
Impact of Alternative Introductory Courses on
Programming Concept Understanding

Allison Elliott Tew, W . Michael McCracken, Mark Guzdial
College of Computing

Georgia Institute of Technology
801 Atlantic Drive

Atlanta, GA 30332-0280
{allison.tew, mike.mccracken, mark.guzdial}@cc.gatech.edu

ABSTRACT
Computer science has long debated what to teach in the
introductory course of the discipline, and leaders in our field
have argued that the introductory course approach is critical to
student development. We investigated the impact of
alternative approaches to introductory computing by
considering the questions of what students bring to their
second class in computing and how the outcomes differ
depending on the students’ alternative first course. Our study
showed significant differences in understanding of
introductory concepts, such as iteration, conditionals, and
arrays, at the beginning of the second course. However, by the
end of the second course their understanding had converged.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum

General Terms
Algorithms, Measurement, Experimentation, Languages.

Keywords
Programming, pedagogy, understanding, CS1, CS2.

1. INTRODUCTION
Computer science has struggled since its inception with what
to teach in the introductory course of the discipline. Alan
Perlis specified his list of critical topics in the first course and
recommended that the course be taken by all university
students as part of a liberal education [6]. In more recent years,
leaders in our field have argued that the introductory course i s
so critical that students may be hopelessly lost if students do
not have the right kind of experience from the start [4]. The
most common debate is whether “objects-first” (teaching
object-oriented programming from the very start) is effective
or not [1].

At the same time, we know that the human mind is amazingly
plastic and can learn dramatically at any point in life [2]. Most
programmers working today did not learn in an “objects-first”
manner, and a great many did learn their first lessons in
computing in exactly those curricula now considered
“hopelessly lost.” What is the real cost and impact of
alternative approaches to introductory computing?

One reasonable place to begin studying the cost and impact of
alternative approaches is in the second course in the
computing curriculum. What do students know coming into
their second course? Does the approach of the introductory
course influence the outcomes from the second course?

At Georgia Tech, we teach three alternative introductory
computing classes [5]: A traditional CS1 aimed at mostly CS
majors; a course in MATLAB for engineers; and a third course
for liberal arts, management, and architecture students oriented
around media computation. In this study, we consider students
from the first two courses in our traditional second course. The
differences between these two classes are in the realm of
context, rather than the more controversial issues of when
objects are introduced. Both of these courses might be
considered “objects-early” in tha t object-oriented
programming is used in the first semester, but not in the first
weeks of the semester. Our study considers the questions of
what students from each of these classes bring to the second
class and of how the outcomes from that second class differ
depending on the students’ alternative first course.

2. METHODOLOGY
We began by conducting a document analysis of the course
materials for the two alternate introductory courses, CS 1321 –
Introduction to Computing and CS 1371 – Computing for
Engineers and the second course, CS 1322 – Object-Oriented
Programming. We analyzed the course syllabi, lecture notes,
assignments, and textbooks [3, 7] to determine content that
was covered in the introductory sequence of courses.

CS 1321 is a traditional introductory computer science course,
taught in Python, emphasizing simple data structures and the
design, construction, and analysis of algorithms. The course
was designed primarily for CS majors, but it is also a required
course for undergraduate students in the College of Sciences,
including Mathematics, Psychology, Chemistry and Physics
majors. CS 1371 is the introductory course, taught in
MATLAB and Java, tailored for students in the College of
Engineering. Traditional introductory computer science
content, such as data structures and design and analysis of
algorithms, are taught in the context of engineering problem-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER’05, October 1–2, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-59593-043-4/05/0010…$5.00.

solving. CS 1322 is the second course in the introductory
sequence. It is an object-oriented programming course, taught
in Java, emphasizing data structures and an introduction to
program design and software engineering.

Our document analysis revealed two sets of topics. A set of
introductory topics that were covered in both of the first
courses and a set of advanced topics that were covered in the
second course. We identified seven introductory topics –
conditionals, iteration, arrays, binary search trees, searching,
sorting, and recursion. And we identified 6 advanced topics –
object-oriented basics, polymorphism, dynamic binding,
linked lists, hash tables, and GUIs. We informally evaluated
content validity by having the list of identified topics
reviewed by two expert faculty members.

We developed a set of pre- and post-test instruments to
evaluate students’ understanding of these topics. An ITiCSE
2004 working group, led by Raymond Lister, conducted a
study of basic programming skills of beginning students by
giving students a set of Multiple Choice Questions (MCQs)
[8]. We adapted their approach and constructed a pre-test
comprised of 13 MCQs, one for each of the topics identified
above. There were two basic kinds of MCQs – tracing
questions, where students were asked to trace the execution of
a piece of code, and code completion questions, where
students were asked to select and insert the missing lines of
code to correctly execute a given algorithm. Examples of each
kind of question are shown in Figures 1 and 2. We developed
an analogous set of 13 MCQs for the post-test. The full text of
the questions analyzed in this paper are in Appendix A, and
the complete quest ion sets are available at
http://home.cc.gatech.edu/allison/2 .

3. DATA & ANALYSIS
Participants in our study were Georgia Tech undergraduate
students enrolled in the second course of the introductory
computing sequence, and their participation was voluntary.
The pre-test was administered during the first week of the
semester to 177 total participants, and the post-test was
administered during the last week of the semester to 88 total
participants. The voluntary nature of the population could
bias the sample, but our analysis, based on the demographic

information we collected, suggests that the sample i s
representative of the class as a whole. Our analysis will focus
on the participants who completed one of the introductory
courses (CS 1321 or CS 1371) at Georgia Tech. We had a small
number of participants (n=13 pre-test, n=9 post-test) who had
placed out of the introductory course via the high school CS
Advanced Placement (AP) Exam or had earned credit by
transferring coursework from a previous institution. During
the administration of the post-test we discovered an error in
the polymorphism MCQ, so that question has been excluded
from the pre- and post-test data analysis.

3.1 Pre-Test
Participants were asked to complete a short survey about their
major, prerequisite course information, and previous
programming experience and were asked to answer 13 MCQs
on the introductory and advanced topics. Our analysis of the
pre-test data focuses only on the introductory topics that all
the students have some familiarity with from their first CS
course. Data about their performance on the advanced topics i s
presented as a baseline for comparison with the post-test. 55

SORTING

The following method “isSorted” should return true if
the array “ x “ is sorted in ascending order.
Otherwise, method should return false:

public static Boolean isSorted(int[] x)
{

//missing code
}

Which of the following code fragments is the missing
code?

a) boolean b = true;
 for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 b = false;
 else
 b = true;
 } return b;

b) for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 return false;
 } return true;

c) boolean b = false;
 for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 b = false;
 } return b;

d) boolean b = false;
 for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 b = true;
 } return b;

e) for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 return true;
 } return false;

Figure 1. Sample Tracing Question - Arrays

ARRAY

int array1 = { 4, 5, 3, 6, 2, 7, 1 };
int array2 = { 7, 4, 2, 1 };

array1[3] = array1[5];
array1[2] = array2[2];
array1[4] = array2[3] + 5;
array1[6] = array1[3];
if (array1[1] > array2[1])
 array1[1] += 2;

What is the value of array1 after this code is
executed?

a) { 4, 4, 2, 7, 2, 2, 1}

b) { 4, 7, 3, 6, 7, 7, 7}

c) { 4, 7, 2, 7, 6, 7, 7}

d) { 4, 7, 2, 7, 2, 2, 1}

e) { 4, 7, 2, 6, 6, 7, 6}

Figure 2. Sample Code Completion Question – Element
Comparison for Sorting

participants had completed the “computing” introductory
course, CS 1321, and 109 participants has completed the
“engineering” introductory course, CS 1371. Participants in
the ‘computing’ group were majoring in Computer Science
(n=41), Industrial & Systems Engineering (n=4), Computer
Engineering (n=3), Computational Media (n=2), Electrical
Engineering (n=2), Math (n=1), Discrete Math (n=1), and
Psychology (n=1). Participants in the ‘engineering’ group
were majoring in Electrical Engineering (n=56), Computer
Engineering (n=27), Industrial & Systems Engineering (n=16),
Computer Science (n=5), Aerospace Engineering (n=4), and
Mechanical Engineering (n=1).
The students who took the pre-test demonstrated a better
understanding of the introductory topics than the advanced
topics. An average of 42.29% of the students answered the
introductory topic MCQs correctly while an average of only
32.32% of the students answered the advanced topic MCQs
correctly. The overall performance of the students on an
individual question basis is shown in Figure 3.

On the pre-test the average individual student score was 4.58
(∂ = 2.55), with a median score of 4 out of a total of 12 possible
points. Participants in the ‘engineering’ and ‘computing’
groups had similar overall scores on the test. The ‘computing’
group average individual student score was 4.75 and the
‘engineering’ group average was 4.39. One student earned a
perfect score and 3 students did not answer any questions
correctly. The question that was answered correctly most often
was the binary search tree MCQ with 74.01% of the students

answering this question correctly. Out of the introductory
topics, the sorting question proved to be most difficult with
only 29.76% of the students answering this question correctly.

3.1.1 ‘Engineering’ Performance
Students who had completed the ‘engineering’ introductory
course demonstrated significantly better understanding of the
conditional topic on the pre-test.

The conditional MCQ asked students to trace a sequence of
boolean and math conditional operations to perform a set of
calculations on the variables x and y. (see appendix A.1)
Students who correctly traced the code evaluated two nested if-
else statements followed by another if statement to reach the
correct answer of E (see Table 1.) Students in the ‘engineering’
group were over 25% more likely to answer the question
correctly. Our chi-squared analysis yielded a significance at
the α = 0.001 significance level.

Table 1. Pre-Test Conditional MCQ

Q2

Class A B C D E blank

‘Computing’ 10.91% 9.09% 54.55% 1.82% 18.18% 5.45%

‘Engineering’ 5.50% 1.83% 44.04% 1.83% 45.87% 0.92%

Total 7.32% 4.27% 47.56% 1.83% 36.59% 2.44%

Figure 3. Percentage of students in each participant group answering pre-test questions correctly.

PreTest Question Scores

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

C
o
n
d
it
io

n
al

B
in

ar
y

S
ea

rc
h

T
re

e A
rr

ay

S
o
rt

in
g

It
er

at
io

n

R
ec

u
rs

io
n

S
ea

rc
h
in

g

H
as

h
 T

ab
le

O
O

 B
as

ic
s

D
yn

am
ic

B
in

d
in

g

G
U

I

Li
n
ke

d
 L

is
t

Q2 Q3 Q4 Q6 Q8 Q9 Q11 Q5 Q7 Q12 Q13 Q14

Question

%
 S

tu
d

e
n

ts
 C

o
rr

e
ct

'Computing'

'Engineering'

Introductory Topics Advanced Topics

Our analysis shows that students in both participant groups
were likely to chose incorrect choice C – 44% of the
‘engineering’ group and 55% of the ‘computing’ group did so.
Distracter C was designed to catch those who incorrectly
evaluated the first mathematical conditional, when x and y had
been initialized to 2 and 16 respectively,

if (x < y)
x = x * x;

else
y = x + y;

to false and executed the else clause. Distracter A was also
chosen by almost 11% of the students in the ‘computing’
group. Distracter A was designed to catch those who
incorrectly evaluated

if ((true && false) || true)

to false and did not execute the statements included in the if
clause.

Students in the ‘engineering’ and ‘computing’ groups showed
different patterns in answering the question, most noticeably
by how frequently the correct answer was chosen. A chi-
squared analysis revealed a significant difference at the α =
0.001 significance level.

3.1.2 ‘Computing’ Performance
Students who had completed the ‘computing’ introductory
course demonstrated significantly better understandings of
the binary search tree, array, and sorting topics.

The binary search tree MCQ presented a class definition of a
binary search tree with an accompanying figure representing
an instance of a binary search tree with numerical nodes (see
appendix A.2). Students were asked to trace code representing
a pre-order traversal of the tree, although the specific traversal
was not identified by name. Students in the ‘computing’
group were almost 15% more likely to choose the correct
answer of D over the students in the ‘engineering’ group (see
Table 2). Our chi-squared analysis yielded significance at the
α = 0.05 significance level.

Table 2. Pre-Test Binary Search Tree MCQ

Q3

Class A B C D E blank

‘Computing’ 1.82% 1.82% 12.73% 83.64% 0.00% 0.00%

‘Engineering’ 1.83% 3.67% 19.27% 68.81% 3.67% 2.75%

Total 1.83% 3.05% 17.07% 73.78% 2.44% 1.83%

Our analysis shows that choice C was the most common
incorrect answer for students in both participant groups – 13%
of the ‘computing’ group and 19% of the ‘engineering’ group
selected this answer. Distracter C was designed to catch those
who incorrectly evaluated the traversal and simply listed the
nodes of the tree as read logically from top to bottom in the
diagram.

Students in the ‘computing’ and ‘engineering’ groups showed
similar patterns in answering the question and a chi-squared
analysis revealed no significant difference.

In the array MCQ, as seen in Figure 1, students were given
instances of two arrays – array1 and array2, and were asked to

perform a set of calculations and manipulations on individual
array elements and determine the value of array1 after all the
commands had been executed (see appendix A.3). Students in
the ‘computing’ group, were over 25% more likely to answer
the question correctly, choice C (see Table 3). Our chi-squared
analysis yielded a significance at the α = 0.001 significance
level.

A majority of the students (57%) of the participants in the
‘engineering’ group chose incorrect choice A. Distracter A
was designed to catch those who incorrectly indexed the arrays
beginning with 1, not 0. Choices B and E were the incorrect
answers most commonly given by students in the ‘computing’

Table 3. Pre-Test Array MCQ

Q4

Class A B C D E blank

‘Computing’ 9.09% 10.91% 58.18% 7.27% 10.91% 3.64%

‘Engineering’ 56.88% 1.83% 30.28% 4.59% 3.67% 2.75%

Total 40.85% 4.88% 39.63% 5.49% 6.10% 3.05%

group. Distracter E was designed to catch those who did not
evaluate the first assignment statement

array1[3] = array1 [5];

and distracter B was generated semi-randomly.

Students in the ‘computing’ and ‘engineering’ groups showed
different patterns in answering the question, most noticeably
by which distracters were most frequently chosen. A chi-
squared analysis revealed a significant difference at the α =
0.001 significance level.

The sorting MCQ (see in Figure 2 and appendix A.4) is a code
completion question. The question focused on the first part of
the sorting algorithm – comparing the value of elements in an
array. Students are asked to select the correct code to evaluate
whether an array, passed as an input parameter, is sorted in
ascending order. Students who correctly answered this
question iterated over the entire array as follows.

for (int i = 0; i < x.length – 1; i++)
{

if (x[i] > x[i + 1])
return false;

} return true;

While neither student group performed particularly well on
this question, the ‘computing’ students were over 15% more
likely to answer the question correctly, choice B (see Table 4).
Our chi-squared analysis yielded a significance at the α =
0.025 significance level.

Table 4. Pre-Test Sorting MCQ

 Q6

Class A B C D E blank

‘Computing’ 43.64% 36.36% 7.27% 5.45% 7.27% 0.00%

‘Engineering’ 51.38% 21.10% 8.26% 11.93% 4.59% 2.75%

Total 48.78% 26.22% 7.93% 9.76% 5.49% 1.83%

Our analysis shows that students in both participant groups
were likely to chose incorrect choice A – 44% of the
‘computing’ group and 52% of the ‘engineering’ group did so.
Distracter A was designed to catch those who correctly
evaluated the elements of the array for each iteration but failed
to aggregate the evaluations over the entire array.

for (int i = 0; i < x.length – 1; i++)
{

if (x[i] > x[i + 1])
b = false;

else
b = true;

} return b;

Answer A simply returns the value of the evaluation for the
last two elements of the array. Incorrect answer D was also
chosen by 12% of the participants in the ‘engineering’ group.
Distracter D was designed to catch those who incorrectly set
the boolean to true upon the following evaluation of the
elements of the array.

if (x[i] > x[i + 1])
b = true;

The boolean should have been initialized to true and then set
to false upon the evaluation above. Our results are consistent
with the findings on the same question in the original Lister
study. [8]

Students in the ‘computing’ and ‘engineering’ groups showed
similar patterns in answering the question and a chi-squared
analysis revealed no significant difference.

3.1.3 Similar Performance
Students demonstrated similar understandings of the iteration,
recursion, and searching introductory topics. On the iteration
MCQ, 30.91% of the participants in the ‘computing’ group
answered the question correctly and 37.61% of the
‘engineering’ group answered it correctly. 43.64% of the
‘computing’ participants and 40.37% of the ‘engineering’
participants answered the recursion MCQ correctly. The
searching MCQ question was answered correctly by 36% of the
students in both participant groups. Our chi-squared analyses
revealed no significant differences in the levels of
understandings on any of these topics.

3.2 Post-Test
On the post-test, participants were asked to complete a short
survey about their major and pre-requisite course information
and were asked to answer 13 MCQs on the introductory and
advanced topics. There were 31 participants in the ‘computing’
group majoring in Computer Science (n=17), Electrical
Engineering (n=6), Math (n=3), Computer Engineering (n=2),
Computational Media (n=2), and Industrial & Systems
Engineering (n=1). There were 48 participants in the
‘engineering’ group majoring in Electrical Engineering
(n=29), Computer Engineering (n=10), Industrial & Systems
Engineering (n=5), Aerospace Engineering (n=3), and
Computer Science (n=1).

Students demonstrated improved understanding on almost all
of the topics when compared to their pre-test levels. An
average of 61.53% of the students answered the introductory
topic MCQs correctly and an average of 64.77% of the students

Post-Test Question Scores

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

C
o
n
d
it
io

n
al

B
in

ar
y

S
ea

rc
h

T
re

e A
rr

ay

S
o
rt

in
g

It
er

at
io

n

R
ec

u
rs

io
n

S
ea

rc
h
in

g

H
as

h
 T

ab
le

O
O

 B
as

ic
s

D
yn

am
ic

B
in

d
in

g

G
U

I

Li
n
ke

d
 L

is
t

Q2 Q3 Q4 Q6 Q8 Q9 Q11 Q5 Q7 Q12 Q13 Q14

Question

%
 S

tu
d

e
n

ts
 C

o
rr

e
ct

'Computing'

'Engineering'

Introductory Topics Advanced Topics

Figure 4. Percentage of students in each participant group answering post-test questions correctly.

answered the advanced topic MCQs correctly. The overall
performance of the students on an individual question basis i s
shown in Figure 4.

On the post-test the average individual student score was 7.55
(∂ = 2.74), with a median score of 8 out of a total of 12 possible
points. Participants in the ‘engineering’ and ‘computing’
groups had similar overall scores on the post-test as well. The
‘computing’ group average individual student score was 7.61
and the ‘engineering’ group average was 7.31. One student
earned a perfect score and one student only answered 1
question correctly. The question that was answered correctly
most often was the conditional MCQ with 79.55% of the
students answering this question correctly, while the loops
and hash table questions proved to be most difficult with only
46.59% of the students answering these questions correctly.

Our analysis of the post-test results revealed that there is now
no significant difference in understanding on any of the
introductory topics between the ‘computing’ and
‘engineering’ participant groups.

3.2.1 ‘Engineering’ Performance
Students who had completed the ‘engineering’ introductory
course demonstrated significantly better understanding on the
linked list topic on the post-test.

For the linked list MCQ students were given the class
definition of a linked list and instances of “head” and
“position” nodes (see appendix A.5). In a code completion
question, students were asked to select the correct piece of
code to insert “position” into the beginning of the list, while
maintaining head as the pointer to the beginning of the list.
Students who correctly answered the question selected the
following code

position.next = head;
head = position;

Students in the ‘engineering’ group were almost 30% more
likely to choose the correct answer of C over the students in
the ‘computing’ group (see Table 5). Our chi-squared analysis
yielded significance at the α = 0.001 significance level.

Table 5. Post-Test Linked List MCQ

 Q14

Class A B C D E blank

‘Computing’ 6.45% 3.23% 35.48% 19.35% 32.26% 3.23%

‘Engineering’ 4.17% 6.25% 64.58% 6.25% 16.67% 2.08%

Total 5.06% 5.06% 53.16% 11.39% 22.78% 2.53%

Our analysis shows that more students in the ‘computing’
group chose incorrect choice E than in the ‘engineering’ group
– 17% of the ‘engineering’ group and 32% of the ‘computing’
group did so. Distracter E was designed to catch those who
incorrectly reset the position pointer as follows

position = head.next

without realizing the need to maintain the position’s pointer
to its original node. Distracter D was also chosen by almost
19% of the students in the ‘computing’ group. Distracter D
was designed to catch those who incorrectly reset the position
pointer as above and also incorrectly set the head pointer as
follows.

head = position.next

Students in the ‘engineering’ and ‘computing’ groups showed
slightly different patterns in answering the question, most
noticeably by how often the correct answer was selected.
However, a chi-squared analysis revealed no significant
difference in their answer pattern.

3.2.2 Similar Performance
Students demonstrated no significant differences in their
understandings of the remaining introductory and advanced
topics on the post-test. Students in the ‘engineering’ group
were slightly more likely to answer the iteration question
correctly and students in the ‘computing’ group were slightly
more likely to answer the binary search tree, sorting, and
recursion questions correctly. Our chi-squared analyses
revealed no significant differences in the levels of
understandings on any of these topics.

The binary search tree MSQ was analogous to the pre-test
question. In this tracing question, students were asked to trace
code representing a post-order traversal of the tree, although
the specific traversal was not identified by name. On the BST
MCQ, Q3, more students (70.97%) in the ’computing’ group
chose the correct answer than in the ‘engineering’ group
(47.92%) (see Table 6). Choice D was the most common
incorrect answer for both participant groups. Distracter D was
designed to catch those who incorrectly evaluated the traversal
and performed a pre-order traversal on the tree.

Table 6. Post-Test Binary Search Tree MCQ

 Q3

Class A B C D E

‘Computing’ 70.97% 0.00% 0.00% 25.81% 3.23%

‘Engineering’ 47.92% 4.17% 16.67% 29.17% 2.08%

Total 56.96% 2.53% 10.13% 27.85% 2.53%

The post-test element comparison for sorting MCQ asked
students to select code that correctly evaluates whether an
array, passed as an input parameter, is sorted in descending
order, analogous to the ascending order question from the pre-
test. Students continued to struggle with this topic with
58.06% of the ‘computing’ students answering the question
correctly and 35.42% of the ‘engineering’ students answering
it correctly (see Table 7). As in the pretest, choices A and D
were the most common mistakes, this time for both participant
groups.

Table 7. Post-Test Sorting MCQ

 Q6

Class A B C D E blank

‘Computing’ 22.58% 58.06% 3.23% 12.90% 3.23% 0.00%

‘Engineering’ 29.17% 35.42% 6.25% 22.92% 4.17% 2.08%

Total 26.58% 44.30% 5.06% 18.99% 3.80% 1.27%

In the iteration MCQ students were asked to trace the
execution of a while loop while computing a “limit” variable
and were asked to return the number of times the loop was
executed (see appendix A.6). Students in the ‘engineering’
group were slightly more likely to select the correct answer, C
– 50.00% of the ‘engineering’ students answered this question
correctly while only 35.48% of the students in the
‘computing’ group did so (see Table 8).

Table 8. Post-Test Iteration MCQ

Q8

Class A B C D E

‘Computing’ 3.23% 29.03% 35.48% 6.45% 25.81%

‘Engineering’ 2.08% 22.92% 50.00% 10.42% 14.58%

Total 2.53% 25.32% 44.30% 8.86% 18.99%

Choices B and E were common mistakes for both participant
groups. Distracter B was designed to catch an “off-by-one”
error where students forgot the last iteration of the loop and
distracter E was designed to catch students who confused the
loop counter variable “i” with the computed “limit” variable
and returned the “limit” variable instead.

In the recursion MCQ students were asked to trace the
execution of a recursive function that counted the number of
“e”s in a string and returned a computed mathematical value
associated with the string (see appendix A.7). Students in the
‘computing’ group were slightly more likely to select the
correct answer, A – 67.74% of the ‘computing’ students
answered this question correctly while only 52.08% of the
students in the ‘engineering’ group did so (see Table 9).
Choice D was a common mistake for both participant groups,
representing a distracter where the first else clause in the
recursive call is always evaluated and the second mathematical
calculation is never performed, regardless of whether the input
character is an “e” or not. The ‘engineering’ group also
commonly chose incorrect answers B and C. Distracter B was
designed to catch students who switched the mathematical
operations (one for when the character was an “e” and another
when it was not) and distracter C was designed to catch
students who initialized the mathematical value to 0 instead of
1, as was specified in the function parameter list.

Table 9. Post-Test Q9 - Recursion

Q9

Class A B C D E blank

‘Computing’ 67.74% 3.23% 6.45% 16.13% 6.45% 0.00%

‘Engineering’ 52.08% 10.42% 16.67% 10.42% 4.17% 6.25%

Total 58.23% 7.59% 12.66% 12.66% 5.06% 3.80%

Our chi-squared analyses revealed no significant differences in
the levels of understandings on any of these topics. Students
in the ‘engineering’ and ‘computing’ groups showed similar
patterns in answering each of these individual questions.
Additional chi-squared analyses revealed no significant
differences in the patterns of answers on any of these
questions.

Students in both participants groups demonstrated nearly
identical understandings of the remaining topics. Our
analysis showed less than a 10% difference in the percentage
of students answering the following MCQs correctly –
conditional, arrays, searching, hash tables, object-oriented
basics, dynamic binding, and GUIs. Our chi-squared analyses
revealed no significant differences in the levels of
understandings on any of these topics.

4. DISCUSSION
Our analysis shows that ‘engineering’ and ‘computing’
participants have significantly different understandings of
four of the seven introductory topics as they begin the second
course in the introductory CS sequence: conditionals, binary
search trees, arrays, and sorting. In this section, we begin to
explore possible explanations for these differences.

On the pre-test ‘engineering’ participants demonstrated a
better understanding on the conditional topic. Our document
analysis reveals that while the textbooks contain comparable
coverage of conditional statements, and for this particular
question the related topic of booleans and logical operators.
the ‘engineering’ course emphasizes boolean logic more
explicitly in lecture materials. In particular, the use of
standard engineering flow-chart notation reinforces the
evaluation of conditional clauses in a representation familiar
to the students. The majority of students in the ‘engineering’
group are also majoring in areas, such as Electrical and
Computer Engineering, that are likely to emphasize boolean
logic in other areas of their curricula, such as digital circuit
design. We believe a combination of the explicit connections
to representations used in their major and more experience
with boolean logic can explain the differences in performance.

Participants in the ‘computing’ group demonstrated a better
understanding of the binary search tree topic on the pre-test.
We believe the key issue here is one of motivation. Unlike
many of the other topics presented in the ‘engineering’ course,
trees are presented in the course in a de-contextualized manner.
Students are shown the definitions, diagrams, and appropriate
algorithms, but in a traditional family tree model. Our
analysis shows no effort to connect this topic to any
engineering problem solving application, thus the ‘engineers’
may be less motivated to learn the necessary algorithms to
master this topic. Almost 75% of the students in the
‘computing’ participant group are CS majors, and we expect
they already understand the value of learning about more
complex data structures.

Students in the ‘computing’ group also demonstrated a better
understanding of the array topic on the pre-test. The
‘engineering’ students performed poorly on this question and
the majority of their errors are attributable to an array indexing
misconception. Most ‘engineering’ students incorrectly
attempted to index the first element of an array in Java using
an index of 1 instead of 0. The ‘engineering’ introductory
course begins instruction in MATLAB and then transitions to
Java to introduce objects and work with more advanced data
structures. In MATLAB arrays (i.e. vectors) are indexed
beginning with 1. We believe this difference is attributable to
the incorrect transfer of knowledge from MATLAB to their
current programming language Java.

On the pre-test, the sorting topic was better understood by
participants in the ‘computing’ group. Again we believe the
problem to be one of motivation. Sorting is presented in the
‘engineering’ course in a de-contextualized manner, showing
definitions, diagrams, and appropriate algorithms for sorting
lists of numbers. Our analysis again shows no effort to
connect this topic to any engineering problem solving
application, thus the ‘engineers’ may be less motivated to
learn the necessary algorithms to master this topic.

We did not find any differences in outcomes in introductory
topic understanding on the post-test. Students come out of the

second course with the same basic concepts even when they
came they from different introductory approaches. What can we
conclude? There may still be differences that might appear
later in the curricular sequence. For example, the students may
have different perspectives on software development process
and engineering. But finding convergence among students’
understandings in the second course, despite different
introductory courses, might suggest that later courses, beyond
the introductory sequence, could also address and reduce such
differences.

If choices in the introductory course approach are not critical
for the learning outcome at the end of the program of study,
then we should consider making design choices based on
variables other than simply learning. We know that there are
design choices that we can make in the introductory course
that can have dramatic impacts on retention and diversity [5, 9,
10]. If students can learn from alternative approaches, we can
choose approaches that are more inviting and retain more
students, rather than those that perhaps are less appealing.

5. FUTURE WORK
Our results indicate that the traditional debates over the
pedagogical approach (e.g. objects-first vs. objects-early) for
the introductory CS course may not be as important as the
community believes. We propose to continue our
investigation of the impact of alternative introductory
courses, maintaining our focus, for now, on programming
concept understanding.

Beginning summer semester 2005, students from the ‘media
computation’ introductory sequence will be taking the second
course, and we can add a third alternative introductory course
into our analysis. We will conduct an additional document
analysis of the ‘media computation’ course materials and will
re-evaluate the topic list accordingly.

Using the results of the document analyses and our
preliminary work, including an analysis of the reliability of
our initial pre- and post-test instruments, we will revise the
pre- and post-test instruments to correct the previously
mentioned errors and clarify the questions and distracters.
After taking steps to ensure instrument validity, we will repeat
the pre- and post-test study during Fall semester 2005.

Our pre-test/post-test study design using MCQs places
constraints on the amount of information we can gather about
students’ understanding of introductory topics. We plan to
develop additional instruments and study designs to gather a
richer set of information about students’ understanding, e.g.
open ended questions, participant interviews, think-aloud
protocols. These qualitative methods and analyses could be
combined with our previous studies to provide a much richer

explanation of the impact of an introductory course on
programming concept understanding.

6. ACKNOWLEDGMENTS
We would like to thank Boris Goykhman for his assistance in
desiging the pre- and post-tests and in collecting data and
Leigh Waguespack for her assistance with the statistical
analysis. We are also grateful for the cooperation of the
faculty teaching the courses where we conducted our studies –
John Stasko, Yannis Smaragdakis, and Ashwin Ram.

7. REFERENCES
[1] Bruce, K.B. Controversy on how to teach CS 1: a

discussion on the SIGCSE-members mailing list. SIGCSE
Bulletin, 36 (4). 29-34.

[2] Bruer, J.T. Schools for thought : a science of learning in
the classroom. MIT Press, Cambridge, MA, 1993.

[3] Deitel, H.M., Deitel, P.J., Liperi, J.P. and Wiedermann, B.A.
Python How to Program. Prentice-Hall, Inc., Upper Saddle
River, NJ, 2002.

[4] Denning, P.J. A debate on teaching computing science.
Communications of the ACM, 32 (12). 1397-1414.

[5] Forte, A. and Guzdial, M. Motivation and non-Majors in
computer science: Identifying discrete audiences for
introductory courses." IEEE Transactions on Education,
to appear 2005.

[6] Greenberger, M. Computers and the world of the future.
MIT Press, Cambridge, MA, 1964.

[7] Kaplan, D.T. Introduction to Scientific Computation and
Programming. Brooks/Cole - Thomson Learning,
Belmont, CA, 2004.

[8] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.,
Seppälä, O., Simon, B. and Thomas, L., A multi-national
study of reading and tracing skills in novice
programmers. in Working group reports from ITiCSE on
Innovation and technology in computer science
education, (Leeds, United Kingdom, 2004), ACM Press,
119-150.

[9] Margolis, J. and Fisher, A. Unlocking the clubhouse :
women in computing. MIT Press, Cambridge, MA, 2002.

[10] McDowell, C., Werner, L., Bullock, H. and Fernald, J., The
effects of pair-programming on performance in an
introductory programming course. in Proceedings of the
33rd SIGCSE technical symposium on Computer science
education, (Cincinnati, KY, 2002), ACM Press, 38-42.

APPENDIX A
In this section, we include the full text of the seven topic
multiple choice questions presented in the paper. Questions
were given to the participants one question per page.
Formatting of some of the questions has been altered to fit the
two-column layout.

A.1 Conditional MCQ (Pre-Test)
CONDITIONAL

int x = 2;
int y = 16;
if ((true && false) || true)

{
if (x < y)

x = x * x;
else

y = x + y;
}

if ((false || true) && false)
{
if (x <= y)

x++;
else

y = y + y;
}

else
x = x * x;

if (x <= y)
y = x + y;

System.out.println(“x = “ + x);
System.out.println(“y = “ + y);

What is the output of this code fragment?
a) x = 4
 y = 22
b) x = 3
 y = 19
c) x = 4
 y = 20
d) x = 4
 y = 23
e) x = 16
 y = 32

A.2 Binary Search Tree MCQ (Pre-Test)
BINARY SEARCH TREE

public class Node
{
 private Node left; // left child node
 private Node right; // right child node
 private int data;

 public Node getLeft() {
 return left; }
 public Node getRight() {
 return right; }
 public int getData() {
 return data; }
 …
 …
}
public void Traverse (Node root)
{
 if (root.getData() != null)
 System.out.println(root.getData());
 if (root.getLeft() != null)
 Traverse (root.getLeft());
 if (root.getRight() != null)
 Traverse (root.getRight());
}

What is the output of this Traversal method on
the above BST, where 8 is passed as the root?
a) 3, 5, 4, 2, 6, 13, 15, 12, 8
b) 2, 3, 4, 5, 6, 8, 12, 13, 15
c) 8, 6, 12, 2, 15, 4, 13, 3, 5
d) 8, 6, 2, 4, 3, 5, 12, 15, 13
e) 8, 12, 15, 13, 6, 2, 4, 5, 3

15

13

12

8

6

2

4

3 5

A.3 Array MCQ (Pre-Test)
ARRAY

int array1 = { 4, 5, 3, 6, 2, 7, 1 };
int array2 = { 7, 4, 2, 1 };

array1[3] = array1[5];
array1[2] = array2[2];
array1[4] = array2[3] + 5;
array1[6] = array1[3];
if (array1[1] > array2[1])
 array1[1] += 2;

What is the value of array1 after this code is
executed?

a) { 4, 4, 2, 7, 2, 2, 1}
b) { 4, 7, 3, 6, 7, 7, 7}
c) { 4, 7, 2, 7, 6, 7, 7}
d) { 4, 7, 2, 7, 2, 2, 1}
e) { 4, 7, 2, 6, 6, 7, 6}

A.4 Sorting MCQ (Pre-Test)
SORTING

The following method “isSorted” should return
true if the array “ x “ is sorted in ascending
order. Otherwise, method should return false:

public static Boolean isSorted(int[] x)
{

//missing code
}

Which of the following code fragments is the
missing code?

a) boolean b = true;
 for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 b = false;
 else
 b = true;
 } return b;

b) for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 return false;
 } return true;

c) boolean b = false;
 for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 b = false;
 } return b;

d) boolean b = false;
 for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 b = true;
 } return b;

e) for (int i = 0; i < x.length – 1; i++)
 {
 if (x[i] > x[i + 1])
 return true;
 } return false;

A.5 Iteration MCQ (Post-Test)
ITERATION

int[] x = { 3 ,2, 5, 6, 8, 4 };
int limit = 11;
int i = 0;
while ((0 < limit) && (i < x.length))
{
 limit -= x[i];
 i++;
}

What is the value of the variable “ i ” after
the code is executed?
a) 0
b) 3
c) 4
d) 5
e) –5

A.6 Recursion MCQ (Post-Test)
RECURSION

public int Eval(String s, char c, int value)
{
 if (s.length == 0)
 return value;
 else if((s.charAt(0).equals(c))
 {
 value = value++;
 return Eval(s.substring(1), c, value);
 }
 else
 {
 value = value * 2;
 return Eval(s.substring(1) , c, value);
 }
}

What is the value returned by this method call?
Eval(“remember” , ‘e’ , 1);

a) 58
b) 25
c) 26
d) 9
e) 29

A.7 Linked List MCQ (Post-Test)
LINKED LIST

public class ListNode
{
 private ListNode next;
 private String data;
 …
}

Assume that a linked list exists and that the
variable "head" is used to maintain the
beginning of the list. Also assume that the
variable "position" and “head” are objects of
the class ListNode.

Listnode head = new ListNode();
Listnode position = new ListNode();

Which of the following code segments correctly
adds “position” to the beginning of the list?
The code must maintain the “head” variable as
the beginning of the list.

a) position = head;
 head = position;

b) position.next = head.next;
 head = position.next;

c) position.next = head;
 head = position;

d) position = head.next;
 head = position.next;

e) position = head.next;
 head = position;

