
Personalizing CS1 with Robots

Jay Summet†, Deepak Kumar‡, Keith O’Hara†, Daniel Walker†, Lijun Ni†, Doug Blank‡, Tucker Balch†

† College of Computing ‡ Department of Computer Science
Georgia Institute of Technology Bryn Mawr College

801 Atlantic Drive 101 N. Merion Ave.
Atlanta, GA 30308, USA Bryn Mawr, PA, 19010, USA

{summetj,kjohara,tucker}@cc.gatech.edu {dkumar,dblank}@cs.brynmawr.edu

ABSTRACT

We have developed a CS1 curriculum that uses a robotics
context to teach introductory programming [1]. Core to our
approach is that each student has their own personal robot.
Our robot and software have been specifically developed to
support the needs of a CS1 curriculum. We frame tradi-
tional problems (robot control) in terms that are personal,
relevant, and fun. Initial trial classes have shown that our
approach is successful and adaptable.

Categories and Subject Descriptors

K.3.2 [Computers & Education]: Computer & Informa-
tion Science Education—computer science education

General Terms

Human Factors, Languages, Experimentation

Keywords

Robots, CS1, Pedagogy

1. INTRODUCTION
We have developed a novel CS1 curriculum using personal

robots as a learning context. The personal robot provides
students with a tangible artifact that embodies their pro-
grams’ behavior and motivates them to learn. In the last
year we have taught CS1 using robots to over two hundred
and fifty students in seven classes ranging in size from 12 to
104 at three different institutions. Our curriculum approach,
including textbook [10], assignments, robot hardware, and
software were iteratively developed together, and this paper
presents our progress and early results.

Using a form of context (such as Media Computation [7])
allows students to quickly see a tangible and relevant result
from their efforts. However, media computation and other
visual programming systems such as Alice [5] or robot sim-
ulators such as Josef, Karel and Logo Turtle graphics [15,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

Figure 1: Student owned robots decorated for the

robot performances assignment.

14, 13] still live “in the computer”. Using robots to teach
problem solving, programming and fundamental computer
science concepts is not novel [13, 6]. Recently, robots have
also been used in upper division classes, for example, user
interface programming [4] and artificial intelligence [9, 2].

Our approach differs from many others due to three core
tenets. First, we believe that each student should have their
own personal robot. Second, our curriculum is driven by
the robot, as opposed to traditional programming concepts.
Third, the robot acts as dumb peripheral, and student pro-
grams are executed on the computer within an interactive
development environment.

One robot per student is a core tenet of our approach, and
this requirement has driven many curriculum and hardware
design decisions. Because every student will have their own
robot, the robots must be inexpensive, portable, and robust.
Fagin and Merkle previously had negative results teaching
CS1 with robots and believe the most significant factor was
limited hands-on time during assigned lab times with lab
based robots. In their words, “Students in robotics sections
must run and debug their programs on robots during as-
signed lab times, and are therefore deprived of both reflec-
tive time and the rapid compile-run-debug cycle outside of
class that is an important part of the learning process.” [6]

The personal robot approach gives students the freedom
to choose where they work, and sometimes play or show-
off with the robots. Students take their robots home to

433

Figure 2: Parallax Scribbler with the Lancet Fluke

upgrade board that provides Bluetooth, a camera,

additional sensors, and LEDs.

show what they have learned at college, gather in groups to
work on assignments, and decorate their robot for perfor-
mances. We have been convinced by anecdotal reports that
our robots attract other students into the course because
they are seen in public.

Although we cover the same topics as the ACM model CS1
(Imperative) curriculum, we use a “robot centric” approach.
For example, our “Robot Brains” chapter covers conditional
statements, and students learn about two dimensional array
manipulations when manipulating arrays of pixels from the
robot’s camera. In addition, the features on the robot have
been driven by the needs of a CS1 class. This in contrast
to typical consumer robots or research robots which have
very different requirements and markets. For instance, the
ability for the robot to be expressive with sounds, LEDs,
and motion trumps highly accurate positioning.

The final core tenet of our approach is that students write,
execute, and debug programs on desktop or laptop com-
puters. Our robots, although actually containing multiple
CPU’s running custom software, are presented to students
as a dumb peripherals. The robots respond to commands
issued by function calls in the student’s code and return
sensed data as return values. This eases debugging and the
students have a clear mental model of the locus of execu-
tion. Additionally, the desktop computer can provide extra
features (e.g. text-to-speech synthesis, complicated image
processing, graphics) that the robot might not be able to
provide on-board.

2. THE ROBOT KIT
The personal robot we are using is a commercially avail-

able Scribbler robot whose features are augmented by ad-
ditional plug-in hardware, called the Lancet Fluke that we
have designed and developed as a part of this project (See
Figure 2). This provides the following features on the robot:
two motors capable of providing a full range of variable
speed floor motions, a suite of sensors (light (3), proxim-
ity/obstacle (5), stall (1), and line (2)), programmable LEDS
(3), a two-tone speaker, a Class 1 Bluetooth wireless (100

meter range), a color video camera, and a Pen port. Each
student gets a CS1 Robot Kit which also includes a gamepad
controller, USB Bluetooth dongle for the computer, a flash-
light, color pens, a Myro software CD, the text, and a flashy
lunchbox carrying case. The Python-based Myro software
provided in the kit enables access through simple and intu-
itive library commands (see Section 3). To ease exploration
and debugging, the commands can be issued to the robot
interactively at an interpreter prompt or through a com-
plete program running on the host computer. The robot
(with Fluke) costs $150 and the remainder of the kit costs
an additional $40.

The robot is fully assembled and ready to run. We de-
liberately chose a fully assembled approach as opposed to
build-your-own kits such as the Lego MindstormsTMbecause
previous work has shown that even advanced computer sci-
ence students feel that they spend too much time on the
“design of robot chassis” when using MindstormsTM [8]. Be-
cause we are not teaching a multidisciplinary class such as
that by Weinberg et al. [16], presenting students with a fully
assembled robot removes the unnecessary complications of
mechanical assembly, allowing them to focus on computer
science concepts.

An earlier version of our prototype robot used the Scrib-
bler robot and a commercially available Bluetooth serial port
(wireless serial cable) adapter. In pilot classes we found
that having remote control of the Scribbler robot provided
students with motivation to learn basic programming con-
structs such as calculation, iteration, functions/encapsulation,
program flow/conditionals, and simple data types. However,
more advanced data types, such as two dimensional arrays,
were hard to motivate using only the Scribbler Robot’s built
in sensors. To provide more opportunities for learning, the
Lancet Fluke circuit board which adds Bluetooth, additional
sensors and the color camera was developed. The addition of
camera images to the other data types provided by the robot
sensors greatly motivates students, and allows for more com-
plicated assignments that exercise multi-dimensional array
manipulations. Additionally, students respond very posi-
tively to assignments asking them to shoot a robot movie,
create special effects, find and follow a red ball, or gener-
ate a web-page that shows the output of the current robot
sensors, including the camera image.

3. MYRO SOFTWARE
We use Python as our programming language in CS1 be-

cause it is a syntactically clean, dynamic language that al-
lows students to experiment in a live environment with a
minimum of syntactic difficulties. For a supporting argu-
ment, see [11]. Students interact directly with Myro, our
Python module that includes all robot control functions and
additional helper functions. Along with robot control, Myro
enables students to easily show images from the camera, cre-
ate simple graphic displays, and GUI dialogs to ask the user
for input. Myro implements lessons learned from Pyro, an
earlier Python based robotic control environment [3]. Stu-
dents can use Myro on Linux, MacOS X, and Windows. For
an example of a program using Myro, see Figure 3

Although Myro supports teaching in an Objects First man-
ner (by creating a robot object and calling methods such
as robot.forward(1,1)) our curriculum uses the syntactic
simplicity of Python to start with simple expressions and
function calls. Because Python is interactive, beginning stu-

434

from myro import *
init()

while timeRemaining(60):
ir = getObstacle(’center’)
if ir > 0:

p = takePicture()
beep(1, 440)
show(p)

Figure 3: Robot Security Guard: The robot beeps

and takes a picture when its IR sensor is tripped.

dents can experiment with the robot quickly simply by typ-
ing commands into the IDLE interpreter window.

4. CURRICULUM
We use the robot to motivate learning and stress collabo-

rative group assignments to build social bonds early. Com-
puter Science concepts are introduced as needed to make
the robot perform increasingly interesting and sophisticated
tasks. We want to give students the correct perception that
computer science is a creative and collaborative field, and
use creative group assignments as a way to build social bonds
between students. We hope that these social bonds will give
students a support network to be successful in CS1 and meet
people who they may consider taking CS2 with. The cre-
ative, open-ended assignments also portray Computer Sci-
ence as a field where you can use the programming skills
learned as a creative tool. We specifically avoid robot com-
petitions as we want our CS classes to have a collaborative
and non-confrontational atmosphere.

4.1 A Robot Approach to CS1
In our first lab, we help the students connect to their robot

and walk them through simple movement and output func-
tions (forward, backward, turnLeft, turnRight, beep, speak).
The first assignment asks the students to make their robot
play music and dance. In class, we explain the sequential
ordering of statements, program flow, and encapsulation in
functions to support the Music & Dance assignment.

While students are working on the Dance exercise, we be-
gin to cover variable assignment, simple calculations (+,-
,/,*), integer and float data types, and user input and out-
put. The dynamic nature of Python makes it easy for stu-
dents to experiment with these functions in the command
interpreter during lecture and in an associated lab.

A later assignment asks the students to implement a sim-
ple behavior (closed loop control) to make their robot flee or
seek light or avoid obstacles, etc. This assignment requires
the introduction of conditional (if, if/else, if/elif/else) state-
ments, relational operators (>, <, ==, !=) and the Boolean
data type.

Although our curriculum covers the traditional CS1 con-
cepts, we always motivate their introduction by requiring
them to make the robots perform as desired. Our textbook
does not have chapters on data types, functions or itera-
tion. Instead, it introduces students to their robot and the
concepts they need to control it with programs. We work
around the Scribbler’s lack of precise motor control by man-
aging student expectations and giving assignments that rely
upon closed-loop control or do not require extreme precision.
Students who want to make the robot draw a precise figure
quickly find out that in the real world, motors do not always

work as cleanly as the author of a linear control script would
like, and decision making and evaluation of sensor feedback
is required [12].

4.2 Group Assignments
Several times in the semester we assign the students into

three person teams to work on an extended creative assign-
ment. Because each student has a robot, we make the assign-
ments require multiple robots, ensuring that the students
work together. We give overall specifications and a grading
rubric to the students, but allow them wide latitude to the
content of their creations.

One example is the movie assignment. Students are given
a two part assignment where the overall goal is to produce
a movie using their robots as actors and camera-bots. The
first part of the assignment teaches data representation con-
cepts and multi-dimensional array manipulations, but the
students believe they are creating special effects for their
movies by playing with images captured by the robot’s cam-
era. The assignment is open-ended in that we specify various
“standard”special effects such as wipes, cross-fades, red-tint,
negate, and reverse, each with associated point values and
challenge the group to accumulate 100 points. We also give
the groups the option of creating their own special effect.
In the second part of the assignment, the students shoot,
assemble, and display their movie using the special effects
previously coded. Note that because Myro does not include
any “video” primitives, students must write code to capture
multiple images, store them in lists, and play them back,
along with any scene editing or re-arranging that they wish
to perform.

Another example is our end of class Robot Performances
(see Figure 1). Unlike the movie assignment, the robot per-
formances are done live, with an audience invited from the
general college community. Some groups used the robot sen-
sors or audience input in addition to giving a scripted per-
formance.

4.3 Class Atmosphere
Television shows such as Battle-Bots, which show robots

using weapons of destruction on each other, promote a soci-
etal view of robots as masculine, competitive, and destruc-
tive. In contrast, we make great efforts to show the ex-
pressive and interactive side of robotics, working to make
all students feel comfortable. None of our assignments have
students competing directly against each other or complet-
ing a timed “race” where direct comparison between stu-
dents is possible. We do have an “Escape the Maze” as-
signment; however, it is posed as a challenge for each stu-
dent to program their robot to successfully escape a maze,
with no bonus given for speed. Although performances are
graded, we do not rank them, and give multiple “awards”
to the best groups for different aspects of the performance
(“best costumes”, “best story”, “most entertaining”, “techni-
cal difficulty”). During the movie making assignment, robot
“Oscars” are given out to outstanding movies in recognition
of different aspects such as special effects, story, or robot
acting.

5. DEPLOYMENT, ROBUSTNESS, COST
Our default deployment model is that students will pur-

chase their own robot for the class, similar to a textbook.
The current 150 USD price makes the robot purchase com-

435

parable to that of a multi-semester science textbook such as
used in Calculus, Chemistry, or Physics. To ease the cost
to the student, the robot kit includes the free textbook as
a PDF on the CD, or students can download it from our
website. At the Georgia Institute of Technology, the robot
was stocked at the bookstores and individually owned by
students. This also resulted in a secondary market for used
robots, similar to used textbooks. Our goal is to continue to
reduce the price of the robot. Several institutions have also
purchased a group of robots and checked them out to stu-
dents for the semester (similar to a chemistry lab equipment
check-out model).

Considering that students carry them around in back-
packs, our current robot hardware is surprisingly robust.
We experienced about a 2-3% failure rate, comparable with
most consumer electronics. Having a few loaner robots to
rent out while a student waits for a warranty repair greatly
reduces stress levels. Perhaps the most successful and eas-
iest strategy makes use of the fact that many assignments
are done in groups. We deliberately force the students into
(different) groups so that they have a network of social con-
tacts within the class. For most group assignments, one
non-working robot can easily be worked around, and for in-
dividual assignments, students can borrow a friend’s robot
to test their code before they turn it in to be graded.

At Georgia Tech, where all students are required to have
their own laptops, computer failures caused more problems
than robot failures. Because we count on all students to
provide their own laptops, our labs have many power strips,
tables, and robot obstacle courses, but no lab computers.
Several students had problems with their personal laptops
ranging from a cracked motherboard to “clicking on a link
in an email” that required an OS re-install. As with robot
failure, the best workaround involved calling upon the social
network they had established in group assignments to com-
plete the assignments using a friend’s computer. At Bryn
Mawr College, the impact of non-uniform computers was
mitigated by using lab computers pre-loaded with the Myro
software.

One final environmental and monetary cost is batteries.
We have found that each student typically uses 18-24 AA
batteries over the course of a semester. We encourage stu-
dents to purchase NiMH rechargeable batteries, and provide
quick-chargers in our robot laboratories. The next version
of our robot will include integrated rechargeable batteries.

6. EARLY RESULTS
Starting in the spring semester of 2007, we taught three

CS1 classes involving two schools and 81 students using our
version 1 prototype (without a camera). Informed by our our
experiences in these classes, we developed our current, ver-
sion 2 prototype system. Beginning in Fall semester 2007,
four CS1 classes involving 178 students and three schools
have been taught using the personal robot approach and
the version 2 prototype. Class sizes ranged from 12 to 104
students. In addition to new hardware and software, our cur-
riculum material, including textbook, lecture notes & slides,
and assignments have undergone continuous improvement.

At Georgia Tech, 90.97% (131 of 144 students) were suc-
cessful (grade of A, B, or C) in our our Fall 2007 CS1-Robots
classes. These students consisted of both CS majors and
non-majors. For comparison, the success rate in the Fall
2007 non-robots CS1 class, which consisted of non-majors,

was 85.71% (78 of 91 students). Our other CS1 classes, CS1-
MediaComp (open to all majors other then engineering and
CS students) had a success rate of 73.06% (179 of 245 stu-
dents), and our CS1-Matlab classes (offered exclusively to
engineering students) success rate was 69.16% (740 of 1070
students). Analysis on the underlying grade distributions of
the Robots and Non-Robots class results in a χ

2 value of
12.0 and p = 0.035.

Fall ’07 Class Success Rate Students
Robots 90.97% 131 of 144

NonRobots 85.71% 78 of 91
MediaComp 73.06% 179 of 245

MATLAB 69.16% 740 of 1070
A final exam taken by students in the CS1-Robots and

CS1-NonRobots classes had five shared questions that did
not require experience with the robot but in some cases used
“robotic” situations. On average, the CS1-Robots students
did 10% better than the CS1-NonRobots students, and the
difference between them on four of the five questions was
statistically significant (p <= 0.015). However, as we did
not assign students randomly to each class, these early re-
sults are not a controlled study and simply indicate that the
Robots approach does not appear to be doing harm.

The average annual enrollment in Data Structures (CS2)
at Bryn Mawr College from 1995 to 2006 was 7.45 students.
The 2007 and 2008 classes, after the introduction of CS1
with Robots, averaged 17.5 students, more than doubling
the average enrollment. We are currently implementing a
longitudinal study (See Section 7) to determine the actual
effect our curriculum has on student retention and prepara-
tion for CS2.

In the summer of 2008 we taught the CS1 with Robots cur-
riculum to 50 instructors at two Faculty Enrichment work-
shops. We received surveys from fourteen of twenty six par-
ticipants from the first workshop and they all indicated that
they felt that the CS1 with robots approach would help at-
tract students to their classes, that the approach would be
a “real” computer science class, and that the class fit well
with the general goals of introductory CS courses.

7. FUTURE WORK
Myro 2 is implemented in Python, which allows it to run

on Windows, Macintosh, and Linux computers and made
development easy. We have been very happy with using
Python to teach CS1, but many institutions, and especially
high schools, are locked into teaching with other languages
such as Java and C++. Very little in the Myro API requires
Python, and we are working on implementing the Myro API
in a combination of IronPython and C#, two languages that
run on the .Net/Mono Common Language Runtime (CLR).

By implementing Myro 3 using the CLR any language run-
ning on the CLR can link against and call the Myro 3 API
without recompilation. This allows us to implement Myro3
API functionality in any CLR language, and allows instruc-
tors to use the Myro API with their language of choice. Cur-
rently, many standard and exotic languages are supported on
.Net or the open-source alternative, Mono. Because Mono
runs on Mac OSX and Linux, we will retain the platform
neutrality of the Myro API. On the Windows platform, we
will be able to leverage the Microsoft Robotics Development
Studio Robot Simulator. This will allow students running
Windows to program and run a simulated robot with accu-
rate physics and an advanced visualization.

436

We have developed a longitudinal tracking study that ex-
amines student retention and performance in CS2 after the
complete CS1 with Robots, as well as recruitment of non-
CS majors into the CS program. At Georgia Tech our first
cohort of students will be completing CS2 in Fall 2008, and
we are rolling out this study to many other schools that are
adopting the personal robot approach to CS1.

8. CONCLUSION
Our approach to CS1 education is contextually driven by

a low cost student owned personal robot that acts as a pe-
ripheral, executing programs running on the student’s com-
puter. The robot hardware design process was driven by
curricular needs balanced against the need for affordability
to promote individual ownership. Programs are executed
using a dynamic language on the student’s computer to ease
debugging and reduce cognitive overhead. The Myro soft-
ware API allows complex robot behavior to be specified with
very concise programs. With Myro, not only do we intend to
provide a low barrier to entry, but also a high ceiling for fu-
ture growth (e.g. support for image processing and machine
learning).

Over the course of four semesters we have iteratively de-
veloped and test taught a full CS1 curriculum at widely
varying institutions. Results of initial pilot classes influ-
enced a second generation of hardware and software driven
by curricular needs. Developed curricular material includes
a textbook, example assignments, and instructor material.
Our initial results are promising, and we are currently un-
dertaking a longitudinal study of the effects of our approach
on student performance in CS2, retention and recruitment.

All of our material can be downloaded free of charge from
our website, and we encourage you to use it as-is or mod-
ify it to meet your needs. We already know of adopters
who are adopting our Fluke hardware to drive iRobot Cre-
ate and humanoid robots, re-implementing Myro in C++
and translating our textbook to other languages. Others
are developing upper level Robotics & Architecture courses
based upon our open hardware and software platform. We
invite others to adopt our curricular approach to teaching
CS1 with personal robots and join our longitudinal study.

9. ACKNOWLEDGMENTS
The Institute for Personal Robots in Education gratefully

acknowledges seed funding received from Microsoft Research
and the continuing assistance from Stewart Tansley and
Jared Jackson. We are also greatly appreciative of the time
spent by instructors and faculty at other institutions to learn
and implement our curriculum. Finally, the students in our
classes offered numerous helpful comments and suggestions
on ways to improve the hardware, software, and curriculum.
We especially appreciate the permission given by many of
our students who consented to participate in our research
program. Research on human subjects has been approved
by the Georgia Tech IRB under protocol #H07339.

10. REFERENCES
[1] T. Balch, J. Summet, D. Blank, D. Kumar,

M. Guzdial, K. O’Hara, D. Walker, M. Sweat,
C. Gupta, S. Tansley, J. Jackson, M. Gupta,
M. Muhammad, S. Prashad, N. Eilbert, and A. Gavin.
Designing personal robots for education: Hardware,
software, and curriculum. Pervasive Computing,
IEEE, 7(2):5–9, April-June 2008.

[2] D. Blank, D. Kumar, J. Marshall, and L. Meeden.
Advanced robotics projects for undergraduate
students. In AAAI Spring Symposium, Robots and
Robot Venues: Resources for AI Education, 2007.

[3] D. Blank, L. Meeden, and D. Kumar. Python robotics:
an environment for exploring robotics beyond legos. In
SIGCSE ’03, pages 317–321, New York, NY, USA,
2003. ACM.

[4] J. Challinger. Efficient use of robots in the
undergraduate curriculum. SIGCSE Bull., 37:436–440,
2005.

[5] S. Cooper, W. Dann, and R. Pausch. Teaching
objects-first in introductory computer science. In
SIGCSE ’03:, pages 191–195, New York, NY, USA,
2003. ACM.

[6] B. Fagin and L. Merkle. Measuring the effectiveness of
robots in teaching computer science. In SIGCSE ’03,
pages 307–311, New York, NY, USA, 2003. ACM.

[7] M. Guzdial. Introduction to Computing and
Programming in Python, A Multimedia Approach.
Prentice Hall, January 2006.

[8] F. Klassner. A case study of lego mindstorms’
suitability for artificial intelligence and robotics
courses at the college level. In SIGCSE ’02, pages
8–12, New York, NY, USA, 2002. ACM.

[9] A. N. Kumar. Three years of using robots in an
artificial intelligence course: lessons learned. J. Educ.
Resour. Comput., 4(3):2, 2004.

[10] D. Kumar, editor. Learning Computing with Robots.
IPRE Publication, 2008.

[11] R. P. Loui. In praise of scripting: Real programming
pragmatism. Computer, 41(7):22–26, July 2008.

[12] F. Martin. Real robots don’t drive straight. In AAAI
Spring Symposium, Robots and Robot Venues:
Resources for AI Education, 2007.

[13] S. Papert. Mindstorms: Children, computers, and
powerful ideas. Basic Books, January 1981.

[14] R. E. Pattis. Karel the Robot (2nd Edition). John
Wiley and Sons, 1995.

[15] I. Tomek. Josef, programming for everybody. In
SIGCSE ’82, pages 188–192, New York, NY, USA,
1982. ACM.

[16] J. B. Weinberg, W. W. White, C. Karacal, G. Engel,
and A.-P. Hu. Multidisciplinary teamwork in a
robotics course. In SIGCSE ’05, pages 446–450, New
York, NY, USA, 2005. ACM.

437

