs, we were able to engineer an acm.gui package that
simplifies the creation and layout of GUI components in a way that is simple for novices
and, at the same time, allows for a straightforward transition to the standard Java layout
managers. This chapter describes the final design of that package, along with the general
principles that led the Task Force to adopt it.

Although the design of the acm.gui package is largely independent of the
acm.program package described in Chapter 6, we expect that most adopters will use the
GUI tools in the context of a Program object. The examples in this chapter therefore are
designed to use acm.program as their application framework. Adapting those examples
so that they use a JFrame object instead of a Program is straightforward, but is not
spelled out in detail.

7.1 What’s missing from Java’s standard GUI libraries

In many ways, developing a simple GUI package for Java is difficult not because Java’s
existing libraries are lacking essential functionality but rather because they contain so
much that is good. A large fraction of the classes in the javax.swing package are
specifically designed to support the development of graphical user interfaces and work
well at that task. The collection of GUI widgets available in Swing is extraordinarily rich
and, moreover, seems on the whole to be well designed. Students have access to buttons,
scrollbars, sliders, text areas, selectable lists, popup menus, and a host of other interactor
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classes that enable them to write graphical user interfaces containing most if not all of the
interactor patterns they are likely to see in professional software. And while it may
require some sophistication to use the more advanced features of these interactors, most
of the Swing classes specify reasonable defaults that make it easy to use these interactors
in conventional ways. Novices, for example, have little trouble using JButtons in their
code once they master the standard listener paradigm Java uses for all event handling.
From the outset, the Task Force recognized that trying to offer a replacement for JButton
would be a losing proposition. The standard Swing class is entirely serviceable, and it
would make no sense to ask students to learn some parallel structure that they would
quickly have to abandon.

At the same time, educators had certainly complained about the inappropriateness of
Java’s GUI components for novices. Clearly, something was missing. The important
question for the Task Force was to figure out what those missing elements might be.

Input from the community

To answer the question of what was missing from Java’s standard packages in terms of
GUI support, the Task Force began by looking at the proposals we had received to see
what aspects of the GUI-construction process those packages had sought to change. The
three proposals that most directly addressed this question were the following:

1. The Java Power Tools (JPT) collection developed at Northeastern University
[Raab00]. The JPT package offers many programming tools that address a much
wider range of issues than the simple GUI-support issue. Two of the submissions
from the JPT community —a pair of classes for creating tabular component layouts
[RasalaO4c] and a collection of GUI widgets [Rasala04d] —addressed the question of
GUI development directly.

2. The BreezySwing package developed by Ken Lambert and Martin Osborne
[LambertO4a]. This package provided a few simple interactor classes along with a
framework for placing components in a two-dimensional grid. The goal of the
package was to make it easier for students to write realistic, event-driven programs
than it would be using Swing classes alone. At the same time, the authors sought to
avoid modal dialogs that distort the classical paradigms of GUI-based programming
and to provide a lightweight API that was sufficiently close to the Swing paradigms
to avoid having students learn a style of programming that was substantially at odds
with the standard approach.

3. The KlassroomSwing package written by Dean Sanders at Northwest Missouri State
University [SandersD04]. In his problem statement, Sanders notes that this package
“grew out of frustration with existing packages,” several of which solve certain
aspects of the GUI-creation problem, but of which “none are wholly suitable.” The
KlassroomSwing package offers a set of classes that closely parallels the standard
interactor classes in Swing, but in a simplified form. It also includes support for
several additional capabilities, most notably images, audio, and video, which extend
the package beyond the narrow confines of the GUI domain.

As was the case in our design of the acm.graphics package, the Java Task Force
identified strengths in each of these proposals, but felt that none were suitable as they
stood. The common problem in each of these packages was that they differed much more
substantially from the Swing standard than we were prepared to accept. We also found
the strongest features of each package occurred in complementary aspects of their
designs, making it possible to create an improved package by adopting the best features
of each.



ACM Java Task Force Rationale -89 —
Second Public Draft (23-Feb-06)

The important realization that we derived from studying these proposals in detail is
that the critical problem does not lie with the Swing interactor classes themselves, but
rather with the facilities that the java.awt package uses for placing those interactors on
the screen, which is largely unchanged in the Swing world. Richard Rasala offers the
following succinct expression of this principle in the introduction to one of his proposals
to the Task Force:

A central problem in GUI construction is the composition of the individual GUI
widgets into some organized arrangement within a panel or frame. To avoid
manual pixel positioning, Java uses layout managers to layout components.
Unfortunately, the layout managers provided by Java are very problematic. The
simple ones do not do enough and the advanced ones are very hard to use and
often do not produce the expected results after all the work. [Rasala04c]

The essential problem can be expressed more precisely as follows: Given the standard
facilities available in Java’s AWT and Swing packages, there is no good way to create a
two-dimensional layout in which the preferred sizes of the components determine the
sizes of the cells in the grid. The problem is not that the necessary functionality is
unavailable but rather that the standard classes are difficult for novices to use. Java’s
GridBagLayout class provides the necessary capability, but is not suitable for novices for
the reasons described in the following section.

The shortcomings of GridBagLayout

In accordance with our general principle of minimizing the number of new classes
outside the standard Java package framework, the Task Force would have been happier
not to create any new layout manager classes. Unfortunately, after looking closely at the
problems associated with eridBagLayout, the Task Force—along with the various
people who submitted proposals in this area—became convinced that the difficulty of
using GridBagLayout and the bad habits it encourages outweigh the advantage of
maintaining compatibility.

The most significant problems associated with GridBagLayout are as follows:

e [t is too complex for novices. In order to use GridBagLayout, clients have to create a
constraint object using the class GridBagConstraints, assign values to the fields of
that GridBagConstraints object, and then pass that object as a parameter to the add
method. Using this approach forces students to understand object construction and
assignment to member variables, which students may not have at the point in the class
at which GUI programming is introduced.

» [t requires the use of programming practices that many instructors would prefer to
avoid. In modern object-oriented programming, using an object as if it were a
traditional record variable has largely fallen out of favor. Doing so undermines the
essential concept of encapsulation by making it possible for clients to reach inside the
object and change its field values with no regard for the consistency of the resulting
object. To avoid such violations of conceptual integrity, most object-first curricula
today emphasize the idea of using accessor and mutator methods for any such access.
The ¢ridBagConstraints class does not include such methods and therefore forces
its clients to write explicit field assignments like

gbc.gridwidth = 2;

* The implementation of the constraint mechanism seems to violate the rules of object
behavior. Consider, for a moment, the following lines of code, which are adapted from
the example in the GridBagConstraints documentation:
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GridBagConstraints gbc = new GridBagConstraints();
gbc.gridwidth = 3;

add(new JButton("Buttonl"), gbc);

gbc.gridwidth = 1;

add (new JButton("Button2"), gbc);

The effect of the code seems straightforward enough once the student understands the
purpose of the gridwidth field: the code installs two buttons, the first of which takes
up three columns and the second which takes up only one. Unfortunately, if students
think about the code more carefully, they might recognize that there is only a single
GridBagConstraints object involved. Each assignment to the gridwidth field
updates the object stored in the variable gbe, so it might seem as if the constraint for
both buttons (since it is the same object) would have gridwidth equal to 1 at the end
of the code fragment. The code has the intuitive effect only because GridBagLayout
copies the constraint whenever a new component is added. Were it not for this
unadvertised behavior, none of the standard GridBagLayout code would work. In a
pedagogical sense, however, the mysterious behavior of GridBagConstraints will
make it harder for them to understand the semantics of objects.

Given these problems, the general desiderata for a new class to replace
GridBagLayout are for the most part clear. To be successful, the new class should

1. Be much simpler to use than GridBagLayout

2. Avoid the design flaws in GridBagLayout that interfere with the development of
good object-oriented style

3. Maintain compatibility with GridBagLayout to ease the eventual transition to the
standard Java classes

4. Provide as much of the functionality of GridBagLayout as possible

The first three design criteria follow immediately from the principles that the Task
Force articulated in Chapter 2. The last design goal, by contrast, is not necessarily as
obvious. The external submissions we received typically eliminated some functionality
from GridBagLayout as a way of simplifying it. Our concern, however, was that such an
approach would give some potential adopters a reason for staying with GridBagLayout,
despite its shortcomings. If the Task Force packages were incapable of duplicating a
layout constraint that someone was already using, that person would be less likely to
adopt the alternative design. If, on the other hand, one can do everything with the new
class that had previously been possible with GridBagLayout, much of the resistance to
change could be eliminated.

Our solution was to implement a TableLayout manager class that offers the
functionality of GridBagLayout in a way that is much easier for novices to understand.
Its motivations are therefore similar to those that gave rise to the BreezySwing package
[LambertO4a] and the table capabilities of Java Power Tools [RasalaO4c], both of which
served as models. The principal differences in our implementation of TableLayout are
that we wanted to ensure that clients had access to the full set of capabilities from
GridBagLayout and that we felt it was important for the package to support a smooth
transition to the standard éridBagLayout approach. The details of the TableLayout class
are outlined in section 7.3.

Other extensions

Although the single most important problem in the existing Java packages is the lack of a
simple tabular layout manager, the Task Force also concluded that the standard Java
classes have two additional shortcomings that were important to correct:
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1. The existing Java classes make it difficult to read numeric data from the user. For the
most part, the problems are the same as those involved in reading numeric data from a
console or dialog box, as discussed in Chapter 4. If students are required to perform
their own numeric conversion, they must first master such difficult conceptual issues
as the use of wrapper classes for numeric types and the details of exception handling.
Hiding that complexity simplifies such operations considerably. To do so, the Task
Force decided to add two new classes— IntField and DoubleField—to simplify the
development of applications that require numeric input. These classes are discussed in
detail in section 7.2.

2. In many cases, students do not want to design the user interface for an entire
application but rather provide some interactors that make it easy to control the activity
of some other type of program. For example, it might be useful to create a
GraphicsProgram controlled by a few buttons located at the periphery of the display.
This capability is provided by the ProgramLayout class and has already been
described in section 6.5.

7.2 Numeric interactors

As noted in the preceding section, the Task Force decided that it was necessary to provide
IntField and DoubleField classes to simplify the development of applications that
require numeric input. Each of these classes extends JTextField but provides additional
methods to hide the complexity involved in numeric conversion and exception handling.
The additional methods available for boubleField appear in Figure 7-1; The methods for
IntField are the same except for the expected changes in the argument and result types.

The IntField and DoubleField classes are closely related to a similar pair of classes
proposed by Lambert and Osborne [LambertO4a]. The versions supplied by the acm.gui

Figure 7-1. Methods defined in the DoubleField class

Constructors
DoubleField()

Creates a DoubleField object with no initial value.
DoubleField(double value)

Creates a DoubleField object with the specified initial value.
DoubleField(double low, double high)

Creates a DoubleField object whose value is constrained to the specified limits.
DoubleField(double value, double low, double high)

Creates a DoubleField object with the specified initial value and limits.

Methods to set and retrieve the value of the field
void setValue(double value)
Sets the value of the field and updates the display.
double getValue()
Returns the value in the field. If the value is out of range, errors or retries occur here.

Methods to control formatting
void setFormat (String format)

Sets the format string for the field as specified in the DecimalFormat class in java.text.
String getFormat ()

Returns the current format string.

Additional methods (unlikely to be used by novices)
void setExceptionOnError (boolean flag)

Sets the error-handling mode: false means retry on error, true means raise an exception.
boolean getExceptionOnError ()

Returns the error-handling mode, as defined in setExceptionOnError.
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package have been redesigned to make the behavior of those classes more consistent with
the readint and readDouble methods defined for the 10console class in acm.io. In
particular, the I1ntField and DoubleField classes adopt the paradigm of their acm. io
counterparts in that their default behavior gives the user a chance to reenter values in the
case of illegal input but allows more sophisticated applications to catch the exception that
occurs in such cases.

The only significant design decision for these classes was how to control format. It
turns out that the boubleField class is useful in practice only if the client has some way
of specifying the format of the displayed result. In the absence of format control, the
display typically contains so many digits as to become unreadable. The setFormat and
getFormat methods shown in Figure 7-1 eliminate this problem by allowing the client to
specify the output format. The format itself is specified using a string as defined in the
DecimalFormat class in java.text. The use of format codes is illustrated in the
currency converter program shown in Figure 7-2 later in this chapter.

7.3 The TableLayout Class

The easiest way to understand how the TableLayout class works is to look at a simple
example. The usual strategy for building applications that use TableLayout to create the
user interface is to implement a class that extends Program with an individually designed
constructor that assembles the interactors into the desired arrangement. The first line of
the constructor is typically a call to setLayout, which establishes the number of rows
and columns in the tabular grid. The rest of the constructor then creates the necessary
interactors and adds them to the table, filling each row from left to right and then each
row from top to bottom. This strategy is illustrated in Figure 7-2, which implements a
simple temperature converter.

The user interface for the TemperatureConverter program looks like this:

O TemperatureConverter
Degrees Fahrenheit | 32 | F->C
Degrees Celsius | 0 | C->F

The user can type values into either of the IntField interactors and then perform the
conversion to the other scale either by hitting the appropriate button or by hitting the
ENTER key in the interactor itself. Each of these actions generates an ActionEvent
whose action command is either the string "F ->¢" or "¢ ->F" depending on which
button or interactor generated the event. These events are fielded by the
actionPerformed method in the class, which performs the necessary conversion and
then updates the value of the corresponding field.

In terms of understanding what the TableLayout framework provides, all of the
important code appears in the constructor. The line

setLayout (new TableLayout (2, 3));

defines the layout for the program as a whole to be a TableLayout object with two rows
and three columns. The rest of the constructor adds interactors to the table layout in
order, filling each horizontal row from left to right, and then proceeding through each row
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Figure 7-2. Temperature conversion program

—-903 _

/*

* File: TemperatureConverter.java

K o o o o o o e i

* This program allows users to convert temperatures
* back and forth from Fahrenheit to Celsius.

*/

import acm.gui.*;

import acm.program.*;
import java.awt.event.*;
import javax.swing.*;

/** This class implements a temperature converter. */
public class TemperatureConverter extends Program {

/** Constructor to layout the components. */
public TemperatureConverter() {

setLayout (new TableLayout(2, 3));
fahrenheitField = new IntField(32);
fahrenheitField.setActionCommand("F -> C");
fahrenheitField.addActionListener (this);
celsiusField = new IntField(0);
celsiusField.setActionCommand("C -> F");
celsiusField.addActionListener (this);
add (new JLabel ("Degrees Fahrenheit"));
add (fahrenheitField);
add (new JButton("F -> C"));
add (new JLabel ("Degrees Celsius"));
add (celsiusField);
add (new JButton("C -> F"));
addActionListeners();

}

/** Listen for a button action. */
public void actionPerformed(ActionEvent e) {

String cmd = e.getActionCommand();

if (cmd.equals("F -> C")) {
int f = fahrenheitField.getValue();
int ¢ = (int) Math.round((5.0 / 9.0) * (f - 32));
celsiusField.setValue(c);

} else if (cmd.equals("C -> F")) {
int ¢ = celsiusField.getValue();
int £ = (int) Math.round((9.0 / 5.0) * c + 32);
fahrenheitField.setValue(f);

}

/* Private instance variables. */
private IntField fahrenheitField;
private IntField celsiusField;
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from top to bottom. In this example, each row contains a JLabel indicating the
temperature scale for that row, an IntField that allows the user to enter a value, and a
JButton to trigger the conversion. The code that sets the action command for the
IntField and adds the program as a listener is required only to enable the ENTER key in
those interactors. The buttons would be active even in the absence of those calls.

The feature that sets TableLayout apart from the simpler GridLayout mechanism is
that the sizes of each component in the table are adjusted according to their preferred
sizes and the constraints imposed by the grid. The grabel objects are of different sizes,
but the implementation of TableLayout makes sure that there is enough space in the first
column to hold the longer of the two labels. By default, each component added to a
TableLayout container is expanded to fills its grid cell, although this behavior can be
changed by specifying constraints as described in the following section.

What the TemperatureConverter program illustrates is that the student can rely on
the TableLayout to arrange the elements appropriately on the screen without having to
specify the detailed constraint information that would be required using GridBagLayout.
By defining the appropriate defaults, all the student usually has to do is count the number
of rows and columns in the user interface and add the interactors in the appropriate order.

Specifying constraints

Unlike the packages that were proposed to the Task Force, the TableLayout class allows
the programmer to specify constraints that provide fine-grained control over the layout
process. For many applications, such constraints are unnecessary. In other cases,
however, it is important to be able to specify specific field sizes, to control the alignment
of a cell, or to merge cells horizontally or vertically so that they span several element
positions. The GridBagLayout paradigm uses a separate class called
GridBagConstraints to represent these constraints. The primary advantage of
TableLayout is that it hides the GridBagConstraints object from the programmer.

Instead of allocating a constraints object explicitly, the TableLayout design allows
clients to specify the constraints in string form. For every field in Java’s
GridBagConstraints, the TableLayout manager accepts a constraint string in the form

field=value

where field is the name of the GridBagConstraints field and value is a value
appropriate for that field. For example, to duplicate the effect of setting the gridwidth
field of a constraints object to 2 (thereby specifying a two-column field), adopters of the
acm.gui package can simply specify the constraint string

"gridwidth=2"

instead of the more confusing process of allocating a GridBagConstraints object and
setting the appropriate field, like this:

GridBagConstraints gbc = new GridBagConstraints();
gbc.gridwidth = 2;

The strings used as constraint objects can set several fields at once by including
multiple field/value pairs separated by spaces. Moreover, for those fields whose values
are defined by named constants in the GridBagConstraints class, TableLayout allows
that name to be used as the value field of the constraint string. For example, the following
string indicates that a field should span two columns but that the component should fill
space only in the y direction:



ACM Java Task Force Rationale - 95—
Second Public Draft (23-Feb-06)

"gridwidth=2 fill=VERTICAL"

Constraint strings are checked at run time to make sure that the fields and values are
defined and are consistent. The case of letters, however, is ignored, which makes it
possible to name the fields in a way that is consistent with Java’s conventions. Thus, if an
instructor wants to emphasize the case convention that has each word within a multiword
identifier begin with an uppercase letter, it is equally effective to write

"gridwWwidth=2 fill=VERTICAL"

The complete list of constraints supported by the TableLayout class is shown in
Figure 7-3. The first block shows the constraints that adopters are likely to use; the
second block consists of constraints that are included only to maintain symmetry with the
GridBagConstraints class.

To emphasize the advantage of using the TableLayout model, Figure 7-4 and 7-5
offer two implementations of a program that lays out Buttons objects (the code comes

Figure 7-3. Constraints supported by the TableLayout class

Constraints that clients will often find useful

gridwidth=columns or gridheight=rows
Indicates that this table cell should span the indicated number of columns or rows.

width=pixels or height=pixels
The width specification indicates that the width of this column should be the specified
number of pixels. If different widths are specified for cells in the same column, the column
width is defined to be the maximum. In the absence of any width specification, the column
width is the largest of the preferred widths. The height specification is interpreted
symmetrically for row heights.

weightx=weight or weighty=weight
If the total size of the table is less than the size of its enclosure, TableLayout will ordinarily
center the table in the available space. If any of the cells, however, are given nonzero
weightx or weighty values, the extra space is distributed along that axis in proportion to the
weights specified. As in the GridBagLayout model, the weights are floating-point values
and may therefore contain a decimal point.

£i11=fill
Indicates how the component in this cell should be resized if its preferred size is smaller than
the cell size. The legal values are NONE, HORIZONTAL, VERTICAL, and BOTH, indicating the
axes along which stretching should occur. The default is BOTH.

anchor=anchor
If a component is not being filled along a particular axis, the anchor specification indicates
where the component should be placed in its cell. The default value is CENTER, but any of the
standard compass directions (NORTH, SOUTH, EAST, WEST, NORTHEAST, NORTHWEST, Or
SOUTHEAST, SOUTHWEST) may also be used.

Less useful constraints included for compatibility with GridBagLayout

top=pixels or bottom=pixels or left=pixels or right=pixels
Supplies an inset value for the specified edge of the component in the cell.

ipadx=pixels or ipady=pixels
Specifies additional padding internal to the component that increases its preferred size along
the indicated axis. The extra pixels are added on both sides of the component, so the size
increases by twice the value supplied.

gridx=column or gridy=row
These constraints specify the location of the component within the grid and will not
ordinarily be used in the TableLayout model, unless you are trying to teach how
GridBagLayout works.
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Figure 7-4. Example from the GridBagLayout documentation

— 96 —

/*

* File: GridBagExample.java

X e, ————————

* This application uses GridBagLayout to construct a
* two-dimensional table of buttons. The example is
* adapted from the GridBagLayout documentation.

*/

import java.awt.*;
import javax.swing.*;

public class GridBagExample extends JPanel {

public GridBagExample() {
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c¢ = new GridBagConstraints();
setLayout (gridbag);
c.fill = GridBagConstraints.BOTH;
addButton("Button0", gridbag, c);
addButton("Buttonl", gridbag, c);
addButton("Button2", gridbag, c);
c.gridwidth = GridBagConstraints.REMAINDER;
addButton("Button3", gridbag, c);
addButton("Button4", gridbag, c);
c.gridwidth = 3;
addButton("Button5", gridbag, c);
c.gridwidth = GridBagConstraints.REMAINDER;
addButton("Button6", gridbag, c);
c.gridwidth = 1;
c.gridheight = 2;
addButton("Button7", gridbag, c);
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
addButton("Button8", gridbag, c);
addButton("Button9", gridbag, c);

}

private void addButton(String name,
GridBagLayout gridbag,
GridBagConstraints c) {
Button button = new Button(name);
gridbag.setConstraints (button, c);
add (button) ;

}

public static void main(String[] args) {
GridBagExample example = new GridBagExample();
JFrame frame = new JFrame("GridBagExample");
Container contentPane = frame.getContentPane();
contentPane.setLayout (new BorderLayout());
contentPane.add (BorderLayout.CENTER, example);
frame.setSize (350, 200);
frame.setVisible(true);
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Figure 7-5. Similar application using TableLayout

/*

* File: TableExample.java

X e, ————————

* This application uses the ACM TablePanel class to
* construct a two-dimensional table of buttons that
* matches the one from GridBagExample.

*/

import acm.gui.*;
import java.awt.*;

public class TableExample extends Program {

public TableExample() {
setLayout (new TableLayout(5, 4));
add (new Button("Button0"));
add (new Button("Buttonl"));
add (new Button("Button2"));
add (new Button("Button3"));
add (new Button("Button4"), "gridwidth=REMAINDER");
add (new Button("Button5"), "gridwidth=3");
add (new Button("Button6"));
add (new Button("Button7"), "gridheight=2");
add (new Button("Button8"), "gridwidth=REMAINDER");
add (new Button("Button9"), "gridwidth=REMAINDER");

from the GridBagLayout documentation, which still uses the JDK 1.1 style) in the
following grid:

6 O O GridBagExample
| Button0 | Button1 Button2 | Button3
| Button4
| Button5 | Button6
| Button8
Button7
| Button9

As the code for the figures makes clear, the TableLayout version is less than half the size
of the GridBagLayout example and is significantly easier to read. At the same time, the
underlying discipline is compatible, which should allow users to migrate from one model
to the other.

Controlling spacing

Several of the layout managers in the standard Java packages—including, for example,
FlowLayout, BorderLayout, and GridLayout —make it possible to control the spacing
between components in the display by setting hgap and vgap parameters to specify the
spacing in the horizontal and vertical dimensions, respectively. The standard
GridBagLayout mechanism does not do so, even though it would be extremely useful.
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The TableLayout manager does support these parameters, which can be set either by
using the four-argument version of the constructor

public TableLayout(int rows, int columns, int hgap, int vgap)

or by calling the setHgap and setvgap methods on an existing layout. Setting these
parameters ensures that each row or column in the table is separated from the next by the
specified number of pixels, making it easy to add spacing around the interactors.

Although the hgap and vgap parameters are typically positive, it turns out that the
value —1 can be extremely useful in this setting. If you specify —1 as a gap value, each
component will be positioned so that it overlaps the preceding one by one pixel. If the
components have a one-pixel border, this strategy ensures that the border running
between the components will be only one pixel wide. If no gap applied, each component
would have a one-pixel border, which would result in a two-pixel divider on the screen.

7.4 The TablePanel Classes

The examples presented so far in this chapter use TableLayout as the layout manager for
the central region of a program, which is likely to be its most common application in the
introductory curriculum. The TableLayout manager, however, can be used with any
container and is extremely useful in assembling patterns of interactors.

To make it easier to assemble nested containers hierarchically, the acm.gui package
includes three convenience classes that extend Jpanel but install an appropriate
TableLayout manager. These classes and their constructor patterns appear in Figure 7-6.

The HPanel and vPanel classes make it easy to create complex assemblages of
interactors by decomposing them hierarchically into rows and columns. In this respect,
they have at least a common purpose with the BoxLayout manager introduced in the
javax.swing package. The panel HPanel and vPanel classes, however, offer far more
flexibility because they have the full power of the TableLayout class. The BoxLayout
manager, by contrast, makes it difficult to do anything except to string together
components in a linear form with no control over spacing or format.

Figure 7-6. Convenience classes based on TableLayout

TablePanel constructors
public TablePanel (int rows, int columns)
Creates a JPanel with the indicated number of rows and columns.
public TablePanel(int rows, int columns, int hgap, int vgap)
Creates a JPanel with the specified dimensions and gaps.

HPanel constructors
public HPanel()
Creates a JPanel consisting of a single horizontal row.
public HPanel (int hgap, int vgap)
Creates an HPanel with the specified gaps (vgap applies above and below the row).

VPanel constructors
public VPanel()
Creates a JPanel consisting of a single vertical column.
public VPanel (int hgap, int vgap)
Creates an VPanel with the specified gaps (hgap applies to the left and right of the column).
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Chapter 8
The acm.util Package

The acm.util package includes a set of utilities that are either simple standalone tools or
that are shared resources for the other packages. The package consists of the following
classes, presented here in an order that roughly reflects the likelihood that someone
adopting the ACM packages would use them:

* ErrorException—Allows errors to be reported in a consistent way

* cancelledException— Allows a dialog to signal clients that it has been cancelled

* RandomGenerator —A more pedagogically defensible random number interface

* Animator —Implements a Thread subclass with an exceptionless pause method

* pPlatform—Contains several static methods to support platform-specific code

* MediaTools—Implements a flexible mechanism for loading images and sounds

* JTFTools—Contains a set of static methods used in several of the JTF packages

* oOptionTable—Implements a facility for parsing option values from a string

The sections that follow provide a brief overview of each mechanism without describing

the class in detail. For more details, please see the javadoc documentation on the web
site.

8.1 The ErrorException class

The ErrorException class is an extremely simple class whose only purpose is to provide
the ACM packages with a consistent way to report errors. When errors are detected in
the package, or in any other code that adopts the same convention, those errors are
indicated by throwing an exception like this:

throw new ErrorException (message) ;

Any caller in the dynamic execution chain can catch this error if they want to handle it; if
it is uncaught, the program will terminate with an unhandled exception error. The key
advantage is that ErrorException is a subclass of RuntimeException and therefore
need not be declared in throws clauses.

8.2 The CancelledException class

The cancelledException class is used to represent an exception that signals
cancellation of an operation. Although the only class that throws this exception is the
I0Dialog class in acm.io, we decided to put it in acm.util to make it more generally
available. In particular, it is possible that future extensions to the Animator class might
need to signal cancellation.

8.3 The RandomGenerator class

In response to our call for community input last spring, Alyce Brady of Kalamazoo
College offered a pair of simple proposals that resonated with many of the Task Force
members. After noting that random numbers play an important role in many introductory
courses, Alyce made the following observation:
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The java.util.Random class, with its nextInt, nextDouble, and nextBoolean
methods is a good choice to use, but students often fall into the trap of
constructing multiple Random instances in order to generate multiple random
numbers. This can lead to behavior that appears far from random if the different
Random objects generate equivalent or similar sequences of random numbers.
Another problem with the Random class, which is not as insignificant as it
sounds, is that the name is misleading. A Random instance is actually a random
number generator, not a random object. [BradyO4a]

For precisely the reasons that Alyce describes here, we have included a
RandomGenerator class in the acm.util package. RandomGenerator is a subclass of
java.util.Random and therefore provides all the methods that are available in that class.
In addition, however, the RandomGenerator class offers the additional methods shown in
Figure 8-1.

Figure 8-1. Additional methods in the RandomGenerator class

int nextInt(int low, int high)
Returns a random integer in the specified range (inclusive).
double nextDouble(double low, double high)
Returns a random double in the specified range.
boolean nextBoolean(double p)
Returns a random boolean that is true with probability p (0 = never, 1 = always).
Color nextColor()
Returns a random opaque color.

8.4 The Animator class

The Animator class is a simple subclass of Thread designed to support simpler
animation. The only important new behavior that it adds to the standard Thread class is a
method called pause (time) that suspends for the specified number of milliseconds. This
method is therefore similar to Thread.sleep but is easier for novices to use because it
never throws an exception. Thus, an animator can delay its own operation by writing

pause (time) ;
rather than the ungainly

try {
Thread.sleep (time) ;

} catch (InterruptedException ex) {
/* Empty */
}

The Animator class was suggested by Kim Bruce. [Bruce04b]

8.5 The Platform class

The Platform class implements a variety of convenience methods for the ACM packages
that allow the implementations to determine properties about the environment. The intent
of these facilities is not to produce programs that behave differently on different
platforms, but instead to overcome any known platform incompatibilities to ensure that
code works in as portable a way as possible. The package also includes several methods
that look at the runtime environment to determine what capabilities are supported by the
virtual machine. These facilities are used to take advantage of modern Java facilities
while remaining compatible with earlier versions of the JDK.
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8.6 The MediaTools class

The MediaTools class provides several static methods that support the creation and
loading of images and audio clips in a convenient and portable way. Please see the
package documentation for details.

8.7 The JTFTools class

The JTFTools class implements a collection of static methods that are used throughout
the ACM packages. Several of these methods are potentially useful to clients outside of
those packages, but the motivation behind the package is simply to centralize common
methods used in the packages to avoid duplication of code.

8.8 The OptionTable class

The optionTable class was added to the acm.util package as part of the
implementation of the TableLayout class introduced in section 7.3. It has the
responsibility of parsing the string version of the constraint specification, which consists
of a set of key/value pairs. The optionTable package checks to make sure that a key is
valid and makes it easy to specify default options. Although TableLayout is currently
the only client, other developers may want to use the same mechanism.

8.9 Oh Scanner, where art thou?

The February 2005 release of the acm.util package included a Sscanner class that
provided most of the features of the Java 2 Standard Edition 5.0 class while remaining
compatible with JDK 1.1. Putting that class in the acm.util package, however, did not
turn out to be a workable strategy. Clients working in older Java environments could
indeed use this class to gain access to most features of the new scanner. Unfortunately,
when those clients later upgraded to a J2SE 5.0 system, the old code would often fail to
compile. Given that many Java programmers tend to import everything in a package in a
single import line, the decision to call both classes scanner made it impossible to
include both of the import lines

import java.util.*;
import acm.util.*;

without incurring an ambiguity to Scanner. At the same time, calling our simulated
Scanner class something else would eliminate much of the reason for its inclusion, which
was motivated in large measure by a desire to let students see code that was as close as
possible to what they would soon be able to write.

Fortunately, the simulated scanner class has not entirely disappeared. Although it no
longer exists in the acm.util package, the same functionality is now available in the
supplemental package that allows the ACM libraries to run even in JDK 1.1
environments. The strategy that enables this level of compatibility is described in section
6.3.
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Chapter 9
The JTF Subset

In the public announcement of the ACM Java Task Force at SIGCSE 2004, the first item
included in our list of deliverables was

A definition of a subset of the standard Java APIs appropriate for first-year
computer science. This subset would involve restricting both the number of
classes used as well as the number of public methods made visible within those
classes. Note that this subset must be sufficient to have students write significant
applications using Java. To this end, it will presumably be a superset of the AP
Java subset [Astrachan00], which seeks to define what aspects of the language
will be tested on the AP exam. [Roberts04b]

This task is clearly a perilous one, particularly given that any decisions we make are sure
to upset those instructors who feel compelled to use some piece of the standard Java API
that did not make it into the Task Force subset. At the same time, it is also true that the
Task Force has a responsibility to provide guidance in this area. In a very real way, the
most significant problem with Java is not any of the specific shortcomings that we have
sought to address with the ACM packages but rather the enormous scale of the languages
and its APIs.

In some ways, however, the issue can be made less contentious by redefining the goal.
Rather than defining any sort of official “standard,” our current strategy is to define a
subset that we agree to support as effectively as possible. That support has three
components:

1. Define a set of the classes from the standard Java packages that we agree to use in our
own development of JTF materials. We will then agree to use only those classes in
any publications, online tutorials, downloadable examples, and extension packages.
That subset is described in section 9.1.

2. Create documentation for the JTF subset that is more student-friendly than the
existing javadoc material. The simplified javadoc design appears in section 9.2.

3. Enable implementors who stay within the JTF subset to make their code compatible
with older versions of the JDK dating back to the 1.1 implementation. The strategies
that make this goal possible were described in section 6.9 earlier in this document.

9.1 The JTF subset

The February 2005 release of this rationale document offered a preliminary proposal for a
set of classes that would serve as the JTF subset. Through the feedback we received on
the web forum, we have added several classes to that list and taken away a few as well.
The current list appears in Figure 9-1.

In putting this list together, we undertook a mechanical survey of the code that is
published on the web for several of the leading text books to see what classes are used in
practice. This survey provided us with considerable insights into how classes are used,
but required some analysis to separate out various artifacts from the useful data. For
example, one of the leading classes on the list is java.lang.StringBuffer, not because
these textbooks refer to it directly, but because Java compilers generate references to
StringBuffer (Or its newer StringBuilder counterpart) whenever they process string
constants. Thus, it was important to analyze the data and look for this type of outlier. In
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Figure 9-1. Current listing of the JTF subset

java.applet: java.lang: javax.swing:
Applet Boolean Box
AudioClip Character BoxLayout
Class ButtonGroup
java.awt: Cloneable JApplet
BorderLayout Comparable JButton
Color Double JCheckBox
Component Enum JComboBox
Container Float JComponent
Dimension Integer JDialog
Event Long JFileChooser
FlowLayout Math JFrame
Font Number JLabel
FontMetrics Object JList
Frame Runnable JOptionPane
Graphics String JPanel
GridLayout System JPopupMenu
Image Thread JRadioButton
LayoutManager JScrollBar
MediaTracker java.math: JScrollPane
Point BigInteger JSlider
Rectangle JSpinner
Toolkit java.net: JTable
URL JTextArea
java.awt.event: URLConnection JTextField
ActionEvent JTextPane
ActionListener java.text: JToggleButton
AdjustmentEvent DateFormat JWindow
AdjustmentListener DecimalFormat KeyStroke
ComponentEvent NumberFormat Timer
ComponentListener
FocusEvent java.util: javax.swing.event:
FocusListener ArrayList ChangeEvent
KeyEvent Arrays ChangeListener
KeyListener BitSet ListDataEvent
MouseEvent Collection ListDataListener
MouseListener Comparator ListSelectionEvent
MouseMotionListener HashMap ListSelectionListener
WindowEvent HashSet
WindowListener Iterator
LinkedList
java.io: List
BufferedReader ListIterator
BufferedWriter Map
File PriorityQueue
FileReader Random
FileWriter Scanner
IOException Set
PrintWriter SortedMap
Reader SortedSet
StreamTokenizer Stack
StringReader StringTokenizer
StringWriter
Writer

the end, we used the list developed by the automatic survey as a “sanity check” as to what
classes one might reasonably present in the first-year curriculum.

We expect that this list will evolve slowly over time, but believe that it is likely to
remain stable through the official release of the materials in early 2006.
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9.2 Simplifying the javadoc presentation

The idea of using the documentation to define the JTF subset was suggested in our
original list of deliverables:

A public web site containing an updated javadoc reference manual for the
approved Java subset. This web site would make it possible for students to
browse the standard classes and methods defined in the subset without being
overwhelmed by classes, methods, and concepts they are unlikely to use. For the
classes and methods that are included, the web site will contain more examples
and tutorial material than is currently supplied with the Java APIs.

After all, given that Java’s corporate creator assures us that “the network is the
computer,” what matters is what’s described on the web rather than a standard buried in a
bookcase somewhere.

Our proposal to use the javadoc documentation to define the JTF subset includes the
following goals:

1. Create a web site for the Task Force that includes an abridged form of the standard
Java documentation called the student view from which classes and methods unlikely
to be used in an introductory course have been eliminated. The student view contains
pointers to the complete view, which contains the full documentation.

2. Publish the documentation of the Java Task Force packages using the same split
between the student and complete views. Students can browse a less overwhelming
collection of documentation, while teachers and advanced users have access to the
full capabilities of the class.

3. Make available the tools we use to produce the documentation, including the driver
files that determine which parts of the complete documentation are included in the
student view. In that way, any adopter who feels that something is missing can
generate new documentation in which that class or method has been restored. And,
perhaps more important in practice, instructors who believe that the Task Force has
revealed too much can generate even more compact documentation that covers only
the elements used in the local curriculum.

The current draft release of the Task Force materials implements the split between the
student and complete view only for the documentation of the ACM packages. When you
go to the web site, you come up in the student view. Each page in the student view
contains a link in the navigation bar to the complete view for the same page (and vice
versa), making it very easy to move back and forth between the two views.

The primary characteristic of the student view is that it hides extraneous information.
Figure 9-2, for example, shows the top of the page in the student view for the GLabel
class in acm.graphics. What you see in the figure looks familiar enough and also
illustrates the level of documentation we plan to associate with each of the classes. But
what’s more important is what you don’t see. You don’t, for example, see a navigation
tab directing you to the discussion of inner classes or deprecated methods. Similarly, you
don’t discover that cLabel implements the mysterious interfaces cloneable and
Serializable. You do, of course, see these features in the complete view, but they are
not getting in the way here.

Another important change in the student documentation view is that any inherited
methods that the documentation designer chooses to include are listed in the summary
section using a format similar to that of the methods implemented by this class. This
feature is illustrated in Figure 9-3, which shows the first few entries in the summaries of
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Figure 9-2. Beginning of documentation page for the GLabel class

Overview Package FEIIBEEMA Complete Tree Index Help

FREY CLASS NEXT CLASS FRAMES MO FRAMES
SUMMARY: FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
acm.graphics

Class GLabel

java. lang. Chisct
|
+-——acw.graphics. GClkhject

|
+——acm.graphics.GLahel

public class GLabel extends GObject

The GLabel class 1z a graphical object whose appearance consists of a text string,

To use the GLabe 1 class, the first step 15 to construct a new GLabe 1 object and
add 1t to an existing GCanvas (assumed here to be stored in the vanable go), as
Follows:

Hello, world.

Glabel glabel = new GLabel{"Hello, world."., 50, 60):
gc .add (glabel):

This code creates a GLabe 1 contawung the string "He 1lo, world . with itz
origit at the point (50, 607 and nstalls the label in the GCanvas as shown in the

figure to the right.

Iost graphical objects i Java use the upper left corner of the figure to define
their location. Strings, howewer, work differently. The location at which a string
15 displayed 1z always taken to be at the leftmost edge of the first character
along what 12 called the haseline, which iz the line on which the uppercase - dlello, weorld . paceline
letters sit. Some lowercase letters (g, §, p, q, and y) descend below the (50, 60)

baseline, as do sewveral special characters like the cotmma. The location of the
start of the string and the concept of the baseline are lustrated in the diagram to

the right.

the locally defined methods and those that are inherited from superclasses. These
methods tend to have equal weight in the student’s mind, and it is useful to present them
symmetrically. Contrast the view shown in Figure 9-3 with the standard presentation
shown in Figure 9-4. In that form, the student has no sense of the structure of these
methods and is exposed to several —the three versions of wait are an obvious example —
that offer no help to novices.

The only other significant change in the student view is the inclusion of a “usage” line
in the detailed presentation of methods, preceding the declaration of parameters and
results. Student find a paradigmatic example extremely useful, particularly when they
can cut it out of the documentation and paste it into their own code. This line is
illustrated in Figure 9-5.



ACM Java Task Force Rationale - 106 —
Second Public Draft (23-Feb-06)

Figure 9-3. Selections from the GLabel method summary

Method Summary
dounble |getRAscent ()
Eeturns the distance this string extends above the baseline.

GRectangle gethBonnds ()

Eeturns a GRectangle that specifies the bounding box for the string,
donble |getDescent. ()

Eeturns the distance this stnng descends below the baseline.

Font getFont ()

Eeturns the font in which the GLabe 1 is displayed.

FontHetrics getFontMetrics ()

Eeturniz a FontMetrics object describing the dimensions of thiz string,

Inherited Method Summary

void laddMonselListenery (MouseListener listemner)

Adds a mouse lstener to this graphical object.

void laddMonseMotionlistener (MonseMotionListener listemer)

Adds amouse motion hstener to thus graphucal object.

boolean [contains{(GPoint pt)

Checks to see whether a point 12 mside the object.

boolean (contains{donble x, donble v)

Checks to see whether a point 15 "inside” the string, which is defined to be mside the bounding
rectangle.

Figure 9-4. Standard javadoc presentation of inherited methods

Methods inherited from class acm.graphics.GObject

addMouselistener, addMouseMotionlistener, angle, contsains, contains, cosh, distance,
distance, getColor, getlocation, getParent, getldize, getX, get¥, isVisibkble, mwain, move,
mowvePolar, pause, removeMouselistener, rewoveMouseMotionListener, round, sendBackward,
sendForward, sSendToBack, sendToFront, setColor, setlocation, setlocation, setWisible, sinD,
tanhbh, tolegrees, toBRadians, to3tring

IMethods inherited from class java.lang.Ohject

equals, getClass, hashCode, notifw, notifwidll, wait, wait, wait

Figure 9-5. Standard javadoc presentation of inherited methods

Method Detail

public double getAscent ()

Eeturns the distance this string extends above the baseline,

Usage: donble ascent = glabel.gethscent():
Returns: The azcent of this sthng in pixels
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