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ABSTRACT 
Computing education lags other discipline-based education 
research in the number and range of validated assessments 
available to the research community. Validated assessments are 
important for researchers to reduce experimental error due to 
flawed assessments and to allow for comparisons between 
different experiments. Although the need is great, building 
assessments from scratch is difficult. Once an assessment is built, 
it’s important to be able to replicate it, in order to address 
problems within it, or to extend it. We developed the Second CS1 
Assessment (SCS1) as an isomorphic version of a previously 
validated language-independent assessment for introductory 
computer science, the FCS1. Replicating the FCS1 is important to 
enable free use by a broader research community. This paper is 
documentation of our process for replicating an existing validated 
assessment and validating the success of our replication. We 
present initial use of SCS1 by other research groups, to serve as 
examples of where it might be used in the future. SCS1 is useful 
for researchers, but care must be taken to avoid undermining the 
validity argument.  
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1. ROLE OF VALIDATED ASSESSMENTS 
IN EDUCATION RESEARCH 
All discipline-based education research communities need 
assessments of learning. At least some of these assessments 
should be validated to create an argument that they are actually 
measuring the concepts they are intended to measure. If the 
community accepts the argument, the instrument can be a useful 

tool for the research community. 

We use assessments to mean instruments and methods for 
evaluating and documenting the nature, quality, or ability of 
students [1]. In our context, assessments are used to measure a 
student’s understanding, learning, or ability within a course or 
subject area. We will focus on multiple-choice assessments of 
learning made of a series of questions, composed of a stem 
followed by response options [18]. The stem is the question, 
which may also be referred to as an item. The response options 
are comprised of correct and incorrect options, and the latter can 
also be referred to as distractors or foils. Assessments are 
abundant in discipline-based education fields older than 
computing, such as physics, mathematics, and engineering 
education [15, 19]. However, computing education has few 
validated assessments [41]. 

Concept inventories are a class of assessment instruments with 
some of the features discussed above. They are standardized, 
multiple-choice, assessment tools to identify misconceptions, 
investigate learning, measure student understanding of core 
concepts, and, if desired, ascertain the pedagogical impact on the 
student’s achievement towards expert-level thinking [1, 10, 18]. 
Concept inventories are not final exams, but include broader 
topics more central to the subject and can inform instructional or 
curricular changes [34]. Advanced topics in computing have 
concept inventories, including algorithms and architecture [16, 26, 
28]. Similar to the broader area of assessments, CS1 has few 
concept inventories. 

1.1 History of Assessments and Concept 
Inventories 
We briefly summarize here the history of standardized exams. 
Standardized, objective tests of learning originated in the early 
1900s [30]. Previously, most learning assessments were essay-
based. Objective testing presented a more efficient and reliable 
way to test a student’s learning than to have (for example) essay 
questions that need to be interpreted and which different graders 
might interpret differently. The first large-scale use of objective 
tests was the Pennsylvania Study in 1928, which tested no less 
than 70 percent of all Pennsylvanian college seniors and 
approximately 75 percent of Pennsylvanian high school seniors 
[30]. Besides being 12 hours and 3,200 questions long, what 
marked the Pennsylvania Study was the focus on learning rather 
than achievement. Students were tested in their senior year of high 
school, and then again in their sophomore and senior years of 
college. The distinction between achievement assessment and 
assessment of learning is important, as achievement is the 
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accumulation of learning up to a certain time and learning is a 
change in student’s knowledge over time [30]. For example, 
achievement assessments such as assignments, quizzes, and 
exams are not in and of themselves measurements of learning. 
Rather, they serve as a method to evaluate performance in the 
form of a grade for a course. Also, these instruments are not 
validated and tend to be based on the instructor’s perception of the 
subject [1]. On the other hand, assessments of learning are integral 
parts of course design. These learning instruments allow 
instructors to reflect on what learning outcomes they want for 
their students and also decide which assessment devices might be 
best suited for those outcomes [32].  

Validated, broadly applicable learning assessment instruments are 
essential for growth of the research discipline. Validation is an 
argument that the assessment measures what it purports to 
measure [36]. Validated assessment instruments can be used, for 
example, to compare different instructional approaches [10]. They 
can be used to measure a student’s understanding of the material, 
which may not be reflected in their grades, since grades could be 
influenced by factors other than learning, e.g., class attendance. 
With the recent proliferation of introductory computing curricula 
across the globe, validated assessment instruments are needed to 
explicitly compare approaches for learning. 

Concept inventories, as a type of validated assessment, were first 
developed in the 1980s within the physics education community, 
beginning with the Force Concept Inventory (FCI) [15, 19]. This 
concept inventory assessed students’ conceptions of Newtonian 
physics. The FCI was used in understanding and identifying 
where students and instructors conceptions differed [34]. Even 
conventionally high performing students failed simple conceptual 
FCI questions, which is indicative of the difference between 
concept inventories and final exams. The FCI was validated and 
shown to be a reliable assessment by a study with 6,000 students 
and their scores on the FCI [12]. The results of using the FCI 
helped support the shift within the physics community to teach 
with a more active, student-engagement approach rather than 
lecture-based teaching. 
The FCI showed that concept inventories can be effective 
instruments for supporting education reform [41]. When used with 
valid and reliable assessments, concept inventories can help match 
instruction to what the students need to learn [10]. This is 
achieved by providing a before and after view of student learning, 
based on different teaching strategies. Additionally, concept 
inventories can evaluate student understanding relative to the 
goals of the course, further promoting the use of assessments in 
curriculum development [1]. All of the benefits of a concept 
inventory are not held to a specific class or institution. Concept 
inventories can compare students’ learning outcomes across 
instructors, institutions, curricula, and pedagogical practices [34]. 

Concept inventories as assessments of learning have been adapted 
for and promoted change within STEM fields beyond just physics 
and the FCI. However, within computing, concept inventories are 
in their infancy. There are validated concept inventories in the 
subfields of digital logic and discrete math [1, 14]. The AP CS A 
exam is a prime example of a valid concept inventory in 
computing that is used across institutions [34]. However, it is not 
useful as a research instrument because its questions were not 
designed to test individual learning objectives or concepts, but 
instead to achieve psychometric goals of having a normal 
distribution of student scores [35]. Core concepts in different 
computing areas have been identified, as well as common 

misconceptions [34], but there are not many valid concept 
inventories for CS1. 

1.2 Motivation for Replication 
In 2010, Allison Elliott Tew created the first validated language-
independent content knowledge assessment for introductory 
computer science at an undergraduate level (a course commonly 
referred to as “CS1”), the Foundational CS1 Assessment (FCS1) 
[35, 38]. Tew followed an intensive procedure for the creation of 
FCS1.  First, she defined a minimal content for the course by 
doing an analysis of the most popular CS1 textbooks [37]. She 
developed a test specification that was reviewed by a panel of 
experts [37]. She defined a pseudocode language to be used, and 
then generated four isomorphic tests: One in her pseudocode, and 
one in each of MATLAB, Python, and Java.  She piloted the 
questions in an open-ended format, to test readability and generate 
distractors [38]. Finally, she validated the whole assessment by 
having participants take two tests (counter-balanced) one week 
apart: one in their "native" CS1 language, and one in the 
pseudocode. 

The FCS1 was validated through a multi-step argument including 
expert panel review of the content, large-scale comparison 
between the FCS1 and language-dependent isomorphic tests, and 
comparison between performance on the FCS1 and on the 
students’ final CS1 exams. As previously noted, there is a distinct 
difference between concept inventories and course exams. 
However, the course exams can be used as a part of a validity 
argument, and the argument is made stronger by different pieces 
of evidence working together. 

FCS1 has been used by the computing education research 
community in various contexts, and has been useful in providing 
insights into student learning. For example, the assessment was 
used by the ITiCSE 2013 McCracken Working Group in 
comparison with a novice programmer’s ability to solve a 
practical programming task [39]. The FCS1 was used to measure 
students’ performance, which was then compared to teachers’ 
expectations of the students’ performance. The group found that 
teachers’ expectations did not match student performance, and 
tended to be too optimistic in comparison with the anticipated 
score. The McCracken Working Group use of FCS1 and their 
results serve as an example of using FCS1 to answer a research 
question. 

In the case of multiple-question assessments, such as the FCS1, an 
openly accessible assessment can easily reach a point of 
saturation. We define saturation in this context to be where the 
test or its answers could be easily found (e.g., with an Internet 
search engine), reducing the effectiveness of the exam. If answers 
can be found and memorized (or looked up dynamically during 
the test), then the test is measuring memorization or ability, not 
understanding. Saturation would weaken the argument for validity 
of the assessment. If there is a dearth of learning assessments, as 
in computer science education research, saturation might leave the 
community without a valid way of measuring learning. However, 
the existence of multiple assessments dampens the negative 
consequences of an assessment reaching saturation. As a 
community, we need to replicate valid knowledge assessments to 
prevent loss of information and research potential due to 
saturation. 

In order to avoid saturation of the assessment, only a few people 
have had access to FCS1. For this paper, one author helped with 
the development of FCS1 and thus had legal access to the 
assessment. The FCS1 remains the intellectual property of the 



original author, and we do not have permission to distribute it. We 
developed a process to iterate on the FCS1 questions to create the 
Second CS1 Assessment (SCS1), which we followed by a 
validation process. 

Tew and Dorn explained the importance of validated assessments 
for computing education and described the process of developing 
two validated assessments [36]. We build on their work to 
highlight the importance of replicating those assessments, present 
a process for replicating and validating, and start a discussion for 
how validated assessments can be used most effectively for our 
community. The more assessments there are—made by replicating 

previously validated assessments—the more chances the 
community has to measure learning gains accurately and to 
determine the effectiveness of teaching approaches. By creating 
the SCS1, we have made a language-independent, validated 
measure of CS1 learning more accessible. Uses of the SCS1 
exemplify how it might be used in making research arguments, 
and where the validity argument for SCS1 is undermined. 

2. REPLICATING A VALID ASSESSMENT 
We created an isomorphic version of the FCS1 Assessment to 
create the SCS1 Assessment. Our methods are described here so 
that they may be used in future replications of valid content 
knowledge assessments. Like FCS1, SCS1 was designed to 
measure understanding of introductory computer science concepts 
at the undergraduate level in a language-independent manner. 
SCS1 problems are all in a pseudocode language invented by Tew 
[35] which has been used successfully in other instruments [17]. 
The replication process is the same as in any education domain [3] 
but we know that education findings do not always map directly 
from one domain to another, especially in computing [23]. 
Therefore it is worth demonstrating the effectiveness of an 
approach in a new domain. This section details our application of 
proven replication techniques to a computer science assessment, 
FCS1. 
We created the questions for SCS1 by creating isomorphic copies 
of the questions in the FCS1. An isomorphic question is created 
by maintaining the content area for a question as well as the style 
used to ask the question, but altering the word problem, variables, 
and answer choices (see examples in Figure 1). The original FCS1 
covered nine content areas with three different question types 
(described in Table 1). Each question in the SCS1 maps to a 
question in the FCS1 with the same content area and question 
style, but with different question text and distractors. The 
difficulty level of each question was not directly addressed when 
creating an isomorphic mapping, but was assessed in our 
validation studies outlined in Section 4.  

We created isomorphic copies instead of writing completely new 
questions in order to maintain the validity of FCS1 for SCS1. 
When replicating valid content knowledge assessments, it can be 
wise to make small, iterative changes to strengthen the validity 
argument of the replicated assessment. Arguments for validity are 
addressed in Section 3.  

Table 1. Areas considered when creating an isomorphic 
mapping of FCS1. 

Isomorphic area Area Choices 

Content areas 

• fundamentals 
• logical operators 
• conditionals 
• definite loops 
• indefinite loops 
• arrays 
• function/method parameters 
• function/method return values 
• recursion 
• object oriented basics 

Question Types 
• definitional 
• tracing 
• code completion 

 

Given the following code segment. 
array = [5, 2, 1, 3, 4, 6, 0, 8, 9] 

i = 0 

even = 0 

WHILE (i < length(array)) AND (array[i] != 0) 
DO 

 IF (array[i] % 2) == 0 THEN 

  even = even + 1 

 ENDIF 

  i = i + 1 

 ENDWHILE 

What are the values of the variables i and even after the while 
loop completes its execution? 

 A. i = 1; even = 0 

 B. i = 5; even = 3 

 C. i = 5; even = 4 

 D. i = 6; even = 3 

 E. i = 6; even = 4 

Given the following code segment. 
array = [3, 6, 8, 1, 2, 0, 7, 2, 9] 

i = 0 

odd = 0 

WHILE (i < length(array)) AND (array[i] != 0) 
DO 

 IF (array[i] % 2) == 1 THEN 

  odd = odd + 1 

 ENDIF 

  i = i + 1 

 ENDWHILE 

What are the values of the variables i and odd after the while loop 
completes its execution? 

 A. i = 1; odd = 0 

 B. i = 5; odd = 2 

 C. i = 5; odd = 3 

 D. i = 8; odd = 4 

 E. i = 8; odd = 5 

 
Figure 1. Example of an isomorphic mapping. The top 
box includes the original question from FCS1, and the 

bottom box has the isomorphic mapping we created for 
SCS1. The content area of indefinite loops and question 
style of tracing were maintained, but the problem and 

variables were altered. 



2.1 Think-Aloud Interviews 
While the underlying content remained the same, we changed the 
questions to create SCS1. The resulting questions might not be 
read as we intended. We might also have made mistakes in 
generating distractors. It was important to hear people interpret 
the questions and answers to ensure that students understood the 
assessment as we intended. One author conducted these 
interviews and took notes throughout. The notes of the interview 
were discussed with another author to analyze where issues were 
occurring and what needed to change. 

We interviewed three students with think-aloud interviews. These 
students were from our target population: undergraduate students 
enrolled in introductory computing classes. These interviews were 
90 minutes in length, which gave the participants enough time to 
finish approximately half of the exam. The interviews consisted of 
a student reading and solving each question aloud, with occasional 
questioning by the interviewer. The first two students completed 
the first and second half of SCS1 respectively. The third student 
was given questions that the first two interviews indicated needed 
further review, in order of criticality (e.g., problems that needed 
the most changes after an intervew were more critical to review in 
the next interview). As anticipated, there were typos (the use of 
the wrong word in a problem) and wording issues (such as vague 
pronouns, or subject-verb agreements) where the questions were 
not clear. One question was found to be too easy during the think-
aloud interviews so the problem and answers were changed 
accordingly to increase the difficulty level. All other errors found 
in the assessment were “sanity check” changes, where the think-
aloud interviews revealed that a question might have no right 
answer, multiple right answers, or nonsensical answers.  

2.2 Validation Study 
After the test was created, we set out to show construct validity. 
That is, we wanted to show that the SCS1 measured what it was 
intended to measure. Tew has created a construct validity 
argument for FCS1. We aimed to show that SCS1 had construct 
validity by showing that SCS1 measured the same content as 
FCS1. Validity arguments are not transitive, so we cannot claim 
that SCS1 would correlate (for example) with CS1 final exam 
scores. FCS1 did, but we did not explicitly validate that SCS1 
measured the same constructs as the CS1 final exam scores. We 

have a more limited validity argument, as is typical for an 
instrument replication study. 

To validate the SCS1 against the FCS1, we administered FCS1 
and SCS1 to a group of students (n=183), one week apart and 
counterbalanced. Half of the group took the FCS1 in Week 1 and 
the SCS1 in Week 2, where the other half of the group took the 
SCS1 in Week 1 and the FCS1 in Week 2. These students took the 
assessments near the end of an introductory computing course. 
There were three courses from which students were recruited—
two courses taught CS using Python and one course using 
MATLAB. The three courses had different computer science 
emphases. One of the Python courses was a fairly common CS1 
approach (e.g., using the How to Think Like a Computer Scientist 
text [6]). The second Python course used a media computation 
context [11]. The MATLAB course was focused on engineering 
problem solving. The range of kinds of classes is desirable when 
validating an assessment of this type. 

Students were given one hour to take the exam. Each student was 
provided with a pseudocode overview to use as reference 
throughout the assessment. Students were compensated for their 
participation according to their instructor’s discretion, though 
typically they were given some form of extra credit. Their 
participation in the study served as practice for their final exam, 
which was a couple of weeks away from being administered at the 
time of the study. 

It should be noted that the two groups did not take identical 
versions of the SCS1 Assessments. There was a slight change to 
one of the questions on the SCS1 between the administrations of 
the exams due to a typo that was not found during the think-aloud 
interviews. Analysis on the effect of the typo can be found in the 
next section. 

3. VALIDATING A REPLICATION 
A replicated assessment is validated to ensure that the assessment 
is measuring what the creator or user thinks it is measuring. The 

Table 3. Overall correlations by course, where 1301 is 
traditional CS in Python, 1315 is Computational Media in 

Python, and 1371 is CS for Engineers in MATLAB 

Course Descriptions 

FCS1 

Pearson’s 
Correlation 
Coefficient 

p-value 

Python for CS Majors 
(n=140) 0.483 p = 

0.000** 

Media Computation 
(n=30) 0.298 p = 0.110  

MATLAB for 
Engineering 

Majors(n=13) 
0.509 p = 0.076 

 

Table 2. Overall correlation between FCS1 and SCS1 

Course  

FCS1 
Pearson’s 

Correlation 
Coefficient 

p-value 

All (n=183) 0.566 p=0.000** 
 

Figure 2. Scatterplot of scores for correlation of FCS1 and 
SCS1 



use of a non-validated assessment could result in incorrect 
inferences being drawn about learning and knowledge. The 
replication can be validated against the original, validated 
assessment. 

In this section, we present our detailed argument for the construct 
and content validity of the SCS1. Construct validity considers the 
extent to which performance on an assessment can be interpreted 
in terms of one or more constructs. Content validity considers the 
extent to which assessment questions provide an adequate and 
appropriate sample of the domain tasks. We maintained content 
validity from the FCS1 by constructing questions on the exact 
same content. We only need to argue for construct validity, as that 
is the only thing that changed in the new instrument. Construct 
and content validity work together to provide evidence that an 
assessment is working as intended. Since construct validation is 
dependent on inferences drawn from a variety of data [3, 22], we 
present a quantitative analysis of the questions on the SCS1 
assessment, as well as discuss the correlation between the scores 
on the FCS1 and SCS1 assessments. 

It should be noted that the counter-balanced structure of our 
validation study could have resulted in unintended priming effects 
[7]. However, we dismiss the possibility of a priming effect by 
considering that the students were already primed for the first test 
by being enrolled in an introductory computing course for almost 
a full semester before taking our test [27]. In addition, as the tests 
served as practice final exams, students were motivated to 
perform on both tests. While it is possible that students explicitly 
studied concepts they were unfamiliar with on the first test, it is 
likely that they studied most content from the course in 
preparation for their final exams during this period. 

3.1 Correlation with FCS1 
An important step in validation is to correlate scores on the new 
assessment with other measures of CS1 learning, such as a 
previously validated assessment. Concurrent validity describes the 
characteristic of an assessment correlating with a previously 
validated assessment [22]. Correlating the scores on the FCS1 
assessment with final exam scores showed concurrent validity 
with FCS1. In the development of SCS1, we did not access final 
exam scores, and so we do not have a direct relation between 
SCS1 and final exam or course scores. Instead, Pearson’s 
correlation analysis was used to investigate whether student scores 
on the SCS1 can be positively correlated with their scores on the 
FCS1.  

A Pearson correlation coefficient was computed to assess the 
relationship between the score on the FCS1 and SCS1 
Assessments (see Table 2). There was a strong positive correlation 
between the two variables, Pearson’s r(183) = .566, p = 0.000. A 
scatterplot summarizes the results in Figure 2. This is key to our 
argument that SCS1 is a validated replication of the FCS1. 

After finding a positive correlation between the FCS1 and SCS1 
scores, we analyzed the correlation based on the course the 
student participant was enrolled in. Pearson correlation 
coefficients were computed to assess the relationship between the 
course and the scores on the FCS1 and SCS1 Assessments (see 
Table 3). There was a strong, positive correlation for one course, 
Pearson’s r(140) = .483, p = 0.000. This course was taught in 
Python and is the one required of computer science majors. The 
other two courses did not show statistically significant 
correlations between the scores. The lack of statistically 
significant correlations by course means that SCS1 is valid for 
CS1 students in general, but may be less accurate for 

subpopulations.  If a CS1 course does not cover object-oriented 
programming or recursion, for example, it would not match the 
minimal model that Tew defined, and SCS1 (and FCS1) would 
probably be less accurate for measuring knowledge for the 
specific course. The course differences do suggest the need for 
further research to understand where the SCS1 is most accurate 
and where it is not. 

One possible explanation for the lack of statistical significance is 
the number of participants in the two classes, both of which are 
significantly smaller than the computer science majors’ class. 
Overall, our number of participants is much smaller than Tew’s. It 
is possible that the classes could reach statistical significance if 
more students were sampled from the two classes. Another 
possible explanation is that the students in those sections without 
statistical significance were for non-computer science majors.  
Tew found that correlation with the pseudocode test was strongest 
for the higher-performing students, and weaker for lower-
performing students [35]. As our IRT analysis (see Section 3.2) 
suggests, SCS1 shows better discrimination among student 
participants with higher ability. The computer science majors may 
have greater internal motivation for learning for the subject and 
would be more successful at demonstrating their knowledge on an 
unfamiliar assessment.  

Our results with SCS1 may be pointing to possible limitations of 
any pseudocode-based assessment. A pseudocode test may always 
bias in favor of students with greater understanding. We know 
that greater knowledge results in better transfer of cognitive skill 
[31]. High performance on a pseudocode test demands greater 
knowledge of the original material for the student to successfully 
transfer knowledge to pseudocode. 

Overall, our results demonstrate a strong positive correlation 
between the scores on the SCS1 and FCS1 assessments. In 
addition there is a strong positive correlation between the 
assessments for traditional approaches to CS1 taught in Python. 
This suggests that the SCS1 has concurrent validity as it 
corresponds to an established measure, the FCS1.  

3.2 Quantitative Analysis using IRT 
The data gathered during our study provides a quantitative 
argument towards construct validity. Item response theory (IRT) 
is an important method for assessing the validity of measurement 
scales [13]. In particular, IRT measures the difficulty and 
discrimination of each question. In this context, difficulty 
measures the percentage of the test-takers that answered a given 
question correctly. Discrimination measures how well a student’s 
performance on a given question predicts their performance on the 
overall test. If a question has good discrimination then a student 
that answers that question correctly is very likely to do well on the 
test. An ideal assessment using a multiple choice format with five 
options should have a difficulty of 70-74% on the overall 
assessment [20] and discrimination levels should be in the “good” 
range.  Overall, if the questions have appropriate difficulty and 
discrimination and the scores between the two assessments are 
correlated, then the argument can be made that the assessment 
shows evidence of validity [13].  

While the FCS1 and SCS1 assessments are positively correlated, 
both are considered very difficult assessments. In our IRT analysis 
of both assessments on one sample of students, the difficulty of 
problems was skewed towards a “hard” difficulty level where less 
than fifty percent of students answered a given problem correctly 
(see Table 4). The majority of problems were “fair” discriminators 
rather than “good.” “Fair” is defined as having a point-biserial 
correlation of .1 to .3 [8]. Point-biserial correlation is a correlation 



between student performance on an item (right or wrong) and test 
score. We would like to note that these results differ from what 
was previously found regarding the FCS1 assessment. More 
questions were “hard” and “fair” than was determined in the 
original FCS1 work, though this is to be expected given the 
different population of participants between studies. Cronbach’s 
alpha is a measurement of reliability, or the internal consistency 
based on correlations between different items an assessment. A 
Cronbach’s alpha of 0.65 is considered acceptable [8].  For FCS1 
Cronbach’s alpha was 0.53; for SCS1 Cronbach’s alpha was 0.59. 
The results imply that the internal consistency for these 
assessments is slightly below an acceptable level. Taken together, 
this suggests that there is a need to iteratively refine both 
instruments and re-test using a larger, more diverse sample of 
students. 
As mentioned previously, there was a typo in one question that 
was found in between test administrations. Upon detection of this 
typo, we fixed this item to more accurately measure understanding 
with half of our test population. After analyzing the results, the 
typo in the question did matter. Students performed worse on the 
question with the typo (25% of students received the correct 
answer) than without it (59% of students received the correct 
answer). This was later than we would have liked to be still 
catching typos, but the statistical analysis suggests that SCS1 is 
still considered to have concurrent validity with FCS1. 

4. EXAMPLE USES OF SCS1 
Validated assessments offer us well-defined yardsticks for 
comparing populations, e.g., between experimental conditions or 
over time. We welcome the CS Education research community to 
use the SCS1 to measure performance or learning gains (e.g., by 
using the SCS1 as a pre-test and post-test). We include three of 
the first uses of SCS1 outside of its initial development. 

4.1 Measuring Teachers’ Knowledge 
Our group used the SCS1 to measure knowledge of teachers 
during a professional development workshop. Assessments are 
necessary during these sessions to show effectiveness and impact 
[5]. We asked teachers (n=18) in a weeklong professional 
development workshop on Computer Science Principles [2] to 
complete the SCS1. Half of the teachers had taught computer 
science or programming for two or more years and all of the 
teachers were teaching CS at the high school and undergraduate 
level. 

The teachers, on average, got one more question correct compared 
to the students in the validation study. The average student score 
on SCS1 in our validation study was 9.68 (σ=3.5), or 35% 
(σ=13.1%) and the average teacher score on SCS1 was 10.72 
(σ=6.1) or 39% (σ=22.4%). This is likely the first measurement of 

a high school CS teacher population with a validated instrument 
that can be compared to an undergraduate student population. 

We have little information about the quality of high school 
computer science teachers, at least in the United States. What we 
do know suggests great variability in teacher knowledge, with 
most teachers we have interviewed saying that they know too little 
and would like to know more [4, 25]. We don’t know enough 
about the teachers who took the workshop to make any claims 
about high school CS teacher knowledge more broadly. We do see 
potential in using SCS1 to compare CS in-service teachers to 
undergraduate computing students, and in order to consider the 
relative strengths of computing knowledge learned as a student in 
a classroom versus as a teacher in a classroom. 

4.2 Comparing CS1 Approaches 
A team in the Philippines used the SCS1 as an achievement 
assessment within a pilot class for introductory computing at their 
institution. They wanted a method to assess progress with the 
changes they were implementing, such as a shift in programming 
language used. The Philippine team wanted to use the scores on 
the SCS1, as well as grades from within the class and past 
courses, as a way to compare different approaches taken in the 
introductory course.  

The Philippines team’s use of SCS1 points to how instructors 
might use a validated assessment to inform their instructional 
practices. The single use of the SCS1 does not provide enough 
information to support any hypotheses.  If there were two 
comparable populations enrolled in two different classes, then the 
SCS1 might be used to compare the post-class students 
understanding. If it was used both as a pre-test and post-test, the 
SCS1 could be used to make an argument about learning, much as 
how Hake used the FCI [12].  The Philippines’ team’s use of 
SCS1 points to potential hypothesis testing in the future. 

4.3 Translation and Adaptation 
A group in Germany translated and adapted the SCS1 to fit their 
needs of measuring learning in their CS1 course. We present their 
story here to highlight the challenges of replicating a validated 
assessment. 

The first stage of the German process was replication, as in our 
approach described in this paper—a careful creation of an 
isomorphic test from the SCS1. The research group in Germany 
translated the SCS1 assessment into German over two versions. 
The first version was created by translating the SCS1 from 
English into German, which we will refer to as SCS1-G. SCS1-G 
was translated back to English (SCS1-E) by a second individual 
and compared with the original English version. Differences 
between the SCS1-E and the original SCS1 assessment were 
discussed and collaboratively adjusted in the German translation 

Table 4. Item response theory classifications of SCS1 questions. 

 Difficulty (0-100%) 

Hard (0-50%) Moderate (50-85%) Easy (85-100%) Total 

Discrimination Poor (<0.1) 5, 8, 15, 18, 20, 24, 27 -- -- 7 items 

Fair (0.1-0.3) 4,6,7,9,10,11,12,13,16,17,21,22,25,26 23 -- 15 items 

Good (>0.3) 14 1, 2, 3, 19 -- 5 items 

Total 22 items 5 items 0 items 27 items 

 



when needed. Two more individuals looked at SCS1-G and SCS1-
E to look for any differences or inconsistencies, which were 
primarily in variable names and formatting. The second German 
version of SCS1 was created after the last round of revisions of 
the first version, when the two individuals noticed an overall 
inconsistency in wording of questions. The translation team 
addressed inconsistencies such as phrases preceding code 
segments that did not previously precede all code segments. There 
were also cultural differences that fed into the second German 
version of SCS1, including how questions were worded and how 
words are connoted (versus denoted) between the languages. 

At this point, the process could continue the way that we validated 
the SCS1 against the FCS1.  SCS1-German could be validated 
against our SCS1, given enough students who understood both 
German and English.  However, the German team wanted to 
extend SCS1 to meet their special needs. 

The German team was concerned that the students might be able 
to guess at the answer if the student had even a small amount of 
previous CS knowledge. They created a sixth answer choice for 
every multiple-choice question so that students could state, “I am 
unsure.” This option was present in both German versions of 
SCS1. Although this addition reduces comparability with the 
original SCS1, the German team felt the lack of such an answer 
choice would not be fair to the students and might introduce a lot 
of false positive answers or blank answers. A blank answer is 
difficult to interpret – did the student run out of time or just not 
know the answer? 

Even without the extension, we cannot make a validation 
argument that SCS1-G is equivalent to SCS1 in terms of the 
constructs it tests. Translation weakens the validity argument.  
Changing an assessment by adding questions or distractors always 
weakens the validity argument. The German example does point 
to the need for more validated assessments, like the SCS1. It also 
serves as an example of how we can use the replication and 
validation process that we describe in this paper as a template for 
viewing other attempts, e.g., we can see how the SCS1-G process 
mapped to our replication process but not the validation process. 

5. PARAMETERS OF FUTURE WORK 
WITH SCS1 
As with any validated assessment of learning, the use of SCS1 is 
complex. It holds significant research potential in serving as a tool 
to measure student learning and answer hypotheses we could not 
before. However, SCS1 also has limited support for different use-
cases.  

5.1 Following Hake’s Lead 
The SCS1 assessment can also be used like other validated 
concept inventories from other subjects, especially following the 
lead in Physics Education Research. The Force Concept Inventory 
[15] was used by Hake to measure learning interventions in 
Physics classrooms, with n=6542 students [12]. Hake found that 
interactive-engagement methods correlate to better problem-
solving abilities. This was an important first step in making the 
argument for active learning approaches [9]. 

As with the Force Concept Inventory, the SCS1 might be used 
with large sample sizes to demonstrate the effectiveness of 
learning interventions. We could gather metadata from the test 
takers, such as demographics, tools used in their class, and their 
perceptions and attitudes towards computing. This metadata and 
the scores on the assessment could be analyzed for interesting 
correlations between achievement and the metadata points. 

The SCS1 could be used to further the work in discipline-based 
computing education research by comparing student scores on the 
assessment in comparable, but different, approaches to 
introductory computing.  For example, we might compare 
students in and not in interdisciplinary computing courses [21]. 
Furthermore, the SCS1 might be used to measure differences in 
courses taught using different programming languages. To make 
useful comparisons we would need to use SCS1 as a pre-test and a 
post-test so that we measure learning gains and not just 
achievement, as discussed earlier [11, 33]. We believe that many 
researchers in the computing education community could 
productively use the SCS1 to quantitatively measure student 
understanding, though only on the content areas represented in the 
test. 

5.2 The Fragility of a Validated Assessment 
Validation is an argument that an assessment measures what it 
purports to measure [36].  We have presented an argument here 
that SCS1 measures knowledge related to CS1 (as defined by 
[37]) across students who learned CS using Java, MATLAB, and 
Python. The argument is fragile, though. It does not withstand 
changes to SCS1. 

While portions of the SCS1 focus on different parts of CS1 (e.g., 
conditionals, assignments, or loops), we cannot easily construct an 
argument that subsets of the SCS1 are equally valid.  We have 
shown that SCS1 is equivalent to FCS1. We have not shown that 
portions of SCS1 are equivalent to portions of FCS1. The 
developers of FCS1 did not show that portions of FCS1 measure 
portions of CS1 knowledge.  

Consider a possible example: the conditional questions in SCS1 
only cover parts of students’ understanding of conditionals.  The 
gap between what the questions cover and what students 
understand may not be significant when we are considering the 
whole test (e.g., the assignment and loops sections may be so 
effective that they mask the weaknesses in conditionals). 
However, if the questions were pulled out separately, the gap may 
make the questions a poor assessment of knowledge of 
conditionals. Similarly, reporting just the conditionals section 
when students take the whole SCS1 does not constitute a valid 
measurement. Although it is easy to look only at how students 
performed on the conditional questions, the analysis does not 
represent a valid measurement of the student’s understanding of 
conditionals since our validation argument only extends to the 
whole test. 

Similarly, adding additional questions, additional question 
choices, or changing the order of questions invalidates the 
instrument. Additional questions may be more difficult, or may 
measure something different than CS1 knowledge.  Changing the 
order of questions means that questions are not primed the way 
that they were when we validated SCS1.  For example, if 
assignment questions came before loops questions, students might 
do better on loops because they were reminded how variables 
worked by the assignment questions.  Reversing the order might 
lead to worse performance on the loops questions because 
students didn’t have the priming effect first.  It might not make 
any difference, but we did not test for different orderings, so we 
cannot make the argument for validity if the ordering is changed. 

The SCS1 validity argument suggests a wealth of opportunities 
for improvement with future iterations of CS1 content knowledge 
assessments. The SCS1 is the first, albeit fragile, step towards 
future development of these critical concept inventories. 



6. CONCLUSION: A CALL FOR MORE 
ASSESSMENTS 
The SCS1 assessment was replicated from the FCS1 and 
demonstrates concurrent validity. However, there are many 
aspects of SCS1 that can be improved to better gauge students’ 
CS1 content knowledge. Due to the replication and validation 
processes, SCS1 inherits any limitations of the FCS1 assessment. 
Thus, any issues with the FCS1 still hold true with SCS1. 
Additionally, the IRT analysis and the Cronbach’s alpha suggest 
that the current SCS1 questions should be improved. That is, 
additional adjustments should include moderating difficulty level 
of questions on the SCS1 assessment and improving the 
discrimination of each question to make them more useful in 
influencing the overall result on the assessment. Each question 
can be improved in terms of difficulty and discrimination in order 
to make an objectively better assessment. 

Similar to looking to other fields for information about replication 
and validation, we can look to other concept inventories and work 
done to improve them. FCI, although central to the research of 
concept inventories, is not without its flaws either. Rebello and 
Zollman have worked on the distractors on the FCI could be 
improved by gathering open-ended responses to questions and 
inserting the common responses as answer choices [29]. 
Additionally, Mühling et al. have created tests of basic 
programming ability by iterating on the assessment until the 
assessment had appropriate difficulty [24]. These processes can be 
used with the SCS1 assessment to create a revised version of the 
test with revised distractors and until appropriate IRT results are 
reached. 

More assessments could be created using the SCS1 and the 
process for replication and validation described here. For 
example, we do not know if the SCS1 is useful for measuring 
understanding of blocks-based languages. Assessments are 
beginning to emerge for these languages, but a stronger claim for 
their validity can be made if scores on these assessments are 
correlated with SCS1 [40]. A blocks-based assessment could be 
created for content using the process defined for the FCS1 and 
SCS1 assessments. Performance on the SCS1 could be correlated 
with the blocks-based assessment to make an argument for the 
validity of the blocks-based assessment. Even though students 
who studied blocks might not perform as well on the pseudocode-
based SCS1, the SCS1 could be used to measure understanding 
separated from the medium students use to program. Weintrop 
and Wilensky used a similar development process to create their 
blocks-and-text commutative assessment [40], but did not validate 
against an existing instrument. The SCS1 could provide that 
validation comparison.  

These recommendations for the future improvement of the SCS1 
assessment are not an exhaustive list. The community of computer 
science educators and researchers will decide which assessment to 
use, to validate, and to replicate, and we hope that SCS1 plays a 
role in that work. By engaging the community, the SCS1 may be 
considered an open source assessment—freely available for use, 
for replication, and for extension or modification.  

As is, the SCS1 assessment can provide insight to differences in 
instructional approaches, effectiveness of interventions, and how 
the students and teachers, or different subsets of those groups, 
differ in their knowledge of CS1. As with any assessment, there 
are caveats. The argument for validity is fragile, and thus the 
assessment can only be used as-is or else it needs to be re-
validated. As the use and re-validation of this instrument grows, it 

and its counterparts can provide an important resource for the 
ICER community. 

Information will be made available on how researchers can get 
access to SCS1 at the presentation of this paper and upon request 
to the authors. 
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