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A B S T R A C T  
The design of software for learners must be guided by 
educational theory. We present a framework for learner- 
centered design (LCD) that is theoretically motivated by 
sociocultural and constructivist theories of learning. LCD 
guides the design of  software in order to support the unique 
needs of learners: growth, diversity, and motivation. To 
address these needs, we incorporate scaffolding into the 
context, tasks, tools, and interface of software learning 
environments. We demonstrate the application of our 
methodology by presenting two case studies of LCD in 
practice. 
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I N T R O D U C T I O N :  MOTIVATION AND GOALS 
The push for educational reform in the U.S. is strong. 
Currently, the dominant educational paradigm is "didactic 
instruction," where learning is viewed as an information 
transmission process: teachers have the information, 
students don't ,  and teachers' lectures serve to move 
information into the heads of students. In contrast, national 
and state education reform movements are advocating for 
students to be actively engaged in learning, constructing 
understanding and meaning, not receiving it. Project 2061, 
a national science curriculum developed by the American 
Association for the Advancement of Science [1] calls for 
students to engage in long-term, authentic investigations. 

Computing and communications technologies can play a 
key role in supporting students and teachers as they engage 
in such authentic tasks as question-generating, model- 
building, report-publishing. However, constructing 
software that truly addresses the needs of learners is a 
challenge: while learners are also users, and thus the 
principles of user-centered design apply, learners 
additionally have a set of unique needs that must be 
addressed in software: 

• Growth .  At the core of education is the growth of the 
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learner; promoting the development of expertise must be the 
primary goal of educational software. Rather than just 
support "doing" tasks, software designed for learners must 
support "learning while doing." 

• Diversity. Developmental differences, cultural differences, 
and gender differences play a major role in the suitability of 
materials for learners. To be usable by all learners, a range of 
software tools that address these differences must be 
available. 

• M o t i v a t i o n .  In contrast to software developed for 
professionals, the student's initial interest and continuing 
engagement cannot be taken for granted. 

To address these unique needs of learners, we are developing 
learner-centered design (LCD) guidelines [24] to augment 
the user-centered design (UCD) framework [15]. Our 
current focus is on K-16 learners; however, given Senge's 
[22] compelling arguments that an organization must be a 
learning organization in order to be productive, LCD should 
also have validity for the workplace. 

The central claim of  LCD is that software can embody 
learning supports--scaffolding--that can address the 
learner's growth, diversity, and motivation. Scaffolding is 
an educational term that refers to providing support to 
learners while they engage in activities that are normally 
out of their reach [28, 30]. For example, n undertaking an 
authentic science inquiry, e.g., what is the quality of  water 
in the stream behind my school, the tasks are more 
complex and diverse than those in traditional, follow-the- 
steps, lab-style experiments. Software-realized scaffolding 
can reduce the complexity of these tasks, for example, by 
relating discrete subtasks to their current mental 
representations. 

From edutainment to context-sensitive help systems, the 
need to support learners is well recognized. That said, there 
are precious few resounding successes (e.g., [6, 16]). Given 
the formidable educational problems that face our society 
and the almost-availability of consumer-priced, high- 
performance computing and communications technologies, 
the opportunity to actually make-a-difference in education is 
truly at hand. 

In LCD we (see also [12, 14, 20]) are attempting to explore 
the design implicat ions o f  learning theories -- 
constructivism and socioculturism -- that have heretofore 

189 



i 

C}"~| 9 6  APRIL 1 3 - 1 8 o  m996 

received less attention than, say, behaviorism (upon which 
computer-assisted instruction (CAI) is built) and 
information processing psychology (upon which intelligent 
tutoring systems are bull0. While the work reported here is 
clearly only now maturing, our intent is to focus attention 
on a fertile, promising direction for research and 
development. 

In this paper, then, we: 
-Ar t i cu la t e  the Theoretical Rationale and Design 

Implications. The scaffolding design guidelines of LCD 
build directly on constructivist & sociocultural theories of 
learning. 

• Illustrate LCD via Case Studies. Two examples of 
how LCD has informed the design of educational software are 
presented. 

• Summarize the Key Issues in LeD.  

T H E O R E T I C A L  R A T I O N A L E  & 
I M P L I C A T I O N S  
Two resonating theoretical frameworks underlie both the 
education reform movement (e.g., [3, 4, 7] as well as our 
evolving the LCD framework: 

• In cons truct iv ism (e.g., [14, 16, 17, 28]) the central 
notion is that understanding and learning arc active, 
constructive, generative processes such as assimilation, 
augmentation, and self-reorganization. For example, a 
teacher's words do not simply become directly engraved in a 
student's mind, after passing through the ear, but rather, 
those words are acted upon and interpreted by the student. 

• In socioculturism, the central notion is that learning is 
enculturation, the process by which learners become 
collaborative meaning-makers among a group defined by 
common practices, language, use of tools, values, beliefs, 
and so on [5, 14, 21, 29]. The goal is to enable practices and 
meaning making that are appropriate in the professional 
culture of the domain under study. For example, scientists 
understand science as those ideas are embodied in their 
everyday practices. Contrast this way of knowing with 
traditional science classrooms where, from the students' 
perspective, concepts come from textbooks and lectures, 
and lab experiments are tightly-controlled exercises that fit 
into the requisite 50 minute period. - 

These two theoretical perspectives are consistent with each 
other; they just emphasize different themes: the former 
speaks to the individual's cognition, while the latter speaks 
to the contributions of  the surroundings to that cognition. 

From socio-constructivism, then, guidelines for the design 
of learning environments and the supporting scaffolding can 
be developed (e.g., [9, 11, 20]). In particular, in LCD, we 
are attempting to provide guidelines for  the construction of  
scaffoMing strategies, to address the three unique needs of  
learners (growth, diversity and motivation)for each of  the 
four components in a learning environment: 

• Context: What is the environment in which the software 
will be embedded? How will it be used, and by whom? 

• Tasks: What are the tasks the software will support? 
• Tools: What tools will perform these tasks? 
• Interface: What is the interface to those tools? 

Examples of  LCD scaffolding guidelines are given in the 
following ease studies. 

LCD: T W O  CASE STUDIES 
Model-It and NoRIS are learner-centered software tools 
which we have designed for two different contexts: 

• Model-It: 1:figh school, p_toject-based science classrQg_m: We 
are working with science teachers at Community High School 
in Ann Arbor to develop a new high school science curriculum 
in which computing technologies are routinely used, and in 
which the subject matter of earth science, chemistry, and 
biology is combined and taught in the context of meaningful, 
long term projects. Model-It, software for building and testing 
computational models, is one of the tools we are developing 
for use in this environment. 

• NoRIS: University nuclear engineerin~ classroom; The 
University of Michigan Nuclear Engineering department 
encourages the use of computational science in the upper-level 
undergraduate curriculum. NoRIS is a problem-solving 
environment we have developed for use in these classrooms. 

While on the surface these two contexts are different, at 
their core they both require the same sorts of scaffolding; 
the only real difference is one of emphasis. In the high- 
school context, motivation is a big issue, while it is less 
so in the undergraduate context. However, in the 
undergraduate context, structuring the complex tasks that 
make up a computational science-style argument is the real 
challenge. 

In our discussion of each example, we first present the 
software design, and how it incorporates scaffolding to 
address learner's needs regarding software context, tasks, 
tools, and interface. Then, we present examples from the 
user testing data which illustrate the impact of specific 
software features designed to provide scaffolding. 

Case Study One: Model-It  
Model-It is designed to support learners in building and 
testing models of dynamic systems. Scientists build models 
to test theories and to develop a better understanding of 
complex systems [13]. Similarly, we want to support 
students in the building of models, as socioeultural learning 
theory says that learners should be involved in professional 
practices. Constructivist learning theory predicts that by 
constructing external representations of  scientific 
phenomena, learners are building an internal, mental model 
of the phenomena. We believe that by building models, 
students will support, refine, and develop their 
understanding of a scientific system by constructing models 
to represent their understanding of the phenomenon arid its 
coniplex interrelationships. 

The modeling tools that have typically been designed for 
students fall into two categories: pre-defined simulations, 
and modeling environments. Pre-defined simulations, such 
as Maxis' SimEarth and Wings for Learning's Explorer, are 
not constructivist; althotlgh user-friendly and informative 
within their pre-programhaed domains, they do not provide 
access to underlying functions and representations which 
drive the simulation, nor the ability to add or change 
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functionality. On the other hand, modeling environments, 
such as High Performance System's Stella or Knowledge 
Revolution's Working Model, allow unlimited flexibility 
in building models. However, they are difficult to learn 
because they don't support the novice's knowledge 
representation of the domain; for these tools, building 
complex models requires mastery of a complex authoring 
language [26]. Thus, current modeling tools inadequately 
address the needs of learners. 

Design and LCD Scaffolding 
Context: Model-It, with its emphasis on building and 
testing models, is designed to be used in an authentic, 
project-based science curriculum, grounded in constructivist 
and sociocultural educational paradigms. The 9th and 10th 
grade students in our pilot studies have been engaged in a 
long-term project investigating the question "How safe is 
our water?" Specifically, they are studying a tributary of the 
Huron River which flows near the school, collecting a 
variety of data to determine the quality of the water. Since 
this water eventually ends up in their drinking fountains, 
the question is motivating and personally meaningful to the 
students. 

Using Model-It, the students constructed models of the 
stream ecosystem,1 and were assigned open-ended projects 
in which they were asked to build models to represent their 
choice of particular stream phenomena, e.g.', land use 
practices: the impact of man-made structures such a golf 
course or parking lot on stream quality. Creating models is 
motivating to students because the students are engaged and 
challenged to create an original artifact. Furthermore, as 
students have more input into the choice and control of 
their environments, their motivation for pursuing 
cognitively challenging problems increases [2]. Allowing 
students to decide how to plan, design, and work on their 
models can engage them in the learning process. 

Tasks: Model-It scaffolds the complexity of the modeling 
task by providing a set of pre-defined high-level objects 
(e.g. stream, bugs, golf course). These physical objects 
match the learner's knowledge representation of the domain, 
in contrast to an expert's knowledge representation which 
might consist of domain-independent primitives of inputs, 
outputs, functions and states. 

Students select from this set of objects, define factors of the 
objects, and relationships between the factors. Model-It 
redefines the task of defining relationships by supporting a 
qualitative representation of relationships, rather than 
requiring formal mathematical expressions. This scaffolding 
is important for learners because their knowledge structures 

1Model-It can be used to build a wide rang e of process flow 
models; for our preliminary classroom study we chose ~e  
domain of stream ecosystems. In our description ot ttae 
program, we use examples from hhis domain. 

don't initially include a quantitative command of the 
concepts involved. 

Tools: Learners need tools appropriate for their learning 
styles and levels of expertise; therefore Model-It provides 
tools for both qualitative and quantitative definition of 
relationships. Initially, relationships can be defined 
qualitatively by selecting descriptors in a sentence, e.g., 
"As stream phosphate increases, stream quality decreases by 
less and less" (Figure 1). As students' knowledge 
representations of the domain become more expert-like, 
they have the option of defining the relationship more 
quantitatively, e.g., by entering data points into a table 
(Figure 2). Model-It also supports a similar qualitative 
definition of rate relationships which define how one factor 
sets the rate of change of another factor over time. 

To support different learning styles, and to facilitate the 
learner's shift to more abstract mental representations, these 
tools provide both textual and graphical representations of 
relationships. Given a qualitative definition, the software 
translates the text into a quantitative visual representation; 
e.g. "decreases by less and less" is interpreted as shown by 
the graph in Figure 1. 
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Figure 1: Qualitative relationship definition: Text View 
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Figure 2: Quantitative relationship definition: Table View 

Interface: Learners often need extra motivation to sustain 
interest in a task, and the intcractivity and engaging 
personal graphics of Model-lt can help provide that 
motivation. To make the task more concrete and authentic, 
objects arc represented with actual digitized photographs and 
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user-defined graphics. Students can create their own objects 
and paste in their own pictures. In Figure 3, the background 
graphic is a photograph of the actual stream the students 
studied. According to sociocultural perspectives of learning, 
this personalized representation creates a context through 
which the activity has meaning. 

The Factor Map (Figure 4) provides an interactive overview 
of the model. It helps students structure the task by 
providing a means of visualizing the network of factors and 
relationships, rearranging the nodes in a meaningful way, 
and making changes (e.g., drawing an arrow to create a new 
relationship). 

I 1 ~ . ~ *  I / A'~ ~ ; ' - , .  I '~''= 

Figure 3: Model-It simulation window 

f 
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Figure 4: Interactive overview of the model: FaCtor Map 

The highly interactive, direct manipulation interface of 
Model-It can help provide sustained engagement in the task 
[15, 23]. During a simulation, meters and graphs provide 
immediate feedback of factor values as they change over 
time (Figure 4). Students can make changes in factor values 
even while the model is running, and immediately see the 
impact. 

From a construcfivist perspective, interactively working and 
reworking the representation enables the student to continue 
constructing their knowledge representations [17]. By 
integrating the building and testing components of  
modeling, Model-It supports an iterative process of model 
construction. 
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Finally, to encourage students to reflect, and therefore 
extend their knowledge and their metacognifive skills~ the 
interface encourages articulation by providing explanation 
fields (e.g., Figure 2) where students can enter explanations 
for the objects, factors and relationships they create. 

Results 
Versions of Model-It have been used in several classroom 
studies with 9th and 10th grade students. In each, students 
have worked in groups of two with the program, over a 
period of one or two weeks. Each study culminated in the 
assignment of an open-ended modeling task, where students 
were asked to create their own models to represent some 
chosen ecological phenomenon. In [12], we present a 
detailed analysis of the data. The following discussion 
focuses on a representative pair of students, Paul and Jim, 
two 9th graders from our first classroom study, and how 
Model-It scaffolded them in creating a complex model in 
just one 45-minute period. 

Context: The open-ended modeling task assigned to the 
students gave them the flexibility to branch off and explore 
different topics, and to express their own understanding. For 
example, to demonstrate land use impacts, Paul and Jim 
chose to put the golf course object into their model, and 
show how factors of the golf course might affect the stream 
and the organisms living in it: 

J: Let's use that one. 
P: The golf course? 
J: Yeah, we haven't used that one yet. 
P: How the golf course affects what, though? 
J: How the golf course affects, urn, bacteria. 
P: Too hard. 
J: It's easy. Because the golf course, a lot of geese are on 

the golf course, and the geese feces go in the water. 
P: Oh, and it affects fecal coliform 
J: Which in turn affects the bacteria, and the fecal 

coliform grows on bacteria. 
P: Okay, where do you want the golf course? 
J: Right there. 

This opportunity to build their own models was extremely 
motivating for Paul and Jim; they displayed excitement and 
enthusiasm for the project throughout the class period. 
Once they had completed their initial goal of representing 
the golf course impact, they branched out on their own to 
create more relationships, from the stream quality to the 
mayfly population. They expressed pride in their model, and 
called the teacher over to show it off to her. This reaction 
was typical of the entire class; as one student said in post- 
interviews, "It makes you think mgre about a real-life 
situation, where's there's no real answer--you set it up and 
everything." 

Tasks: Students were comfortable expressing themselves 
qualitatively, and using the qualitative definition of 
relationships, they were able to build complex relationships 
very quickly: 
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P: As geese increases fecal coliform increases at about 
the same. And then if we want, it won't take long to put 
in nitrates. 

J: Okay. 
P: We can add that in. 
J: Cause that's part of fertilizer... 
P: Cause that's part of fertilizer, yeah. So we go to 

stream...okay...to nitrates N I T nitrates. 
J: Lesser and lesser. 

Paul and Jim created four accurate, interrelated relationships 
in four minutes, and in the next four minutes, tested and 
verified their model, and found another relationship to add 
(they realized that the size of  the golf course should affect 
the number of  geese on it). Figure 4, above, shows the 
factor map of their final model. In class discussion, they 
proudly described how their model worked: 

P: The size of the golf course affected the geese, the 
number of geese... 

J: The more land there is the more geese... And the more 
geese the more fecal coliform. 

P: The golf course size affected nitrates and 
phosphates...because the bigger golf course has more 
fertilizer and fertilizer has nitrates and phosphates in 
it. 

Teacher: Do you have any [relationships] going to 
quality? 

P: Well I 'm getting there, okay? This is complicated! 
Okay, fecal coliform goes to quality, phosphate goes 
to quality, nitrate goes to quality... And then the 
quality went to rate of growth. 

Teacher: Why? 
P: Because the better quality... 
J: There is the more mayflies can grow. And then the 

growth went to count and the decay went to the count. 
Tools: Providing a variety of  modeling and visualization 
tools proved very useful for learning, as students could 
choose the tool which made the most sense to them. For 
example, we provide both qualitative and quanttafive means 
of defining relationships to support students at different 
levels of expertise. While Paul and Jim exclusively used the 
qualitative "text view" tool, another classmate preferred the 
precision afforded by the quantitative "table view." Often, 
students transitioned from one. to  the other during our 
longer studies, switching to the "table view" when they 
realized a need to make their models more accurate. 

Interface: Meters and graphs provided visualization of 
simulations as they ran, and were used for model testing and 
verification. For instance, during their testing, Paul and Jim 
used the meters to try different values of  golf course size, 
and realized that it should affect the number of  geese on the 
golf course, so they went back to put that relationship in: 
"So,. golf course size affects golf course geese. Yeah, we 
can do it. As golf course size increases, geese increases by 
about the same." 

Summary 
Our. Model-It  testing showed that the software design 
scaffolded the learners' growth, diversity, and motivation. 
Within the context of'this project-based classroom, working 

on an authentic problem, students were able to build and 
test computational  models,  a task which is usually 
inaccessible to learners in high school science classrooms. 
Students used modeling tools provided by the software in 
ways reflective of  their learning styles; their engagement 
with the modeling task was evident in their interaction with 
the interface as they built and tested their models. 

Case Study Two: NoRIS  
NoRIS is designed to provide an environment that will 
enable students to use professional computational science 
tools to carry out a scientific investigation. More and more 
researchers are turning to computational science when they 
investigate problems because increased computing power 
allows them to model physical phenomena, giving more 
explanatory power to their arguments. Therefore, it is 
important for students to use authentic tools as they learn 
to conduct investigations and construct scientific arguments 
[8]. However, learning to use computational science tools 
and techniques is a complex process that poses difficulties 
to the learner. 

• First, there are many different individual computational tools 
available to scientists, but few tools that provide 
comprehensive support for the entire investigative process. 
For example, visualization packages are very powerful, but 
very specific for a certain subtask of an investigation. Others, 
such as Mathematica, Maple, etc., are attempting to integrate 
more functionality within a single package, but the packages 
are still complex and do not support all investigative tasks 
[25], nor do they provide support for learners. 

• Second, computational science results in artifacts of different 
media types, but there is no support for the construction of the 
scientific argument, or for the management of the artifacts 
necessary to support the investigatory process [10]. For 
example, in a given situation, a student may need to refer to a 
source code file, data file, and graph, all of which may reside in 
different directories. The responsibility for organization and 
access of these artifacts is with the student. 

• Finally, students are confronted with a variety of different 
interfaces and tools, which adds an additional level of 
complexity to the investigation. 

In order to address these shortcomings and provide 
computer-based support  to help students learn the 
invest igat ive process ,  we have  developed NoRIS 
(Notebook-based Research and Invest igat ive  process 
~upport system). 

Design and LCD ScaffoMing 
Context: NoRIS provides a platform that enables students 
to use computational science so that they can carry out a 
scientific investigation. NoRIS is being used in a senior- 
level nuclear engineering class where students investigate 
numerical methods. NoRIS assumes more of a sociocultural 
perspective: by giving these students an environment that 
reduces many of the complexities inherent in computational 
science, NoRIS aims to support students as they begin 
learning the tools and practices of  the professional 
researcher. 

193 



' ' ~ ]  9 ~  A P R I L  1 3 - 1 8 ,  1 9 9 6  

Tasks: Students with little expertise can be hindered by 
having to remember the variety of  disjointed, lower-level 
tasks that make up an investigation. NoRIS therefore 
restructures an investigation in terms of high-level tasks: 

* Notekeeping: Students continually record important 
observations, data, etc. throughout an investigation. 

. Building cases: A case encompasses the major tasks that use 
computational tools, such as writing numerical-method 
programs, visualizing data, etc. 

By providing support and structure for these high-level 
tasks, NoRIS allows the student to begin constructing an 
understanding of the investigative activities that researchers 
perform. 

As well as restructuring the investigative process, NoRIS 
also reduces complexity by handling the student 's  
managerial tasks, such as artifact management. Artifact 
management  is important because throughout  an 
investigation, the student may have to re-use, modify, or 
refer to artifacts such as notes, source code, data files, etc. 
However, it becomes tedious and dislracfing for a student to 
coherently organize their artifacts. By supporting artifact 
management, the student can focus more on their 
investigation less on mundane, bookkeeping tasks. 

Tools: In order to provide an environment that students 
can use for scientific inquiry, NoRIS provides the variety of 
tools needed by beginning students to complete their tasks. 
As we have seen, there are many computer tools that can be 
used in a scientific investigation: computational tools (such 
as compilers and algebraic/mathematical software), 
visualization tools, etc. NoRIS provides this functionality 
by integrating existing software packages. 

However, for tasks such as artifact management, there are 
no existing tools that the student can use. NoRIS is 
designed as a computer notebook, a metaphor that 
co r re sponds  to the s tudent 's  cur ren t  menta l  
representations--they know what it is and how to use it. 
The notebook metaphor provides an organizational structure 
to help ~tudents manage the different artifacts that they have 
created'during the argument. For example, NoRIS includes 
the Notebook Summary window (Figure 5) that 
summarizes the different numerical-method programs that 
have been written by the student. 

Interface: One of  the complexities of computational 
science is having to learn different computer tools and 
interfaces. Students may have access to the necessary 
functionality, but if they do not have an accessible interface 
to that functionality, they will not use the tools. Therefore, 
NoRIS has a simple, consistent interface to all of  the 
different tools, by providing button and menu-based access 
to each tool. This corresponds to the constructivist 
principle that complexity is reduced by offering similar 
processes that match current mental structures for a range of 
tasks. Examples include: 

• The Workspace Tool (Figure 6) provides button and menu- 
based access to the tools needed by the student to build and 
analyze numerical method cases. 

Figure 6: The Workspace Tool 
The Multiplot Tool (Figure 7) allows the researcher to 
easily plot data files in the same graph window for 
analysis. The student can simply "check off" all of the 
files that they want to plot and then press the Plot button. 

Figure 7: The Multiplot Tool 
Once students can access the necessary functionality, they 
need further support to help them identify and complete 
their investigative tasks. To further sustain the students as 
they proceed through their investigation, NoRIS provides 
visual cues in the interface so that the students can see the 
different steps in the process, and the different types of 
information that they must recorff.'Examples include: 

• The Workspace Tool (Figure 6) contains a task diagram (a 
constmctivist concept) of the process used to construct a 
case for the numerical method that they are investigating. 
Each button represents a different stage in the case-building 
process. Pressing a button presents the user with a menu 
identifying their options for that particular stage. 

Figure 5: Notebook Summary Window 
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Notepad windows (Figure 8) contain button palettes that 
identify to the student the different types of information that 
they should be thinking about and recording throughout the 
investigation, such as problem objectives, descriptions of 
the numerical methods they are investigating, etc. This 
structure encourages students to reflect and keep important 
notes throughout their investigation. 

Figure 8: Notepad Window 

Results 
NoRIS was initially tested in three two-week trials with 
two nuclear engineering students in each trial. For each 
trial, the students were given a problem to work on using 
NoRIS. More recently, NoRIS was used in a nuclear engi- 
neering class by five senior-level undergraduate students 
who worked on week-long, project-based assignments to 
analyze numerical  methods in particle-distribution 
problems. 

Context: Using NoRIS, students were able to complete 
their particle-distribution assignments, verifying that 
NoRIS facilitates their investigatory process. We saw that 
NoRIS gave students an environment  that made 
computational science accessible and investigations 
manageable. 

Tasks: The task decomposition defined in NoRIS helped 
reduce the complexity of  an investigation, and students 
quickly caught on to the tasks decomposition. They saw 
that their investigation involved setting up different cases 
for their different numerical methods and keeping notes on 
those cases. We soon observed students trying out new 
experiments by simply seRing up new cases, even though 
their problem did not necessarily indicate that they needed to 
do so. 

We also saw that it was useful for NoRIS to handle some 
of the student's tasks, such as artifact management. One 
student noted the advantages of this: 

"I am usually disorganized and after a while, I spend a lot of 
time organizing things--setting up directories, putting 
codes and things in the right places. NoRIS takes care of 
this--this really helps because it lets me concentrate on the 
pfoblem.." 

We also saw that automatic artifact management helped 
students manage the complexity of re-using and modifying 
existing artifacts to build new cases. Since it was easy for 
students to find and re-use old artifacts, students could build 
new cases from old cases quickly; this encouraged students 
to experiment with numerical methods by continually 
modifying a base case for the different experiments. 

Tools: Students liked the fact that they had all of the 
necessary tools available to them in one application. Since 
students are not experts in using computational science, 
they may not know what tools to use in given situations: 

"[NoRIS] really provides an integrated package that 
beginning students can really use...having all of the needed 
information 'at my fingertips' is an advantage so that I do 
not have to bounce around different programs...this is good 
for students "who are inexperienced with [computers]" 

By having all of the functionality available to them in one 
application, the students did not have to be moving from 
application to application, which can be a problem for 
students who have little expertise with computational 
science. 

Interface: Students liked using the interface because it was 
easy to invoke their different tools. The fact that they could 
use menus and buttons to access many of their tools made 
it easy for the student to quickly get started with their 
investigation. 

Students also appreciated the different visual cues provided 
by the interface. For example, one student commented on 
the notepad button palette that identifies important pieces of 
information that should be recorded: 

"[The button palette] helps lay out the thought process I 
should be following when I start working on my 
problem...Se~ing [the buttons] makes me pause and think 
about the problem rather than just jumping in and starting to 
write programs, which is what I might normaLly do." 

The visual cues of  the interface therefore structure the task 
and articulate their thoughts. 

Summary 
Our user testing has shown ]hat.students are able to use 
NoRIS to complete authentic scientific investigations, and 
that they find the structure provided by the program helpful. 
Furthermore, by providing an accessible interface to the 
array of  computational tools used by professional 
rese chers, NoRIS supports learners in their enculturation 
into professional practices. 
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C O N C L U D I N G  R E M A R K S  
Model-I t  and NoRIS are two components  of  the 
ScienceWare suite of tools, a "computational workbench" 
that we are developing to scaffold learners engaged in the 
full range of scientific investigatory activities. As we apply 
our LCD strategies to the design of the ScienceWare tools, 
and study the use of these tools in classroom settings, our 
goal is to develop a fully-articulated LCD framework in 
which the needs of learners are specifically addressed by 
theoretically-motivated scaffolding for each element of the 
learning environment. 

In putting forth the notion of UCD, Norman, Draper, and 
their book contributors [15] sought to focus attention on 
the needs of users at a time when there was growing interest 
in developing usable and productive interfaces and 
interaction paradigms. Similarly, in putting forth the 
notion of LCD, our intent is to focus discussion on work 
that is expressly intended for learners at a time when, as 
Business Week [2] declared, there is a "'revolution" going on 
in educational software. UCD has proven itself to be a 
useful notion; time will tell whether LCD is similarly so. 
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