
HW3: Writing a Linked List

DUE DATE: Friday February 15, 2008

A linked list is a dynamic data structure that stores information through nodes. Each
node is a data structure itself that stores information and the next node that it
references. Unlike an array, a linked list can be adjusted without moving any data over
to a new array or without shifting over any information. Therefore, it can be beneficial
in many ways depending on the task at hand.

As a linked list, you only know about the first node. That node has its data element and
then points you to the next node. To find the last element in the list you need to start at
the first node and traverse the list node by node until you run out of elements (if the
next of a node points to null, then you are at the end of the list)

 Linked List

For Homework 3 you will be creating a linked list that stores contact information for
your friends. You will be turning in 3 files: ContactList.java,

ContactNode.java, ContactEntry.java.

ContactEntry.java
Since we will be making a linked list of contacts, it makes sense to write an Object that
can hold information required for a friend. You will be a simple address book entry, but
you still need three data fields to store name, phone number, and email address. These
data fields must be private and you will use accessors and modifiers to view and modify
them. You will also need constructors to initialize your ContactEntry. You will need
the following constructors:

public ContactEntry(){..}

public ContactEntry(String name, String phone, String email){..}

You may have more constructors then that, but those are the required elements. You
will also need a toString() method which returns a String summarizing the
information about your contact.

head

A B C X

null

ContactNode.java
This is your node that will make up your linked list. It needs to have a data element (of
type ContactEntry) and it will need to have a data element that will be the next node
in the list (of type ContactNode). These elements also have to be private and have the
appropriate accessors and modifiers. You will be required to have a constructor,
public ContactNode(ContactEntry data), that creates a stand alone node
with data as its data element. You will also be required to have a toString() that

summarizes the information in your data element (the contact).

ContactList.java
This is the actual linked list and will be your entry point into your address book. It will
not have access to every element, just the first one (typically called head). Once again
your head data element will be private and will need to include the appropriate
accessors and modifiers. This is where you will insert elements and remove elements
from your address book. Be sure to include a constructor that initializes the list by
setting head to null. ContactList will need to have the following methods:

public ContactList(){…}

public ContactList(ContactNode head){…}

public ContactNode getHead(){…}

public void setHead(ContactNode head){…}

public void add(ContactNode contactToInsert){…}

public boolean insertAfter(ContactNode node, ContactNode

contactToInsert){…}

public boolean delete(ContactNode node){…}

public ContactEntry searchByName(String name){…}

public ContactEntry searchByPhone(String phone){…}

public ContactEntry searchByEmail(String email){…}

public int size(){…}

public String toString(){…}

Bonus (+10pts)
Allow your users to sort your list. Add methods sortByName(), sortByPhone(), and
sortByEmail() to your ContactList.

What to Turn In
 ContactEntry.java

 ContactNode.java

 ContactList.java

How to Turn In

 Turn in via TSquare

