
Replication, Validation, and Use of a Language
Independent CS1 Knowledge Assessment

Miranda C. Parker, Mark Guzdial
Georgia Institute of Technology

85 5th Street NW
Atlanta, GA 30308

miranda.parker@gatech.edu,
guzdial@cc.gatech.edu

Shelly Engleman
SageFox Consulting Group

675 Seminole Ave NE Suite 303
Atlanta, GA 30307
+1-404-633-9005

sengelman@sagefoxgroup.com

ABSTRACT
Computing education lags other discipline-based education
research in the number and range of validated assessments
available to the research community. Validated assessments are
important for researchers to reduce experimental error due to
flawed assessments and to allow for comparisons between
different experiments. Although the need is great, building
assessments from scratch is difficult. Once an assessment is built,
it’s important to be able to replicate it, in order to address
problems within it, or to extend it. We developed the Second CS1
Assessment (SCS1) as an isomorphic version of a previously
validated language-independent assessment for introductory
computer science, the FCS1. Replicating the FCS1 is important to
enable free use by a broader research community. This paper is
documentation of our process for replicating an existing validated
assessment and validating the success of our replication. We
present initial use of SCS1 by other research groups, to serve as
examples of where it might be used in the future. SCS1 is useful
for researchers, but care must be taken to avoid undermining the
validity argument.

CCS Concepts
• Social and Professional topics è Student assessment

Keywords
Assessment; CS1; validity; replication

1. ROLE OF VALIDATED ASSESSMENTS
IN EDUCATION RESEARCH
All discipline-based education research communities need
assessments of learning. At least some of these assessments
should be validated to create an argument that they are actually
measuring the concepts they are intended to measure. If the
community accepts the argument, the instrument can be a useful

tool for the research community.

We use assessments to mean instruments and methods for
evaluating and documenting the nature, quality, or ability of
students [1]. In our context, assessments are used to measure a
student’s understanding, learning, or ability within a course or
subject area. We will focus on multiple-choice assessments of
learning made of a series of questions, composed of a stem
followed by response options [18]. The stem is the question,
which may also be referred to as an item. The response options
are comprised of correct and incorrect options, and the latter can
also be referred to as distractors or foils. Assessments are
abundant in discipline-based education fields older than
computing, such as physics, mathematics, and engineering
education [15, 19]. However, computing education has few
validated assessments [41].

Concept inventories are a class of assessment instruments with
some of the features discussed above. They are standardized,
multiple-choice, assessment tools to identify misconceptions,
investigate learning, measure student understanding of core
concepts, and, if desired, ascertain the pedagogical impact on the
student’s achievement towards expert-level thinking [1, 10, 18].
Concept inventories are not final exams, but include broader
topics more central to the subject and can inform instructional or
curricular changes [34]. Advanced topics in computing have
concept inventories, including algorithms and architecture [16, 26,
28]. Similar to the broader area of assessments, CS1 has few
concept inventories.

1.1 History of Assessments and Concept
Inventories
We briefly summarize here the history of standardized exams.
Standardized, objective tests of learning originated in the early
1900s [30]. Previously, most learning assessments were essay-
based. Objective testing presented a more efficient and reliable
way to test a student’s learning than to have (for example) essay
questions that need to be interpreted and which different graders
might interpret differently. The first large-scale use of objective
tests was the Pennsylvania Study in 1928, which tested no less
than 70 percent of all Pennsylvanian college seniors and
approximately 75 percent of Pennsylvanian high school seniors
[30]. Besides being 12 hours and 3,200 questions long, what
marked the Pennsylvania Study was the focus on learning rather
than achievement. Students were tested in their senior year of high
school, and then again in their sophomore and senior years of
college. The distinction between achievement assessment and
assessment of learning is important, as achievement is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ICER '16, September 08-12, 2016, Melbourne, VIC, Australia
© 2016 ACM. ISBN 978-1-4503-4449-4/16/09�$15.00
DOI: http://dx.doi.org/10.1145/2960310.2960316

accumulation of learning up to a certain time and learning is a
change in student’s knowledge over time [30]. For example,
achievement assessments such as assignments, quizzes, and
exams are not in and of themselves measurements of learning.
Rather, they serve as a method to evaluate performance in the
form of a grade for a course. Also, these instruments are not
validated and tend to be based on the instructor’s perception of the
subject [1]. On the other hand, assessments of learning are integral
parts of course design. These learning instruments allow
instructors to reflect on what learning outcomes they want for
their students and also decide which assessment devices might be
best suited for those outcomes [32].

Validated, broadly applicable learning assessment instruments are
essential for growth of the research discipline. Validation is an
argument that the assessment measures what it purports to
measure [36]. Validated assessment instruments can be used, for
example, to compare different instructional approaches [10]. They
can be used to measure a student’s understanding of the material,
which may not be reflected in their grades, since grades could be
influenced by factors other than learning, e.g., class attendance.
With the recent proliferation of introductory computing curricula
across the globe, validated assessment instruments are needed to
explicitly compare approaches for learning.

Concept inventories, as a type of validated assessment, were first
developed in the 1980s within the physics education community,
beginning with the Force Concept Inventory (FCI) [15, 19]. This
concept inventory assessed students’ conceptions of Newtonian
physics. The FCI was used in understanding and identifying
where students and instructors conceptions differed [34]. Even
conventionally high performing students failed simple conceptual
FCI questions, which is indicative of the difference between
concept inventories and final exams. The FCI was validated and
shown to be a reliable assessment by a study with 6,000 students
and their scores on the FCI [12]. The results of using the FCI
helped support the shift within the physics community to teach
with a more active, student-engagement approach rather than
lecture-based teaching.
The FCI showed that concept inventories can be effective
instruments for supporting education reform [41]. When used with
valid and reliable assessments, concept inventories can help match
instruction to what the students need to learn [10]. This is
achieved by providing a before and after view of student learning,
based on different teaching strategies. Additionally, concept
inventories can evaluate student understanding relative to the
goals of the course, further promoting the use of assessments in
curriculum development [1]. All of the benefits of a concept
inventory are not held to a specific class or institution. Concept
inventories can compare students’ learning outcomes across
instructors, institutions, curricula, and pedagogical practices [34].

Concept inventories as assessments of learning have been adapted
for and promoted change within STEM fields beyond just physics
and the FCI. However, within computing, concept inventories are
in their infancy. There are validated concept inventories in the
subfields of digital logic and discrete math [1, 14]. The AP CS A
exam is a prime example of a valid concept inventory in
computing that is used across institutions [34]. However, it is not
useful as a research instrument because its questions were not
designed to test individual learning objectives or concepts, but
instead to achieve psychometric goals of having a normal
distribution of student scores [35]. Core concepts in different
computing areas have been identified, as well as common

misconceptions [34], but there are not many valid concept
inventories for CS1.

1.2 Motivation for Replication
In 2010, Allison Elliott Tew created the first validated language-
independent content knowledge assessment for introductory
computer science at an undergraduate level (a course commonly
referred to as “CS1”), the Foundational CS1 Assessment (FCS1)
[35, 38]. Tew followed an intensive procedure for the creation of
FCS1. First, she defined a minimal content for the course by
doing an analysis of the most popular CS1 textbooks [37]. She
developed a test specification that was reviewed by a panel of
experts [37]. She defined a pseudocode language to be used, and
then generated four isomorphic tests: One in her pseudocode, and
one in each of MATLAB, Python, and Java. She piloted the
questions in an open-ended format, to test readability and generate
distractors [38]. Finally, she validated the whole assessment by
having participants take two tests (counter-balanced) one week
apart: one in their "native" CS1 language, and one in the
pseudocode.

The FCS1 was validated through a multi-step argument including
expert panel review of the content, large-scale comparison
between the FCS1 and language-dependent isomorphic tests, and
comparison between performance on the FCS1 and on the
students’ final CS1 exams. As previously noted, there is a distinct
difference between concept inventories and course exams.
However, the course exams can be used as a part of a validity
argument, and the argument is made stronger by different pieces
of evidence working together.

FCS1 has been used by the computing education research
community in various contexts, and has been useful in providing
insights into student learning. For example, the assessment was
used by the ITiCSE 2013 McCracken Working Group in
comparison with a novice programmer’s ability to solve a
practical programming task [39]. The FCS1 was used to measure
students’ performance, which was then compared to teachers’
expectations of the students’ performance. The group found that
teachers’ expectations did not match student performance, and
tended to be too optimistic in comparison with the anticipated
score. The McCracken Working Group use of FCS1 and their
results serve as an example of using FCS1 to answer a research
question.

In the case of multiple-question assessments, such as the FCS1, an
openly accessible assessment can easily reach a point of
saturation. We define saturation in this context to be where the
test or its answers could be easily found (e.g., with an Internet
search engine), reducing the effectiveness of the exam. If answers
can be found and memorized (or looked up dynamically during
the test), then the test is measuring memorization or ability, not
understanding. Saturation would weaken the argument for validity
of the assessment. If there is a dearth of learning assessments, as
in computer science education research, saturation might leave the
community without a valid way of measuring learning. However,
the existence of multiple assessments dampens the negative
consequences of an assessment reaching saturation. As a
community, we need to replicate valid knowledge assessments to
prevent loss of information and research potential due to
saturation.

In order to avoid saturation of the assessment, only a few people
have had access to FCS1. For this paper, one author helped with
the development of FCS1 and thus had legal access to the
assessment. The FCS1 remains the intellectual property of the

original author, and we do not have permission to distribute it. We
developed a process to iterate on the FCS1 questions to create the
Second CS1 Assessment (SCS1), which we followed by a
validation process.

Tew and Dorn explained the importance of validated assessments
for computing education and described the process of developing
two validated assessments [36]. We build on their work to
highlight the importance of replicating those assessments, present
a process for replicating and validating, and start a discussion for
how validated assessments can be used most effectively for our
community. The more assessments there are—made by replicating

previously validated assessments—the more chances the
community has to measure learning gains accurately and to
determine the effectiveness of teaching approaches. By creating
the SCS1, we have made a language-independent, validated
measure of CS1 learning more accessible. Uses of the SCS1
exemplify how it might be used in making research arguments,
and where the validity argument for SCS1 is undermined.

2. REPLICATING A VALID ASSESSMENT
We created an isomorphic version of the FCS1 Assessment to
create the SCS1 Assessment. Our methods are described here so
that they may be used in future replications of valid content
knowledge assessments. Like FCS1, SCS1 was designed to
measure understanding of introductory computer science concepts
at the undergraduate level in a language-independent manner.
SCS1 problems are all in a pseudocode language invented by Tew
[35] which has been used successfully in other instruments [17].
The replication process is the same as in any education domain [3]
but we know that education findings do not always map directly
from one domain to another, especially in computing [23].
Therefore it is worth demonstrating the effectiveness of an
approach in a new domain. This section details our application of
proven replication techniques to a computer science assessment,
FCS1.
We created the questions for SCS1 by creating isomorphic copies
of the questions in the FCS1. An isomorphic question is created
by maintaining the content area for a question as well as the style
used to ask the question, but altering the word problem, variables,
and answer choices (see examples in Figure 1). The original FCS1
covered nine content areas with three different question types
(described in Table 1). Each question in the SCS1 maps to a
question in the FCS1 with the same content area and question
style, but with different question text and distractors. The
difficulty level of each question was not directly addressed when
creating an isomorphic mapping, but was assessed in our
validation studies outlined in Section 4.

We created isomorphic copies instead of writing completely new
questions in order to maintain the validity of FCS1 for SCS1.
When replicating valid content knowledge assessments, it can be
wise to make small, iterative changes to strengthen the validity
argument of the replicated assessment. Arguments for validity are
addressed in Section 3.

Table 1. Areas considered when creating an isomorphic
mapping of FCS1.

Isomorphic area Area Choices

Content areas

• fundamentals
• logical operators
• conditionals
• definite loops
• indefinite loops
• arrays
• function/method parameters
• function/method return values
• recursion
• object oriented basics

Question Types
• definitional
• tracing
• code completion

Given the following code segment.
array = [5, 2, 1, 3, 4, 6, 0, 8, 9]

i = 0

even = 0

WHILE (i < length(array)) AND (array[i] != 0)
DO

 IF (array[i] % 2) == 0 THEN

 even = even + 1

 ENDIF

 i = i + 1

 ENDWHILE

What are the values of the variables i and even after the while
loop completes its execution?

 A. i = 1; even = 0

 B. i = 5; even = 3

 C. i = 5; even = 4

 D. i = 6; even = 3

 E. i = 6; even = 4

Given the following code segment.
array = [3, 6, 8, 1, 2, 0, 7, 2, 9]

i = 0

odd = 0

WHILE (i < length(array)) AND (array[i] != 0)
DO

 IF (array[i] % 2) == 1 THEN

 odd = odd + 1

 ENDIF

 i = i + 1

 ENDWHILE

What are the values of the variables i and odd after the while loop
completes its execution?

 A. i = 1; odd = 0

 B. i = 5; odd = 2

 C. i = 5; odd = 3

 D. i = 8; odd = 4

 E. i = 8; odd = 5

Figure 1. Example of an isomorphic mapping. The top
box includes the original question from FCS1, and the

bottom box has the isomorphic mapping we created for
SCS1. The content area of indefinite loops and question
style of tracing were maintained, but the problem and

variables were altered.

2.1 Think-Aloud Interviews
While the underlying content remained the same, we changed the
questions to create SCS1. The resulting questions might not be
read as we intended. We might also have made mistakes in
generating distractors. It was important to hear people interpret
the questions and answers to ensure that students understood the
assessment as we intended. One author conducted these
interviews and took notes throughout. The notes of the interview
were discussed with another author to analyze where issues were
occurring and what needed to change.

We interviewed three students with think-aloud interviews. These
students were from our target population: undergraduate students
enrolled in introductory computing classes. These interviews were
90 minutes in length, which gave the participants enough time to
finish approximately half of the exam. The interviews consisted of
a student reading and solving each question aloud, with occasional
questioning by the interviewer. The first two students completed
the first and second half of SCS1 respectively. The third student
was given questions that the first two interviews indicated needed
further review, in order of criticality (e.g., problems that needed
the most changes after an intervew were more critical to review in
the next interview). As anticipated, there were typos (the use of
the wrong word in a problem) and wording issues (such as vague
pronouns, or subject-verb agreements) where the questions were
not clear. One question was found to be too easy during the think-
aloud interviews so the problem and answers were changed
accordingly to increase the difficulty level. All other errors found
in the assessment were “sanity check” changes, where the think-
aloud interviews revealed that a question might have no right
answer, multiple right answers, or nonsensical answers.

2.2 Validation Study
After the test was created, we set out to show construct validity.
That is, we wanted to show that the SCS1 measured what it was
intended to measure. Tew has created a construct validity
argument for FCS1. We aimed to show that SCS1 had construct
validity by showing that SCS1 measured the same content as
FCS1. Validity arguments are not transitive, so we cannot claim
that SCS1 would correlate (for example) with CS1 final exam
scores. FCS1 did, but we did not explicitly validate that SCS1
measured the same constructs as the CS1 final exam scores. We

have a more limited validity argument, as is typical for an
instrument replication study.

To validate the SCS1 against the FCS1, we administered FCS1
and SCS1 to a group of students (n=183), one week apart and
counterbalanced. Half of the group took the FCS1 in Week 1 and
the SCS1 in Week 2, where the other half of the group took the
SCS1 in Week 1 and the FCS1 in Week 2. These students took the
assessments near the end of an introductory computing course.
There were three courses from which students were recruited—
two courses taught CS using Python and one course using
MATLAB. The three courses had different computer science
emphases. One of the Python courses was a fairly common CS1
approach (e.g., using the How to Think Like a Computer Scientist
text [6]). The second Python course used a media computation
context [11]. The MATLAB course was focused on engineering
problem solving. The range of kinds of classes is desirable when
validating an assessment of this type.

Students were given one hour to take the exam. Each student was
provided with a pseudocode overview to use as reference
throughout the assessment. Students were compensated for their
participation according to their instructor’s discretion, though
typically they were given some form of extra credit. Their
participation in the study served as practice for their final exam,
which was a couple of weeks away from being administered at the
time of the study.

It should be noted that the two groups did not take identical
versions of the SCS1 Assessments. There was a slight change to
one of the questions on the SCS1 between the administrations of
the exams due to a typo that was not found during the think-aloud
interviews. Analysis on the effect of the typo can be found in the
next section.

3. VALIDATING A REPLICATION
A replicated assessment is validated to ensure that the assessment
is measuring what the creator or user thinks it is measuring. The

Table 3. Overall correlations by course, where 1301 is
traditional CS in Python, 1315 is Computational Media in

Python, and 1371 is CS for Engineers in MATLAB

Course Descriptions

FCS1

Pearson’s
Correlation
Coefficient

p-value

Python for CS Majors
(n=140) 0.483 p =

0.000**

Media Computation
(n=30) 0.298 p = 0.110

MATLAB for
Engineering

Majors(n=13)
0.509 p = 0.076

Table 2. Overall correlation between FCS1 and SCS1

Course

FCS1
Pearson’s

Correlation
Coefficient

p-value

All (n=183) 0.566 p=0.000**

Figure 2. Scatterplot of scores for correlation of FCS1 and
SCS1

use of a non-validated assessment could result in incorrect
inferences being drawn about learning and knowledge. The
replication can be validated against the original, validated
assessment.

In this section, we present our detailed argument for the construct
and content validity of the SCS1. Construct validity considers the
extent to which performance on an assessment can be interpreted
in terms of one or more constructs. Content validity considers the
extent to which assessment questions provide an adequate and
appropriate sample of the domain tasks. We maintained content
validity from the FCS1 by constructing questions on the exact
same content. We only need to argue for construct validity, as that
is the only thing that changed in the new instrument. Construct
and content validity work together to provide evidence that an
assessment is working as intended. Since construct validation is
dependent on inferences drawn from a variety of data [3, 22], we
present a quantitative analysis of the questions on the SCS1
assessment, as well as discuss the correlation between the scores
on the FCS1 and SCS1 assessments.

It should be noted that the counter-balanced structure of our
validation study could have resulted in unintended priming effects
[7]. However, we dismiss the possibility of a priming effect by
considering that the students were already primed for the first test
by being enrolled in an introductory computing course for almost
a full semester before taking our test [27]. In addition, as the tests
served as practice final exams, students were motivated to
perform on both tests. While it is possible that students explicitly
studied concepts they were unfamiliar with on the first test, it is
likely that they studied most content from the course in
preparation for their final exams during this period.

3.1 Correlation with FCS1
An important step in validation is to correlate scores on the new
assessment with other measures of CS1 learning, such as a
previously validated assessment. Concurrent validity describes the
characteristic of an assessment correlating with a previously
validated assessment [22]. Correlating the scores on the FCS1
assessment with final exam scores showed concurrent validity
with FCS1. In the development of SCS1, we did not access final
exam scores, and so we do not have a direct relation between
SCS1 and final exam or course scores. Instead, Pearson’s
correlation analysis was used to investigate whether student scores
on the SCS1 can be positively correlated with their scores on the
FCS1.

A Pearson correlation coefficient was computed to assess the
relationship between the score on the FCS1 and SCS1
Assessments (see Table 2). There was a strong positive correlation
between the two variables, Pearson’s r(183) = .566, p = 0.000. A
scatterplot summarizes the results in Figure 2. This is key to our
argument that SCS1 is a validated replication of the FCS1.

After finding a positive correlation between the FCS1 and SCS1
scores, we analyzed the correlation based on the course the
student participant was enrolled in. Pearson correlation
coefficients were computed to assess the relationship between the
course and the scores on the FCS1 and SCS1 Assessments (see
Table 3). There was a strong, positive correlation for one course,
Pearson’s r(140) = .483, p = 0.000. This course was taught in
Python and is the one required of computer science majors. The
other two courses did not show statistically significant
correlations between the scores. The lack of statistically
significant correlations by course means that SCS1 is valid for
CS1 students in general, but may be less accurate for

subpopulations. If a CS1 course does not cover object-oriented
programming or recursion, for example, it would not match the
minimal model that Tew defined, and SCS1 (and FCS1) would
probably be less accurate for measuring knowledge for the
specific course. The course differences do suggest the need for
further research to understand where the SCS1 is most accurate
and where it is not.

One possible explanation for the lack of statistical significance is
the number of participants in the two classes, both of which are
significantly smaller than the computer science majors’ class.
Overall, our number of participants is much smaller than Tew’s. It
is possible that the classes could reach statistical significance if
more students were sampled from the two classes. Another
possible explanation is that the students in those sections without
statistical significance were for non-computer science majors.
Tew found that correlation with the pseudocode test was strongest
for the higher-performing students, and weaker for lower-
performing students [35]. As our IRT analysis (see Section 3.2)
suggests, SCS1 shows better discrimination among student
participants with higher ability. The computer science majors may
have greater internal motivation for learning for the subject and
would be more successful at demonstrating their knowledge on an
unfamiliar assessment.

Our results with SCS1 may be pointing to possible limitations of
any pseudocode-based assessment. A pseudocode test may always
bias in favor of students with greater understanding. We know
that greater knowledge results in better transfer of cognitive skill
[31]. High performance on a pseudocode test demands greater
knowledge of the original material for the student to successfully
transfer knowledge to pseudocode.

Overall, our results demonstrate a strong positive correlation
between the scores on the SCS1 and FCS1 assessments. In
addition there is a strong positive correlation between the
assessments for traditional approaches to CS1 taught in Python.
This suggests that the SCS1 has concurrent validity as it
corresponds to an established measure, the FCS1.

3.2 Quantitative Analysis using IRT
The data gathered during our study provides a quantitative
argument towards construct validity. Item response theory (IRT)
is an important method for assessing the validity of measurement
scales [13]. In particular, IRT measures the difficulty and
discrimination of each question. In this context, difficulty
measures the percentage of the test-takers that answered a given
question correctly. Discrimination measures how well a student’s
performance on a given question predicts their performance on the
overall test. If a question has good discrimination then a student
that answers that question correctly is very likely to do well on the
test. An ideal assessment using a multiple choice format with five
options should have a difficulty of 70-74% on the overall
assessment [20] and discrimination levels should be in the “good”
range. Overall, if the questions have appropriate difficulty and
discrimination and the scores between the two assessments are
correlated, then the argument can be made that the assessment
shows evidence of validity [13].

While the FCS1 and SCS1 assessments are positively correlated,
both are considered very difficult assessments. In our IRT analysis
of both assessments on one sample of students, the difficulty of
problems was skewed towards a “hard” difficulty level where less
than fifty percent of students answered a given problem correctly
(see Table 4). The majority of problems were “fair” discriminators
rather than “good.” “Fair” is defined as having a point-biserial
correlation of .1 to .3 [8]. Point-biserial correlation is a correlation

between student performance on an item (right or wrong) and test
score. We would like to note that these results differ from what
was previously found regarding the FCS1 assessment. More
questions were “hard” and “fair” than was determined in the
original FCS1 work, though this is to be expected given the
different population of participants between studies. Cronbach’s
alpha is a measurement of reliability, or the internal consistency
based on correlations between different items an assessment. A
Cronbach’s alpha of 0.65 is considered acceptable [8]. For FCS1
Cronbach’s alpha was 0.53; for SCS1 Cronbach’s alpha was 0.59.
The results imply that the internal consistency for these
assessments is slightly below an acceptable level. Taken together,
this suggests that there is a need to iteratively refine both
instruments and re-test using a larger, more diverse sample of
students.
As mentioned previously, there was a typo in one question that
was found in between test administrations. Upon detection of this
typo, we fixed this item to more accurately measure understanding
with half of our test population. After analyzing the results, the
typo in the question did matter. Students performed worse on the
question with the typo (25% of students received the correct
answer) than without it (59% of students received the correct
answer). This was later than we would have liked to be still
catching typos, but the statistical analysis suggests that SCS1 is
still considered to have concurrent validity with FCS1.

4. EXAMPLE USES OF SCS1
Validated assessments offer us well-defined yardsticks for
comparing populations, e.g., between experimental conditions or
over time. We welcome the CS Education research community to
use the SCS1 to measure performance or learning gains (e.g., by
using the SCS1 as a pre-test and post-test). We include three of
the first uses of SCS1 outside of its initial development.

4.1 Measuring Teachers’ Knowledge
Our group used the SCS1 to measure knowledge of teachers
during a professional development workshop. Assessments are
necessary during these sessions to show effectiveness and impact
[5]. We asked teachers (n=18) in a weeklong professional
development workshop on Computer Science Principles [2] to
complete the SCS1. Half of the teachers had taught computer
science or programming for two or more years and all of the
teachers were teaching CS at the high school and undergraduate
level.

The teachers, on average, got one more question correct compared
to the students in the validation study. The average student score
on SCS1 in our validation study was 9.68 (σ=3.5), or 35%
(σ=13.1%) and the average teacher score on SCS1 was 10.72
(σ=6.1) or 39% (σ=22.4%). This is likely the first measurement of

a high school CS teacher population with a validated instrument
that can be compared to an undergraduate student population.

We have little information about the quality of high school
computer science teachers, at least in the United States. What we
do know suggests great variability in teacher knowledge, with
most teachers we have interviewed saying that they know too little
and would like to know more [4, 25]. We don’t know enough
about the teachers who took the workshop to make any claims
about high school CS teacher knowledge more broadly. We do see
potential in using SCS1 to compare CS in-service teachers to
undergraduate computing students, and in order to consider the
relative strengths of computing knowledge learned as a student in
a classroom versus as a teacher in a classroom.

4.2 Comparing CS1 Approaches
A team in the Philippines used the SCS1 as an achievement
assessment within a pilot class for introductory computing at their
institution. They wanted a method to assess progress with the
changes they were implementing, such as a shift in programming
language used. The Philippine team wanted to use the scores on
the SCS1, as well as grades from within the class and past
courses, as a way to compare different approaches taken in the
introductory course.

The Philippines team’s use of SCS1 points to how instructors
might use a validated assessment to inform their instructional
practices. The single use of the SCS1 does not provide enough
information to support any hypotheses. If there were two
comparable populations enrolled in two different classes, then the
SCS1 might be used to compare the post-class students
understanding. If it was used both as a pre-test and post-test, the
SCS1 could be used to make an argument about learning, much as
how Hake used the FCI [12]. The Philippines’ team’s use of
SCS1 points to potential hypothesis testing in the future.

4.3 Translation and Adaptation
A group in Germany translated and adapted the SCS1 to fit their
needs of measuring learning in their CS1 course. We present their
story here to highlight the challenges of replicating a validated
assessment.

The first stage of the German process was replication, as in our
approach described in this paper—a careful creation of an
isomorphic test from the SCS1. The research group in Germany
translated the SCS1 assessment into German over two versions.
The first version was created by translating the SCS1 from
English into German, which we will refer to as SCS1-G. SCS1-G
was translated back to English (SCS1-E) by a second individual
and compared with the original English version. Differences
between the SCS1-E and the original SCS1 assessment were
discussed and collaboratively adjusted in the German translation

Table 4. Item response theory classifications of SCS1 questions.

 Difficulty (0-100%)

Hard (0-50%) Moderate (50-85%) Easy (85-100%) Total

Discrimination Poor (<0.1) 5, 8, 15, 18, 20, 24, 27 -- -- 7 items

Fair (0.1-0.3) 4,6,7,9,10,11,12,13,16,17,21,22,25,26 23 -- 15 items

Good (>0.3) 14 1, 2, 3, 19 -- 5 items

Total 22 items 5 items 0 items 27 items

when needed. Two more individuals looked at SCS1-G and SCS1-
E to look for any differences or inconsistencies, which were
primarily in variable names and formatting. The second German
version of SCS1 was created after the last round of revisions of
the first version, when the two individuals noticed an overall
inconsistency in wording of questions. The translation team
addressed inconsistencies such as phrases preceding code
segments that did not previously precede all code segments. There
were also cultural differences that fed into the second German
version of SCS1, including how questions were worded and how
words are connoted (versus denoted) between the languages.

At this point, the process could continue the way that we validated
the SCS1 against the FCS1. SCS1-German could be validated
against our SCS1, given enough students who understood both
German and English. However, the German team wanted to
extend SCS1 to meet their special needs.

The German team was concerned that the students might be able
to guess at the answer if the student had even a small amount of
previous CS knowledge. They created a sixth answer choice for
every multiple-choice question so that students could state, “I am
unsure.” This option was present in both German versions of
SCS1. Although this addition reduces comparability with the
original SCS1, the German team felt the lack of such an answer
choice would not be fair to the students and might introduce a lot
of false positive answers or blank answers. A blank answer is
difficult to interpret – did the student run out of time or just not
know the answer?

Even without the extension, we cannot make a validation
argument that SCS1-G is equivalent to SCS1 in terms of the
constructs it tests. Translation weakens the validity argument.
Changing an assessment by adding questions or distractors always
weakens the validity argument. The German example does point
to the need for more validated assessments, like the SCS1. It also
serves as an example of how we can use the replication and
validation process that we describe in this paper as a template for
viewing other attempts, e.g., we can see how the SCS1-G process
mapped to our replication process but not the validation process.

5. PARAMETERS OF FUTURE WORK
WITH SCS1
As with any validated assessment of learning, the use of SCS1 is
complex. It holds significant research potential in serving as a tool
to measure student learning and answer hypotheses we could not
before. However, SCS1 also has limited support for different use-
cases.

5.1 Following Hake’s Lead
The SCS1 assessment can also be used like other validated
concept inventories from other subjects, especially following the
lead in Physics Education Research. The Force Concept Inventory
[15] was used by Hake to measure learning interventions in
Physics classrooms, with n=6542 students [12]. Hake found that
interactive-engagement methods correlate to better problem-
solving abilities. This was an important first step in making the
argument for active learning approaches [9].

As with the Force Concept Inventory, the SCS1 might be used
with large sample sizes to demonstrate the effectiveness of
learning interventions. We could gather metadata from the test
takers, such as demographics, tools used in their class, and their
perceptions and attitudes towards computing. This metadata and
the scores on the assessment could be analyzed for interesting
correlations between achievement and the metadata points.

The SCS1 could be used to further the work in discipline-based
computing education research by comparing student scores on the
assessment in comparable, but different, approaches to
introductory computing. For example, we might compare
students in and not in interdisciplinary computing courses [21].
Furthermore, the SCS1 might be used to measure differences in
courses taught using different programming languages. To make
useful comparisons we would need to use SCS1 as a pre-test and a
post-test so that we measure learning gains and not just
achievement, as discussed earlier [11, 33]. We believe that many
researchers in the computing education community could
productively use the SCS1 to quantitatively measure student
understanding, though only on the content areas represented in the
test.

5.2 The Fragility of a Validated Assessment
Validation is an argument that an assessment measures what it
purports to measure [36]. We have presented an argument here
that SCS1 measures knowledge related to CS1 (as defined by
[37]) across students who learned CS using Java, MATLAB, and
Python. The argument is fragile, though. It does not withstand
changes to SCS1.

While portions of the SCS1 focus on different parts of CS1 (e.g.,
conditionals, assignments, or loops), we cannot easily construct an
argument that subsets of the SCS1 are equally valid. We have
shown that SCS1 is equivalent to FCS1. We have not shown that
portions of SCS1 are equivalent to portions of FCS1. The
developers of FCS1 did not show that portions of FCS1 measure
portions of CS1 knowledge.

Consider a possible example: the conditional questions in SCS1
only cover parts of students’ understanding of conditionals. The
gap between what the questions cover and what students
understand may not be significant when we are considering the
whole test (e.g., the assignment and loops sections may be so
effective that they mask the weaknesses in conditionals).
However, if the questions were pulled out separately, the gap may
make the questions a poor assessment of knowledge of
conditionals. Similarly, reporting just the conditionals section
when students take the whole SCS1 does not constitute a valid
measurement. Although it is easy to look only at how students
performed on the conditional questions, the analysis does not
represent a valid measurement of the student’s understanding of
conditionals since our validation argument only extends to the
whole test.

Similarly, adding additional questions, additional question
choices, or changing the order of questions invalidates the
instrument. Additional questions may be more difficult, or may
measure something different than CS1 knowledge. Changing the
order of questions means that questions are not primed the way
that they were when we validated SCS1. For example, if
assignment questions came before loops questions, students might
do better on loops because they were reminded how variables
worked by the assignment questions. Reversing the order might
lead to worse performance on the loops questions because
students didn’t have the priming effect first. It might not make
any difference, but we did not test for different orderings, so we
cannot make the argument for validity if the ordering is changed.

The SCS1 validity argument suggests a wealth of opportunities
for improvement with future iterations of CS1 content knowledge
assessments. The SCS1 is the first, albeit fragile, step towards
future development of these critical concept inventories.

6. CONCLUSION: A CALL FOR MORE
ASSESSMENTS
The SCS1 assessment was replicated from the FCS1 and
demonstrates concurrent validity. However, there are many
aspects of SCS1 that can be improved to better gauge students’
CS1 content knowledge. Due to the replication and validation
processes, SCS1 inherits any limitations of the FCS1 assessment.
Thus, any issues with the FCS1 still hold true with SCS1.
Additionally, the IRT analysis and the Cronbach’s alpha suggest
that the current SCS1 questions should be improved. That is,
additional adjustments should include moderating difficulty level
of questions on the SCS1 assessment and improving the
discrimination of each question to make them more useful in
influencing the overall result on the assessment. Each question
can be improved in terms of difficulty and discrimination in order
to make an objectively better assessment.

Similar to looking to other fields for information about replication
and validation, we can look to other concept inventories and work
done to improve them. FCI, although central to the research of
concept inventories, is not without its flaws either. Rebello and
Zollman have worked on the distractors on the FCI could be
improved by gathering open-ended responses to questions and
inserting the common responses as answer choices [29].
Additionally, Mühling et al. have created tests of basic
programming ability by iterating on the assessment until the
assessment had appropriate difficulty [24]. These processes can be
used with the SCS1 assessment to create a revised version of the
test with revised distractors and until appropriate IRT results are
reached.

More assessments could be created using the SCS1 and the
process for replication and validation described here. For
example, we do not know if the SCS1 is useful for measuring
understanding of blocks-based languages. Assessments are
beginning to emerge for these languages, but a stronger claim for
their validity can be made if scores on these assessments are
correlated with SCS1 [40]. A blocks-based assessment could be
created for content using the process defined for the FCS1 and
SCS1 assessments. Performance on the SCS1 could be correlated
with the blocks-based assessment to make an argument for the
validity of the blocks-based assessment. Even though students
who studied blocks might not perform as well on the pseudocode-
based SCS1, the SCS1 could be used to measure understanding
separated from the medium students use to program. Weintrop
and Wilensky used a similar development process to create their
blocks-and-text commutative assessment [40], but did not validate
against an existing instrument. The SCS1 could provide that
validation comparison.

These recommendations for the future improvement of the SCS1
assessment are not an exhaustive list. The community of computer
science educators and researchers will decide which assessment to
use, to validate, and to replicate, and we hope that SCS1 plays a
role in that work. By engaging the community, the SCS1 may be
considered an open source assessment—freely available for use,
for replication, and for extension or modification.

As is, the SCS1 assessment can provide insight to differences in
instructional approaches, effectiveness of interventions, and how
the students and teachers, or different subsets of those groups,
differ in their knowledge of CS1. As with any assessment, there
are caveats. The argument for validity is fragile, and thus the
assessment can only be used as-is or else it needs to be re-
validated. As the use and re-validation of this instrument grows, it

and its counterparts can provide an important resource for the
ICER community.

Information will be made available on how researchers can get
access to SCS1 at the presentation of this paper and upon request
to the authors.

7. ACKNOWLEDGMENTS
We would like to thank the students who participated in the study
and their instructors who graciously gave us the time.

This material is based on work supported by the National Science
Foundation under Grant No. 1432300 and the National Science
Foundation Graduate Research Fellowship under Grant No. DGC-
1148903. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

8. REFERENCES
[1] Almstrum, V.L., Henderson, P.B., Harvey, V., Heeren,

C., Marion, W., Riedesel, C., Soh, L.-K. and Tew, A.E.
2006. Concept inventories in computer science for the
topic discrete mathematics. ACM SIGCSE Bulletin. 38, 4
(2006), 132.

[2] Astrachan, O. and Briggs, A. 2012. The CS Principles
Project.

[3] Brennan, R.L. 2006. Educational measurement.

[4] Bruckman, A., Biggers, M., Ericson, B., Mcklin, T.,
Dimond, J., Disalvo, B., Hewner, M., Ni, L. and Yardi,
S. 2009. “Georgia Computes !”: Improving the
Computing Education Pipeline. Proceedings of the
Special Interest Group on Computer Science Education
(SIGCSE’09). (2009), 86–90.

[5] Cooper, S., Grover, S. and Simon, B. 2014. Building a
virtual community of practice for K-12 CS teachers.
Communications of the ACM. 57, 5 (2014), 39–41.

[6] Downey, A.B. 2014. Think Python: How To Think Like
a Computer Scientist. Green Tea Press Think X series.
June (2014), 300.

[7] Fazio, R.H., Sherman, S.J. and Herr, P.M. 1982. The
feature-positive effect in the self-perception process:
Does not doing matter as much as doing? Journal of
Personality and Social Psychology. 42, 3 (1982), 404–
411.

[8] Field, A. 2005. Discovering Statistics Using SPSS.

[9] Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K.,
Okoroafor, N., Jordt, H. and Wenderoth, M.P. 2014.
Active learning increases student performance in science,
engineering, and mathematics. PNAS Proceedings of the
National Academy of Sciences of the United States of
America. 111, 23 (2014), 8410–8415.

[10] Goldman, K., Gross, P., Heeren, C., Herman, G.L.,
Kaczmarczyk, L., Loui, M.C. and Zilles, C. 2010. Setting
the Scope of Concept Inventories for Introductory
Computing Subjects. ACM Transactions on Computing
Education. 10, 2 (2010), 1–29.

[11] Guzdial, M. 2013. Exploring hypotheses about media
computation. Proceedings of the ninth annual
international ACM conference on International
computing education research - ICER ’13 (2013), 19.

[12] Hake, R.R. 1998. Interactive-engagement versus
traditional methods: A six-thousand-student survey of
mechanics test data for introductory physics courses.
American Journal of Physics. 66, 1 (1998), 64.

[13] Hambleton, R.K., Swaminathan, H. and Rogers, H.J.
1991. Fundamentals of item response theory.

[14] Herman, G. 2011. The Development of a Digital Logic
Concept Inventory.

[15] Hestenes, D., Wells, M. and Swackhamer, G. 1992.
Force Concept Inventory. The Physics Teacher.

[16] Karpierz, K. and Wolfman, S. a. 2014. Misconceptions
and concept inventory questions for binary search trees
and hash tables. Proceedings of the 45th ACM technical
symposium on Computer science education - SIGCSE
’14. (2014), 109–114.

[17] Lee, M.J. and Ko, A.J. 2015. Comparing the
Effectiveness of Online Learning Approaches on CS1
Learning Outcomes. ICER. (2015), 237–246.

[18] Libarkin, J. 2008. Concept Inventories in Higher
Education Science. STEM Education Workshop 2.
(2008), 1–13.

[19] Libarkin, J.C. and Anderson, S.W. 2005. Assessment of
Learning in Entry-Level Geoscience Courses : Results
from the Geoscience Concept Inventory. Journal of
Geoscience Education. 53, 4 (2005), 394–401.

[20] Lord, F.M. 1952. The relation of the reliability of
multiple-choice tests to the distribution of item
difficulties. Psychometrika.

[21] Magana, A.J., Falk, M.L. and Reese, M.J. 2013.
Introducing Discipline-Based Computing in
Undergraduate Engineering Education. ACM
Transactions on Computing Education. 13, 4 (2013), 1–
22.

[22] Miller, M.D., Linn, R.L. and Gronlund, N.E. 2012.
Validity. Measurement and assessment in teaching.
Pearson Higher Ed.

[23] Morrison, B.B., Margulieux, L.E. and Guzdial, M. 2015.
Subgoals, Context, and Worked Examples in Learning
Computing Problem Solving. ICER. (2015), 21–29.

[24] Mühling, A., Ruf, A. and Hubwieser, P. 2015. Design
and First Results of a Psychometric Test for Measuring
Basic Programming Abilities. WiPSCE ’15. (2015).

[25] Ni, L., Guzdial, M., Tew, A.E., Morrison, B. and
Galanos, R. 2011. Building a Community to Support HS
CS Teachers: the Disciplinary Commons for Computing
Educators. Proceedings of the 42th ACM technical
symposium on Computer Science Education - SIGCSE
’11. (2011), 553–558.

[26] Paul, W. and Vahrenhold, J. 2013. Hunting High and
Low: Instruments to Detect Misconceptions Related to
Algorithms and Data Structures. Proceedings of the 44th
ACM technical symposium on Computer Science
Education - SIGCSE ’13. (2013), 29.

[27] Pollatsek, A. and Well, A.D. 1995. On the use of
counterbalanced designs in cognitive research: a
suggestion for a better and more powerful analysis.
Journal of Experimental Psychology: Learning, Memory,

and Cognition. 21, 3 (1995), 785–794.

[28] Porter, L., Garcia, S., Tseng, H.-W. and Zingaro, D.
2013. Evaluating student understanding of core concepts
in computer architecture. Proceedings of the 18th ACM
conference on Innovation and technology in computer
science education - ITiCSE ’13. (2013), 279.

[29] Rebello, N.S. and Zollman, D. a. 2004. The effect of
distracters on student performance on the force concept
inventory. American Journal of Physics. 72, 1 (2004),
116.

[30] Shavelson, R.J. 2007. A Brief History of Student
Learning Assessment: How We Got Where We Are and a
Proposal for Where to Go Next.

[31] Singley, M. and Anderson, J.R. 1989. The Transfer of
Cognitive Skill. Harvard University Press.

[32] Stefani, L. 2004. Assessment of Student Learning:
promoting a scholarly approach. 1 (2004).

[33] Stefik, A. and Siebert, S. 2013. An Empirical
Investigation into Programming Language Syntax. ACM
Transactions on Computing Education. 13, 4 (2013), 1–
40.

[34] Taylor, C., Zingaro, D., Porter, L., Webb, K.C., Lee,
C.B. and Clancy, M. 2014. Computer science concept
inventories: Past and future. Computer Science
Education. 24, 4 (2014), 253–276.

[35] Tew, A.E. 2010. Assessing Fundamental Introductory
Computing Concept Knowledge in a Language
Independent Manner Assessing Fundamental
Introductory Computing Concept Knowledge. Georgia
Institute of Technology.

[36] Tew, A.E. and Dorn, B. 2013. The Case for Validated
Tools in Computing Education Research. Computer. 46,
9 (2013), 60–66.

[37] Tew, A.E. and Guzdial, M. 2010. Developing a validated
assessment of fundamental CS1 concepts. Proceedings of
the 41st ACM technical symposium on Computer science
education - SIGCSE ’10. (2010), 97.

[38] Tew, A.E. and Guzdial, M. 2011. The FCS1 : A
Language Independent Assessment of CS1 Knowledge.
Proceedings of the 42nd ACM technical symposium on
computer science education (2011), 111–116.

[39] Utting, I., Tew, A.E., McCracken, M., Thomas, L.,
Bouvier, D., Frye, R., Paterson, J., Caspersen, M.,
Kolikant, Y.B.-D., Sorva, J. and Wilusz, T. 2013. A
Fresh Look at Novice Programmers’ Performance and
Their Teachers' Expectations. Proceedings of the
{ITiCSE} Working Group Reports Conference on
Innovation and Technology in Computer Science
Education-working Group Reports. (2013), 15–32.

[40] Weintrop, D. and Drive, C. 2015. Using Commutative
Assessments to Compare Conceptual Understanding in
Blocks-based and Text-based Programs. (2015), 101–
110.

[41] Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P.
and Clayborn, L. 2015. Sowing the Seeds: A Landscape
Study on Assessment in Secondary Computer Science
Education.

