Design Question Lab (A with AB extension)

by Judith Hromcik

Employee Lab (Part I): Employee classes

Consider the following problem. A company employs two kinds of employees: hourly wage employees and salaried employees. All employees have a name and a unique employee ID, can change their name, receive a raise, and get a paycheck every week. Hourly employees have their paycheck computed by multiplying the number of hours worked by their hourly pay rate. If an hourly employee works more than 40 hours in a weekly pay period, all hours over 40 are paid 1.5 times the hourly rate. Salaried employees receive 1/52 of their salary every week.

Obviously these two types of employees have a lot in common. Apply the "IS-A" relationship.

An hourly employee "IS-A" salaried employee?

A salaried employee "IS-A" hourly employee?

Neither of these is true. What about:

An hourly employee "IS-A" employee?

A salaried employee "IS-A" employee?

These relationships are true. So the hierarchy should be:

But what is a plain old employee? How do you calculate an employee's pay? You can't until you know what kind of employee you have. This problem can be solved by creating Employee as an abstract class. In this class, the programmer will include all of the properties that the two subclasses have in common. A constructor is created to initialize those properties. The subclasses should call that constructor using a super constructor call. The abstract class will define and implement all of the methods that both classes have in common and that can be completed at the abstract class level. The methods that the subclasses have in common, but cannot be completed, will be defined as abstract. The subclasses MUST implement these methods or be defined as abstract themselves.

· Design and implement the abstract class Employee. All employees have a name and ID, can change their name, receive a raise, and get a paycheck every week. Add private instance variables and methods to fulfill these requirements. Provide an appropriate toString method for this class.

· Design and implement a non-abstract class HourlyEmployee. An hourly employee's pay is based on his/her hourly rate and the number of hours worked in the weekly pay period. If the hourly employee has worked overtime, work for hours over 40 is paid at 1.5 times the hourly rate. Add private instance variables and methods as necessary to implement this class. Provide an appropriate toString method for this class.

· Design and implement a non-abstract class SalariedEmployee. A salaried employee receives 1/52 of his annual salary each week. Add private instance variables and methods as necessary to implement this class. Provide an appropriate toString method for this class.

Employee Lab (Part II): Processing the Payroll:

Now that you have designed and implemented classes for the employees of a company, consider designing a class that will manage the payroll for this company. The operations for this class must include the following:

· The payroll class must be able to add hourly employees and salaried employees to the payroll.

· The payroll class must be able to delete hourly employees and salaried employees from the payroll.

· Each week, the records for each hourly employee must be updated to reflect the number of hours that were worked during that weekly pay period. You will need to resolve how this information (weekly hours worked) is transferred to each employee object.

· Each week, a total payroll for the company must be computed.

(Note: if you're planning to incorporate the "AB extension" you may want to read the details before making decisions about your Payroll class.)

AB extension:
If H is the number of hourly employees and S is the number of salaried employees, updating the hours worked for the hourly employees must run in O(H log (H)) time. Computing each employee's paycheck and the total payroll must run in O(H + S) time. Choose appropriate data structures to fulfill these requirements.

 Add the following requirements:

· Print employee information in the following manner:

· Print all of the hourly employees information alphabetically

· Print all of the salaried employees information alphabetically

This operation must be done in linear time -- O(H) for hourly employees, O(S) for salaried employees.

· Using an employee's ID number, access to any employee's record must be done in O(1) time.

· Adding and deleting employees must be done in O(log (H + S)) time. The employee's ID will be used when deleting an employee.

Explain your chosen data structures for this class. Explain how the employee data is being stored in the Payroll class. Justify how your data structures meet the Big-Oh requirements for this problem.

Notes:

1. Setting the number of hours worked for each hourly employee can be done several ways. The Payroll method could iterate through the hourly employees and read the information in from a file. It could accept a data structure with employee ID's and hours worked paired together. This is really up to the students and/or the teacher.

2. I assumed that the employee name was in the form Last, First. I am leaving this to the discretion of the teacher and student. You could create a Name class that encapsulates the first and last name. I chose not to do this.

3. You can find Teacher Notes for this Design Question lab and all of the code at http://fcbrowser.aisd.net/~jhromcik/AP/CBDesignLab.htm
Employee

Hourly Employee

Salaried Employee

Design Question -2-

