
Computer Science is more important than Calculus: 
The challenge of living up to our potential 
 
By Mark Guzdial and Elliot Soloway 
 
In 1961, Alan Perlis made the argument that computer science should be considered part 
of a liberal education, and that everyone should learn to program.  M. Mitchell Waldrop 
in his book The Dream Machine (Viking: 2001) says that he made the argument that 
programming was a fundamental intellectual skill, like mathematics.  He argued that 
computers “will participate in almost every intellectual transaction that goes on in the 
university.” Calculus is generally considered part of a liberal education—truly educated 
people know something significant about calculus.  Calculus is the study of rates, and 
rates are important to many fields.  Perlis argued that computer science is about process: 
Its specification, its execution, its composition, and its limitations. And process is 
important to everybody. 
 
What would computer science education look like if we took Perlis’ argument seriously?  
We can set up some expectations on what we would hope for a core liberal arts course.  
Almost everyone should be successful at the introductory course in the field.  Students 
should emerge from the course with a sense about what’s interesting in the field, and they 
should have some practical knowledge that they can apply in their fields.  Both men and 
women should be equally successful at it. 
 
Anyone who’s taught a first course in computing knows that we don’t come close to 
those goals.  Withdraw-or-failure rates of 50% are not uncommon.  Even at the recent 
SIGCSE conference, the best practices completion rates for non-majors in CS1 (the 
ACM/IEEE curriculum term for a first course in computing) were around 65%.  The best 
we can do is only lose 35% of the students?  The reports from the American Association 
of University Women (AAUW) and the book Unlocking the Clubhouse (MIT Press: 
2001) by Margolis and Fisher paint the picture clearly with respect to gender in computer 
science. Women are a scarce resource in computer science, and the retention rates are 
even worse for women than men.  It’s fair to say that our current state is that many 
students emerging from CS1 hit the ground running—away, with no desire to ever return. 
 
Alan Kay likes to argue these days that “the Computer Revolution hasn’t happened yet.” 
He says that the potential impact of the computer across our society is much greater than 
what we’ve seen so far. With CS1 in the state that it is, is it any surprise that we don’t 
find professionals of all fields steeped in computer science and ready to apply its lessons 
to their fields? 
 
Perlis places a high bar for us. Let’s consider some of the implications of taking him 
seriously and think about building introductory computer science education that can be 
part of a liberal education.  The argument that we are going to make is this: If we want to 
attract and retain a greater proportion of the students, we need to change our pedagogy, 
which includes changing what we teach.  What we teach now is not interesting and 



motivating the majority of students—the raw data tell us that.  We are going to provide 
concrete examples of the kinds of things that we feel can be taken out of introductory CS 
courses and what kinds of authentic content might fill a new kind of introductory CS. 
 

Is sorting fundamental? 
Much of what we teach in introductory computer science is completely practical and 
relevant for students who will one day be software developers, but is completely 
impractical and irrelevant for everyone else.  This point was struck home for us recently 
in a conversation with a Chemical Engineering professor who had spent several years in 
industry doing molecular modeling.  He reported that a program of 100 lines was 
enormous for him, and the longest program he ever wrote had 200 lines in it.  He makes 
extensive use of libraries and external modules so that he writes as little as possible.  
Most of his programs are about 10 lines of code.  “If I followed the commenting 
requirements that you guys have,” he said. “My programs would be twice as large!” This 
is someone who does a lot of programming—sometimes several programs in a week.  But 
we might call him a “tool builder” rather than a “software developer.”  A great many of 
the non-majors who take our introductory courses will end up being like him, not like us. 
What do we need in introductory computing courses to help this kind of future 
professional? 
 
Most introductory computing curricula include a variety of concepts that are important 
not for their direct relevance to the tasks of the students, even as professionals, but for 
their value in demonstrating concepts or in serving as exemplars for important ideas.  
Many of the more esoteric data structures that we teach will never actually be 
implemented by any of our students.  (Let’s count the number of AVL and red-black trees 
we’ve implemented in the last year, shall we?)  But even the uncommon data structures 
are helpful in describing how complex data structures should be constructed, if need be. 
 
Sorting is a good case in point.  Very few programmers will ever implement even half of 
the sorting algorithms we talk about.  Most programmers, we argue, will never write a 
sort at all!  Sorting facilities are so common in modern libraries that you will almost 
always reuse someone else’s, rather than build your own.  Yet, still we teach every 
student who walks in our doors about bubble sort and quicksort and heapsort.  The 
argument is sound.  Sorting is a good example of something which can be done slowly 
and poorly, or quickly and well, and thus serves to show the difference between O(n log 
n) and O(n2). But can’t we make similar points without spending weeks teaching 
something that no one, especially not the tool builders, will ever use? 
 
At Georgia Tech, we are now teaching an introductory computing course, Introduction to 
Media Computation.  The focus of the course is to learn programming and computing 
concepts in a context of manipulating media.  We splice sounds (then tweak the volume 
to make them sound right), teach chromakey like the weather forecasters use it, and 
explain how Photoshop filters work. We started with 120 non-CS and non-Engineering 
students, 2/3 female.  For these students, the computer is a tool for communication much 
more than calculation, so the media context feels relevant and important to them.  



 
In the Media Computation course, the difference between algorithm complexity comes 
through very naturally.  Sound processing algorithms tend to run very quickly.  Even 
though there are thousands of samples (16 bit values that each represent 1/44,100th of a 
second of sound) in each sound, they’re only a 1-D array and most processing takes only 
a single loop.  Picture processing takes longer.  2-D matrices of pixels (picture elements) 
almost always require nested loops.  Movie processing takes forever, because we have to 
do the 2-D processing for each one of the n frames.  It’s a simple argument that matches 
their experience with writing and running these kinds of programs and that makes clear 
an important point about the limitations of computation. 
 
Sorting is just a case in point. The point is that thinking about computer science as part of 
a liberal education will require us to re-think what we teach and where we teach it in the 
curriculum. Some of the interesting but uncommon issues may belong later in the 
curriculum, after more relevant and motivating issues come first. 
 

Sampling and other new fundamentals 
The media computation course is really only one way to make CS1 more practical and 
relevant to non-majors.  We can imagine many others.  We could build a course around 
web harvesting and visualization of the harvested data, for example.  Students could build 
web spiders, use various pattern matching and parsing tools to pull out the data, then 
build three-dimensional visualizations of what they found.  The Virtual Worlds course 
that Randy Pausch has built at CMU with his programming environment Alice 
demonstrates that 3-D visualizations are well within the range of a non-major 
undergraduate. 
 
As we think about introductory computing courses that are about something, not just 
about the abstractions, we may find that there are new concepts that need to be added to 
our courses. There are fundamental concepts and algorithms that arise in these concrete 
domains that we are currently not teaching. That observation raises the question of what 
is fundamental and how do we decide. 
 
Let’s take the media computation context, since it’s one with which we’ve become the 
most familiar.  Below we are going to provide examples that lead us to a concept that is 
fundamental to media computation, but doesn’t make it into most CS1 courses.  The 
examples are in the programming language Python (http://www.python.org).  The version 
of Python we’re using is Jython (http://www.jython.org). That’s Python implemented in 
Java which makes the Java class libraries accessible, and allows us to create a cross-
platform, multimedia API for the students.  For the most part, Python works as a kind of 
pseudo-code.  The only prefatory statement that you may need is that blocks are 
delimited in Python by indentation: If it looks like a block, it is one. 
 
We’ll start with a program to crop a woman’s face out of a picture and paste it into a 
canvas image. 
 

http://www.python.org/
http://www.jython.org/


def copyBarbsFace2(): 
  # Set up the source and target pictures 
  barbf=getMediaPath("barbara.jpg") 
  barb = makePicture(barbf) 
  canvasf = getMediaPath("7inX95in.jpg") 
  canvas = makePicture(canvasf) 
  # Now, do the actual copying 
  sourceX = 45 
  for targetX in range(100,100+(200-45)): 
    sourceY = 25 
    for targetY in range(100,100+(200-25)): 
      color = getColor(getPixel(barb,sourceX,sourceY)) 
      setColor(getPixel(canvas,targetX,targetY), color) 
      sourceY = sourceY + 1 
    sourceX = sourceX + 1 
  show(barb) 
  show(canvas) 
  return canvas 
 
This function gets the filename of our source picture “barbara.jpg” from a globally 
defined media folder.  The canvas is a blank 7x9.5 inch JPEG image. (It’s easier to 
provide blank files and associate all picture objects with JPEG files than to deal with the 
abstractions of constructors that allow creation of invisible pictures.) We then construct a 
loop to copy the picture starting at (45,25) and extending to (200,200).  We copy into 
(100,100) and then as many pixels over as we need.  At each pixel, we get the color from 
the source picture, then set the color of the corresponding pixel in the target.  At the end 
of the loop we increment the sourceY and sourceX indices to synchronize with the 
targetY and targetX index variables in our for loops. At the end, we display each 
picture. 
 
This is a fairly simple example of copying from one matrix into another.  We don’t 
typically spend much time in any of introductory computing courses on copying elements 
of matrices and arrays around—it’s simply boring when the data is made up.  But when 
the elements are colors in pixels, or samples in sounds, it’s suddenly interesting to do all 
kinds of copying and variations on those copies. 
 
Here’s another version of the same code, with a couple of small but significant changes 
underlined. Now, instead of incrementing the source indices by 1, we increment by 0.5 
and take the integer (int function) of the result.  The sequence of 45, 45.5, 46, 46.5… 
becomes now 45, 45, 46, 46… We end up taking every pixel twice.  This is the process of 
scaling up a picture: Doubling its size.  Notice that the target size necessarily doubles. 
def copyBarbsFaceLarger(): 
  # Set up the source and target pictures 
  barbf=getMediaPath("barbara.jpg") 
  barb = makePicture(barbf) 
  canvasf = getMediaPath("7inX95in.jpg") 



  canvas = makePicture(canvasf) 
  # Now, do the actual copying 
  sourceX = 45 
  for targetX in range(100,100+((200-45)*2)): 
    sourceY = 25 
    for targetY in range(100,100+((200-25)*2)): 
      color = getColor(getPixel(barb,int(sourceX),int(sourceY))) 
      setColor(getPixel(canvas,targetX,targetY), color) 
      sourceY = sourceY + 0.5 
    sourceX = sourceX + 0.5 
  show(barb) 
  show(canvas) 
  return canvas 
A similar change is needed to scale down a picture.  We need fewer pixels in the target, 
so skip a few.  If you skip every other pixel (increment the source indices by 2), you 
shrink the image by ½. 
 
Let’s shift gears to sound.  The example below copies a sound backwards.  We open the 
same sound as a source and target.  (That’s an easy way to assure that two arrays are of 
the same size.)  We start the sourceIndex at the end of the source, and move the 
targetIndex from the start to the end of the target.  Each time through the loop, we get 
one sample value from the source and set the corresponding value in the target.  We then 
decrement the sourceIndex and increment the targetIndex.  The result is a reversal of 
the sound. 
def backwards(filename): 
  source = makeSound(filename) 
  target = makeSound(filename) 
 
  sourceIndex = getLength(source) 
  for targetIndex in range(1,getLength(target)): 
    sourceValue = getSampleValueAt(source,sourceIndex) 
    setSampleValueAt(target,targetIndex,sourceValue) 
    sourceIndex = sourceIndex - 1 
 
  return target 
 
Again, this is a simple loop copying from one array to another—relatively simple and 
boring for most CS1 classes.  The result, though, is an interesting and concrete effect: 
You hear yourself or your teacher sounding funny.  (Mark likes to use Elliot’s recording 
of “Hello, world!” from Elliot’s SIGCSE2002 keynote.) 
 
Let’s make a small tweak to the backwards function.  We’ll move both indices forward 
now, instead of the source decrementing while the target increases.  But we’ll increment 
the source index by 0.5 and take the integer of the source index when accessing the 
sample value.  We’ve seen this pattern: The result is taking every sample twice.  The 



concrete result is that the sound slows down, and the frequency of the sound drops by ½.  
If we applied this function to a sound at 440 Hz, the resultant sound is at 220 Hz. 
def half(filename): 
  source = makeSound(filename) 
  target = makeSound(filename) 
 
  sourceIndex = 1 
  for targetIndex in range(1, getLength( target)): 
    sourceValue=getSampleValueAt(source,int(sourceIndex)) 
    setSampleValueAt( target, targetIndex, sourceValue) 
    sourceIndex = sourceIndex + 0.5 
 
  play(target) 
  return target 
 
You can probably figure out how to do the other sound transformation, the doubling of 
the frequency: Simply take every-other sample.  By skipping every other sample, we 
speed up the sound and double the frequency. 
 
These examples demonstrate the concept of sampling, a fundamental concept in media 
computation.  There are lots and lots of samples in a sound (44,100 per second in CD-
quality sound), and lots of lots of pixels in a picture.  Skipping a few or doubling a few 
still allows us to recognize the sound or the image.  Sampling is a rich subject with the 
potential for a lot of exploration and opportunities for learning. 

• Do distortions occur in sampling?  Of course, and there are algorithms for 
blurring that were invented to deal with these kinds of distortions.  

• If you shift the frequency of a source sound up (skip samples), and the target is 
long enough, you will run out of source samples.  Should you start over at the first 
sample?  That will probably work, but there may be problems with having 
“breaks” in the sound.  Detecting and fixing breaks leads to opportunities to think 
about pattern matching in large data sets. 

• There are other algorithms for sampling which lead to fewer distortions and 
provide an opportunity to introduce concepts like averaging or interpolating. 

 
Is sampling fundamental computer science?  That’s a hard question.  Is sampling a useful 
concept to include in a CS1 course?  That’s a much easier question.  Shifting sounds to 
different frequencies is what every sampling keyboard does.  Resizing images is what 
people do all the time in applications like Photoshop and Word.  It’s generalizable, 
concrete, relevant, and understandable. It’s authentic. Sampling is a pedagogically-rich 
concept that is attractive for both majors and non-majors. 
 
Of course, we can’t just add sampling to every CS1 curriculum.  CS1 courses are over-
full with concepts as it is.  But if we get rid of some of those concepts that aren’t relevant 
for everyone, we have room for others that are more relevant. 
 



Are there concepts like sampling that are key in other potential CS1 contexts, like web 
harvesting and visualization?  We don’t know—there may certainly be.  We can only 
know by trying these additional contexts.  The opportunity is ours to re-think what 
“fundamental” means and what belongs in an introductory course.   
 

Conclusion 
Alan Perlis’ challenge to become part of the core of the University is over 40 years old 
now. To meet that challenge, we argue that we need to re-think our introductory 
computer science content in order to remove the old and broken and replace it with the 
new and relevant.  Computer science is broader, deeper, and more interesting than it was 
40 years old.  We don’t have to use the same examples to illustrate the same concepts  —
the range of algorithms we have to choose from, the examples we can draw on, and the 
references to real applications that we can make give us enormous flexibility.  As we re-
think introductory computer science, we can use these opportunities to create a 
curriculum that is authentic and motivating. And in so doing, we would rise to Perlis’ 
challenge – computer science can become a core part of the intellectual life of the 
university. 
 
P.S. As of the last day to drop courses, our Introduction to Media Computation course 
had only lost two of the original 120 students. 
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