Your initials: ____________________		Page: 6

CS 1316 Spring 2011 Midterm Exam #2
Name: ___

	Problem

	Points
	Lost
	Gained
	Running Total

	1a.
	 15
	
	
	

	1b.
	 15
	
	
	

	1c.
	 35
	
	
	

	2a.
	15
	
	
	

	2b.
	20
	
	
	

	Total
	100
	
	
	

#1. Imagine that you have a collection of nodes that have links like the diagream below. Let’s say that node1 is pointing to an instance of class SongNodeBranch and that all other nodes are instances of class SongNodeDoubly:

You should assume that the accessors and manipulators getPrevious, getNext, setPrevious, setNext, and getFirstChild and setFirstChild all exist. You may not use any other methods (e.g., remove, add, last, insertAfter).
a. Imagine that you have a new node referenced by variable newNode (containing, say, “riff5”). What code would you use to insert newNode between the nodes containing “riff3” and “riff5”? (Don’t worry about any casting here. We’re not so worried about syntax details.) You only have the variable reference to node1 to start from, but you can assume that you know the structure above.

b. Now imagine that you have a new node referenced by variable newNode2 (containing, say, “pattern1”). Write the program code to insert newNode2 as the child of the branch node1, before the node containing “riff3.” Make sure all next and previous links are correct.

c. Write a new method for the class SongNodeBranch called copyChildren. copyChildren can assume that all nodes linked to firstChild are instances of SongNodeDoubly. You can assume that instances of SongNodeDoubly know how to create a copy of themselves. The method copyChildren should create a copy of each the SongNodeDoubly nodes attached to the receiver object (e.g., node1.copyChildren()), with all next and previous links set up correctly.
For reference:
Recall that repeatNextInserting() looks like this :
 public void repeatNextInserting(SongNode nextOne, int count){
 SongNode current = this; // Start from here
 SongNode copy; // Where we keep the current copy

 for (int i=1; i <= count; i++)
 {
 copy = nextOne.copyNode(); // Make a copy
 current.insertAfter(copy); // INSERT after current
 current = copy; // Now append to copy
 }
 }

And HBranch’s drawWith() looks like this:
 /**
 * Ask all our children to draw,
 * then tell the next element to draw
 * @param turtle Turtle to draw with
 */
 public void drawWith(Turtle turtle) {

 // start with the first child
 DrawableNode current = this.getFirstChild();

 // Have my children draw
 while (current != null) {
 current.drawWith(turtle);
 turtle.moveTo(turtle.getXPos()+gap,turtle.getYPos());
 current = current.getNext();
 }

 // Have my next draw
 if (this.getNext() != null) {
 current = this.getNext();
 current.drawWith(turtle);
 }
 }
}

#2. Imagine that you are working with three classes that have these relationships and methods:
 (
Class
Primate
Knows how to
stand(
), step(), eat(),
and
sleep().
Class
Mammal
extends
Primate
Knows how to
brushFur
(
),
carryChildren
()
Class
Beaver
extends
Mammal
Knows how to
swim(
),
slapTail
()
,
catchFish
()
subclass
subclass
)

A. Complete the following method in class Beaver—show us the Java code, and tell us in a comment (like below) the class where each method is defined. (Each call to step() takes one step.)

/** When a Beaver wakes up, it stands, takes three steps to
its hole, then swims, catches a fish, and then eats. **/
public void wakeInMorning() {
	this.stand(); // From class Mammal
// Complete the rest…

}

B. In the middle of some other method, there comes this section of code describing the mating dance of the Beaver. The challenge is that the variable male is of class Primate. Fill in the missing code.

public void matingDance() {
Primate male = new Beaver();
/** The male Beaver takes three steps then 5 times in a row,
takes a step, brushes his fur, slaps his tail,
then takes another step. **/
for (int i = 0; i < 3; i++){
		male.step();}
//That was the three steps – you do the rest.
//PLEASE NOTE: Do think about casting!

