
Learner-Centered Design
The Challenge For WC1 In The Xst Century

Elliot Soloway, Mark Guzdial and Kenneth E. Hay

n the 1980’s a major transformation took place in the computing world: attention was finally being paid to making
computers easier-to-use. You know the history: in rhe 1970’s folks at Xerox were exploring so-called personal computers
and developing graphical, point-and-click interfaces. The goal was to make using computers less cognitively taxing, there-
by permitting the user to focus more mental cycles on getting the job done. For some time people had recognized that
there would be benefits if users could interact with computers using visual cues and motor movements instead of testu-

-L
J”“

al/linguistic strings. However, computer cycles were costly; they could hardly be wasted on supporting a non-textual inter- k-:_
face. There was barely enough zorch (i.e., computer power, measured in your favorite unit) to simply calculate the payroll. ‘5.:. -.

EUIOT SOLOWAY is an Associate Profasor in the Department of EECS, Universi~ of

Michigan, Ann Arbor, MI, email: soloway@umicb.edu

~WETH E. HAYS ic an Assistant Profasor in the School of &&cation at Indiana

University &Purdue Univmig, Indianapolis, IN, emaik khay@indyyax.iupui.edu

MARK J. GUIDE is an Asshant Profissoc Georgia Institute of &!mohg, College of

Computing, Atkznti, GA., entail- guzdial@cc.gatecb.edu

--.-.-_~__- .-.-..- --_-_ _ _- -- -- m-...- -- , -

. .

.

.:’

Figure 1

Plotthg the Computer

ihch Curve Against

HCI Goalr

The Xerox researchers were ahead of their
time. It wasn’t until the 1980’s that sufficient
zorch-at almost consumer prices-was available
to permit the computer to do its work and still
have enough power left over to support an eas-
ier to use graphical user interface. With the
publication of several seminal books (e.g., Card,
Moran, and Newell’s “Human Computer
Interaction” in 1983, and Norman and Draper’s
“User-Centered Systems Design” in 1985) and
the grand successes of the early ACM CHI con-
ferences (e.g., Gaithersburg in 1983), the
Human-Computer Interaction movement
shifted into high gear.

The early interface researchers dared to
imagine what using a computer could be like if
the computer were truly more powerful. And
we are in an analogous position today. The 500
MIP notebook-sized machine is just around the
corner. What could using such a computer be
like? Of course, one goal should still be to use
that increased zorch to make computers even
easier to use, in as many ways as possible, e.g.,
from even more clever visual, gestural, auditory
interfaces to intelligent agents. However, is ease
of use the only need? The answer is a resound-
ing NO! The challenge, as posed by Buxton
(1991) for HCI is how to support individuals

i q interactions .

and groups of individuals in developing exper-
tise in their professions, in developing richer
and deeper understandings of content and prac-
tices. Making people smarter is really the long-
term goal of computing.

It is our position that computing technolo-
gies are finally reaching the point where the
HCI community can address the “make people
smarter” (Norman, 1993) challenge. Consider
the graph in Figure 1. In the early days of com-
puting, interface design was driven by concern
for over-taxing the technology. In the 1980’s, a
favorable cost/performance ratio for computing
afforded us the opportunity to be concerned
with over-taxing the computer user. The
cost/performance ratio of computing in the sec-
ond half of the 199O’s-and beyond-will permit
even more cycles to be devoted to the interface.
What function, then, can the interface serve?
Simply put, the HCI community must make
another transition: we must move from “user-
centered” design to “learner-centered” design.
In what follows, we address three key questions.

*Why support learners and learning?
l How might the interface support learners
and learning?
l What are the issues involved in providing
such support?

. . april 1994

Why Support Learning and Learners?

Who is a learner? After all, a professional is
supposed to be an expert. Table 1 provides a
characterization of the traditional differences
between students and professionals. For exam-
ple, at first blush one might reasonably assume
that a professional accountant would under-
stand the principles underlying a spreadsheet,
but one can not assume that same understand-
ing when introducing spreadsheets to students
in introductory accounting. Moreover, one
might assume that a professional accountant
will be motivated to persevere in learning to
use a spreadsheet; again, a student’s motiva-
tion, and hence the student’s perseverance, is
very much in question.

But learning is not just for students in class-
rooms! Professionals are-should be-constantly
learning, e.g., a professional accountant may
not understand the power of forecasting meth-
ods. Moreover, when the professional is acting
as a learner, that person is susceptible to all the
challenges faced by students. For example, the
professional may be unable to stop staring out
the window when faced with the process of
learning the forecasting tool. In sum, profes-
sionals are students who happen to learn out-
side of a classroom. In fact, companies are

interactions

coming to realize that investing in the growth
and development of their people is good busi-
ness. The notion of the “learning organization”
(Senge, 1990) is a provocative and compelling
idea in management these days: first, the value
of a company is directly related to how deeply
its employees understand their business, and
secondly, effectively competing in today’s mar-
ketplace requires that this understanding con-
tinues to grow and change. The company that
is successful, time after time, is the company
that learns from its successes and mistakes, that
deals effectively with the many changes in the
marketplace, that can nimbly respond to
opportunities, etc. And, who is ‘ihe company”
-it’s people; it’s individuals from increasingly
diverse backgrounds. The need to support

Tab.& I
Traditional Differences Between Professionals and Students

r
I Nature of

i Professionals

Do Know Domain

Are motivated

Homogeneous populations

Growth IS the issue

Nature of

Student
-___

Do NOT know domain

NOT motivated

Diverse populations

Growth is not an issue

i

. . april 1994

f. ’
: ,

---- _ .-- . -~ -- --

Table 2

learning and learners in the workplace of the
21st century is clear.

Fortunately, the intensive use of computers
in the workplace sets up just the right condi-
tions to effectively support learning and learn-
ers, thus there are good reasons to be optimistic
that computers and interfaces can be successful
in providing such support. That is, computers
are coming to be used on a moment-by-
moment basis for all aspects of work. In knowl-
edge-intensive industries, personal computers
are ubiquitous; standard issue to a new employ-
ee is a desk, a phone and a computer linked into
the company’s network.

Given that computers are being used for
doing one’s job, there is a clear opportunity to
use those same computers supporting learning

Addressing the Needs of Learners

Understanding Is

the Goal

Modeling, coaching, critiquing GPC Editor

Motivation Is

The Basis

“Low overhead, Immediate

success” use

MediaText

Diversity is

the Norm

Growth Is

the Challenge

Collections of various

techniques

Adaptable

MediaText,

ScienceWorks

Emile

as one is engaged in ‘doing.” ‘While not neces-
sarily widely practiced in schools, the effective-
ness of the educational philosophy of “learning
by doing” is widely acknowledged. Plato,

Why is learning by doing so effective? When

Dewey, your mother-they all knew the value of

one really cares about what one is doing, one
seems able to muster the energy, the attention,

learning from direct experience, from on-the-

the patience to master whatever is necessary to
achieve the goal. However, when learning is

job training.

divorced from doing a meaningful task-as are
many arbitrary, decontextualized activities in
the classroom-then learning becomes just
another chore, low on the priority stack.

Performing well on the job is a motivating goal;
walking through a cookbook set of steps to find
Avogadro’s Number in the chemistry lab, on the
other hand, may not engender much enthusi-
asm, and hence not much genuine learning.

Why devote computer zorch to the interface
to support learning and learners? Answer: there
is a clear need to support students and profes-
sionals in developing their expertise. And, there
is a clear opportunity for success; the way in
which computers are being used in the worlc-
place provides precisely the right conditions
under which learning should take place, name-
ly, learning in the context of doing.

User-Centered Design to Learner-Centered Design

In designing a sofnvare environment, there are
three top-level issues that must be addressed:

l Tasks: What tasks need to be undertaken
in the software?
l Tools: What tools are provided to cope
with those tasks?
l Interfaces: What is the interface to those
tools?

The insight offered by the user-centered design
movement (Norman & Draper, 1985) was that
the user needed to be at the center of those
issues (see Figure 2a).

In putting learners at the center of the
design, however, the special needs of learners
must be addressed:

l Understanding is the Goal: Learners will
not know accounting principles or practices
when a spreadsheet is presented to them. HOW
will they learn to use that spreadsheet?

l Motivation is the Basis: One can not
count on the motivation of learners: both stu-
dents and professionals have a strong tendency
to procrastinate, to fritter away time, when con-
fronted with a task for which they are unpre-
pared. Why can’t software play a role in
supporting the learner’s wavering motivation?

l Diversity is the Norm: Classrooms and
professions are composed of individuals from a
diverse set of backgrounds, with a diverse set of
interests, skills and abilities. How can an appli-
cation be “one size fits all”?

l Growth is the Challenge: A spreadsheet is
by and large the same on day 1 as it is on day
100. But an individual can be very different,
e.g., that person may have learned quite a bit

. . april 1994

-.. _ _____ _._..- ,,- -. .: -- ;

.A - _- .-.-- . . . - -_ -.--:

. . L

I’:
1.
1

-----.-----
in focus l------:

about a problem domain and might have devel-
oped a set of skills and practices in that’domain.
The individual has changed but the
software hasn’t.

Tools-jnterfaces-Learner’s Needs-Tasks (TILT)

Our suggestion is that the soon-to-be-available
zorch can permit us to put the kamer at the
center (Figure 2b)-and provide mechanisms
that can address their special needs. Hence,
we have proposed the TILT Model (Tools,
Interfaces, Learner’s needs, Tasks) to guide the
design of learner-centered software: the ’

objective of the model is to highlight how
software might address the special needs of the
learner.

In education, scaffolding is a technique for
providing support to learners while they are
learning a new task (Wood, Bruner, Ross, 19 75;
Rogoff, 19 9 0). For example, as a student begins
a new task, say, calculating a set of numbers, a
teacher may scaffold the student by stopping
the student by making helpful hints or correct-
ing mistakes. The key is that the student is
doing the task and the teacher provides struc-
ture and guidance to ensure successful comple-
tion of the task. As the student gains expertise,
a good teacher provides less and less coaching.
Scaffolding, then, is provided to help a learner
do a task that he or she can not do alone; as the
learner develops the needed knowledge and
skills, the scaffolding fades so that the learner is
fully in control.

The TILT Model (Figure 2b) identifies spe-
cific scaffolding strategies that are particularly
appropriate for the special needs of the learner:

interactions .

l Task: Coaching is a scaffolding technique
that could be used to help students acquire
knowledge and the specific practices of a task
domain. This technique is popular in “intelli-
gent tutoring systems (ITSs)” (Wenger, 1989).

l Tools: In order to support a learner grow-
ing in expertise, the tools must be adaptable.

l Interlace: In order to enable learners to
express themselves and communicate, the inter-
face must scaffold the use of different media
and modes of expression.

CAD for Kids, And Teachers, Too

Over the past 5 years, we have implemented,
classroom tested, and even commercially so1.d
various pieces of software that are designed to
support learners (Guzdial et al., 1992a). But, in
order to prepare the way for a description of
that software and how it exemplifies the TILT
Model, we need to first be clear about our edu-
cational philosophy.

We subscribe to the constructivist theory of
learning espoused by Jean Piaget (1954), Lem

vygostk y (19W, and Seymour Papert (1993).
Students learn through an active, social process
of meaning construction; understanding is
built up through the acts of conversing with
others, constructing artifacts, and reflecting on
those conversations and artifacts. This theory
of learning leads to a theory of teaching: stu-
dents need to actively engage in projects, and
teachers need to act as mentors, coaches, man-
agers. A contrasting view-and one that is
prevalent in classrooms today-is that learning
is a copying process: what the student hears, the
students knows. This theory of learning leads to

. . april 1994

- _-..

Figure 2

a CW

Tasks-Took-Interfaces

(TTI) user-centered morsel

b (right)

Toolr-lnterfaces-Learner?

Need+Tmks (TILlJ

learner-centered model

Figure 3

Student selecting a

Valid-Data-Enhy

(VDIJ Planjom the

GPC Editor library

Figure 4

Using the GPC

Editor Decompose

jilnction to

idmt$ the selected

Valid-Data-Ertty

(WE) Plan

interactions . . . april 1994

the didactic theory of teaching: the teacher
talks, students listen, and knowledge gets
deposited directly into the gray matter. In
effect, students are empty vessels that need to
be filled. We apologize for over simplifying
both positions. We do not apologize, however,
for our skepticism of the “learning as informa-
tion rransmission” model.

In turn, the constructivist theory of learning
suggests that students need software that sup-
ports them in constructing artifacts and con-
versing with others about those artifacts.

We view the construction of artifacts as a
design process; and, inasmuch as professional
designers routinely employ CAD systems in
their design activities, we feel that learners
deserve suitably scaffolded CAD support as
well. And, since classroom teachers are also
learners, and need the same kind of support as
their students, we have developed scafholded
CAD tools for their tasks (e.g., project and
instruction planning, Soloway et al., 1994). In
our software, you will not see drill-and-kill sofi-
ware that teaches specific facts, motivating stu-
dents by rewarding them with playing time on
an arcade-style game. Rather, you will see scaf-

Students have little trouble mastering an if-
statement or variable assignment. But, they do
have considerable difficulty in putting state-
ments together in a coherent fashion to solve a
problem. The GPC Editor supports students in
carrying out this task in the following ways:

l Change the nature of the task:
Traditionally, students use some sort of text
editor to create programming statements and
then run and debug the program in an execu-
tion environment. While introductory pro-
gramming courses try to teach students to first
plan their programs, there is little computer-
based support for such planning. The upshot,
quite reasonably, is that by and large students
do not plan their programs.

In contrast, the GPC Editor provides an
integrared environment that supports plan-
ning, generating, and testing. In fact, one
never writes a line of code; rather, one selects
plans from a library that achieve the specified
goals. For example, in Figure 3, we see a stu-
dent selecting the Valid-Data-Entry (VDE)
Plan to achieve her goal of testing input data
for validity. Notice the VDE Plan is a nice sized
chunk of code.

Eacbers tire the gatekeepers of the chssroom.

.+ _-______._-..__ - __._ 7- __... --..-.-
in focus L-~-----Y,.

,.*- /

They won’t let somethingpdsss through the gate zj’tbey don?

feel comfortdble with it themselves...indsmucb ds they feel

comfortdble with Media Text, it is permitted to pass tbroagb

the gate into tbe bands of t-be students.

folded CAD environments where learners con-
struct a wide range of artifacts.

In what follows we illustrate how our soft-
ware uses scaffolding to address the needs of
learners identified in Table 2.

Supporting the Learning of a Task: The GPC Editor

We developed the GoalPlanCode (GPC)
Editor to support students learning elementary
Pascal programming (Soloway, et al.,1993).

. Guide student actions: In creating a pro-
gram, a student needs to carry out a range of
actions. Using a scaffolding strategy we call
“tight process control” the GPC Editor chan-
nels students to construct a program in a spe-
cific order. In particular, the GPC Editor
scafIolds students to decompose a problem into
goals and subgoals, identify code fragments
(plans) from the library that achieve those sub-
goals, and then compose the plans together

-_

interactions . . . april 1994

_.. ,, - - ., - -... --

‘.’
I..>

‘y. :.-
: ., ,,

,_
:

, : -,’

Figure 5

l$pical learning

curve for a new

application is

shown in red but

what people really

want to experience

is closer to the

ideal learning

curve shown in

blue.

into a program ready for testing. The decom-
pose menu that directs subgoal decomposition-
plan identification activities in the GPC editor
is displayed in Figure 4.

The GPC Editor has been used for four
years at Community High School in Ann
Arbor, MI. We have found that students who
would be considered “low achievers” (e.g., stu-
dents in the bottom half of the class) produce
computer programs of the same quality as stu-
dents who would be considered “high achiev-
ers.” Moreover, we found that students who
moved off the GPC Editor and into Think
Pascal wrote programs that were highly strLc-
tured, GPC-like programs. And we found that
students initially liked the tight process control,
but by the middle of the semester they wished
that it would fade away! Adaptive scaffolding,
however, was not available in the GPC Editor;
we learned our lesson, though, in the construc-
tion of Emile, described later.

Interface Scaffolding For

Wavering Motivation

Technology has been mak-
ing it easier and easier for
individuals to create text:
from the quill to the pen to
the typewriter to the word
processor. If one is good
with words, this technology
is truly empowering.
However, as Gardner
(1993) argues, there are
many types of intelligences
and many types of literacies.

The challenge for technology, then, is to go
beyond crayons and the camera-no mean
feat-so that individuals incur no penalty for
‘<writing in” non-textual media.

There are a range of multimedia authoring
tools on the market. However, the learning
curve for mastering such tools is steep (Figure
5). A steep learning curve is not uncommon in
technology-oriented contexts, and that makes it
hard to stay motivated and persevere. People
expect a benefit (the area above the blue line in
Figure 5) commensurate with the cost, i.e., the
blue area in Figure 5.

MediaText is a multimedia processor that
has a learning curve that is closer to the blue

interactions ,

line than it is to the red line. MediaText enables
students (and, most importantly, their teachers)
to create documents that include images, ani-
mations, video, sound and music, as well as fez
(Guzdial, et al. 1992b; Hay, et al., 1994). For
example, Figure 6 depicts a portion of a docu-
ment written by a student at Community High
School. The margin on the right contains icons
that display their contents when clicked. A
vanilla word processor enables students to enter
text to the left of the margin.

Why is MediaText so learnable? The inter-
face scaffolding strategy adopted in MediaText
is to mimic operations that users already know,
MediaText employs a page metaphor where a
person purs multimedia annotations in the
margin. Since users already know how to
manipulate marginalia from their experiences
with ruled paper, the step to multimedia mar-
ginalia is not all that great.

Now, the first thing techies want to do when
they see MediaText is move the icons out of the
margin and integrate them into the text in a
hypertext/hypermedia fashion. We have such a
version in our lab; it’s technically not compli-
cated to remove that margin. However, the
resultant interface is more like a canvas than a
document. How many people feel comfortable
writing on a canvas?

The interface scaffolding strategy employed
in MediaText is one that has been employed
quite successfUlly before in computer-based
spreadsheets. The first computer-based spread-
sheets were one-for-one with their paper
cousins, except for one function: the user could
change one number and the computer would
automatically recalculate the spreadsheet,
Current-day computer-based spreadsheets pro-
vide all sorts of functions literally impossible to
mimic in paper: voice and video annotations,
automatic graphing, presentation tools. Why
did the initial spreadsheets catch on so dramat-
ically? The “blue line” (Figure 5) learning curve,
is our bet.

After using MediaTat for a while, users
report that they want to create more visually
exciting documents; they want to embed a pic-
ture or movie inside the text itself, for example.
In effect, they want more control over page lay-
out and they want that margin to go away!
Alas, like the GPC Editor, MediaText too is not

. . aptil 1394

able to fade its interface scaffolding.
By the way, the document depict-

ed in Figure 6 is not just another
report to be filed in the circular file
cabinet. Rather, it is a report on the
status of a tree planting project writ-
ten by a student at Community High
School. The student, who has an
interest in trees, was taking an Urban
Ecology course and approached the
Michigan Department of Natural
Resources to see if there was a project
they needed help with. Well, it turns
out that the Michigan Department
of Natural Resources had funds to
plant trees in Ann Arbor, but no
funds to follow up and see how those
trees were doing. The student took
her camera out to the streets suggest-
ed by the DNR, took pictures, and
moved them from a Kodak PhotoCD
disk into her MediaText document.
Without MediaText it would have
been much harder to create an appro-
priate, professional-level report.
Given the importance of the task,
and the low overhead for using the
technology, it’s not hard to see why
the student’s motivation and perse-
verance remained high.

; .(_

!. -,
-.---- -.---zzEzwxssy---------

in focus t -.._.__._... -2

Adaptable Tools To Support Growth

of Expertise

Emile is a scaffolded environment in
which high school students learn sci-
ence by building physics simula-
tions- worlds where objects fall,
bounce, and launch in parabolic tra-
jectories. Programming in Emile plays on the
same themes that made MediaText easy and
learnable. Students construct simulations in
Emile by assembling components in a plug-
and-play fashion, something that students
already know how to do from playing with
Lego. Over one hundred components are built
into Emile’s library to start (though students
can always add more), ranging from graphical
objects that can be dragged and dropped in a
simulation of one-dimensional projectile
motion, down to code segments that play digi-
tized video or sound.We finally learned our les-

interactions . . . april 1994

son from the GPC Editor and MediaText:
Emile enabled the student to adapt the scaf
folding. Figure 7 depicts the Preference Page
from the student’s Design Notebook (where
students gather and connect their components
in Emile). Note the range of scaffolding strate-
gies employed in Emile over which students
had direct control.

l Note the check box for “Process Control.”
With this preference selected, which it was ini-
tially, Emile channeled the student in how he or
she went about constructing the simulation.
However, as students grew more confident in

Figure 6 Media Text

‘Xnn Arbor Trees”

documentproduced ly a

hgh school student

: ‘,

,:

.
- _,.

-’

,, ~-: .

-_ -.. .

Ej AllOWGX+i&hOXWS
aCxateterndEditActia

Navigation Took
q Piemtvtits
q ChUtC&Ol

q WSLeCr

Figure 7

Student-selectable
preferences in the
Em& scaffolded
environment.

their abilities, they went to the Preference Page
and turned off this scaffolding. When they were
ready, they were on their own to figure out
what to do first and then next.

l Note the check box for ‘Create and Edit
Actions.” Actions in Emile are the code seg-
ments that students used from the library.
When students reached the point where they
wanted a code segment that was not in the
library, they could go back to the Preference
Page and check this on. Now they were free to
create their own components and add them to
the library.

/

/

4
!
I
,
1

*Note the check box for “Directly Edit
Behaviors.” A behavior in Emile determined
how a graphical object fimctioned in a simula-
tion. When students knew enough about pro-
gramming in EmiIe that they wanted to go
beyond components, they turned this switch
on. Then, Emile was no longer plug-and-play.
It was type-and-go.

Interestingly, some students turned the scaf-

:

,

folding off and on several times during a pro-
ject. Piaget called this behavior “horizontal
decollage.” The idea is that students do not
progress across the board in all skills at the same
rate. Some days they move forward in some
areas, some days they stand still in others. A
student might feel compIeteIy comfortable cre-

/

j q interactions .

I

ating actions and working without
process control when he or she is set-
ting things up, say, to show instructions
for a simulation, but the student may
want all the scaffolding back on when it
comes time to actually build the simu-
lation. That’s okay, too. Scaffolding is
not an all-or-nothing deal. Good scaf-
folding is there when the student wants
it, and is not there when the student
wants to work independently.

The bottom line with Emile is that
students built simulations that they
found exciting and joyful and they
learned a lot about physics in the
process (Guzdial, 1994). Students went
from talking about how heavy objects
fall faster, to the role of acceleration due
to gravity. They stopped saying that
rocks just fall from buildings, and start-
ed talking about instantaneous and
average velocity. That’s the point:

Construction in pursuit of learning, and in
Emile, at the student’s own pace.

Challenges to Realizing Scaffolding In Software

The notion of scaffolding comes out of the edu-
cation literature where there is an assumption
that humans provide the scaffolding. To realize
scaffolding in sofnvare several issues need to be
explored.

l First, the challenge for software designers is
in instantiating scaffolding techniques, e.g.,
coaching, in sofnvare. The challenge is very
serious: a good human coach can have a sub-
stantial battery of strategies for scaffolding,
while even implementing one or two in soft-
ware is quite non-trivial. The human coach can
pick and choose which particular strategies and
tactics to use, whereas sofnvare-realized scaf-
folding may not be as flexible. How can we
ensure the effectiveness of such sofnvare-renl-
ized scaffolding?

l Second while the education literature
argues that scaffolding must, by definition,
fade, there appears to be times that fading saft-
ware-realized scaffolding might not be appro-
priate. For example, supporting a learner in
adapting tools, or providing a help system for
the tools, are functions that should always be
available. What are the differences, then,

. april 1934

_----_l-__l a..

in focus L--..-...A-.

between software-realized scaffolding and
human-realized scaffolding?

l Third, our use of the notion of scaffolding
(Collins, Brown, and Newman, 1989) is broad-
er than that found in the education literature.
For example, coaching would be a legitimate
scaffolding strategy, but “‘adaptable tools’
would not. Perhaps we have over-burdened the
term; or perhaps the education world has too
limited a notion of that term.

l Fourth, what new s&olding types might
arise precisely because we can realize them in
software, in a computational medium? By and
large the scaffolding strategies that have been
instantiated in software to date mimic human
strategies. This is a reasonable place to start;
new technology mimics old-for a time.
However, the computational medium surely
will afford new opportunities; what, then, are
the scaffolding strategies and tactics that exploit
a computational medium?

Build learner-centered software! Build scaf-
folding! Easy to say, hard to do.

What To Do Next?

In a rare moment of humility, we recognize that
the TILT Model is just the beginning; if the
field is truly going to support learners in a seri-
ous way a great deal of invention and hard
work needs to be done. Will AI solve “the
problem?” The AI community has long pro-
moted the notion of “‘smart machines.”
Intelligent interfaces will know about you and
use that information to better serve you.
Making computers smarter is not incompatible
with making humans smarter; quite the con-
trary, in fact: the two ideas go hand-in-hand.
Now, let’s get on with it!

Understanding task domains and practices is
a high priority: what is it that people need to
know and do-and how does that change as a
function of the new technology? What new
interaction paradigms will arise as a function of
that new technology? What is the nature of the
conversation between humans and machines
when the latter have speech and vision? And,
what is learning? What is the impact of indi-
vidual differences and different rates of devel-
opment? The laundry list of unknowns is
staggering-as it always is.

The fundamental issue remains, however: Is

the distinction between the notion of users and
learners merely rhetoric or is there truly a sub-
stantive distinction being made? If words count
for something, then there is a genuine distinc-
tion being made: if addressing the needs of
users is the driver, then it is natural to focus on
ease of use; if addressing the needs of learners is
the driver, then it is natural to focus on the
development of understanding, performance,
and expertise. The former is unquestionably
important; however, the latter is unquestion-
ably critical.

The engines of the 21st century inspire awe;
what does it mean to have 1000 MIPS inside a
2 ounce, 8.5 x 11 inch notebook? What does it
mean to be able to see and talk to anyone, any-
where, anytime? The human-computer interac-
tion community is being handed an
unprecedented opportunity: we are the creators
of the gates through which millions and mil-
lions of people will gain access to those mighty
engines. What is our responsibility? Taming
those engines for human use is surely a value-
added; but the opportunity is grander than
that: if we support learning and learners, then
we support that which is quintessentially
human: individual developing into better indi-
vidaak Such a challenge and responsibility
Dz~ inspires awe. H

References

q Buxton, W. (1991) Presentation at Opening Panel,

ACM CHI ‘91 Conference, Monterey, CA.

q Card, S., Moran., T., Newell, A. (1983) The

P$~cbologv ofHuman Computer Interaction, L.

Erlbaum &Associates, Hi&dale, NJ.

q Collins, A., Brown, J. S., & Newman, S. E. (1989).

Cognitive apprenticeship: Teaching the craft of

reading, writing, and mathematics. In L. B. Resnick

(Ed.), Knowing, Learning, and Instruction: Essays in

Honor of Robert Gkzser Hillsdale, NJ: Lawrence

Erlbaum and Associates.

M 1 Dewey J. (1964) Jobn Dewy on Education, Selected

Wtiitings, RD. Archambault (Ed.), U. of Chicago

Press, Chicago, IL.

rm
Gardner, Howard (1993) Multiple Intelligences:

Theory in Practice, Basic Books, New York, NY

a
Guzdial, M., Soloway, E., Blumenfeld, E,

Hohmann, L., Ewing, K., Tabak, I., Brade, K., &

Kafai, Y (1992a). The fircure of CAD: Technolog-

ical support for kids building artifacts. In D.

Acknowledgements

The authors wish to thank

the fohwing for their

comments on earlier drafk

of this artick: fite

Biekzqc, fitby Bra&

Shari/a&on, J@

Spitulnik, Steve StraFford.

:. >
-/

The artikk owes deeply

to the insights of our

colleagues Pbylll

Blumen~%~ Joe Krajcik,

and Ron Mam. And, we

gratefilb acknowkdge the

productive and jouf;rl

colkzboration between us

and the teachers and

studhts of Community

High School in Ann

Arbor, Michigan.

The preparation of this

article was supported in

part, by grantsjom the

National Science

Foun&tion,

@red-9359481 and

nsf ipe-9153753.

Balescri, S. Ehrmann, & D. L. Ferguson (Eds.),

Learning to design, designing to barn: Using tecbnolo-

gy to transform the curriculum Nonvood, NJ: Ahlex

Publishing Company.

II Guzdial, M., Weingrad, E, Boyle, R, & Soloway, E.

(1992b). Design support environment for endusers.

In B. A. Myers (Ed.), Languagesfor developing user

inte&ees (pp. 57-78). Boston, MA: Jones and

Bartlett.

rm : Guzdial, M. J. (1993). En& Sojware-realizdzaf-

folding for science learners programming in mixed

media. Unpublished Ph.D. dissertation, University

of Michigan.

q Hay, KE., Jackson, S., Boyle, R, Guzdial, M. and

Soloway, E. (1994) Student Creation of Multimedia

Documents. Journal of Computers and Education, In

press.

q . Jackson, S. L., Hu, J. T., Soloway, E., (1994) The

ScienceWorks Modeler: Scaffolding rhe Doing of

Science, ACM CHI ‘94 Conference Proceedings

Companion, April 1994, Boston, MA, in press.

q Norman, D., Draper, S. (1986) User Centered

System Design, L. Erlbaum &Associates, Hillsdale,

NJ-
q Norman, D., (1993) Things That Make Us Smart,

Addison-Wesley, Reading, MA.

In Paperr, S. (1993) The CbiMrenS Macbine:

Rethinking School in the Age of rbe Computer, Basic

Books, New York, NY.

mm Piagec, J. (1954) The Commrction afReality in t/w

Cbiu Basic Books, New York, NY.

q Rogoff, B. (1990). Apprenticeship in thinking:

Cognitive development in social context. NW York:

Oxford University Press.

la Senge, l? (199) The F$b Discipline: Tbe Art nnd

Practice of The Learning Organization, Doubleday,

New York, NY.

q Soloway, E., Guzdial, M., Brade, K., Hohmnnn, L.,

Tabak, I., Weingrad, I?, PC Blumenfeld, I? (1373).

Technological support for the learning and doing of

design. In M. Jones & l? H. Winne (Eds.),

FounLtiom andjPontiers of adaptive lrarning cnvir-

onments New York: Springer-Verlag.

ml : Vygotsky, L.S. 1962. Tbougbt dnd kznguoge.

Cambridge, MA: MIT Press.

q Wenger, E. (I 987). Ar$cial Intelligence and

lirtoring Syztemc Computational and Cognitive

Approaches to the Communication of hilorulcdge.

Morgan Kaufman.

ml l D. Wood, J.S. Bruner, G. Ross. 1975. The role of

tutoring in problem-solving. /ownal of cbilrlpsycbal-

ogv andpvcbiaq V. 17. 89-100.

The Vanguard Group Of Investment Companies, the world’s
largest pure no-load mutual fund compan w~tb over $130 billion
in assets, is committed to becoming a T ecbnology Leader b
concentrating our resources on aggressively implementing lea B -
in edge client/server applications to maintain our competitive
e&e.

COMPUTER TO HUMAN
INTERFACE PROFESSIONAL

Vanguard offers a competitive salary and a full range of benefits.
To apply,

%
lease forward resume and salary requirements to: The

Vanguar Group, Inc., De L INRFCH, P.O. Box 876, Valley
Forge, PA 19482. Fax: (610 P 669-6640. Equal Opporhmity Em-
ployer. Drug Free/Smoke Free Work Enwonment. Drug saeen-
mg employer. Minorities, individuals with disabilities and veter-
ans encouraged to apply.

Graphical User Interface (GUI)
Design Training

Analysis and Design Mefhods for
Complex User /nterfaces@

Learn practical methods and skills
that will make your software:

l easy to learn and use
l reduce user errors
l increase user satisfaction

Learn valuable methods and techniques for user
analysis, screen design, prototyping, and evaluation.

We include information on the QUE Development
Methodologym, an exciting new usability engineering

methodology from Cognetics Corporation.

For More Information Call:

B (201) 267-6007
Software
Jsability
Seminars P.O. BOX 512. Morristown, NJ 07963

interactions . . . april 1994

