Using Squeak for Teaching User Interface Software

Mark Guzdial
College of Computing
Georgia Institute of Technology

Abstract

Squeak is a new programming language that is partic-
ularly appropriate for learning computer science. It of-
fers an excellent infrastructure for interesting projects
(e.g., multimedia, Web browsing and serving), and all
source code is included (and written in Squeak) from
the virtual machine, windowing, on up. Squeak is be-
ing used in a course on Objects and Design (focusing on
the development of user interfaces), both to enhance the
infrastructure for a course on, and to change how user
interfaces are taught. Rather than teach a toolkit, the
focus is now on teaching students how to build toolkits.
This paper presents a pilot study suggesting benefits of
our new approach.

1 Squeak’s Beginnings

Squeak is a new programming language based on
Smalltalk-80, but interestingly, skipping some 15 years
of development [3]. Squeak is highly cross-platform,
running on Windows, Macintosh, Linux, BeOS, and
Windows CE devices (among others) bit-identically. It
has been updated with modern features, such as web
browsing and serving, 3-D graphics engine, and power-
ful sound synthesis. Squeak is an excellent pedagogical
platform because it doesn’t presume a windowing op-
erating system. Instead, Squeak implements all of the
windowing, multimedia, and other software in itself (in-
cluding its own virtual machine), providing both a rich
set of examples and a bare substrate on which one can
explore and build user interfaces from scratch. When

We at Georgia Tech began teaching with Squeak in 1998
in our Sophomore, required course on object-oriented

T A] . S
e L

Figure 1: Drawing a line across window boundaries in
Squeak

analysis and design emphasizing user interface design
and implementation. We had been using ParcPlace Vi-
sualWorks, because we preferred the pure objects of
Smalltalk to C++. But VisualWorks didn’t run on all
the platforms that our students were using (e.g., Linux)
and was quite expensive, we were looking for an alter-
native. What we found in Squeak, however, was the
opportunity to teach user interfaces in a new way. Be-
cause Squeak does not presume a windowing user inter-
face, all the windowing software is written in Squeak.
That means that it’s possible to write over the windows
(Figure 1) and even to construct one’s own windows—or
to program user-interfaces without windows. It’s this
“build from scratch” capability which has been used to
change how we teach user interface software.

2 Squeak in Objects and Design

The course in which Squeak is used is an introduction to
Objects and Design'. Students in this class have already
had?:

e A one semester Introduction to Computing where
some Scheme is taught.

e A one semester Introduction to Object-Oriented Pro-
gramming in Java.

"http://coweb.cc.gatech.edu/cs2340 is the class
CoWeb, including lectures and example code

2This description focuses on the current state of the class
under semesters. Previous to Fall 1999, Georgia Tech was
under the quarter system, but a similar class was offered
with similar pre-requisite classes

e A one semester course on Languages and Translation
in C using tools like LEX and YACC to explore the
issues of language implementation, from models of the
bare processor up through tokenizing and parsing.

The goal of the Objects and Design course is to explore
higher-level issues of design. The class is large: Typ-
ically 100 or more students a semester. Students are
taught an object-oriented design process, which starts
from analysis (with CRC Cards) and leads through
design (using UML class diagrams). The course also
serves as an introduction to the issues of user inter-
face implementation and design. Modern user interfaces
grew up with object-oriented programming (starting in
Smalltalk), and using user interfaces to explore object-
oriented concepts (e.g., aggregation, composition, in-
heritance, delegation) is natural and offers concrete ex-
amples. For example, how windows interact with their
component objects allows for exploration of how mes-
sages get passed between peer objects, with the oppor-
tunity of visual experiments.

The course centers around a semester-long, team
project. Because the class is using Squeak with its rich
multimedia support, the team project often involves
interesting manipulation of media. In one semester,
students had to build personalized newspapers where
stories were drawn from web-sites and laid out (multi-
column with graphics). To encourage flexible designs,
student teams are asked to serve their applications
through more than one kind of interface. In the news-
paper example, students had to be able to serve the
newspaper via a Web interface (served from Squeak’s
internal webserver) and via PostScript (generated using
Squeak’s PostScript Canvas).

We? originally taught the class in VisualWorks, rather
than C+4+, for the emphasis on pure object-oriented
semantics. With the advent of Java, we have continued
to use Squeak for several reasons:

e We don’t have a standard language in our curricu-
lum. More advanced classes are taught in C, C++,
Java, and Lisp-based languages. The undergraduate
curriculum at Georgia Tech is designed around an
explicit decision to encourage our students to know
multiple languages and paradigms.

e That said, the majority of our courses do use a C-
based programming language. By requiring the use of
Squeak in a project-based course, we make sure that
our students have serious programming experience in
something not C.

3“We” being the developers and teachers of the course,
most notably Rich LeBlanc, Gregory Abowd, and Jon
Shilling.

e Our experience with the course suggests that students
can complete in a single semester more sophisticated
and interesting projects in Squeak than in Java.

2.1 A Tiny Taste of Squeak

For those not familiar with Smalltalk, I offer a brief taste
of the language. All computation in Squeak is triggered
by message sends. Even an expression like 3 + 4 is se-
mantically? “Send the Smalllnteger 3 the message ‘+’
with the argument Smalllnteger 4.” All control struc-
tures are message sends, with the body of the control
structure in a block delimited by square brackets, e.g.,
1 to: 10 do: [:i | sum := sum + anArray at: i] which sums
the first ten elements of the array anArray.

Squeak, like Smalltalk, late-binds all that it can. There
are no explicit type declarations nor type checking. De-
termining the method for a particular message send is
done at run-time.

Squeak is implemented as a bytecode compiler for a vir-
tual machine. Squeak’s virtual machine interpreter is
actually implemented in Squeak, but the interpreter is
compiled to C (and then to the native machine plat-
form) for practical performance. The virtual machine
for the PowerPC is about one megabyte, and its perfor-
mance (on a 233Mhz G3) is nearly ten million byte-
codes/second and 780K message sends/second. The
performance is good enough to do sound synthesis, in-
cluding MIDI, all in Squeak.

Squeak’s development environment is defined within it-
self. The compiler, class browsers, debugger, and even
higher-level development tools such as change sorters
for collaborative programming are all implemented in
Squeak. While the downside of this approach is that
students’ carefully tweaked Emacs environments can’t
easily be used for Squeak programming, the upside is
that literally any aspect of the programming environ-
ment can be customized from within Squeak.

2.2 Using Squeak for Teaching Ul Software

Since the course has moved to Squeak, the approach to
learning and teaching user interfaces has changed, to
good effect. One of the challenges of teaching user in-
terface software is helping students to understand the
Model-View-Controller (MVC) paradigm. Basically,
MVC describes a mechanism for flexibly connecting user
interfaces to underlying object structures.

e Models are the application objects, drawn from an
analysis of the problem domain.

4In actual practice, the compiler short-circuits such com-
mon messages into direct calls.

e Views are the user interface objects, including but-
tons, text areas, and the like.

e Controllers are objects that mediate user interface
events (like mouse moves and keystrokes) and transfer
them to the appropriate objects.

MVC has always been difficult for students to under-
stand. John Carroll and his colleagues identified this
problem in their work teaching Smalltalk in the 80’s [1].
The problem is the complexity of a loosely-coupled sys-
tem. Students want models to directly control views (or
vice-versa), but the MVC paradigm creates layers of in-
direction which allow models and views to be modified
separately.

Our Early Experiences Teaching MVC The
teachers of Objects and Design identified the problem
of learning early on, when we first started teaching
this course in 1993 under the quarter system. We be-
gan tracking performance, by using similar problems on
midterm examinations and comparing the results across
terms. For example, in the Winter 98 midterm exam,
students were asked to design part of the objects for a
phone system, and then asked in a separate problem:

Displaying the Incoming Phone Number.
The central office now gives you a new feature: You
can ask a network connection for its phoneNumber.
Now, its possible to have a View on the phone that
displays the phone number for the incoming call.

How would you change your Phone class (or oth-
ers) to take advantage of this feature, assuming an
MVC approach? You can assume that the Phone
is subclassed off Model. Be sure to tell me (a) how
the PhoneNumber View finds out about an incom-
ing call (e.g., once the call arrives at the Phone
instance, how does the View know that it needs
the phone number?) and (b) how the View finds
the number to display (e.g., what does the View do
to get the phone number?).

The correct answer to this problem was to identify that
the model broadcasts a change to all of its views, and
the views query the model for the updated value (in
this case, a phone number). Partial credit was provided
for any part of this answer, e.g., that models broad-
cast to the views, but without stating that a “change”
is broadcast (an important aspect of MVC, since the
model should not presume to send the actual data to
the views and thus create a constraint on what the views
might want given the particular change in the model).
This exact same problem was used in the Spring 1997
midterm exam.

An alternative form of the problem was used in the Sum-
mer 1997 and Spring 1998 midterm exams. After de-

Table 1: Results of Traditional Instruction on MVC

Term (Number of Students) | Average | StdDev
Spring97 (86) 0.44 0.36
Summer97 (48) 0.54 0.40
Winter98 (107) 0.54 0.34

signing the objects for an alarm system, students were
asked:

Alarm Status System. You are now designing
the alarm status monitoring systemthat is, an in-
terface to watch over the alarms. You decide to use
a Model-View-Controller structure for your system.
You decide that you will have an Alarm class which
will be your model, and an AlarmView for display-
ing the status. Someone else is building your con-
troller — you dont worry about that.

A. How does the Alarm object alert the AlarmView
that it must update?

B. How does the AlarmView get the alarm status
to be displayed?

During the Spring 1997, Summer 1997, and Winter
1998, the class was taught using Coad and Nicola’s
Object-oriented programming (1993, Prentice-Hall) with
VisualWorks. MVC was introduced using their exam-
ples and explanations. The case study around which
MVC is introduced by Coad and Nicola is the construc-
tion of a user interface for a “Counting” device (a win-
dow displaying a count and increment, decrement, and
reset buttons). The concepts of model, view, and con-
troller are introduced, and they’re pointed out as the
user interface is created. In a following chapter, a vend-
ing machine is created. The vending machine’s user
interface is created using a set of classes on top of Visu-
alWorks’ Ul classes, where the Coad and Nicola classes
and methods are named to make explicit the model,
view, and controller roles more explicit than Visual-
Works’ basic Ul support. In both of these chapters,
user interfaces are built on top of VisualWorks’ existing
abstractions.

The average and standard deviation for the MVC
Midterm Problem in each of Spring 1997, Summer 1997,
and Winter 1998 appears in Table 1.

A New Approach to Teaching MVC The Spring
1998 term, however, was the first one in which I tried
teaching user interfaces in a new way. Rather than sim-
ply describe MVC with examples, I “built” MVC in
class with live walkthroughs of code and live demon-
strations of the results. Iled students in lecture through
three iterations of a user interface for an application al-
ready designed in class (a Clock). In all three iterations,

Table 2: Results of New Approach Midterm Problem
on MVC

Term (Number of Students) | Average | StdDev

Springd8 (103) 0.86 0.27

I used no existing Ul classes. Instead, “windows” and
“buttons” were drawn (using the Logo-turtle-like Pen
object in Squeak) directly on the Display object, and
user interface events were read by polling the Sensor
object.

e In the first iteration, the interface is built the most
obvious way, by hacking the application objects to
create a user interface. The students are introduced
to the concept of an event loop to poll for events and
dispatch them appropriately. But the event loop and
all display objects were smack in the middle of the
domain models, which defeats good object-oriented
principles of appropriate responsibility.

e In the second iteration, window and button objects
are created. Now, the event loop sits inside the win-
dow (ClockWindow) which dispatched the events into
the buttons. The buttons sent messages to the model
objects. But the updating of text feedback from the
model (as described in the midterm problems) was
still occurring within the models themselves.

e In the third iteration, the changed-update broadcast
mechanism in Squeak is introduced which relates
models and views by dependencies, not directly. Still
without using any existing Ul classes, we added a
text view to our window and button classes, creating
a tiny but relatively modern mini-UI system.

The results in the Spring 1998 midterm were markedly
different on the Alarm version of the problem, as seen in
Table 2. The exact same graders and exact same grad-
ing scheme were used between the Winter and Spring
1998 terms. A t-test comparing the two terms showed
the difference to be significant p < 4.4F — 13.

This is not a rigorous experiment—not all relevant vari-
ables are being controlled. Students were not randomly
assigned to the conditions. The Spring 1998 students
may just have been better than the Winter 1998 stu-
dents. Our intuition is that that’s not true. We did com-
pare other problems of a similar nature between the two
terms, and found that on other problems, the average
favored the Winter 1998 students. But it’s still possible
that the Spring 1998 students were more amenable to
learning MVC. Nonetheless, the findings are promising
and suggest that continuing with this approach makes
sense.

Over the semesters the course has used variations of
this approach. In one semester, students were to build
programs in lab based on the classes developed in the
iterative process described (e.g., ClockWindow). In an-
other couple of semesters, students were offered the op-
tion of creating their own user interface toolkits as part
of completing their team project. The toolkit-building
students were given the opportunity to present their
toolkits to the whole class. If any other peer student
groups used one of the students’ toolkits, the builders
received extra credit.

It’s worth noting that replicating the approach of build-
ing user interface toolkits from scratch is fairly hard
to do in most other languages and operating systems.
Most operating systems do not allow you to write di-
rectly to the screen without a lot of low-level hacking.
While it’s certainly possible to get a window from the
operating system and write new windowing software
within that window (which is essentially what Squeak
does), the practical reality that all that code already
exists in Squeak makes it appealing. Further, Squeak
works on virtually all modern platforms, which means
that individual windowing system differences don’t en-
ter into the problem as they might.

2.3 Using Squeak for Infrastructure and Case Study

My research is on computer-supported collaborative
learning (CSCL), with an emphasis on communicating
through multimedia, where Squeak is a natural plat-
form. By using Squeak in the course as well, the class
builds not only upon the developing experience of myself
and my graduate students, but the class is also set up
for an interesting use of Squeak as infrastructure. Stu-
dents in Objects and Design use my lab’s tools as part
of the normal practice of the class, and then we use the
tools as a case study to critique the tools’ interface and
object design.

One of the tools that we use in Objects and Design
is the CoWeb (Collaborative Website), also known as
Swiki since it’s a Squeak interpretation of Ward Cun-
ningham’s WikiWiki Web®. The CoWeb is perhaps the
simplest possible collaboration tool: Every page is ed-
itable by anyone (via an edit link on the page), and
anyone can easily create new pages and links between
pages (Figure 2). By typing *A New Page* on any page,
a new page is created and linked in with the name A New
Page. Surprisingly, such a structure does not lead to an-
archy. Instead, it is now in use by some 120 groups at
Georgia Tech, across ten servers, and is being adopted
by other schools around the world®.

"http://w2.com/cgibin/Wiki
5The CoWeb is released as an

source project. For more
http://pbl.cc.gatech.edu/myswiki.

open
information, see
Research on the

RS N—" -

|"" T rglaTEes
e SQuenkers

el b Crarpin Trck Eyum
“:-1'1-;:- Dearpn Hayeuhary

.

o —_—r——————
L
E R e A o s e

i TR

o WL ettt Bty Bk
e e e
i o B Wi e 5 =

o
e = Py

= |

Figure 2: A CoWeb — normal view on left, and edit view
on right

We use the CoWeb in several ways in Objects and De-
stgn.

e Students are asked to create pages for themselves with
their own name (e.g., by typing *Mark Guzdial* on
the Who’s Who page). From then on, they can “sign”
their postings with their name, and that name links
to their page where they can introduce themselves.

e Each assignment has its own Q&A page. Such a per-
sistent structure as conversation on a Web page has
been shown to lead to more extended discussion [2].

e The class CoWeb also has a number of small activi-
ties, like the Surprises page where students are asked
in their third or fourth week of class to leave notes to
the next class about what they wish they had realized
in the first week of class.

e The most popular activities in the CoWeb are the
exam reviews. For each exam, a set of example prob-
lems is posted with a question/comment page linked
to each problem. Students are welcome to ask for
help on the problem, post solutions, or critique each
other solutions. The pages are monitored by teach-
ers and teaching-assistants, but the “correct” answers
are never posted by them. Wrong answers are pointed
out, but correct answers are met often with silence or
“Yes, that would work, but there are other (perhaps
better) solutions.” This encourages students to plug
away at a problem (not just memorize the first an-
swer), yet provides useful feedback. In interviews and
surveys (as well as the raw measure of participation
rates), students identify this as one of the most useful
activities in the CoWeb. In a sense, it uses CSCL to
create a class-wide study group.

Since the CoWeb is in Squeak (built on a webserver also
in Squeak), we are able to use it as a case study. Typi-
cally, the class disassembles the CoWeb before students

CoWeb in higher-education classes including Computer
Science is funded by the National Science Foundation and
the Mellon Foundation.

have to build their own web interfaces. We critique the
object design of the CoWeb and its user interface. For
example, the original CoWeb was not well-designed for
the variety of different looks-and-feels that users want
in their CoWebs, so it serves as a point of discussion
for how to create flexible object structures. Also, the
interface of the CoWeb is based around HTML, which
has not been welcoming to Mathematics classes whose
central medium (equations) are difficult to express in
HTML.

There is a definite synergy about critiquing a tool which
the students themselves use, which they have complete
access to, and which they can take apart and reuse in
their own class projects. Students in Object and Design
frequently start running their own CoWebs on their own
computers. Some also participate in the Squeak and
CoWeb open source communities, contributing features
and bug fixes.

3 Conclusion

The benefits of Squeak in a user interface class are
important but unusual. Squeak offers real toolkits
and infrastructure for building interesting and complex
projects. But at the same time, Squeak offers this in-
frastructure on top of lower levels of itself. Using the
same language, students can build sophisticated high-
level projects, or explore the lowest levels of the window-
ing code itself. Thus, what Squeak offers is an interest-
ing combination of being able to build from the bottom
up, yet build intriguing things, all within the same lan-
guage and development environment. As the experience
described here shows, there seems to be learning ben-
efits to the “from scratch” approach of teaching user
interfaces.

References

[1] Carroll, J. M., Singer, J., Bellamy, R., and Alpert,
S. A view matcher for learning smalltalk. In Pro-
ceedings of CHI’90: Human Factors in Computing
Systems, J. Chew and J. Whiteside, Eds., vol. Seat-
tle, April 1-5. ACM Press, New York, 1990, pp. 431—
437.

[2] Guzdial, M., and Turns, J. Effective discus-
sion through a computer-mediated anchored forum.
Journal of the Learning Sciences, To appear (2000).

[3] Ingalls, D., Kaehler, T., Maloney, J., Wallace,
S., and Kay, A. Back to the future: The story
of squeak, a practical smalltalk written in itself.
In OOPSLA’97 Conference Proceedings. ACM, At-
lanta, GA, 1997, pp. 318-326.

