
Computer Science is more important than Calculus:
The challenge of living up to our potential

By Mark Guzdial and Elliot Soloway

In 1961, Alan Perlis made the argument that computer science should be considered part
of a liberal education, and that everyone should learn to program. M. Mitchell Waldrop
in his book The Dream Machine (Viking: 2001) says that he made the argument that
programming was a fundamental intellectual skill, like mathematics. He argued that
computers “will participate in almost every intellectual transaction that goes on in the
university.” Calculus is generally considered part of a liberal education—truly educated
people know something significant about calculus. Calculus is the study of rates, and
rates are important to many fields. Perlis argued that computer science is about process:
Its specification, its execution, its composition, and its limitations. And process is
important to everybody.

What would computer science education look like if we took Perlis’ argument seriously?
We can set up some expectations on what we would hope for a core liberal arts course.
Almost everyone should be successful at the introductory course in the field. Students
should emerge from the course with a sense about what’s interesting in the field, and they
should have some practical knowledge that they can apply in their fields. Both men and
women should be equally successful at it.

Anyone who’s taught a first course in computing knows that we don’t come close to
those goals. Withdraw-or-failure rates of 50% are not uncommon. Even at the recent
SIGCSE conference, the best practices completion rates for non-majors in CS1 (the
ACM/IEEE curriculum term for a first course in computing) were around 65%. The best
we can do is only lose 35% of the students? The reports from the American Association
of University Women (AAUW) and the book Unlocking the Clubhouse (MIT Press:
2001) by Margolis and Fisher paint the picture clearly with respect to gender in computer
science. Women are a scarce resource in computer science, and the retention rates are
even worse for women than men. It’s fair to say that our current state is that many
students emerging from CS1 hit the ground running—away, with no desire to ever return.

Alan Kay likes to argue these days that “the Computer Revolution hasn’t happened yet.”
He says that the potential impact of the computer across our society is much greater than
what we’ve seen so far. With CS1 in the state that it is, is it any surprise that we don’t
find professionals of all fields steeped in computer science and ready to apply its lessons
to their fields?

Perlis places a high bar for us. Let’s consider some of the implications of taking him
seriously and think about building introductory computer science education that can be
part of a liberal education. The argument that we are going to make is this: If we want to
attract and retain a greater proportion of the students, we need to change our pedagogy,
which includes changing what we teach. What we teach now is not interesting and

motivating the majority of students—the raw data tell us that. We are going to provide
concrete examples of the kinds of things that we feel can be taken out of introductory CS
courses and what kinds of authentic content might fill a new kind of introductory CS.

Is sorting fundamental?
Much of what we teach in introductory computer science is completely practical and
relevant for students who will one day be software developers, but is completely
impractical and irrelevant for everyone else. This point was struck home for us recently
in a conversation with a Chemical Engineering professor who had spent several years in
industry doing molecular modeling. He reported that a program of 100 lines was
enormous for him, and the longest program he ever wrote had 200 lines in it. He makes
extensive use of libraries and external modules so that he writes as little as possible.
Most of his programs are about 10 lines of code. “If I followed the commenting
requirements that you guys have,” he said. “My programs would be twice as large!” This
is someone who does a lot of programming—sometimes several programs in a week. But
we might call him a “tool builder” rather than a “software developer.” A great many of
the non-majors who take our introductory courses will end up being like him, not like us.
What do we need in introductory computing courses to help this kind of future
professional?

Most introductory computing curricula include a variety of concepts that are important
not for their direct relevance to the tasks of the students, even as professionals, but for
their value in demonstrating concepts or in serving as exemplars for important ideas.
Many of the more esoteric data structures that we teach will never actually be
implemented by any of our students. (Let’s count the number of AVL and red-black trees
we’ve implemented in the last year, shall we?) But even the uncommon data structures
are helpful in describing how complex data structures should be constructed, if need be.

Sorting is a good case in point. Very few programmers will ever implement even half of
the sorting algorithms we talk about. Most programmers, we argue, will never write a
sort at all! Sorting facilities are so common in modern libraries that you will almost
always reuse someone else’s, rather than build your own. Yet, still we teach every
student who walks in our doors about bubble sort and quicksort and heapsort. The
argument is sound. Sorting is a good example of something which can be done slowly
and poorly, or quickly and well, and thus serves to show the difference between O(n log
n) and O(n2). But can’t we make similar points without spending weeks teaching
something that no one, especially not the tool builders, will ever use?

At Georgia Tech, we are now teaching an introductory computing course, Introduction to
Media Computation. The focus of the course is to learn programming and computing
concepts in a context of manipulating media. We splice sounds (then tweak the volume
to make them sound right), teach chromakey like the weather forecasters use it, and
explain how Photoshop filters work. We started with 120 non-CS and non-Engineering
students, 2/3 female. For these students, the computer is a tool for communication much
more than calculation, so the media context feels relevant and important to them.

In the Media Computation course, the difference between algorithm complexity comes
through very naturally. Sound processing algorithms tend to run very quickly. Even
though there are thousands of samples (16 bit values that each represent 1/44,100th of a
second of sound) in each sound, they’re only a 1-D array and most processing takes only
a single loop. Picture processing takes longer. 2-D matrices of pixels (picture elements)
almost always require nested loops. Movie processing takes forever, because we have to
do the 2-D processing for each one of the n frames. It’s a simple argument that matches
their experience with writing and running these kinds of programs and that makes clear
an important point about the limitations of computation.

Sorting is just a case in point. The point is that thinking about computer science as part of
a liberal education will require us to re-think what we teach and where we teach it in the
curriculum. Some of the interesting but uncommon issues may belong later in the
curriculum, after more relevant and motivating issues come first.

Sampling and other new fundamentals
The media computation course is really only one way to make CS1 more practical and
relevant to non-majors. We can imagine many others. We could build a course around
web harvesting and visualization of the harvested data, for example. Students could build
web spiders, use various pattern matching and parsing tools to pull out the data, then
build three-dimensional visualizations of what they found. The Virtual Worlds course
that Randy Pausch has built at CMU with his programming environment Alice
demonstrates that 3-D visualizations are well within the range of a non-major
undergraduate.

As we think about introductory computing courses that are about something, not just
about the abstractions, we may find that there are new concepts that need to be added to
our courses. There are fundamental concepts and algorithms that arise in these concrete
domains that we are currently not teaching. That observation raises the question of what
is fundamental and how do we decide.

Let’s take the media computation context, since it’s one with which we’ve become the
most familiar. Below we are going to provide examples that lead us to a concept that is
fundamental to media computation, but doesn’t make it into most CS1 courses. The
examples are in the programming language Python (http://www.python.org). The version
of Python we’re using is Jython (http://www.jython.org). That’s Python implemented in
Java which makes the Java class libraries accessible, and allows us to create a cross-
platform, multimedia API for the students. For the most part, Python works as a kind of
pseudo-code. The only prefatory statement that you may need is that blocks are
delimited in Python by indentation: If it looks like a block, it is one.

We’ll start with a program to crop a woman’s face out of a picture and paste it into a
canvas image.

http://www.python.org/
http://www.jython.org/

def copyBarbsFace2():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+(200-45)):
 sourceY = 25
 for targetY in range(100,100+(200-25)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1
 show(barb)
 show(canvas)
 return canvas

This function gets the filename of our source picture “barbara.jpg” from a globally
defined media folder. The canvas is a blank 7x9.5 inch JPEG image. (It’s easier to
provide blank files and associate all picture objects with JPEG files than to deal with the
abstractions of constructors that allow creation of invisible pictures.) We then construct a
loop to copy the picture starting at (45,25) and extending to (200,200). We copy into
(100,100) and then as many pixels over as we need. At each pixel, we get the color from
the source picture, then set the color of the corresponding pixel in the target. At the end
of the loop we increment the sourceY and sourceX indices to synchronize with the
targetY and targetX index variables in our for loops. At the end, we display each
picture.

This is a fairly simple example of copying from one matrix into another. We don’t
typically spend much time in any of introductory computing courses on copying elements
of matrices and arrays around—it’s simply boring when the data is made up. But when
the elements are colors in pixels, or samples in sounds, it’s suddenly interesting to do all
kinds of copying and variations on those copies.

Here’s another version of the same code, with a couple of small but significant changes
underlined. Now, instead of incrementing the source indices by 1, we increment by 0.5
and take the integer (int function) of the result. The sequence of 45, 45.5, 46, 46.5…
becomes now 45, 45, 46, 46… We end up taking every pixel twice. This is the process of
scaling up a picture: Doubling its size. Notice that the target size necessarily doubles.
def copyBarbsFaceLarger():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")

 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)*2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)*2)):
 color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 0.5
 sourceX = sourceX + 0.5
 show(barb)
 show(canvas)
 return canvas
A similar change is needed to scale down a picture. We need fewer pixels in the target,
so skip a few. If you skip every other pixel (increment the source indices by 2), you
shrink the image by ½.

Let’s shift gears to sound. The example below copies a sound backwards. We open the
same sound as a source and target. (That’s an easy way to assure that two arrays are of
the same size.) We start the sourceIndex at the end of the source, and move the
targetIndex from the start to the end of the target. Each time through the loop, we get
one sample value from the source and set the corresponding value in the target. We then
decrement the sourceIndex and increment the targetIndex. The result is a reversal of
the sound.
def backwards(filename):
 source = makeSound(filename)
 target = makeSound(filename)

 sourceIndex = getLength(source)
 for targetIndex in range(1,getLength(target)):
 sourceValue = getSampleValueAt(source,sourceIndex)
 setSampleValueAt(target,targetIndex,sourceValue)
 sourceIndex = sourceIndex - 1

 return target

Again, this is a simple loop copying from one array to another—relatively simple and
boring for most CS1 classes. The result, though, is an interesting and concrete effect:
You hear yourself or your teacher sounding funny. (Mark likes to use Elliot’s recording
of “Hello, world!” from Elliot’s SIGCSE2002 keynote.)

Let’s make a small tweak to the backwards function. We’ll move both indices forward
now, instead of the source decrementing while the target increases. But we’ll increment
the source index by 0.5 and take the integer of the source index when accessing the
sample value. We’ve seen this pattern: The result is taking every sample twice. The

concrete result is that the sound slows down, and the frequency of the sound drops by ½.
If we applied this function to a sound at 440 Hz, the resultant sound is at 220 Hz.
def half(filename):
 source = makeSound(filename)
 target = makeSound(filename)

 sourceIndex = 1
 for targetIndex in range(1, getLength(target)):
 sourceValue=getSampleValueAt(source,int(sourceIndex))
 setSampleValueAt(target, targetIndex, sourceValue)
 sourceIndex = sourceIndex + 0.5

 play(target)
 return target

You can probably figure out how to do the other sound transformation, the doubling of
the frequency: Simply take every-other sample. By skipping every other sample, we
speed up the sound and double the frequency.

These examples demonstrate the concept of sampling, a fundamental concept in media
computation. There are lots and lots of samples in a sound (44,100 per second in CD-
quality sound), and lots of lots of pixels in a picture. Skipping a few or doubling a few
still allows us to recognize the sound or the image. Sampling is a rich subject with the
potential for a lot of exploration and opportunities for learning.

• Do distortions occur in sampling? Of course, and there are algorithms for
blurring that were invented to deal with these kinds of distortions.

• If you shift the frequency of a source sound up (skip samples), and the target is
long enough, you will run out of source samples. Should you start over at the first
sample? That will probably work, but there may be problems with having
“breaks” in the sound. Detecting and fixing breaks leads to opportunities to think
about pattern matching in large data sets.

• There are other algorithms for sampling which lead to fewer distortions and
provide an opportunity to introduce concepts like averaging or interpolating.

Is sampling fundamental computer science? That’s a hard question. Is sampling a useful
concept to include in a CS1 course? That’s a much easier question. Shifting sounds to
different frequencies is what every sampling keyboard does. Resizing images is what
people do all the time in applications like Photoshop and Word. It’s generalizable,
concrete, relevant, and understandable. It’s authentic. Sampling is a pedagogically-rich
concept that is attractive for both majors and non-majors.

Of course, we can’t just add sampling to every CS1 curriculum. CS1 courses are over-
full with concepts as it is. But if we get rid of some of those concepts that aren’t relevant
for everyone, we have room for others that are more relevant.

Are there concepts like sampling that are key in other potential CS1 contexts, like web
harvesting and visualization? We don’t know—there may certainly be. We can only
know by trying these additional contexts. The opportunity is ours to re-think what
“fundamental” means and what belongs in an introductory course.

Conclusion
Alan Perlis’ challenge to become part of the core of the University is over 40 years old
now. To meet that challenge, we argue that we need to re-think our introductory
computer science content in order to remove the old and broken and replace it with the
new and relevant. Computer science is broader, deeper, and more interesting than it was
40 years old. We don’t have to use the same examples to illustrate the same concepts —
the range of algorithms we have to choose from, the examples we can draw on, and the
references to real applications that we can make give us enormous flexibility. As we re-
think introductory computer science, we can use these opportunities to create a
curriculum that is authentic and motivating. And in so doing, we would rise to Perlis’
challenge – computer science can become a core part of the intellectual life of the
university.

P.S. As of the last day to drop courses, our Introduction to Media Computation course
had only lost two of the original 120 students.

	Computer Science is more important than Calculus:�The challenge of living up to our potential
	Is sorting fundamental?
	Sampling and other new fundamentals

	Conclusion

