
APRIL 13--18, 1 9 9 6 C H | 96

Learning Theory in Practice:

Case Studies of Learner-Centered Design
Elliot Soloway, Shari L. Jackson, Jonathan Klein, Chris Quintana, James Reed,

Jeff Spitulnik, Steven J. Stratford, Scott Studer, Jim Eng, Nancy Scala

Univers i ty o f M i c h i g a n
1101 Bea l Ave .

A n n Arbor , M 1 4 8 1 0 9 , U S A
+1 313 763 6 9 8 8

s o l o w a y @ u m i c h . e d u

A B S T R A C T
The design of software for learners must be guided by
educational theory. We present a framework for learner-
centered design (LCD) that is theoretically motivated by
sociocultural and constructivist theories of learning. LCD
guides the design of software in order to support the unique
needs of learners: growth, diversity, and motivation. To
address these needs, we incorporate scaffolding into the
context, tasks, tools, and interface of software learning
environments. We demonstrate the application of our
methodology by presenting two case studies of LCD in
practice.

K e y w o r d s Learner-Centered Design, Educational
Applications, Science Applications, Socioculturaiism,
Constructivism, Case Study, Scaffolding.

I N T R O D U C T I O N : MOTIVATION AND GOALS
The push for educational reform in the U.S. is strong.
Currently, the dominant educational paradigm is "didactic
instruction," where learning is viewed as an information
transmission process: teachers have the information,
students don't , and teachers' lectures serve to move
information into the heads of students. In contrast, national
and state education reform movements are advocating for
students to be actively engaged in learning, constructing
understanding and meaning, not receiving it. Project 2061,
a national science curriculum developed by the American
Association for the Advancement of Science [1] calls for
students to engage in long-term, authentic investigations.

Computing and communications technologies can play a
key role in supporting students and teachers as they engage
in such authentic tasks as question-generating, model-
building, report-publishing. However, constructing
software that truly addresses the needs of learners is a
challenge: while learners are also users, and thus the
principles of user-centered design apply, learners
additionally have a set of unique needs that must be
addressed in software:

• Growth . At the core of education is the growth of the

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
s~ not made or distributed for profit or ¢ommerelal advantage, the copy-
nght notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
CHI 96 Vancouver, BC Canada
© 1996 ACM 0-89791-777-4/96/04..$3.50

learner; promoting the development of expertise must be the
primary goal of educational software. Rather than just
support "doing" tasks, software designed for learners must
support "learning while doing."

• Diversity. Developmental differences, cultural differences,
and gender differences play a major role in the suitability of
materials for learners. To be usable by all learners, a range of
software tools that address these differences must be
available.

• M o t i v a t i o n . In contrast to software developed for
professionals, the student's initial interest and continuing
engagement cannot be taken for granted.

To address these unique needs of learners, we are developing
learner-centered design (LCD) guidelines [24] to augment
the user-centered design (UCD) framework [15]. Our
current focus is on K-16 learners; however, given Senge's
[22] compelling arguments that an organization must be a
learning organization in order to be productive, LCD should
also have validity for the workplace.

The central claim of LCD is that software can embody
learning supports--scaffolding--that can address the
learner's growth, diversity, and motivation. Scaffolding is
an educational term that refers to providing support to
learners while they engage in activities that are normally
out of their reach [28, 30]. For example, n undertaking an
authentic science inquiry, e.g., what is the quality of water
in the stream behind my school, the tasks are more
complex and diverse than those in traditional, follow-the-
steps, lab-style experiments. Software-realized scaffolding
can reduce the complexity of these tasks, for example, by
relating discrete subtasks to their current mental
representations.

From edutainment to context-sensitive help systems, the
need to support learners is well recognized. That said, there
are precious few resounding successes (e.g., [6, 16]). Given
the formidable educational problems that face our society
and the almost-availability of consumer-priced, high-
performance computing and communications technologies,
the opportunity to actually make-a-difference in education is
truly at hand.

In LCD we (see also [12, 14, 20]) are attempting to explore
the design implicat ions o f learning theories --
constructivism and socioculturism -- that have heretofore

189

i

C}"~| 9 6 APRIL 1 3 - 1 8 o m996

received less attention than, say, behaviorism (upon which
computer-assisted instruction (CAI) is built) and
information processing psychology (upon which intelligent
tutoring systems are bull0. While the work reported here is
clearly only now maturing, our intent is to focus attention
on a fertile, promising direction for research and
development.

In this paper, then, we:
-Ar t i cu la t e the Theoretical Rationale and Design

Implications. The scaffolding design guidelines of LCD
build directly on constructivist & sociocultural theories of
learning.

• Illustrate LCD via Case Studies. Two examples of
how LCD has informed the design of educational software are
presented.

• Summarize the Key Issues in LeD.

T H E O R E T I C A L R A T I O N A L E &
I M P L I C A T I O N S
Two resonating theoretical frameworks underlie both the
education reform movement (e.g., [3, 4, 7] as well as our
evolving the LCD framework:

• In cons truct iv ism (e.g., [14, 16, 17, 28]) the central
notion is that understanding and learning arc active,
constructive, generative processes such as assimilation,
augmentation, and self-reorganization. For example, a
teacher's words do not simply become directly engraved in a
student's mind, after passing through the ear, but rather,
those words are acted upon and interpreted by the student.

• In socioculturism, the central notion is that learning is
enculturation, the process by which learners become
collaborative meaning-makers among a group defined by
common practices, language, use of tools, values, beliefs,
and so on [5, 14, 21, 29]. The goal is to enable practices and
meaning making that are appropriate in the professional
culture of the domain under study. For example, scientists
understand science as those ideas are embodied in their
everyday practices. Contrast this way of knowing with
traditional science classrooms where, from the students'
perspective, concepts come from textbooks and lectures,
and lab experiments are tightly-controlled exercises that fit
into the requisite 50 minute period. -

These two theoretical perspectives are consistent with each
other; they just emphasize different themes: the former
speaks to the individual's cognition, while the latter speaks
to the contributions of the surroundings to that cognition.

From socio-constructivism, then, guidelines for the design
of learning environments and the supporting scaffolding can
be developed (e.g., [9, 11, 20]). In particular, in LCD, we
are attempting to provide guidelines for the construction of
scaffoMing strategies, to address the three unique needs of
learners (growth, diversity and motivation)for each of the
four components in a learning environment:

• Context: What is the environment in which the software
will be embedded? How will it be used, and by whom?

• Tasks: What are the tasks the software will support?
• Tools: What tools will perform these tasks?
• Interface: What is the interface to those tools?

Examples of LCD scaffolding guidelines are given in the
following ease studies.

LCD: T W O CASE STUDIES
Model-It and NoRIS are learner-centered software tools
which we have designed for two different contexts:

• Model-It: 1:figh school, p_toject-based science classrQg_m: We
are working with science teachers at Community High School
in Ann Arbor to develop a new high school science curriculum
in which computing technologies are routinely used, and in
which the subject matter of earth science, chemistry, and
biology is combined and taught in the context of meaningful,
long term projects. Model-It, software for building and testing
computational models, is one of the tools we are developing
for use in this environment.

• NoRIS: University nuclear engineerin~ classroom; The
University of Michigan Nuclear Engineering department
encourages the use of computational science in the upper-level
undergraduate curriculum. NoRIS is a problem-solving
environment we have developed for use in these classrooms.

While on the surface these two contexts are different, at
their core they both require the same sorts of scaffolding;
the only real difference is one of emphasis. In the high-
school context, motivation is a big issue, while it is less
so in the undergraduate context. However, in the
undergraduate context, structuring the complex tasks that
make up a computational science-style argument is the real
challenge.

In our discussion of each example, we first present the
software design, and how it incorporates scaffolding to
address learner's needs regarding software context, tasks,
tools, and interface. Then, we present examples from the
user testing data which illustrate the impact of specific
software features designed to provide scaffolding.

Case Study One: Model-It
Model-It is designed to support learners in building and
testing models of dynamic systems. Scientists build models
to test theories and to develop a better understanding of
complex systems [13]. Similarly, we want to support
students in the building of models, as socioeultural learning
theory says that learners should be involved in professional
practices. Constructivist learning theory predicts that by
constructing external representations of scientific
phenomena, learners are building an internal, mental model
of the phenomena. We believe that by building models,
students will support, refine, and develop their
understanding of a scientific system by constructing models
to represent their understanding of the phenomenon arid its
coniplex interrelationships.

The modeling tools that have typically been designed for
students fall into two categories: pre-defined simulations,
and modeling environments. Pre-defined simulations, such
as Maxis' SimEarth and Wings for Learning's Explorer, are
not constructivist; althotlgh user-friendly and informative
within their pre-programhaed domains, they do not provide
access to underlying functions and representations which
drive the simulation, nor the ability to add or change

190

A P R I L 1 3 - 1 8 , 1 9 9 6 C 8 | 9 6

functionality. On the other hand, modeling environments,
such as High Performance System's Stella or Knowledge
Revolution's Working Model, allow unlimited flexibility
in building models. However, they are difficult to learn
because they don't support the novice's knowledge
representation of the domain; for these tools, building
complex models requires mastery of a complex authoring
language [26]. Thus, current modeling tools inadequately
address the needs of learners.

Design and LCD Scaffolding
Context: Model-It, with its emphasis on building and
testing models, is designed to be used in an authentic,
project-based science curriculum, grounded in constructivist
and sociocultural educational paradigms. The 9th and 10th
grade students in our pilot studies have been engaged in a
long-term project investigating the question "How safe is
our water?" Specifically, they are studying a tributary of the
Huron River which flows near the school, collecting a
variety of data to determine the quality of the water. Since
this water eventually ends up in their drinking fountains,
the question is motivating and personally meaningful to the
students.

Using Model-It, the students constructed models of the
stream ecosystem,1 and were assigned open-ended projects
in which they were asked to build models to represent their
choice of particular stream phenomena, e.g.', land use
practices: the impact of man-made structures such a golf
course or parking lot on stream quality. Creating models is
motivating to students because the students are engaged and
challenged to create an original artifact. Furthermore, as
students have more input into the choice and control of
their environments, their motivation for pursuing
cognitively challenging problems increases [2]. Allowing
students to decide how to plan, design, and work on their
models can engage them in the learning process.

Tasks: Model-It scaffolds the complexity of the modeling
task by providing a set of pre-defined high-level objects
(e.g. stream, bugs, golf course). These physical objects
match the learner's knowledge representation of the domain,
in contrast to an expert's knowledge representation which
might consist of domain-independent primitives of inputs,
outputs, functions and states.

Students select from this set of objects, define factors of the
objects, and relationships between the factors. Model-It
redefines the task of defining relationships by supporting a
qualitative representation of relationships, rather than
requiring formal mathematical expressions. This scaffolding
is important for learners because their knowledge structures

1Model-It can be used to build a wide rang e of process flow
models; for our preliminary classroom study we chose ~e
domain of stream ecosystems. In our description ot ttae
program, we use examples from hhis domain.

don't initially include a quantitative command of the
concepts involved.

Tools: Learners need tools appropriate for their learning
styles and levels of expertise; therefore Model-It provides
tools for both qualitative and quantitative definition of
relationships. Initially, relationships can be defined
qualitatively by selecting descriptors in a sentence, e.g.,
"As stream phosphate increases, stream quality decreases by
less and less" (Figure 1). As students' knowledge
representations of the domain become more expert-like,
they have the option of defining the relationship more
quantitatively, e.g., by entering data points into a table
(Figure 2). Model-It also supports a similar qualitative
definition of rate relationships which define how one factor
sets the rate of change of another factor over time.

To support different learning styles, and to facilitate the
learner's shift to more abstract mental representations, these
tools provide both textual and graphical representations of
relationships. Given a qualitative definition, the software
translates the text into a quantitative visual representation;
e.g. "decreases by less and less" is interpreted as shown by
the graph in Figure 1.

I sl~'~ II ~ ' t ' I ° " " I s i r ' ~ I * ° l l l i 1
I l l l l l l l n i t l D l g l l i : 0 N o n e # l l ~ d l l l l e 0 R o l e

I TONt g l o w i

/ is Strllielfn : l l l i o i p l l o l l i

IIIcr lDllel

$ i r N m : q u i l l U

• l i t t l e

TOO n i l r a r e and moi re l i v e

. , - , /.,Z..

Figure 1: Qualitative relationship definition: Text View

~ll ~ :. " :;

is~.. i io.u,. i . . , ,< , p~r,.,~ l l~ l l t t 1
I l l / i l l l u p e : 0 N I M t I n l m e d l l l e 0 I k l l e

I Tell l l l l i l l l l l l l , "

~ va l / r mliIJ vaiJe~

W

o I ~ N
II]Q m a..%=,~.~

g high I ~ 1 of dhmolved ~ i
Ind lca ta l o h~lltJ'~,l ItpisCllll, ¢mllal l ~ i
ime, er.s emil l up le~ lu , e ~ t ~ l ~ to ~ lPar,a l
~t.~,pa0~u.~. i f-aaa -I r-a =l

Figure 2: Quantitative relationship definition: Table View

Interface: Learners often need extra motivation to sustain
interest in a task, and the intcractivity and engaging
personal graphics of Model-lt can help provide that
motivation. To make the task more concrete and authentic,
objects arc represented with actual digitized photographs and

191

I

user-defined graphics. Students can create their own objects
and paste in their own pictures. In Figure 3, the background
graphic is a photograph of the actual stream the students
studied. According to sociocultural perspectives of learning,
this personalized representation creates a context through
which the activity has meaning.

The Factor Map (Figure 4) provides an interactive overview
of the model. It helps students structure the task by
providing a means of visualizing the network of factors and
relationships, rearranging the nodes in a meaningful way,
and making changes (e.g., drawing an arrow to create a new
relationship).

I 1 ~ . ~ * I / A'~ ~ ; ' - , . I '~''=

Figure 3: Model-It simulation window

f

e a t s o f

pi
Figure 4: Interactive overview of the model: FaCtor Map

The highly interactive, direct manipulation interface of
Model-It can help provide sustained engagement in the task
[15, 23]. During a simulation, meters and graphs provide
immediate feedback of factor values as they change over
time (Figure 4). Students can make changes in factor values
even while the model is running, and immediately see the
impact.

From a construcfivist perspective, interactively working and
reworking the representation enables the student to continue
constructing their knowledge representations [17]. By
integrating the building and testing components of
modeling, Model-It supports an iterative process of model
construction.

~ " ~ | 9 ~ A P R I L 1 3 - 1 8 , 1 9 9 6

Finally, to encourage students to reflect, and therefore
extend their knowledge and their metacognifive skills~ the
interface encourages articulation by providing explanation
fields (e.g., Figure 2) where students can enter explanations
for the objects, factors and relationships they create.

Results
Versions of Model-It have been used in several classroom
studies with 9th and 10th grade students. In each, students
have worked in groups of two with the program, over a
period of one or two weeks. Each study culminated in the
assignment of an open-ended modeling task, where students
were asked to create their own models to represent some
chosen ecological phenomenon. In [12], we present a
detailed analysis of the data. The following discussion
focuses on a representative pair of students, Paul and Jim,
two 9th graders from our first classroom study, and how
Model-It scaffolded them in creating a complex model in
just one 45-minute period.

Context: The open-ended modeling task assigned to the
students gave them the flexibility to branch off and explore
different topics, and to express their own understanding. For
example, to demonstrate land use impacts, Paul and Jim
chose to put the golf course object into their model, and
show how factors of the golf course might affect the stream
and the organisms living in it:

J: Let's use that one.
P: The golf course?
J: Yeah, we haven't used that one yet.
P: How the golf course affects what, though?
J: How the golf course affects, urn, bacteria.
P: Too hard.
J: It's easy. Because the golf course, a lot of geese are on

the golf course, and the geese feces go in the water.
P: Oh, and it affects fecal coliform
J: Which in turn affects the bacteria, and the fecal

coliform grows on bacteria.
P: Okay, where do you want the golf course?
J: Right there.

This opportunity to build their own models was extremely
motivating for Paul and Jim; they displayed excitement and
enthusiasm for the project throughout the class period.
Once they had completed their initial goal of representing
the golf course impact, they branched out on their own to
create more relationships, from the stream quality to the
mayfly population. They expressed pride in their model, and
called the teacher over to show it off to her. This reaction
was typical of the entire class; as one student said in post-
interviews, "It makes you think mgre about a real-life
situation, where's there's no real answer--you set it up and
everything."

Tasks: Students were comfortable expressing themselves
qualitatively, and using the qualitative definition of
relationships, they were able to build complex relationships
very quickly:

1 9 2

APP, IL 13-18, 1996 CH~ 9 6

P: As geese increases fecal coliform increases at about
the same. And then if we want, it won't take long to put
in nitrates.

J: Okay.
P: We can add that in.
J: Cause that's part of fertilizer...
P: Cause that's part of fertilizer, yeah. So we go to

stream...okay...to nitrates N I T nitrates.
J: Lesser and lesser.

Paul and Jim created four accurate, interrelated relationships
in four minutes, and in the next four minutes, tested and
verified their model, and found another relationship to add
(they realized that the size of the golf course should affect
the number of geese on it). Figure 4, above, shows the
factor map of their final model. In class discussion, they
proudly described how their model worked:

P: The size of the golf course affected the geese, the
number of geese...

J: The more land there is the more geese... And the more
geese the more fecal coliform.

P: The golf course size affected nitrates and
phosphates...because the bigger golf course has more
fertilizer and fertilizer has nitrates and phosphates in
it.

Teacher: Do you have any [relationships] going to
quality?

P: Well I 'm getting there, okay? This is complicated!
Okay, fecal coliform goes to quality, phosphate goes
to quality, nitrate goes to quality... And then the
quality went to rate of growth.

Teacher: Why?
P: Because the better quality...
J: There is the more mayflies can grow. And then the

growth went to count and the decay went to the count.
Tools: Providing a variety of modeling and visualization
tools proved very useful for learning, as students could
choose the tool which made the most sense to them. For
example, we provide both qualitative and quanttafive means
of defining relationships to support students at different
levels of expertise. While Paul and Jim exclusively used the
qualitative "text view" tool, another classmate preferred the
precision afforded by the quantitative "table view." Often,
students transitioned from one. to the other during our
longer studies, switching to the "table view" when they
realized a need to make their models more accurate.

Interface: Meters and graphs provided visualization of
simulations as they ran, and were used for model testing and
verification. For instance, during their testing, Paul and Jim
used the meters to try different values of golf course size,
and realized that it should affect the number of geese on the
golf course, so they went back to put that relationship in:
"So,. golf course size affects golf course geese. Yeah, we
can do it. As golf course size increases, geese increases by
about the same."

Summary
Our. Model-It testing showed that the software design
scaffolded the learners' growth, diversity, and motivation.
Within the context of'this project-based classroom, working

on an authentic problem, students were able to build and
test computational models, a task which is usually
inaccessible to learners in high school science classrooms.
Students used modeling tools provided by the software in
ways reflective of their learning styles; their engagement
with the modeling task was evident in their interaction with
the interface as they built and tested their models.

Case Study Two: NoRIS
NoRIS is designed to provide an environment that will
enable students to use professional computational science
tools to carry out a scientific investigation. More and more
researchers are turning to computational science when they
investigate problems because increased computing power
allows them to model physical phenomena, giving more
explanatory power to their arguments. Therefore, it is
important for students to use authentic tools as they learn
to conduct investigations and construct scientific arguments
[8]. However, learning to use computational science tools
and techniques is a complex process that poses difficulties
to the learner.

• First, there are many different individual computational tools
available to scientists, but few tools that provide
comprehensive support for the entire investigative process.
For example, visualization packages are very powerful, but
very specific for a certain subtask of an investigation. Others,
such as Mathematica, Maple, etc., are attempting to integrate
more functionality within a single package, but the packages
are still complex and do not support all investigative tasks
[25], nor do they provide support for learners.

• Second, computational science results in artifacts of different
media types, but there is no support for the construction of the
scientific argument, or for the management of the artifacts
necessary to support the investigatory process [10]. For
example, in a given situation, a student may need to refer to a
source code file, data file, and graph, all of which may reside in
different directories. The responsibility for organization and
access of these artifacts is with the student.

• Finally, students are confronted with a variety of different
interfaces and tools, which adds an additional level of
complexity to the investigation.

In order to address these shortcomings and provide
computer-based support to help students learn the
invest igat ive process , we have developed NoRIS
(Notebook-based Research and Invest igat ive process
~upport system).

Design and LCD ScaffoMing
Context: NoRIS provides a platform that enables students
to use computational science so that they can carry out a
scientific investigation. NoRIS is being used in a senior-
level nuclear engineering class where students investigate
numerical methods. NoRIS assumes more of a sociocultural
perspective: by giving these students an environment that
reduces many of the complexities inherent in computational
science, NoRIS aims to support students as they begin
learning the tools and practices of the professional
researcher.

193

' ' ~] 9 ~ A P R I L 1 3 - 1 8 , 1 9 9 6

Tasks: Students with little expertise can be hindered by
having to remember the variety of disjointed, lower-level
tasks that make up an investigation. NoRIS therefore
restructures an investigation in terms of high-level tasks:

* Notekeeping: Students continually record important
observations, data, etc. throughout an investigation.

. Building cases: A case encompasses the major tasks that use
computational tools, such as writing numerical-method
programs, visualizing data, etc.

By providing support and structure for these high-level
tasks, NoRIS allows the student to begin constructing an
understanding of the investigative activities that researchers
perform.

As well as restructuring the investigative process, NoRIS
also reduces complexity by handling the student 's
managerial tasks, such as artifact management. Artifact
management is important because throughout an
investigation, the student may have to re-use, modify, or
refer to artifacts such as notes, source code, data files, etc.
However, it becomes tedious and dislracfing for a student to
coherently organize their artifacts. By supporting artifact
management, the student can focus more on their
investigation less on mundane, bookkeeping tasks.

Tools: In order to provide an environment that students
can use for scientific inquiry, NoRIS provides the variety of
tools needed by beginning students to complete their tasks.
As we have seen, there are many computer tools that can be
used in a scientific investigation: computational tools (such
as compilers and algebraic/mathematical software),
visualization tools, etc. NoRIS provides this functionality
by integrating existing software packages.

However, for tasks such as artifact management, there are
no existing tools that the student can use. NoRIS is
designed as a computer notebook, a metaphor that
co r re sponds to the s tudent 's cur ren t menta l
representations--they know what it is and how to use it.
The notebook metaphor provides an organizational structure
to help ~tudents manage the different artifacts that they have
created'during the argument. For example, NoRIS includes
the Notebook Summary window (Figure 5) that
summarizes the different numerical-method programs that
have been written by the student.

Interface: One of the complexities of computational
science is having to learn different computer tools and
interfaces. Students may have access to the necessary
functionality, but if they do not have an accessible interface
to that functionality, they will not use the tools. Therefore,
NoRIS has a simple, consistent interface to all of the
different tools, by providing button and menu-based access
to each tool. This corresponds to the constructivist
principle that complexity is reduced by offering similar
processes that match current mental structures for a range of
tasks. Examples include:

• The Workspace Tool (Figure 6) provides button and menu-
based access to the tools needed by the student to build and
analyze numerical method cases.

Figure 6: The Workspace Tool
The Multiplot Tool (Figure 7) allows the researcher to
easily plot data files in the same graph window for
analysis. The student can simply "check off" all of the
files that they want to plot and then press the Plot button.

Figure 7: The Multiplot Tool
Once students can access the necessary functionality, they
need further support to help them identify and complete
their investigative tasks. To further sustain the students as
they proceed through their investigation, NoRIS provides
visual cues in the interface so that the students can see the
different steps in the process, and the different types of
information that they must recorff.'Examples include:

• The Workspace Tool (Figure 6) contains a task diagram (a
constmctivist concept) of the process used to construct a
case for the numerical method that they are investigating.
Each button represents a different stage in the case-building
process. Pressing a button presents the user with a menu
identifying their options for that particular stage.

Figure 5: Notebook Summary Window

1 9 4

, i ,

APRIL 1 3 - 1 8 , 1996 C H | 9 6

Notepad windows (Figure 8) contain button palettes that
identify to the student the different types of information that
they should be thinking about and recording throughout the
investigation, such as problem objectives, descriptions of
the numerical methods they are investigating, etc. This
structure encourages students to reflect and keep important
notes throughout their investigation.

Figure 8: Notepad Window

Results
NoRIS was initially tested in three two-week trials with
two nuclear engineering students in each trial. For each
trial, the students were given a problem to work on using
NoRIS. More recently, NoRIS was used in a nuclear engi-
neering class by five senior-level undergraduate students
who worked on week-long, project-based assignments to
analyze numerical methods in particle-distribution
problems.

Context: Using NoRIS, students were able to complete
their particle-distribution assignments, verifying that
NoRIS facilitates their investigatory process. We saw that
NoRIS gave students an environment that made
computational science accessible and investigations
manageable.

Tasks: The task decomposition defined in NoRIS helped
reduce the complexity of an investigation, and students
quickly caught on to the tasks decomposition. They saw
that their investigation involved setting up different cases
for their different numerical methods and keeping notes on
those cases. We soon observed students trying out new
experiments by simply seRing up new cases, even though
their problem did not necessarily indicate that they needed to
do so.

We also saw that it was useful for NoRIS to handle some
of the student's tasks, such as artifact management. One
student noted the advantages of this:

"I am usually disorganized and after a while, I spend a lot of
time organizing things--setting up directories, putting
codes and things in the right places. NoRIS takes care of
this--this really helps because it lets me concentrate on the
pfoblem.."

We also saw that automatic artifact management helped
students manage the complexity of re-using and modifying
existing artifacts to build new cases. Since it was easy for
students to find and re-use old artifacts, students could build
new cases from old cases quickly; this encouraged students
to experiment with numerical methods by continually
modifying a base case for the different experiments.

Tools: Students liked the fact that they had all of the
necessary tools available to them in one application. Since
students are not experts in using computational science,
they may not know what tools to use in given situations:

"[NoRIS] really provides an integrated package that
beginning students can really use...having all of the needed
information 'at my fingertips' is an advantage so that I do
not have to bounce around different programs...this is good
for students "who are inexperienced with [computers]"

By having all of the functionality available to them in one
application, the students did not have to be moving from
application to application, which can be a problem for
students who have little expertise with computational
science.

Interface: Students liked using the interface because it was
easy to invoke their different tools. The fact that they could
use menus and buttons to access many of their tools made
it easy for the student to quickly get started with their
investigation.

Students also appreciated the different visual cues provided
by the interface. For example, one student commented on
the notepad button palette that identifies important pieces of
information that should be recorded:

"[The button palette] helps lay out the thought process I
should be following when I start working on my
problem...Se~ing [the buttons] makes me pause and think
about the problem rather than just jumping in and starting to
write programs, which is what I might normaLly do."

The visual cues of the interface therefore structure the task
and articulate their thoughts.

Summary
Our user testing has shown]hat.students are able to use
NoRIS to complete authentic scientific investigations, and
that they find the structure provided by the program helpful.
Furthermore, by providing an accessible interface to the
array of computational tools used by professional
rese chers, NoRIS supports learners in their enculturation
into professional practices.

195

C H ~ 9 ~ A P R I L 1 3 - 1 8 , 1 9 9 6

C O N C L U D I N G R E M A R K S
Model-I t and NoRIS are two components of the
ScienceWare suite of tools, a "computational workbench"
that we are developing to scaffold learners engaged in the
full range of scientific investigatory activities. As we apply
our LCD strategies to the design of the ScienceWare tools,
and study the use of these tools in classroom settings, our
goal is to develop a fully-articulated LCD framework in
which the needs of learners are specifically addressed by
theoretically-motivated scaffolding for each element of the
learning environment.

In putting forth the notion of UCD, Norman, Draper, and
their book contributors [15] sought to focus attention on
the needs of users at a time when there was growing interest
in developing usable and productive interfaces and
interaction paradigms. Similarly, in putting forth the
notion of LCD, our intent is to focus discussion on work
that is expressly intended for learners at a time when, as
Business Week [2] declared, there is a "'revolution" going on
in educational software. UCD has proven itself to be a
useful notion; time will tell whether LCD is similarly so.

A C K N O W L E D G M E N T S
This research has been supported by the NSF (RED
9353481 and IRI 9117084), and the Univ. of Michigan.

R E F E R E N C E S
1. American Association for the Advancement of Science

(1992) Science for all Americans: A Project 2061 Report
on Literary Goals in Science, Mathematics, and
Technology, AAAS Technical Report, Washington, D.C.

2. Armstrong, L., Yang, D.J., & Cuneo, A., (1994) The
Learning Revolution, Business Week, No. 3360, Feb. 28,
80-88

3. Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajeik, J.
S., Guzdial, M., & Palinscar, A. (1991) Motivating
Project-Based Learning: Sustaining the Doing, Supporting
the Learning. Educational Psychologist, 26(3 & 4)

4. Brown, A., & Campione, J. (1990) Communities of
learning, or A context by any other name. Contributions
to Human Development, 21, 108-125.

5. Brown, J. S., Collins, A., & Duguid, P. (1989) Situated
Cognition and the Culture of Learning. Educational
Researcher, Jan - Feb, 32 - 42. •

6. Carroll J. M., & Carrithers, C. (1984) Training Wheels in
a User Interface, CACM, Vol. 27, No.8, August, 800-806

7. Colfins, A., Brown, J. S., & Newman, J. (1989) Cognitive
Apprenticeship: Teaching the craft of reading, writing,
and mathematics. In L. B. Resnick (Eds.), Cognition and
instruction: Issues and agendas HiUsdale, NJ: Lawrence
Erlbaum Associates.

8. Cunningham, S., Brown, J. R., McGrath, M. (1990)
Visualization in Science and Engineering Education,
Visualization in Scientific Computing, IEEE Computer
Society Press, 48-57.

9. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., &
Sumner, T., (1993) Embedding Computer-Based Critics in
the Contexts of Design, Human Factos in Computing
Systems, INTERCHI '93 Conference Proceedings,
Amsterdam, 157-164.

10. Gallopoulos, E., Houstis, E., Rice, J. R. (1994) Computer
as Thinker/Doer: Problem-Solving Environments for
Computational Science, IEEE Computational Science &
Engineering, Vol. 1, No. 2, Summer 1994, 11-23.

11. Guzdial, M. (1993) Emile: Software-Realized Scaffolding
for Science Learners Programming in Mixed Media°
Unpubfished Ph.D. dissertation, University of Michigan.

12. Jackson, S. L., Stratford, S. J., Krajcik, J. S., & Soloway,
E. (1995) Learner-Centered Software Design to Support
Students Building Models, Interactive Learning
Environments, to appear.

13. Kreutzer, W. (1986) Systems Simulation: Programming
Styles and Languages, Addison-Wesley, Wokingham,
England.

14. Lave, J. (1993) Understanding practice: perspectives on
activity and context. Cambridge; New York: Cambridge
University Press.

15. Norman, D., Draper, S. (1986) User Centered System
Design, L. Erlbaum & Assoc., Hillsdale, NJ.

16. Papert, S. (1993) The Children's Machine: Rethinking
School in the Age of the Computer, Basic Books, NY

17. Perkins, A. (1986) Knowledge as Design. Hillsdale, NJ:
Lawrence Erlbaum Associates.

18. Piaget, J. (1954) The construction of reality in the child.
New York: Basic Books.

19.'Resnick, L. B., & Glaser, R. (1976) Problem solving and
intelligence. In L. B. Resnick (Eds.), The nature of
intelligence. Hillsdale, NJ: Erlbaum.

20. Resnick, M. (1992) Beyond the Centralized Mindset:
Explorations in Massively-Parallel Microwbrlds,
Unpublished Ph.D. dissertation. Massachusetts Institute
of Technology.

21. Rogoff, B. (1990)Apprenticeship in thinking: Cognitive
development in social context. New York: Oxford
University Press.

22. Senge, P. (1990) The Fifth Discipline: The Art and
Practice of The Learning Organization, Doubleday, New
York, NY

23. Shneiderman, B. (1983) Direct Manipulation: A Step
Beyond Programming Languages, IEEE Computer. Vol.
16, No. 8, August, 57-69

24. Soloway, E., Guzdial, M., & Hay, K. E. (1994) Learner-
Centered Design: The Challenge for HCI in the 21st
Century, Interactions, Vol. 1, No. 2, April, 36,48

25. Springmeyer, R. R., Blattner, M. M., d~ Marx, N. L.
(1992) A Characterization of the Scientific Data Analysis
Process, Proceedings of IEEE Visualization '92, 235-242.

26. Tinker, R. F. (1990) Teaching Theory Building:
Modeling: Instructional Materials and Software for Theory
Building, NSF Final Report, TERC.

27. vonGlaserfeld, E. (1989) Cognition, construction of
knowledge, and teaching. Synthese, 80, 121-140.

28. Vygotsky (1978) Mind in Society. Cambridge, MA:
Cambridge University Press.

29. Wertsch, J. (Ed.) (1985) Culture, communication and
cognition: Vygotskian perspectives. Cambridge, MA:
Cambridge University Press.

30. Wood, D., Bruner, J. S., & Ross, G. (1975) The role of
tutoring in problem-solving. Journal of Child Psychology
and. Psychiatry, 17, 89-100.

196

