Arrays and ArrayLists

As Seen in the Marine Biology Simulation Case Study
Arrays

· Array sizes must be specified when the arrays are created.

· The type of element is specified in the declaration. It may be a primitive type or a class.

BoundedEnv class

public class BoundedEnv extends SquareEnvironment

{

 // Instance Variables: Encapsulated data for each BoundedEnv object

 private Locatable[][] theGrid; // grid representing the environment

 private int objectCount; // # of objects in current environment

 // constructors

 /** Constructs an empty BoundedEnv object with the given dimensions.

 * (Precondition: <code>rows > 0</code> and <code>cols > 0</code>.)

 * @param rows number of rows in BoundedEnv

 * @param cols number of columns in BoundedEnv

 **/

 public BoundedEnv(int rows, int cols)

 {

 // Construct and initialize inherited attributes.

 super();

 theGrid = new Locatable[rows][cols];

 objectCount = 0;

 }

…

BoundedEnv class (continued)
 /** Returns all the objects in this environment.

 * @return an array of all the environment objects

 **/

 public Locatable[] allObjects()

 {

 Locatable[] theObjects = new Locatable[numObjects()];

 int tempObjectCount = 0;

/*

 * try catch to counter the synch problem with Breeding and Dying

 Fishes. The Locatable object list is getting modified in an independent thread.

 On error return the Array already filled. Accuracy affect is minimal.

 */

try

{

// Look at all grid locations.

for (int r = 0; r < numRows(); r++)

{

for (int c = 0; c < numCols(); c++)

{

// If there's an object at this location, put it in the array.

Locatable obj = theGrid[r][c];

if (obj != null)

{

theObjects[tempObjectCount] = obj;

tempObjectCount++;

}

}

}

}

catch(IndexOutOfBoundsException e)

{

return theObjects;

}

 return theObjects;

 }

Simulation class

/** Runs through a single step of this simulation. **/

 public void step()

 {

 // Get all the fish in the environment and ask each

 // one to perform the actions it does in a timestep.

 Locatable[] theFishes = theEnv.allObjects();

 for (int index = 0; index < theFishes.length; index++)

 {

 ((Fish)theFishes[index]).act();

 }

 // Display the state of the simulation after this timestep.

 theDisplay.showEnv();

 Debug.println(theEnv.toString());

 Debug.println("-------- End of Timestep --------");

 }

ArrayLists
· A new ArrayList is empty.

· No type is specified; only Objects can be added (no primitives).

· Objects are returned by methods like get. Programmer must cast to the appropriate class if treating the object as an instance of that class. (See examples below.)

[Note: these last two items will change in Java 5; ArrayLists may be defined as containing objects of a specific class. However, the AP CS Exam will not use Java 5 features in 2006.]

Fish class

 /** Finds empty locations adjacent to this fish.

 * @return an ArrayList containing neighboring empty locations

 **/

 protected ArrayList emptyNeighbors()

 {

 // Get all the neighbors of this fish, empty or not.

 ArrayList nbrs = environment().neighborsOf(location());

 // Figure out which neighbors are empty and add those to a new list.

 ArrayList emptyNbrs = new ArrayList();

 for (int index = 0; index < nbrs.size(); index++)

 {

 Location loc = (Location) nbrs.get(index);

 if (environment().isEmpty(loc))

 emptyNbrs.add(loc);

 }

 return emptyNbrs;

 }

 /** Finds this fish's next location.

 * A fish may move to any empty adjacent locations except the one

 * behind it (fish do not move backwards). If this fish cannot

 * move, nextLocation returns its current location.

 * @return the next location for this fish

 **/

 protected Location nextLocation()

 {

 // Get list of neighboring empty locations.

 ArrayList emptyNbrs = emptyNeighbors();

 // Remove the location behind, since fish do not move backwards.

 Direction oppositeDir = direction().reverse();

 Location locationBehind = environment().getNeighbor(location(),

 oppositeDir);

 if(emptyNbrs.contains(locationBehind))

emptyNbrs.remove(emptyNbrs.indexOf(locationBehind));

 Debug.print("Possible new locations are: " + emptyNbrs.toString());

 // If there are no valid empty neighboring locations, then we're done.

 if (emptyNbrs.size() == 0)

 return location();

 // Return a randomly chosen neighboring empty location.

 Random randNumGen = RandNumGenerator.getInstance();

 int randNum = randNumGen.nextInt(emptyNbrs.size());

 return (Location) emptyNbrs.get(randNum);

 }

Comparing Arrays and ArrayLists

	
	Array
	ArrayList

	Number of elements
	.length (public instance variable)

Set when created, and may not be changed.
	.size() (method)
Initially zero, but adjusted automatically as objects are added or removed.

	Type of elements
	Homogeneous: primitive or objects of a specific class.
	Heterogeneous: but elements must be Objects.

	Inserting a new elements between existing elements
	Elements must be shifted one by one to make room.
	Elements are automatically shifted and renumbered.

	Removing an element between existing elements
	Subsequent elements must be shifted back one by one.
	Elements are automatically shifted and renumbered.

	Accessing an individual element
	theStudent = theList[pos];
	theStudent =
 (Student) theList.get(pos);

	Setting an individual element
	theList[pos] = theStudent;
	theList.set(pos, theStudent);

	
	
	

	
	
	

	
	
	

Note: Casting as a Fish is necessary because Locatable isn’t guaranteed to have an act method. If there were other Locatable objects (besides Fish), the cast to Fish would have to be conditional.

Receives the returned array from allObjects.

A 2-D array (AB-level only)

(The array is declared but not created here.)

Here’s where the array is actually created (dimensions are specified).

(row * col) references are created,

but no Locatable objects are instantiated.

Returns an array of Locatable objects.

Creates an array of references.

Sets a local reference to the object at the specified position in theGrid.

If that position is not empty (null), copies reference to next available position in theObjects.

Number of elements

Returned item is an Object; it must be cast if it’s stored in another variable or class-specific methods will be used on it.

Add an item at the end of the list.

get method returns an Object, so cast to Location (since that’s the return type).

Removes the element at the specified position.

