Name:

Date:

Tracing Recursion in Java
Each time a recursive method calls itself the new call is added to the top of the call stack. You can show the call stack as a series of calls to the method starting with the first one on the bottom and adding each new call on top and indented.

Given the following method:
public static int factorial(int n)

 {

 if (n == 0)

 return 1;

 else return n * factorial(n-1);

 }

What is the call stack for factorial(3)? Well, this will return 3 * factorial(2). So, next we need to find the result of factorial(2). This will be 2 * factorial(1). Next, we need to find the result of factorial(1). This is 1 * factorial(0). The call factorial(0) is the base case and returns 1. Now we can substitute back the result of each call. So factorial(0) is 1, which means that factorial(1) is (1 * 1 = 1). This means factorial(2) is 2 * 1 = 2. So factorial(3) is 3 * 2 = 6. So, the value returned is 6.
The call stack can be shown this way:

 factorial(0) returns 1

 factorial(1) returns 1 * factorial(0);

 factorial(2) returns 2 * factorial(1);

factorial(3) returns 3 * factorial(2);

And substituting back in the values that are returned for each call we get:

 factorial(0) returns 1

 factorial(1) returns 1 * factorial(0); = 1 * 1 = 1;

 factorial(2) returns 2 * factorial(1); = 2 * 1 = 2;

factorial(3) returns 3 * factorial(2); = 3 * 2 = 6;

So factorial(3) will return 6.

Show the call stack and what is printed or returned by each call for each of the following:

1. Factorial(5) where factorial is defined as:

 public static int factorial(int n)

 {

 if (n == 0)

 return 1;

 else return n * factorial(n-1);

 }

2. mystery(321) where mystery is defined as follows. Recall that % is the remainder so x % 10 returns the right most digit and x / 10 removes the right most digit (since it is integer division).
//precondition: x >=0

public static void mystery (int x)

{

 System.out.print(x % 10);

 if ((x / 10) != 0)

 {

 mystery(x / 10);

 }

 System.out.print(x % 10);

}
3. mystery(4) where mystery is defined as follows:

public static int mystery(int n)

{

 if (n == 0)

 return 1;

 else

 return 3 * mystery (n - 1);
}

4. product(6) where product is defined as follows:

private static int product(int n)

{

 if(n <= 1)

 return 1;

 else

 return n * product(n - 2);
}

5. bunnyEars(5) where bunnyEars is defined as follows:

public static int bunnyEars(int bunnies) {

 if (bunnies == 0) return 0;

 else if (bunnies == 1) return 2;

 else return 2 + bunnyEars(bunnies - 1);

}
6. starString(3) where starString is defined as follows:

public String starString(int n) {

 if (n == 0) {

 return "*";

 } else {

 return starString(n - 1) + starString(n - 1);
 }

}
7. stringClean("xyxxxyzz") where stringClean is defined as follows:

public String stringClean(String str) {

 int len = str.length();

 if (len <= 1) return str;

 else if (str.substring(0,1).equals(str.substring(1,2)))

 return stringClean(str.substring(0,1) + str.substring(2));
 else return str.substring(0,1) + stringClean(str.substring(1));

}
