Type 1: Using Instructional Design Techniques to Create Distance CS
Education to Support In-Service Teachers

I Project Goals and Outcomes

A. Introduction to the Problem and our Solution

In computer science, we do not currently have pedagogical practices that work well at a
distance and for self-study. Our best practices in computing education are those that develop
student’s design ability (Felleisen, Findler et al. 2002; Findler, Clements et al. 2002; Caspersen and
Bennedsen 2007; Caspersen and Kolling 2009) and that improve retention and broaden
participation (Guzdial 2001; Guzdial 2002; Guzdial 2003; Sloan and Troy 2008; Simon, Kinnunen et
al. 2010). All of these assume cycles of classroom lecture (often with learner engagement and live
coding activities (Hake 1998; Caspersen and Bennedsen 2007; Simon, Kinnunen et al. 2010)) and
student programming on homework assignments. Even materials designed for out-of-class study
are just guides for student work in lab settings (Radenski 2006).

Student programming sessions can be inefficient with respect to learning goals (Long, Weide et
al. 1998; Gray, Edwards et al. 2005; Edwards and Perez-Quinones 2008; Thornton, Edwards et al.
2008). Several studies have instrumented student programming environments to track their
activity (Spacco, Strecker et al. 2005; Jadud 2006). Much of the students’ time is spent on activities
extraneous to their learning, such as struggling with programming language syntax (Jadud 2006) or
making program permutations without insight into the meaning of the program permutations
(Spohrer 1992).

Our inefficient practice for computer science teaching and learning is a direct impediment
to our goals of creating more high school computer science teachers.

We are going to need to grow computer science teaching through in-service rather than pre-
service teacher professional development (Guzdial 2010). The National Science Foundation has set
a “CS10K” goal, of having 10,000 high school computer science teachers ready to teach the
Advanced Placement Exam in Computer Science (AP CS) course in 10,000 high schools by the year
2015. In 2009, we had 2,019 high schools offering AP CS, which is a reasonably proxy for the
number of AP CS teachers in the country (Ni and Guzdial 2011) since few schools have more than
one AP CS teacher. We are unlikely to fill the gap from 2K teachers to 10K teachers using pre-
service teacher education simply because of the need for teacher practicum and student teaching
classrooms (Gal-Ezer and Stephenson 2009; Gal-Ezer and Stephenson 2010).

We have recently completed a study of students in an online computer science class (Benda,
Bruckman et al. 2011). Students in on-line computer science courses tend to be “non-traditional,”
like in-service teachers. The adults in our study, as in others of online computer science courses
(Kleinman & Entin, 2002), were working professionals with fragmented time available for their
course. They often needed remedial help since their formal schooling had been unused for years.
They had difficulty communicating with their teacher and others in their courses. We found that
online students were unable to find the time to put in hours in front of a programming development
environment.

In order to meet the goal of CS10K, we need a new, more efficient kind of computer science
pedagogical practice.

Our current best practice is incompatible with the needs of working professionals such as in-
service teachers. Fortunately, there is low-hanging fruit. Many of the research findings on

instructional design and in educational psychology on creating more efficient educational practices
are rarely used in computing education. By creating new materials using these education research
findings, we propose to create a new computer science distance learning approach that is
compatible with developing in-service computer science high school teachers. We call our
approach the examples+practice model, because we draw most significantly on the literature on
creating effective examples (Sweller and Cooper 1985; Trafton and Reiser 1993; Atkinson, Derry et
al. 2000) and on practice (exercises used to encourage reflection on examples and develop skills)
based on cognitive tutors research (Anderson, Corbett et al. 1995; Cen, Koedinger et al. 2006;
Aleven, Mclaren et al. 2009). We plan to structure examples in terms of the redundancy and
modality principles of multimedia learning (Mayer 2009), and to choose both examples and
practice to highlight the structure-behavior-function (SBF) aspects of programs (Goel, Rugaber et
al. 2009; Vattam, Goel et al. 2009).

We propose to create these materials and evaluate them with in-service high school teachers
learning computer science. We will evaluate them against three measures, which will form our
three research questions:

1. Do teachers learn computer science using the examples+practice model? We will
evaluate the learning using a variation of an existing validated test of introductory CS
knowledge which is programming language independent (Tew and Guzdial 2010; Tew
2010; Tew and Guzdial 2011).

2. Do teachers become more efficient at programming tasks after using
examples+practice? We plan to take baseline measures during Year One of teachers in
our existing summer and in-service professional development workshops, on the
amount of productive time spent on programming assignments. We will compare to the
same programming tasks in Years Two and Three for our distance students.

3. How do we apply and adapt instructional design practices for computer science? For
this question, we propose a design-based research approach (Cobb, Confrey et al. 2003;
Lamberg and Middleton 2003; Clements 2007). The instructional design and
educational psychology literature on which we are basing examples+practice has
rarely been used in computer science instruction. Our plan is to develop our materials
begin careful observations of their use, including detailed interviews, in order to
understand how the materials are being used, if they are being used the way we
predicted, and if our learners are finding them useful and satisfying. We are relying on
the fact that our learners, being post-graduate adults who specialize in learning, will
able to reflect on and report to us the strengths and weaknesses of our materials. An
outcome of this project will be published design guidelines on creating effective distance
learning materials for computer science based on instructional design and educational
psychology literature.

B. Problem: Needs of In-Service Computer Science Teachers

One of the greatest needs for our existing computer science teachers in the United States is
certification and adequate professional development towards that certification (Gal-Ezer and
Stephenson 2009; Gal-Ezer and Stephenson 2010). Few states offer computer science certification
(Ericson, Armoni et al. 2008), and the result is teachers have their certification in something else
(most likely Business in the US (Wilson, Sudol et al. 2010)) and are unlikely to have much (if any)
computer science preparation pre-service (Ni and Guzdial 2011).

The list of what high school computer science teachers need to know is long (Gal-Ezer, Hazzan
et al. 2009). Certainly, they need to know computer science, including some programming, which is
part of Level 2 and Level 3 of the ACM K-12 Model Curriculum (Tucker, Deek et al. 2003). Our CS10K
goals are only achieved by teachers knowing the Computer Science: Principles content (Astrachan,
Barnes et al. 2011; Astrachan, Cuny et al. 2011), which includes a significant programming

2

component. In addition, teachers need to know how to teach the content, which is called
pedagogical content knowledge (Shulman 1986; Shulman 1986; Saeli 2009). Teachers also need to
know how to diagnose student errors (both in code and in understanding) and identify appropriate
interventions to support learning.

Results of Prior Work: We have three on-going grants in which we have offered professional
development and studied the factors influencing teacher success in in-service professional
development: Georgia Computes!; Disciplinary Commons for Computing Educators (DCCE); and
Operation: Reboot. Through these projects, we have learned how to create professional
development that has impact, about the challenges for in-service teachers in taking professional
development, and what the current state-of-the-art is in distance CS education.

Georgia Computes! is a National Science Foundation Broadening Participation in Computing
(BPC) Alliance (Grant #0634629, 0940394) whose goal is to broaden participation by improving
computing education at all levels of the pipeline across the state of Georgia. GaComputes works
from elementary and middle school (e.g., YWCA after school workshops and Girl Scout activities and
summer camps) to motivate interest in computer science, through high school (e.g., teacher
professional development and lending libraries), and undergraduate (e.g., workshops on
curriculum that engages and motivates a more diverse student body) (Ericson, Guzdial et al. 2005;
Ericson, Guzdial et al. 2007; Bruckman, Biggers et al. 2009). The GaComputes Alliance includes the
Georgia Department of Education, University System of Georgia, and youth-serving organizations
such as YWCA and Girl Scouts of Greater Atlanta. In GaComputes, we have tried to measure impact
across the pipeline. For example, teachers at 38% of Georgia high schools have participated in our
professional development. Those schools produce 58% of students from Georgia in introductory
computing courses (CS1 and CS2) in a survey of Georgia public universities, and those schools
produce significantly more women and under-represented minority CS students than the other
62% of Georgia schools.

As part of GaComputes, we began a study of students taking a set of CS courses on-line at one of
our partner institutions, Columbus State University (Benda, Bruckman et al. 2011). These courses
are now part of a computer science teaching endorsement program, the first such program in
Georgia (Whitehead, Ray et al. 2011). Our participants, like most students taking CS courses on-line
at a distance (Kleinman and Entin 2002; Mashiko, Morita et al. 2002; Ragonis and Haberman 2003),
are stressed for time, which influences their studies. As one participant described:

“I had my few afternoon hours that I could work on the stuff, but it all just boiled down to me
not having time for my family when I was taking the courses. I think the bottom line was with my
family structure, I shouldn’t have taken more than one course at once.” [...] “sometimes I felt like |
wasn'’t putting enough into one class because [was putting so much into the other class.” [...]
“Then I had to put more time into the family, because I didn’t put in as much as I should have, but |
still had to put time in for them.”

In particular, our participants told us about how they were stumped by syntactic errors, how to
get help, and challenges with remembering long-ago mathematics courses:

Andrew - “I said one time that I couldn’t get this mathematical problem to work. His response
was, “I'm not going to teach you algebra.” So if you get one little piece or spacing wrong, it doesn’t
work.”

John - “There were times that it would take me hours to find one comma out of place, or find
that one something that was wrong, so I didn’t mind sticking with it but it just got to the point
where [just didn’t get it.”

DCCE is an NSF CPATH (CISE Pathways to reinvigorate undergraduate education) grant
(#0829601) that brings together AP CS high school teachers and CS1/CS2-teaching undergraduate
faculty for one Saturday a month for an academic year. The goal of the project is to improve teacher
quality through reflection and creating a community of teachers (Ni and Guzdial 2011; Ni, Guzdial
etal. 2011; Ni, Tew et al. 2011). Through DCCE, we have come to see how in-service high school

3

teachers are isolated, lacking CS background, and desperately in need of community—even more
than other STEM teachers. Because so few states offer certification for CS teachers (Ericson,
Armoni et al. 2008; Gal-Ezer and Stephenson 2009; Gal-Ezer and Stephenson 2010), a community of
peers and role model teachers creates a sense of belonging, increases the odds of being retained as
a teacher, and generates interest in improving as a teacher (Ni and Guzdial 2011; Ni, Guzdial et al.
2011; Ni, Tew etal. 2011). The need for in-service professional development is particularly explicit
in this comment from a DCCE participant:

[Becky]: “I struggle with giving everyone the material and being able to explain it to
everyone...I struggle with how to be creative with the programming. I have a problem with trying
to make the programs have meaning to them...It is hard to teach. It’s hard knowing how to teach
it, how to give it to them...It’s hard to explain...I would have to definitely update my skills. | would
have to do something because I don’t know if it’s old age or what. When I look at kids’ codes, they
think I should know it as soon as I look at it. For the longest time I thought I should, but I don’t
have to. I have to study it just like they do.”

Operation: Reboot (BPC #0940932) retrains unemployed IT workers as high school teachers
(Betts 2009). Each IT worker is paired with an in-service high school teacher who wants to learn
more computer science. By pairing, each learns from the other, and each pair is mentored by an
expert high school CS teacher. Through Operation:Reboot and GaComputes, we have been
developing expertise in using the current state-of-the-art in in-service professional development
tools, including Elluminate, video examples, digital repositories, and shared content management
systems.

C. Proposed Solution: Research-Driven Examples+Practice CS Education

An enormous body of literature exists on how people learn and how best to design instruction
to support learning (Donovan, Bransford et al. 1999). We are proposing to draw on a selection of
this literature that is most promising in terms of addressing in-service teacher needs in learning
computer science.

i Worked Examples

One of the most promising findings in educational psychology in terms of improving efficiency
of instruction (i.e., achieving the same learning goals in less time) is the use of worked examples
(Sweller and Cooper 1985). The hypothesis behind worked examples is that much of the learning in
STEM leads to cognitive overload because we ask students to solve problems at the same time as
they are learning the basic principles (Sweller 1988). Worked examples have students learn by
studying completely worked-out problems, and then tackling problems to solve. At least one review
of the literature suggests that studying worked examples is far more successful than more problem-
solving oriented approaches (Kirschner, Sweller et al. 2006).

The critical aspect for us is that worked examples approaches have led to more efficient
learning (Sweller and Cooper 1985). Sweller & Cooper showed that they could teach just as much
algebra in half as much time with worked examples as a traditional, problem-solving approach.
Similar results have been found in other domains (Atkinson, Derry et al. 2000).

Instructional designers and educational psychologists know a lot about how to construct
examples that ease learning and later problem-solving. Atkinson et al (2000) have published a
thorough review of the existing literature on designing examples. For example, Catrambone has
shown that structuring the examples in terms subgoals and labeling those subgoals has a dramatic
impact on students’ ability to re-use (transfer) the knowledge in other problem-solving settings
(Catrambone 1994; Catrambone 1994; Catrambone 1995; Catrambone 1996).

Worked examples have rarely been used in computer science education. Pirolli used worked
examples with great results for teaching recursion (Pirolli 1991; Pirolli and Recker 1994; Bielaczyc,
Pirolli et al. 1995). Clancy & Linn taught Pascal with text case studies around the same time (Clancy

4

and Linn 1992). Guzdial & Kehoe developed a case library of design examples (Guzdial and Kehoe
1998). Students who used the library saw many more designs and did significantly better on later
design problems. Dorn found that informal learners learned normative computer science from
studying examples with embedded CS definitions and explanations (Dorn 2010).

A major challenge with a worked examples approach is covering the space. What examples and
how many do we need? We propose to use an approach from cognitive tutor development
(Anderson, Corbett et al. 1995; Aleven, Mclaren et al. 2009). We will define our learning outcomes
and a cognitive model for the skills needed to achieve those outcomes, then define the practice
tasks, through to subgoals and subfactors, and provide examples for each subgoal. By tracking our
examples down to the subfactor level, we can then use techniques inspired by cognitive tutors
research to track learning at the subfactor level and improve instruction based on that performance
(Cen, Koedinger et al. 2006; Koedinger and Stamper 2010). By using Catrambone’s subgoal
approach to modeling, we believe that we can avoid the expense and complication of developing the
cognitive model down to a production rule level (Catrambone 1998).

An important empirical question is how many examples to provide for each goal and subgoal. By
tracking student error and time to completion, we can estimate student understanding, as in
cognitive tutors(Cen, Koedinger et al. 2006; Koedinger and Stamper 2010). Students who already
know the content can push ahead further, and others can be given more examples. Pirolli (1991)
used eight examples for each of the primitives of his LISP-like language as part of his training
materials, which provides us a starting point for number of example-practice pairs needed for each
subfactor.

ii. Practice on Structure, Behavior, and Functions

Examples are most effective when they are interleaved with practice, the opportunity to
demonstrate the knowledge in the example. These practice sessions are focused on recall and the
simplest problem-solving, e.g., “Write a LISP function that adds the numbers 3 and 2. You should
call a particular LISP function with the arguments 3 and 2” (Anderson, Corbett et al. 1987). Pirolli’'s
recursion lessons interleaved examples and practice, where students would write small recursive
functions (Pirolli 1991). Trafton and Reiser (1993) found that the most effective learning comes
from interleaving one example and one practice exercise on that example content.

We propose to provide practice opportunities for students that will support them in learning
from the examples, drawing on best practices for student assessment in computer science. The goal
is to encourage students to think about the examples. Some of these may be multiple choice
questions, (Lister, Adams et al. 2004; Tew and Guzdial 2011), but more will be fill-in-the-blank code
problems, like Problets (Krishna and Kumar 2001; Naps, Roessling et al. 2005), JavaBat (Roessling,
Joy et al. 2008), or Practicelt! (Reges and Stepp 2010). Practice exercises will also involve self-
explanation activities (e.g. explaining to oneself what an example means) which have been shown
to improve student learning from examples (Bielaczyc, Pirolli et al. 1995), even if that self-
explanation merely involves a prompt to take notes (Sandoval, Trafton et al. 1995; Trafton and
Trickett 2001).

Our challenge for our student audience (in-service teachers) is to come up with effective
exercises and practice problems that will help our teachers learn the kinds of knowledge that they
might learn from writing programs in a development environment. What do students learn when
they are programming? What kinds of knowledge are required and used when programming?
Ashok Goel and his colleagues have been studying designers in a variety of domains (including
mechanical engineering and computer science) (Goel, Rugaber et al. 2009) and describe designers’
knowledge in terms of:

e Structure: The obvious static components of the design. In software design, these are
the statements of the program. Structure knowledge is used in writing code (Lister,
Fidge et al. 2009).

e Behavior: How the components in the structure interact in the design. In an algorithm
to sort an array, a loop, some assignment statements, and a conditional test are the
components that result in a behavior such as a bubble sort or a heap sort. Behavior
knowledge is used in debugging and tracing code (Lister, Adams et al. 2004; Whalley,
Lister et al. 2006; Venables, Tan et al. 2009).

e Function: What the design does. In software, this is the purpose or meaning for a
particular program or software component.

Programming requires specification of structure, based on understanding the behavior of
individual statements, in pursuit of some function. Research on SBF models find that novices
understand structure well, function less well, and behavior weakest of all (Liu, Hmelo-Silver et al.
2005; Hmelo-Silver, Jordan et al. 2008). We see parallels in the computer science literature. Pirolli
(1991) found that students found it easier to learn from structure-focused examples than behavior-
focused examples. A series of studies in Australasia have found that students cannot easily discern
function from a given piece of code and find tracing very difficult (Lister, Adams et al. 2004;
Whalley, Lister et al. 2006; Lister, Fidge et al. 2009; Venables, Tan et al. 2009).

Recent research in science education has found that students learn systems especially well
through SBF-informed hypermedia examples (Liu, Hmelo-Silver et al. 2005; Liu, Marathe et al.
2006; Hmelo-Silver, Jordan et al. 2008; Sinha, Gray et al. 2010; Vattam, Goel et al. 2010). In
comparison to traditional biology examples which are based on structure (e.g., “Here is the
cardiovascular system”), SBF-informed hypermedia starts from function (e.g., “How does oxygen
enter the animal?”) and leads through behavior (e.g., “The blood carries the oxygen from the lungs
throughout the body.”) Students using SBF-informed hypermedia examples actually develop more
elaborated understanding than students studying with more traditional examples.

Computing educators use visualizations to describe behavior in student programs
(Hundhausen, Douglas et al. 2002). While these visualizations describe behavior, a weak spot in
student learning, algorithm visualizations don’t consistently lead to learning. What makes them
most effective is including practice with the visualizations, e.g., making students create their own
visualizations, tracing visualizations, and including visualizations as part of code writing
(Hundhausen and Brown 2007). A new class of visualization tools include the ability to ask students
to do tracing of the visualization themselves, with feedback on errors (Sorva and Sirki 2010).

An obvious question is: Why develop a new examples+practice approach when we already
have cognitive tutors that work so well for teaching programming (Sleeman 1986; Anderson,
Corbett et al. 1995)? There are two reasons.

e A cognitive tutor uses a cognitive model, that structures a set of exercises with a student
model (e.g., a behavioral trace) that directs feedback when students work on the
exercise. Tracing student activity is expensive to implement (Anderson and Corbett
1993) even with new tools supporting example tracing (Aleven, Mclaren et al. 2009).
We are proposing to develop a cognitive model, but to use many examples and well-
designed practice without a behavioral trace. We are proposing that multiple, targeted
examples with practice feedback can guide learning as well as individualized tracing. We
hope to develop the instruction more easily (e.g., without the technical expertise
required for tutoring authoring), in less time, and with lower cost than a complete tutor.
That's an empirical summative question. In the proposed work, we are doing the
formative work to create the approach.

e Second, itis not clear that we know how to develop a cognitive tutor to teach teachers.
Teachers need to develop knowledge about being a teacher (e.g., pedagogical content
knowledge, diagnosing and addressing student problems) that we do not yet know how
to teach via a tutor (Koedinger 2011). An example-based approach has worked for
teaching pedagogical content knowledge (Mouza 2010). Worked examples plus practice
has the greatest potential for designing instruction for computer science teachers.

6

In summary, the examples+practice approach will provide examples that identify structure,
behavior, and function components, and practice will exercise student understanding of all three
components. Research in instructional design suggests that this should be successful, but has not
yet been tried in computer science.

iii. Using Multiple Modalities

Computer science is a text-heavy discipline. Visualization research attempts to leverage
students’ ability to process images for learning computing (Naps, Cooper et al. 2003), but it has
been surprisingly unsuccessful (Hundhausen, Douglas et al. 2002). Educational psychology
literature suggests that the intuition to mix modalities is good, but visualization plus written text
isn’t necessarily going to help. Rather, mixing audio with visual information is more likely to
provide more information to students without cognitive overload (Mayer 2009). There is a
significant body of literature which suggests that people learn more deeply from visual information
and narration than visual information with text. Thus, written text explaining textual programs
may be leading to cognitive overload, making it harder for students to understand the content.
Educational psychologists believe that humans have both an auditory channel and a visual channel
for receiving information, and by providing narration over text we optimize use of those channels
(Mayer and Moreno 1998). Of particular interest for our in-service teachers, audio can lead to
greater efficiency in instructional time (Solomon 2005).

In our examples, we propose to make heavy use of audio explanation for program text (e.g.,
perhaps in the form of video), rather than more textual explanations. The approach of replacing
audio narration for explaining textual information has been used to create better explanation of
geometry proofs (Mousavi, Low et al. 1995). Using audio narration for improving computer science
education is novel.

iv. Supporting Communications

A common complaint of participants in our study of distance CS education classes is the lack of
communication between the student and peer students, and between the students and the teacher
(Benda, Bruckman et al. 2011). Our DCCE participant teachers frequently talk about the isolation
that they feel (Ni and Guzdial 2011; Ni, Guzdial etal. 2011; Ni, Tew et al. 2011). Communications
needs to be part of any professional development effort for computer science teachers.

We plan to provide two kinds of supports in our instructional materials. We will explore
mechanisms for encouraging discussion such as our anchored discussions that we have built and
used successfully in the past (Guzdial 1997; Guzdial, Hmelo et al. 1997; Guzdial 2001), with a
particular focus on low-cost and time efficiency for in-service teachers-as-students (Guzdial, Rick et
al. 2000; Rick, Guzdial et al. 2002). Anchored discussions link discussion formats to examples or
practice assignments, to create a focus for discussions, which has been shown to create more
learning-effective, on-topic discussions than unanchored discussions (Guzdial and Turns 2000).

To solve the problem of student isolation and student-teacher disconnect, we are particularly
concerned with a sense of awareness that would drive use of the communication.

e First, the teacher needs to know where students are. We propose the creation of a
teacher dashboard, driven by performance on the practice and indexed by learning goals
and subgoals. We are interested in providing similar kinds of insight as the cognitive
tutor “skillmeters” (Anderson, Conrad et al. 1993; Anderson, Corbett et al. 1995). The
teacher will be able to see at a glance how the class is doing, and how individuals are
doing, which encourages a sense of activity and where the class may be challenged.

e Second, the students need to have a sense of where they are with respect to the others.
We propose the creation of individual and group “skillmeters,” so that students can have
a sense that they are making progress, and so is their whole cohort. We believe that real
benchmarks like these will provide students, especially teachers who may worry that

they “can’t” learn computer science (Fisher and Margolis 2003), with a sense of how
well they are really doing.

V. Scenario of Examples+Practice CS Education

To make more concrete our plans, consider this scenario. Angela is a teacher learning Computer
Science: Principles, and is progressing in her studies. She’s working on simple functions: Calling
functions, manipulating the results, and using those results in a call to another function.

e Structure example+practice: She watches a video of someone explaining and using a
function that retrieves the red channel from pixels of a picture, reduces the red by 50%,
then saves the new red value back to the pixel. After watching this video, she is asked to
complete a single line of code in a function that retrieves the blue channel and then sets
a new blue channel. She is supposed to increase the blue by 20%. At first she misses the
syntax, but a problem-specific error message corrects her. The second time, she uses the
constant 0.20, decreasing blue by 80%, and a problem-specific mathematics explanation
corrects her. She gets it right the third time. That took her about 20 minutes, which she
had time to do in the morning. She sets the materials aside, and returns to it that
afternoon at lunch.

o Behavior example+practice: She then sees an animation of the execution of the
function reducing blue by 20%. Midway through the animation, the execution stops, and
she’s prompted to fill in the values of the variables after the next three statements
execute.

e Function example+practice: She’s now shown a new function (which increases green
by 20%), and she’s shown three outputs of the program, and she’s asked to identify the
right output and to self-explain what the function does.

e Subgoal PCK: Later that evening, Angela sees a video describing the misconceptions
that students often have in dealing with calling functions. She is prompted to update her
on-line teacher notebook with her self-explanations on how to recognize those
misconceptions and how she might help students to learn a better conceptualization.

Because she has trouble with the first structure example+practice, she’s given some additional
examples on that same learning outcome. She notices that her skillmeter shows that she’s doing
really well on the subgoal for calling functions, and she sees that only one other member of her
cohort is further than her on this set of examples+practice. Her professional development
workshop leader sees an update on the class dashboard on how everyone is doing.

vi. Future Development of the Proposed Work

Our overall goal with this research direction is to create a new medium for computing education.
Static textbooks, Powerpoint, or even PDFs and other e-book formats cannot adequately convey
program behavior. Algorithm visualizations are insufficient without student activity. We aim in
this effort to create a new medium, built on the best of educational psychology and instructional
design, to better support learning about computer science. The closest tool to what we are
proposing is the Open Learning Initiative (OLI), whose tools were used to improve the efficiency of
a statistics course by 50% (Lovett, Meyer et al. 2008), but has rarely been used for CS, lacks the CS-
specific features we describe, and has mostly been used for hybrid classes, not distance-only. By
starting with in-service teachers, we have an audience that is particularly time-constrained and yet
is more metacognitively aware than other students (e.g., K-12 students) and thus can serve as
design informants.

Once we have this medium, we plan to develop it for other purposes. Certainly, we want more
teachers to use it, even informally. We can also use this medium for younger students. For example,
the AP Computer Science: Principles will need a textbook, since a textbook is required for Advanced
Placement course audits across all domains (Board 2011). We will have created Computer Science:

8

Principles content in our new medium for teachers, by the end of this project. A natural next step is
to explore developing these materials into a free, on-line textbook for high school students studying
AP Computer Science: Principles.

If the CS10K goal is successful, we can anticipate that around 8,000 of the 10,000 high school
teachers teaching AP CS:P will be relatively new computer science teachers. They will likely never
to have taught AP CS previously. The communications and “dashboard” mechanisms that we
propose will be useful scaffolding for new teachers. We are particularly envisioning a mechanism
that might use the teacher dashboard as an index into a digital library of classroom practices, such
that the right in-class activity might be suggested to the new teacher that would best serve the
learning needs of the students. We can imagine the system suggesting, “65% of your students are
having difficulty understanding how processes can be distributed across a network. Here is a great
in-class activity to improve learning on that outcome...” We could enhance the proposed project by
linking learning outcomes from the cognitive model to recommended in-class activities, so that
problems with the outcomes could lead to suggestions for the new teacher.

Il. Evaluation Plan

Our evaluation is organized around our three research questions and the issue of underserved
minorities (which is treated separately in a later section of the proposal). “Students” here refer to
our student population, in-service high school teachers. We will seek our participants through our
existing ICE@GT channels (e.g., through mailing lists and Georgia Department of Education), and
also through the Georgia CSTA Chapter and the Federation of Disciplinary Commons (see
Implementation Plan). We will offer incentives to be part of our data collection process.

A. Do students learn computer science using the examples+practice model?

We plan to develop instruments to measure teacher learning Computing in the Modern World
(CiMW, Level 2 on the ACM Model Curriculum, and in the Georgia state high school curriculum) and
in the AP CS:P pilots. An instrument to measure understanding of conceptual knowledge isn’t as
challenging as measuring understanding of the programming knowledge. We plan to develop a new
test based on an existing test for that goal.

Allison Elliot Tew just completed her dissertation this last year working with our group,
developing the first validated language-independent test of introductory computer science
knowledge, the FCS1 (Tew 2010; Tew and Guzdial 2010; Tew and Guzdial 2011). The FCS1 is
available for us to use as a benchmark for the teachers using our materials.

Elliott Tew found that pseudocode works as a reasonable notation for students to use in her
instrument. Performance on her pseudocode test was highly correlated with student performance
on an isomorphic test in the student’s CS1 language (Java, MATLAB, or Python), and with
performance on the student’s CS1 final exam (Tew 2010; Tew and Guzdial 2011).

The FCS1 may not be sufficient to cover the computer science content that we want our in-
service teachers to learn. While FCS1’s language independence is desirable, it has only been tested
on Java, MATLAB, and Python, not the languages commonly used in Computing in the Modern World
and in the AP CS:P pilots, such as Scratch and Alice. Our plan is to develop assessments using Elliott
Tew’s pseudocode (as an understandable notation), but focus on CiIMW and CS:P content. A
contribution of the proposed project will be to develop language independent assessments for
CS concepts in Computing in the Modern World and Computer Science: Principles.

B. Do students become more efficient at programming tasks after using

examples+practice?

We do not envision any medium for computing education to completely replace programming a
computer in a development environment. We wouldn’t want to. Programming is a central activity
in the computer science community of practice (Lave and Wenger 1991). To teach computer science
without having students program is inauthentic which can reduce engagement (Shaffer and Resnick
1999).

We hope to make the time that the in-service teachers spend learning through programming
efficient. We want the programming activity to be productive (in terms of learning what is best
learned by while programming) without a significant loss of time to extraneous detail. We
hypothesize that the examples+practice approach will lead students to learn structure, behavior, and
function such that time spent programming in the development environment is productive.

Our measure of productivity will be time spent and student self-report of quality of time spent.
A student could spend two hours programming, and say that it was very productive because the
time was spent exploring a problem and developing a solution. A different student may spend the
same two hours but complain that only half of it was productive because he had difficulties (for
example) getting the spelling right on library calls.

We plan to take baseline data during the first year of our project, in face-to-face teacher
professional development workshops. We will ask teachers in these workshops to keep on-line
diaries of time spent, what they spent the time doing (e.g., getting the program to compile without
errors, getting the program to run without errors, debugging the running program), and the quality
of that time.

As we develop instructional materials to offer the same professional development workshops
on-line, we will ask participants to keep the same diaries. While the data is self-reported and
between different cohorts, the data gives us a point of comparison to feed into the design-based
research iterative. Our design goal is for our participants to find the programming time more
productive than those in our distance CS education study (Benda, Bruckman et al. 2011).

C. How do we apply and adapt instructional design practices for computer

science?

There will be dozens of design decisions that we will make while developing our instructional
materials. The mapping from the educational psychology findings and instructional design
practices to applications in designing computer science education is not always obvious.

e The multimedia principle (Mayer 2009) says that narration is better than static text for
explaining complex material. Is that narration best offered as a video of static or slowly
scrolling program code, or as audio narration connected to a user-controlled scrolling
text frame?

e The SBF model of design knowledge suggests that we need students to practice their
understanding of behavior. Would it be better to do that by guiding them through step-
by-step tracing as in UUhistle (Sorva and Sirki 2010), or would it be better to show
students a partial execution as an animation and then have them predict the next step
in the execution (Byrne, Catrambone et al. 1999)? Both have been used successfully,
and it may be that each is useful for different kinds of learning (e.g., step-by-step when
learning data manipulations, prediction when dealing with learning control flow).

Controlled lab experiments could be conducted to evaluate each of these design decisions, but
there will likely be interactions between them. Design experiments is a methodology originally
proposed by Ann Brown (Brown 1992) which suggests a different approach. Since it is so hard to be
successful at achieving desired learning outcomes, we first aim to get it working right (by some
measure), then develop hypotheses of why it worked and conduct more careful experiments to test

10

those hypotheses. Today’s design-based research methods focus on iterative development of the
learning setting, keeping careful attention to what got changed and how learning was impacted
(Cobb, Confrey et al. 2003; Lamberg and Middleton 2003).

In our design-based research model, we will focus on the five key design areas of our approach:
worked examples, practice, SBF, use of mixed modality, and awareness via skillmeters. We plan to
use CS content and productive programming time measures (from research questions one and two)
as two of our outcomes. During each design iteration, we will conduct at least two think-aloud
protocols with two teachers using our materials to get detailed insight into how our materials are
being used. We will conduct a sample of five phone interviews to get self-reports about satisfaction,
quality of materials, and learning effectiveness. Finally, we will conduct surveys with all
participants in each design iteration focusing on the five areas and the three subjective measures of
satisfaction, perceptions of quality, and perceptions of learning effectiveness.

D. Logic Model

Research Question

Instruments

Sampling

Analysis Questions

RQ1. Do students learn
computer science
using the
examples+practice
model?

i. FCS1

ii. New measures focused
on Computing in the Modern
World and CS:Principles
outcomes, using Elliot
Tew’s pseudocode as
language.

i. Baseline measures at
face-to-face workshops
in Year 1.

ii. Measures of learning
for on-line workshop
participants in every-
other design iteration

Comparison of current
iteration CS learning
performance against
baseline measures and
earlier design iterations.
Is performance
increasing, and in what
areas?

RQ1. Do students
become more efficient
at programming tasks
after using
examples+practice?

Self-report via diaries of
time spent on programming
assignments, activities
during that time (compile-
time focus, run-time focus,
debugging), and
satisfaction with learning.

i. Baseline measures at
face-to-face workshops
in Year 1.

ii. A sample of five
participants (selected
randomly) during each
design iteration to keep
diaries.

Does time spent on
programming task
decrease? Does focus
shift to higher-level
cognitive activities? Do
subjects perceive
learning value?

RQ3. How do we apply
and adapt
instructional design
practices for computer
science?

i. Learning and
programming task diaries
from RQ1+2.

ii. Think-aloud protocols.
iii. Phone interviews
focusing on five key design
areas and perceptions of
satisfaction, quality, and
learning effectiveness.

iv. Surveys on same areas
and perception issues.

ii. Think-alouds from two
participants in each
design iteration

iii. Phone interviews with
five participants each
design iteration.

iv. Surveys for all
participants

Is each design iteration
resulting in more
learning, greater sense of
time effectiveness, and
greater sense of
satisfaction and quality?
What key design areas
are not improving? What
design alternatives
should be explored?

Issues of Underserved
Populations

Counts of number of
students in CS classes.
Performance on AP CS
exam.

All teachers who take our
workshops will be polled
annually for counts in
their classes and for
performance of their
students.

Are teachers drawing
more students into their
classes? Are their
students doing better on
measures of CS learning?

11

A. Timeline for Implementation and Evaluation

Implementation Plan

Our timeline calls for two sequences of a six month development effort, followed by three three-
month design iterations, with learning measures in the middle iteration, letting us develop
infrastructure and learning measures, and then gives us three design-based research iterative
cycles. Our professional development workshops usually have about 20 teachers per session. We
predict higher numbers of teachers when the workshop is on-line at a distance. We conservatively
predict n=25 for each iteration, so impact of at least n=150 teachers, and their students indirectly. Our
focus is on building the instructional materials, which can then be used with many more teachers later.

1st Quarter | 2nd Quarter

3rd Quarter

4th Quarter

Year Take baseline measures on RQ2 (programming Development of Development
One time and efficiency) lessons iteration.
Development of cognitive model for Computing in Deployment with Deployment with
the Modern World (CiMW) goals. participants participants
Development of web infrastructure for authoring Gather RQ3 Gather RQ3 design-
and delivery of first iteration examples+practice | design-based based research
instruction. research (DBR) measures
Creation of first professional development measures Gather RQ1 (learning)
workshop materials Gather RQ2 and RQ2
Development of content evaluation for CIMW (programming (programming
cognitive model. activity self-report | activity self-report
diaries) measures | diaries) measures
Year Development of lessons | Develop cognitive model for Computer Development of
Two Deployment with Science: Principles content. Both Tiffany lessons
participants Barnes (U. North Carolina, Charlotte) and Deployment with
Gather RQ3 DBR Beth Simon (UCSD) will work with us to participants
measures develop content for their courses. Gather RQ3 DBR
Gather RQ2 measures Creation of CS:P lessons measures
Extend infrastructure for CS:P lessons. Since Gather RQ2 measures
our goal is to meet in-service teachers’ time-
constrained schedules, we will also explore
other delivery mechanisms (such as mobile
devices) during this development cycle.
Development of content evaluation for CS:P
cognitive model.
Year Development and Development and During this last cycle, we will aim to
Three Deployment. Deployment develop materials and deploy them for one
Gather RQ3 DBR Gather RQ3 DBR of our partner groups, such as the
measures measures Columbus State University endorsement
Gather RQ1 and RQ2 Gather RQ2 measures program or a CS:P pilot site.
measures

B. Reaching Underserved Populations

We plan to target the in-service teachers currently taking professional development workshops
through “Georgia Computes!” offered by the Institute for Computing Education at Georgia Tech
(ICE@GT). ICE@GT has been offering workshops even before “Georgia Computes!” was

12

established, and we expect to continue, with an increased use of distance education through the
proposed work.

The teachers currently taking our workshops are 39% White, 45% Black, 4% Asian, 8%
Hispanic, and 3% multiracial. 56% of those teachers teach in minority-majority schools. 44% of
those teachers teach in economically disadvantaged schools. Thus, we are reaching an audience of
mostly-minority teachers who teach in mostly-minority schools.

However, we are not having much success in reaching these minority students. In 2010, we had
the largest group ever take the AP CS exam: 692. The increase in AP CS A takers is not uniform
across all races or genders. The percentage of test takers in 2004 that were Black was 17% at 66
students. The percentage of test takers in 2010 that were Black was 9.8% at 68 students. The peak
for Black students was in 1999 when 163 Black students took the exam. While the number of
women taking the exam has increased from 70 in 2004 to 118 in 2010 the peak was also in 1999
with 155 women.

388 =&—Total in Georgia
600 == White
500 .
400 === Asian
300 =>¢=Black
200 . .
100 ==é=Hispanic
0 - =®— American Indian
\90;‘\ \90,‘5 \90303%QQQ%QQ\/%QQ{\'%QQ%%QQN%QS’J%QQb%QQ(\%QQ%%QQO)%Q\’Q — Other

Figure 1: Number of AP CS test-takers in Georgia, by Race

Even more concerning is how few Black students pass the CS AP A exam. Students who earn a 3
or above pass the exam. The highest number ever passing in Georgia was 18 in 2003, but 96 Black
students took the exam. The highest percentage of Black students passing was in 2010 with 16
passing of 68 students who took the exam. In 1999 when 163 Black students took the exam only 9
passed.

200
150 /3

100

50 / /‘N—Q

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 2: Number of Georgia Black AP CS test-takers (blue), and number passing (red)

We have a long way to go yet. We have touched 38% of the high schools in Georgia with some
professional development, but not yet enough. Of the other 62% of high schools in Georgia, 53%
are minority-majority schools. The CS teachers in the non-ICE high schools are 40% Black, 45%
White, and 10% Hispanic.

We predict that a majority of our teacher participants will themselves be members of
under-represented groups and will teach in minority-serving schools. Given our track record
and our plan to develop in Georgia, we are confident to reach that goal. Will our approach have an
influence on the student numbers? We don’t know but we suspect that a significant problem in

13

these minority-majority high schools is a lack of content knowledge by the CS teachers. We have
qualitative, sampled studies suggesting that there are teachers in these minority-majority high
schools who lack CS content knowledge and who feel less confident in their teaching (Bruckman,
Biggers et al. 2009; Ni, McKlin et al. 2010; Ni, Tew et al. 2011). We have some evidence that
teachers who know the content better are stronger in their sense of identity as computer science
teachers. Teachers with a strong sense of CS identity are better at recruiting students into CS,
because they have greater personal value for the content (Ni and Guzdial 2011; Ni, Guzdial et al.
2011; Ni, Tew etal. 2011) - quite dramatically, with several instances in our studies of a doubling of
CS class sizes in a single year. Thus, a confident CS teacher who knows content is more likely to boost
recruitment throughout the CS program in a school.

We will measure impact of our materials on underrepresented groups in two ways. (1) We will
have a direct measure of impact in terms of number of teachers participating and their ethnicity. (2)
More significantly, we hope for an indirect impact. By improving content knowledge of in-service
teachers at minority-majority high schools, we aim to influence performance of those teachers
against two metrics: number of students taking CS and performance on the AP CS test. This
measure becomes more direct when AP CS:P is created.

We plan to extend our reach across Georgia through our partnership with the Disciplinary
Commons in Computing Education (DCCE) effort (now moving to Southern Polytechnic State
University) and with the Georgia chapter of the Computer Science Teachers Association (CSTA).

We have letters of support from Briana Morrison who heads the DCCE effort and Ria Galanos who is
the Georgia CSTA Chapter president. They will team with us to help us find teachers who could use
our distance education in-service materials, and thus help us reach teachers not yet involved with
ICE@GT.

We don’t see our project as being Georgia specific. However, we do see Georgia as a model. We
have enormous challenges here in terms of reaching minority groups. We have access through
ICE@GT and our partners to teachers. We hope to show that we can broaden participation through
improving these teachers’ content knowledge. Since our intervention is distance-based, it can easily
be transported elsewhere.

C. Roles, Team, and Collaboration

Roles and Team: P1 Mark Guzdial holds a joint Ph.D. in both Education and Computer Science.
He is recognized for his expertise in education, e.g,, he serves on the editorial board of the Journal of
the Learning Sciences and was one of the first NSF Career awardees from the EHR Directorate. He is
recognized for his expertise in computer science education, e.g., he is one of the founders of the
ACM International Computing Education Research workshop series, and he serves on the editorial
board of ACM Transactions on Computing Education. Guzdial serves on the AP CS:P Commission.
Guzdial will be the overall project manager and will be particularly responsible for the evaluation
plan, for the instructional design, and for the interaction with the advisory board.

Together, PI Guzdial and Co-PI Ericson have written several textbooks used in high school
computer science classes (Guzdial and Ericson 2006; Dann, Cooper et al. 2009; Guzdial and Ericson
2009; Guzdial and Ericson 2010). They are the 2010 co-winners of the ACM Karl V. Karlstrom
Outstanding Educators award. They direct the NSF BPC Alliance “Georgia Computes!”

Co-PI Barbara Ericson is the Director of CS Outreach for the College of Computing. She is an
expert on teacher professional development, e.g., she directs ICE@GT, she served on the CSTA
Board, and she has co-chaired the NCWIT K-12 Alliance. She serves on the current AP CS
Development Team. Ericson will direct the effort to create and deploy the distance education
instructional materials.

Guzdial and Ericson form a team with expertise in education research, computing education
research, high school teacher professional development, and broadening participation in
computing.

14

We are budgeting for three other members of the team:

e A 50% Research Scientist will be hired to implement the Web infrastructure for our
materials.

e One Graduate Student Research Assistant (GSRA) will focus on design-based research
assessment. This graduate student (most likely in our Human-Centered Computing PhD
program, though possibly in Psychology) will answer Research Question #3, on the
design guidelines for applying educational psychology and instructional design
approaches to computing education.

e A second GSRA will focus on Research Questions #1 and #2, and the evaluation of
reaching underserved populations. This graduate student (in CS or Psychology) will
look for the linkages between the distance education and the three outcomes of (a)
learning in CS, (b) productivity on programming tasks, and (c) impact on student
recruitment and performance.

Collaborators: We have invited a three member Advisory Board:

e Richard Catrambone is Psychology Professor who is an expert in educational
psychology, especially on the design of examples. His subgoal learning theory will be
used to define the cognitive models used in our instructional materials. He will advise
us on the design and evaluation of our materials.

e Ashok Goel is a Cognitive Science and Computing Professor who developed the
Structure-Behavior-Function model of design knowledge. He worked with Cindy
Hmelo-Silver to develop her SBF-informed hypermedia for teaching ecological systems.
He will advise us on the design of our materials.

e Wayne Summers is a Professor and Chair of Computer Science at Columbus State
University. He has been a co-PI on the effort to extend “Georgia Computes!” to other
campuses. He directs the endorsement program. He will advise us on the applicability
of our materials to his and similar formal distance education for teachers efforts.

We have budgeted to have quarterly meetings with each of our advisors, which will mesh with
our quarterly-based design iteration model.

We will work with Dr. Tiffany Barnes of U. North Carolina at Charlotte and Dr. Beth Simon of the
University of California at San Diego to collect their curriculum on teaching Computer Science:
Principles. While Guzdial and Ericson are active curriculum developers, the focus here is not on
creating more media computation materials. Rather, we aim to create a computing education
medium for many approaches. Thus, we value highly the cooperation for Drs. Barnes and Simon, to
access their curricular materials in creating the CS:P distance education materials.

As mentioned, we will also work with Briana Morrison of Southern Polytechnic State University
and Ria Galanos of the Georgia CSTA chapter, to find teachers for our professional development
studies.

15

