Nim Activity – Java AP CS Workshop
From CCJ AP CS Study Guide Chapter 13

The game of Nim is a well-known game with a number of variants. We will consider the following variant, which has an interesting winning strategy. Two players alternately take marbles from a pile. In each move, a player chooses how many marbles to take. The player must take at least one but at most half of the marbles. Then the other player takes a turn. The player who takes the last marble loses.

You will write a program in which the computer plays against a human opponent. Nim specifications include:

· The initial size of the pile will be a random integer generated between two values passed to the constructor of NimGame by the calling method.

· A random integer between 0 and 1 inclusive will be generated to decide whether the computer or the human takes the first turn.

· A random integer between 0 and 1 inclusive will be generated to decide whether the computer plays smart or stupid. A computer knows if it is smart or stupid.
· A player that is not smart simply takes a random legal value (between 1 and n/2) from the pile whenever it has a turn.

· A smart player takes off enough marbles to make the size of the pile a power of two minus 1 that is, 3, 7, 15, 31, or 63. That is always a legal move, except if the size of the pile is currently one less than a power of two. In that case, the smart player makes a random legal move.

· A human player has a name that is given when asked. A human player is asked how many marbles s/he wishes to take.

· The computer's name is "ROBO COMPUTER".

You will note that a smart player cannot be beaten when it has the first move, unless the pile size happens to be 15, 31, or 63. Of course, a human player who has the first turn and knows the winning strategy can win against the computer.

In implementing this game, choose the following classes:

· NimGame

· NimPile

· Player

· HumanPlayer

· SmartPlayer
The following methods are available to you in a Utilities class.

· getRandomNumber
· largestPowerOfTwoMinusOneBelow
· readInt
· readWord
The public interface for the Utilities class is below.

Utilities class for Nim

public class Utilities

{

/*

Generates random integer in [low,high)

Precondition: low is smallest integer generated, high - 1 is

largest integer generated; low < high

Postcondition: Returns a random integer in [low, high)

*/

public static int getRandNumber(int low, int high){...}

/*
 Tests whether n has the form pow(2,k) - 1.

 Precondiiton n > 0
 Postcondition: returns true if n is a power of two minus one,

false otherwise.

*/

boolean isPowerOfTwoMinusOne(int n){...}

/*

Precondition: n > 0
 Postcondition: Returns the largest power of two minus one below a

 given number (the largest pow(2,k) - 1 < n).

*/

int largestPowerOfTwoMinusOneBelow(int n){..}

/*

Reads an integer from the keyboard.

Returns integer entered by user

*/

public static int readInt();

/*

Reads a String from the keyboard.

Returns integer entered by user

*/

public static String readWord();

The main method that invokes the game of Nim is:

public static void main(String[] args)

{

NimGame nim = new NimGame(10,100);

 // The pile will have a random number of marbles between 10

 // inclusive and 100 exclusive.

nim.playNim();

}

a.
Find and list the HAS-A and IS-A relationships between these classes.
· NimGame

· NimPile

· Player

· HumanPlayer

· SmartPlayer
b. Find the responsibilities of each of these classes, and provide class outlines containing

· Class name
· Constructor signature for each constructor
· Method signatures (include parameters) and return type for each method
· Instance fields
c. Implement the methods that you determined in the preceding step

