CS 1316 Spring 2007 Test 2

Name:___________________GT Number: gt_________

Q0. Who’s your grading TA? (Please circle your answer)

Mark Rory Brian Ricardo Derek Sarah Kristin Sam

	Problem

	Points
	Lost
	Gained
	Running Total

	0
	 2
	
	
	

	1
	 28
	
	
	

	2
	 24
	
	
	

	3
	 20
	
	
	

	4
	 26
	
	
	

	Total
	100
	
	
	

I. Using Inheritance
Imagine that you are working with three classes that have these relationships and methods:

[image: image1]
A. Complete the following method in class Beaver—show us the Java code, and the class where the method is written.

/** When a Beaver wakes up, it stands, takes three steps to

its hole, then swims, catches a fish, and then eats. **/

public void wakeInMorning(){

this.stand(); // From class Mammal

// Complete the rest…

}
B. In the middle of some other method, there comes this section of code describing the mating dance of the Beaver. The challenge is that the variable male is of class Primate. Fill in the missing code.
Primate male = new Beaver();

/** The male Beaver takes three steps then 5 times in a row,

takes a step, brushes his fur, slaps his tail, then takes another step. **/

for (int i = 0; i < 3; i++){

male.step();}

//That was the three steps – you do the rest.

//Hint: Think about casting!

II. Walking the Linked Lists
Recall using code like the below to create linked lists of SongNodes:
Welcome to DrJava.

> SongNode node = new SongNode();

> node.setPhrase(SongPhrase.riff3());

> SongNode node1 = new SongNode();

> node1.setPhrase(SongPhrase.riff1());

> node.repeatNext(node1,2);

> SongNode node2 = new SongNode();

> node2.setPhrase(SongPhrase.riff2());

> node.repeatNextInserting(node2,3);

> import jm.JMC;

> node.showFromMeOn(JMC.PIANO);

Recall that repeatNextInserting() looks like this :

 public void repeatNextInserting(SongNode nextOne, int count){

 SongNode current = this; // Start from here

 SongNode copy; // Where we keep the current copy

 for (int i=1; i <= count; i++)

 {

 copy = nextOne.copyNode(); // Make a copy

 current.insertAfter(copy); // INSERT after current

 current = copy; // Now append to copy

 }

 }

And repeatNext() looks like this:

 public void repeatNext(SongNode nextOne,int count) {

 SongNode current = this; // Start from here

 SongNode copy; // Where we keep the current copy

 for (int i=1; i <= count; i++)

 {

 copy = nextOne.copyNode(); // Make a copy

 current.setNext(copy); // Set as next

 current = copy; // Now append to copy

 }

 }

a. Draw the linked list structure resulting from the example on the previous page:

b. For the diagram below, write the code that would create this structure. You must use repeatNext() and repeatNextInserting() at least once each.

[image: image2]
III. Duplicate the List
Below is the code for weave() which makes count copies of the node nextOne inserts them into the list that starts at this every skipAmount nodes.
 /**

 * Weave the input sound count times every skipAmount elements

 * @param nextOne SoundElement to be copied into the list

 * @param count how many times to copy

 * @param skipAmount how many nodes to skip per weave

 */

 public void weave(SoundElement nextOne, int count, int skipAmount)

 {

 SoundElement current = this; // Start from here

 SoundElement copy; // Where we keep the one to be weaved in

 SoundElement oldNext; // Need this to insert properly

 int skipped; // Number skipped currently

 for (int i=1; i <= count; i++)

 {

 copy = nextOne.copyNode(); // Make a copy

 //Skip skipAmount nodes

 skipped = 1;

 while ((current.getNext() != null) && (skipped <= skipAmount))

 {

 current = current.getNext();

 skipped++;

 };

 if (current.getNext() == null) // Did we actually get to the end early?

 break; // Leave the loop

 oldNext = current.getNext(); // Save its next

 current.insertAfter(copy); // Insert the copy after this one

 current = oldNext; // Continue on with the rest

 }

 }

Write a new method that copies a whole list, start from this. Each node in the this list should be copied and connected up to a copy of this, in the same order. The method copyList returns the copy of the node this. If a list looks like A->B->C, this method should return (copy of A)->(copy of B)->(copy of C)
public SoundElement copyList(){

//more space on next page
} //end of code, but you may use the extra room if necessary

 IV. Drawing the Tree

Draw the data structure (below or on the next page) as implemented that results from the below code, executed with:
Welcome to DrJava.

> SoundTreeExample ste = new SoundTreeExample()

> ste.setUpMidterm2()

Be very sure to identify the children links separate from the next links.
 public void setUpMidterm2() {

 Sound clap = new Sound(FileChooser.getMediaPath("clap-q.wav"));

 Sound chirp = new Sound(FileChooser.getMediaPath("chirp-2.wav"));

 Sound snap = new Sound(FileChooser.getMediaPath("snap-tenth.wav"));

 Sound clink = new Sound(FileChooser.getMediaPath("clink-tenth.wav"));

 Sound clave = new Sound(FileChooser.getMediaPath("clave-twentieth.wav"));

 root = new SoundBranch();

 SoundNode sn;

 SoundBranch branch1 = new SoundBranch();

 sn = new SoundNode(clap);

 branch1.addChild(sn);

 sn = new SoundNode(clink.append(snap)));

 branch1.addChild(sn);

 root.addChild(branch1);

 ScaleBranch scaledBranch = new ScaleBranch(2.0);

 sn = new SoundNode(clave);

 for (int i=0 ; i<3; i++)

 {sn.last().add(new SoundNode(clave));}

 SoundNode current = sn;

 for (int i=0 ; i<3; i++)

 {current.getNext().insertAfter(new SoundNode(snap));

 current=(SoundNode) current.getNext();}

 scaledBranch.addChild(sn);

 root.addChild(scaledBranch);

 root.playFromMeOn();

 }

riff3

riff4

riff2

riff2

riff1

riff1

riff1

subclass

subclass

Class Beaver extends Mammal

Knows how to swim(), slapTail(), catchFish()

Class Mammal extends Primate

Knows how to brushFur(), carryChildren()

Class Primate

Knows how to stand(), step(), eat(), and sleep().

Page 1 of 9

