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A central phenomenon of the twenty-first century will be change: economic,

social, and technological change. Indeed, engaging students in analysis of change

and variation is a central element of nearly every chapter in this book. Today,

however, the mathematics of change and variation (MCV), despite its importance

in understanding and controlling this ubiquitous phenomenon, is packed away in a

course, Calculus, that sits at the end of a long series of prerequisites that filter out

90% of the population. This is especially true for students from economically

poorer neighborhoods and families. And even the 10% who do have nominal

access to MCV in calculus courses develop mostly symbol manipulation skill but

little understanding (Tucker, 1990). The traditional curriculum thus excludes most
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children from the concepts of rate of change, accumulation, approximation,

continuity, and limit (among others). These are the very concepts children most

need not only to participate in the physical, social, and life sciences of the

twenty-first century, but also to make informed decisions in their personal and

political lives. Even though MCV concepts were at the heart of mathematics and

science historically (Bochner, 1966), in education the opposite is more nearly true.

Conventional curricula neglect, delay, or deny studentsÕ access to MCV.

The mission of our SimCalc project is to give ordinary children the

opportunities, experiences, and resources they need to develop extraordinary

understanding and skill with MCV. Using a combination of advanced technology

and carefully reformulated curricula, we aim to democratize access to the

mathematics of change. This chapter discusses the research findings and design

principles guiding our approach, with specific attention to our first software

product, ÒMathWorlds.Ó MathWorlds provides dynamic, direct manipulation

graphs, piecewise definable functions, and animated cartoon worlds to engage

elementary, middle, and high school students in qualitative and quantitative

reasoning about the relationships among position, velocity, and acceleration in

complex contexts. Formative evaluation experiments with diverse inner city

students (the large majority of whom were in the lowest quartile of both academic

achievement and socio-economic status) show that MathWorlds, coupled with an

appropriate curriculum and teaching practice, can enable students to construct
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viable MCV concepts.

DEMOCRATIZING ACCESS TO KNOWLEDGE

While focusing on MathWorlds, we explore the more general issue of

democratizing access to knowledge through advanced technology (Kaput, 1994).

Along with the burgeoning international excitement about the Internet and World

Wide Web (WWW) comes a temptation to substitute the problem of democratic

access to knowledge and skill with the problem of network access -- a superficial

problem of wires, bandwidth, and transport protocols (Hardin & Ziebarth, 1996).

If such a substitution were valid, our mission would be fulfilled, for soon every

elementary school student will have ÒaccessÓ to any number of university calculus

courses through the WWW. Alas, neither conduits nor conduit metaphors capture

the conditions for learning (Reddy, 1979); learning requires more than delivering

encoded knowledge across a wire. Indeed, the encoding of calculus in the formal

algebraic language of university calculus courses creates barriers to learning that

true democratic access must overcome (Kaput & Roschelle, 1996).

Similarly, the availability of multimedia on every personal computer

suggests another superficial role for technology conflated with educational power-

-the delivery of exciting sounds and movies to motivate students and capture their

interest. An inadequate analysis of video games may contribute to the confusion

(Norman, 1993). Arcade and computer games do captivate young boysÕ attention

at length, and as many have pointed out, it would be wonderful to translate such
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intense engagement to academic subject matter. However, as any game designer

will explain, achieving a constant flow of quarters into a video kiosk is not a

simple matter of choosing the right media. As with other cases of deep motivation,

children play games because of the constant incremental growth of challenge,

skills, and success--a condition called Òoptimal flowÓ (Csikszentmihalyi, 1990).

Democratic access, thus, is not simply a matter of choosing the right media, but

rather creating the conditions in which students experience growth in their

capability to solve and understand ever more challenging problems.

LINES OF INNOVATION

Fortunately, decades of research sponsored by the National Science

Foundation and others points beyond a superficial understanding of the conditions

necessary for true democratic access. Real opportunity for diverse children to

understand the difficult concepts of twenty-first century science requires more

than availability of a conduit to encoded knowledge, and more than pandering to

their jaded media preferences. In many ways, this not news. Indeed, the roots of

SimCalcÕs approach can be found in DeweyÕs seminal analysis of the conditions

for democratic access to education:

Abandon the notion of subject-matter as something fixed and ready-

made in itself, outside the childÕs experience, cease thinking of it as

also something hard and fast; see it as something fluent, embryonic,

vital... it is continuous reconstruction, moving the childÕs present
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experience out into that represented by the organized bodies of

truths we call studies. (John Dewey, in McDermott, 1981, p. 427)

This quote captures two of the three lines of innovation underlying our SimCalc

approach. First, democratic access requires deep inquiry into the reconstruction of

subject matter. Rather than teaching a Òcalculus courseÓ to middle school students,

SimCalc is seeking to collaboratively define a Òmathematics of change and

variationÓ strand that is appropriate to childrenÕs development from elementary

school through university (Kaput, 1994). Second, democratic access begins from a

deep understanding of the genetic seeds of understanding within childrenÕs

experience. Hence, with our colleagues in the mathematics education community,

SimCalc seeks to ground the design of learning activities in a thorough

understanding of the experiences, resources, and skills students can bring to this

subject matter (Kaput, 1992). Although it is not captured in this quote, Dewey

also spoke to a third line of innovation: the role of technology in mediating the

process of inquiry. Inquiry allows incremental, continual growth of understanding

from the childÕs experience to the core subject matter concepts (Hickman, 1990).

SimCalc is exploiting the capability of novel dynamic, graphical notations and

representations (Kaput, 1992) to provide tools that engage studentsÕ conceptual

resources, enable mathematical conversation (and hence exploits students'

linguistic resources), and support growth towards more sophisticated

understandings (including more formal notations and forms of reasoning).
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These three perspectives on innovationÑsubject matter reconstruction,

grounding in childrenÕs conceptual and linguistic resources, and technological

mediationÑare recurrent themes of mathematics and science educational research

throughout foundational writers such as Dewey, Piaget, and Vygotsky, as well as

more recent educational research (Kaput, 1992; Roschelle & Jackiw, in press). In

this chapter, we present SimCalcÕs work with MathWorlds as an example of a

deep interpenetration of these three perspectives. In so doing, we illustrate the

kind of deep inquiry in grounded classroom context which we believe will be

necessary to provide democratic access to twenty-first century sciences.

ChildrenÕs Conceptual Resources

Exploiting the students' existing knowledge and resources can lead to major,

scaleable improvements in learning as Carpenter and colleagues have shown in

their research on arithmetic learning (Carpenter, Fennema, Peterson, & Carey,

1988; Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Carpenter,

Fennema, & Franke, 1996). Activities both technology mediated and non-

technology mediated must engage the learners' best efforts, and technologies must

draw upon their strongest cognitive capabilities.

Colleagues at TERC have studied childrenÕs conceptual resources, and

their work has informed our design of MathWorlds. First, they found that children

spontaneously engage in interval analysis to understand the behavior of a complex

mathematical function. For example, students split a graph into intervals based on
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their understanding of the events that the graph represents (Nemirovsky, 1994;

Monk & Nemirovsky, 1994). Operations include the construction of a graphical

derivative, or an integral of a rate function, or a comparison of two functions.

Students performed interval analysis without being explicitly taught, and readily

constructed more flexible and richer schemes as they made sense of increasingly

complex situations. Within this framework, students understood curved pieces of

graphs as signifying behaviors of objects or properties of events, rather than as

ordered pairs of points. Moreover, they readily constructed mathematical

narratives that told a story of a graph over time (Nemirovsky, 1996). The density

of students mathematical resources around interval analysis directly influenced our

focus on piecewise linear functions in MathWorlds.

Second, research at TERC and elsewhere has uncovered the important

roles of physical motion in understanding the meaning of mathematical

representations (Nemirovsky et al., 1998; Nemirovsky & Noble, 1997; Noble et

al. , 1995). In examining their own movement, students confront subtle relations

among their kinesthetic sense of motion, interpretations of other objects' motions,

and graphical, tabular, and even algebraic notations. Moreover, in a reversal and

complement to Microcomputer-based labs (MBL), TERC developed the concept

of Lines Become Motion (LBM) in which graphical representations on a

computer control physical devices. Their studies of functions and derivatives in

MBL (with body motion, air, and water flow) led us to realize the need for
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students to use symbols to control phenomena, not just to interpret them. These

findings support the inclusion of MBL capabilities in MathWorlds, and also the

use of manipulable graphs to control animated motion.

Reconstructing Subject Matter

As our introduction indicated, university calculus courses based in formal algebraic

symbols tacitly assume rather than actively develop studentsÕ understanding of

core concepts of change and variation that the formal symbolic calculus refers to.

Thompson and ThompsonÕs (1995) research, for example, shows that most

university calculus students cannot correctly answer and explain simple

qualitative problems, such as this (Figure 1): ÒTwo cars leave from a bridge toll

gate at the same time, with speeds as shown in these curves. Which car is ahead at

the end of the duration of time shown on the graphs?Ó Note that the text of this

problem can be re-phrased to be about technical, social, or economic change. For

example, instead of asking about moving cars, we can invert the graphs, and ask:

ÒCongress has two plans to balance the budget, bringing the rate of deficit

spending to zero over seven years. Which plan is more desirable to the taxpayer

and which is more desirable to the politicians in power?Ó
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Figure 1     . A qualitative integration problem, “Which car travels farther?”

Because formal symbol-based university courses fail to develop the kind of

understanding that students (and adults) need, teaching simplified versions of

those courses to younger students gains nothing. Further, conventional curricula

for introducing rates to younger students have serious problems. Most commonly,

children encounter rates in the context of simple linear functions. Research

suggests that simplified mathematics problems embody insufficient complexity to

enable students to develop adequate generalizations (Duckworth, 1991). More

specifically with respect to the rates, and the usual simplification to the linear

case, Stroup writes:

The conjecture of this thesis is that in contrast with the richness and

complexity of the earlier settings, the linear case is too simple. There

is not enough 'there' in the linear case to 'hang one's understanding

on'. More formally, the linear case is degenerate in a way that

collapses the complexity.... A major recommendation of the thesis

regarding learners' developing understanding of the interaction of how

much and how fast ideas, is to start with complexity. Start with
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graphs of situations where the slope varies and only eventually deal

with the linear case as a special 'collapsed' or degenerate case of this

complexity. (Stroup, 1996, p. 223-224)

Thus SimCalc seeks to construct a curricular strand that is neither a

simplified symbolic calculus course, nor a typical exploration of linear functions

and the related notions of rate and ratio. As we will discuss shortly, this strand

builds upon piecewise linear functions. Piecewise linear functions, like linear

functions, are fairly easy for students to conceptualize, but also allow discussion

of considerably more complex (and familiar) motions. Furthermore, we will argue

that piecewise linear functions bridge nicely to more abstract and general MCV

concepts.

Technological Mediation of Mathematics and Science Learning

With respect to MCV subject matter, we build upon extensive research on the

importance of visualization in math and science reasoning (Gordin & Pea, 1995;

Larkin & Simon, 1987; Reiber, 1995). The history of science demonstrates that

visualization and imagery have played a key role in the development of scientific

thinking (Miller, 1986), and recent sociology of science has further emphasized

the importance of visual displays (e.g. Kozma, this volume; Latour 1986; Lynch,

1985) to the everyday work of scientists. In education, simulations and

animations that display conceptual objects have proven particularly valuable in

advancing childrenÕs thinking (Horwitz & Barowy, 1994; Snir, Smith, &
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Grosslight, 1993). On one hand, artificial animations have proven exceptionally

effective in provoking genuine inquiry involving difficult concepts (White, 1993;

White & Frederickson, this volume; diSessa, 1986). On the other hand,

microcomputer-based labs (Thornton, 1987; Mokris & Tinker, 1987) and physical

output devices (Monk & Nemirovsky, in preparation) complement simulations

by connecting to real phenomena. An important research topic within SimCalc is

exploring the complementary advantages of cybernetic (i.e., simulated) and

physical data, when both are available.

Our own perspective on utilizing the power of visualization and

simulation has been shaped by microgenetic studies that examine how these tools

affect learning. Contrary to the popular adage that Òseeing is believing,Ó these

studies show that learning is not as simple as seeing, even with the best

constructed visual depictions. In particular, students do not always ÒregisterÓ the

features of a visual depiction that an expert would see, may not interpret the

features they do see as an expert would, and experience visualizations as

problematic (Roschelle, 1991; Meira, 1991). Instead, the power of visualization

and simulation arises from the role of computer displays as sites for interaction

among students and with teachers (Roschelle, 1996; Roth, 1997). In particular,

manipulable visualizations mediate studentsÕ construction of shared meanings

(Moschovich, 1996; Roschelle, 1992; Laurillad, 1992). Thus, we advocate the

design of visualizations and simulations specifically to leverage their role as media
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for collaborative inquiry (see Kaput, 1992; Roschelle, 1996):

• � extending studentsÕ engagement with the aspects of concepts that they

find problematic

• � supporting shared focus of attention and part-whole analysis

• � enabling gestural and physical communication to effectively supplement

verbal communication

• � engaging students in actively doing experiments, and providing meaningful

feedback through an interface that is appropriately suggestive and

constraining.

THE DESIGN OF MATHWORLDS

SimCalcÕs first software product, entitled ÒMathWorlds,Ó enables students to use

the context of motion to explore MCV concepts such as relations among position,

velocity and acceleration, connections between variable rates and accumulation,

mean values, and approximations all in the context of motion. MathWorlds

provides a collection of software components including a set of animation worlds

and a variety of graphs. Actors in the worlds (such as a clown, or a duck) move

according to mathematical functions. Graphs display these mathematical functions

and allow students to directly edit the functions. (MathWorlds can be downloaded

from the SimCalc Web site, http://www.simcalc.umassd.edu/, along with other

articles and materials.)
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MathWorlds provides a very rich set of tools in a flexible environment, in

accordances with our component software architecture (Roschelle & Kaput,

1996). For example, we support AppleGuide for providing help, as well as drag-

and-drop configuration and scripting to allow teachers and others to customize the

environment and build new activities (Roschelle, Kaput, & DeLaura, 1996).

Teachers and students can also draw upon tools such as masking tape (which

temporarily hides a portion of the screen), hiliting pens, and the ability to mark

points and lines in graphs and in the world.

In this chapter, our goal is to elucidate the connection between design and

democratic access to scientific and mathematical concepts. In line with this goal,

we will not go into further depth about general pedagogical features of the

interface, as these could apply to any kind of subject matter. Instead, we focus on

aspects of our design that relate directly to MCV concept learning. We should also

point out that MathWorlds will not be SimCalcÕs only software product, and is

not intended to implement the full extent of our vision or mission. Nonetheless,

MathWorlds does illustrate how we interpret the principles of building upon

childrenÕs strengths, reconstructing subject matter, and providing technological

mediation.
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Figure 2     . A piecewise linear graph of the velocity of a walking clown.

A central MathWorlds innovation is the use of piecewise linear functions

to introduce and explore distance-rate-time concepts. (For brevity's sake, we will

not distinguish between piecewise linear and the special case of piecewise

constant functions, although the interface does.) In MathWorlds, the student or

teacher can easily construct a function by concatenating segments of velocity or

acceleration that are individually described as a linear rate of change over a

specified duration. In a velocity graph, these functions appear as discrete steps

(constant velocity) or rising or falling lines (constant acceleration). For example,

Figure 2 shows a motion that begins fast, gradually slows down, and then

continues at a slower rate. The first and last segments have constant velocity and

the middle segment exhibits constant acceleration. In the corresponding Walking

World, students can run the simulation and see the clown move according to this

motion.

MathWorlds provides a range of other function types to complement

piecewise linear functions. A ÒsampledÓ function type supports continuously

varying positions, velocities, or accelerations. The varying data points can be
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entered directly with the mouse (by sketching the desired curve, ala Stroup, 1996),

from Microcomputer-based Laboratory (MBL) data collection gear (Mokris &

Tinker, 1987; Thornton, 1992), or by importing mathematical data from another

software package such as FunctionProbe (Confrey, 1991). A linear or parabolic

function can be constructed using a single piecewise linear segment (where, say, a

velocity segment can have zero slope, yielding a linear position graph). In

addition, MathWorlds can accept input of exponential and periodic functions.

In the sections below, we first discuss why our early design efforts

converged on piecewise linear functions, and then how MathWorlds provides

tools that enable students to learn fundamental MCV concepts by exploring

piecewise linear functions. Before proceeding, we want to warn the reader that the

following section is narrowly focused for rhetorical reasons. We are striving to

illustrate how the design of MathWorlds integrates three design perspectives:

childrenÕs resources, subject matter reconstruction, and technological mediation.

However, due to space limitations, we cannot provide our full curricular vision,

which reaches well beyond topics and skills addressable via piecewise linear

functions. Thus, we restrict ourselves to an example of how design innovations

can contribute to restructuring subject matter content.

Why Piecewise Linear Functions

Each of the three lines of innovation (childrenÕs resources, subject matter

reconstruction, and technological mediation) informed our design perspective for
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piecewise linear functions in MathWorlds. In terms of childrenÕs resources, linear

velocity segments provide a primitive object that can draw effectively upon pre-

existing knowledge and skills. For example, middle school students can learn to

predict position from a velocity graph by using two skills that they have already

developed: counting and area multiplication. The velocity graph (see Figure 2) is

drawn against a grid, which enables students to compute accumulated position by

counting grid squares. (Note that the graph in this figure cuts across some squares.

We will later present a student episode that illustrates how students readily

extend their counting skills to deal with the linear velocity case by counting half

squares.) Furthermore, students can integrate using the familiar area model of

multiplication: height times width. Moreover, the TERC research cited earlier

found that students spontaneously understand graphical representations of

motions (and other phenomena) by performing interval analysis. Piecewise

functions draw upon this natural inclination.

Our approach differs from the traditional algebraic approach in two ways:

(a) in the way we respond to the need for computational tractability, and (b) the

greater value we place upon experiencing phenomena (i.e., we put phenomena at

the referential center of the learning environment). The starting point in the

algebraic approach is governed by what is computationally simplest in that

algebraic universeÐthe family of polynomial functionsÐwhich in turn leads to

linear and quadratic functions as the inevitable starting point for computing
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derivatives and integrals symbolically. Hence, computational tractability drives

the algebraic approach in the direction of simple, mathematical forms. In contrast,

computational tractability in the graphically defined and manipulated universe

pushes in a different direction, towards piecewise linearity that affords substantial

semantic complexity without sacrificing computational tractability. This in turn

allows richer relations with students' experience of motion, and a more

appropriate conceptual foundation upon which students can build increasingly

elaborate understandings of MVC ideas.

The second major differenceÐputting phenomena at the center of the

enterpriseÐis partially served by the graphical approach to piecewise linear

functions. Consider the problem of defining a function that represents the motion

of an elevator that will pick up and drop off passengers in a building. Where as

such a function is very difficult to formulate algebraically, it is relatively easy to

directly drag hotspots on piecewise linear velocity segments to create an

appropriate function. Similarly, defining motion-functions for two characters who

are dancing would be extremely cumbersome to do algebraically, and be especially

cumbersome for younger students in entirely unproductive ways. (The

mathematically inclined reader might try to write out an algebraic description of

the functions depicted in Figure 2, or Figure 3 below.)
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Figure 3. A decreasing staircase and a constant negative velocity.

Equally important to drawing upon children's resources is providing

opportunities to make necessary distinctions in places where prior knowledge

may be poorly differentiated. A classic example is the distinction between slowing

down and moving downward (between "going down and slowing down"). The

graph in Figure 3 shows how this distinction can be expressed in a MathWorlds

graph that is connected to our Elevator World. In this world, the elevator moves

up or down according to the specified (piecewise linear) function. The upper

graph is a decreasing staircase. Many students will intuitively interpret this as

Òmoving downÓ whereas a correct interpretation is Òmoving up with decreasing

speed.Ó The lower graph shows a function that makes the elevator car go down

with constant speed. Children have great difficulty distinguishing Òhow muchÓ

from Òhow fastÓ (Stroup, 1996).

MathWorlds uses piecewise linear functions as fundamental building

blocks for understanding these and other core MCV concepts. Here, we briefly

trace how piecewise linear velocity segments can support a conception of mean

value, and how the notions of approximation and limit, can lead to a fairly classical
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treatment of integration as a calculation of area under a curve. (Indeed, the analysis

of complex variation in terms of piecewise linear segments is a core practice in

many engineering and scientific disciplines.)

In our exploratory curricula, we often introduce mean value first in a

discrete case: finding a single (positive) constant velocity segment which will

produce the same final position as a set of varying velocity segments occupying

the same duration. In this case, students can easily compute the mean value by

adding up the total area under the velocity segments and dividing by total time. In

fact, students can use counting to show that the mean velocity conserves area

under the graph. For example, in Figure 4, a Òmomma duckÓ swims at the mean

value of the rather erratic motion of her baby duckling. Assuming they started at

the same location, will they arrive at the beach at the same time? (Incidentally, the

softwareÕs name, ÒMathWorlds,Ó reflects the variety of animated ÒworldsÓ

available to contextualize motion for different activities, age groups, and cultural

situations.)

Figure 4: Momma duck swims at the mean value of baby duck
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As mentioned earlier, MathWorlds also supports continuously varying

motions. In particular, students can walk at a varying pace, and their body motion

can be digitized (via MBL) and entered into a graph corresponding to an animated

character. Students can then use a constant velocity graph to express the mean

value of their motion, and compare the two motions in the animation.

Figure 5: Approximating varying velocity with more and more constant velocity
segments

Once students have gained an understanding of the mean value in the

continuous variation case, they can use piecewise constant functions to find the

mean value at a set of intermediate points. Figure 5 shows a progression in which

the mean value is found once, twice, four times, and then eight times. The

iterations suggest the process of finding the limit: using smaller time interval, and

more segments to achieve a closer and closer approximation. Indeed, students can
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run the simulation to see their approximation improve; the characters will stay

ever closer together throughout the motion as the number of segments increases.

Moreover, the velocity graphs are each dynamically linked to the corresponding

position graph, so the students can see the position graph achieve a better and

better approximation. The calculus teachers note that the student here is creating a

picture found in every calculus text, of rectangles under a varying curve. But in

MathWorlds, the student builds this picture with deep prior understanding of the

mean value theorem and the meaning of each constant velocity rectangle.

(Incidentally, we have zoomed in on the position graph in Figure 5 so the

approximations can be seen. The dark dotted line in the position graph is the

varying motion, and it is very closely approximated by the graph with eight

constant velocity segments.)

MathWorlds can also support the exploration of different algorithms for

approximating the area under a curve. Students can build rectangular

approximations that sample the varying quantity at the beginning, mid-point, or

end of each segment. Moreover, they can use constant acceleration segments to

explore a trapezoidal (rather than rectangular) approximation to area. This is in

strong contrast with the notation and index-laden approaches that are required

when one attempts such approximations for algebraically defined functions.

Hence, MathWorlds readily builds from simple, comprehensible mathematical

objects towards core concepts and reasoning processes in the MCV.
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Finally, piecewise linear functions can be readily expressed in a format that

supports technological mediation of learning. In particular, MathWorldÕs direct

manipulation interface renders piecewise linear functions in a format that makes it

easy for students to construct and operate on functions and to discuss their

efforts with peers and teachers.

MathWorld provides direct Òclick-and-dragÓ editing of any segment. For

example, a user can drag the top of a rectangular velocity segment higher to make a

faster velocity. Or a user can drag the right edge of rectangular segment to the right

to give the segment a longer duration. Students can also construct a function (or

extend an existing one) by dragging additional segments into the graph. Thus,

operations on the representation have clear and simple qualitative interpretations.

And as students need more quantitative information, piecewise linear functions

support a number of easy measurement operations, like counting and area

multiplication.

Likewise, students and their teachers share a sufficient vocabulary to

conversing about the meaning of piecewise linear graphs. It is easy to identify a

segment of the graph (the Òfirst rectangleÓ) or its properties (ÒtallerÓ or ÒwiderÓ).

Similarly, corresponding motions can easily be described in a narrative such as Òit

goes slow, then speeds up, and then continues at a fast speed.Ó Piecewise linear

functions thus provide a convenient conversational context for talking about

motion without introducing an unfamiliar technical vocabulary.
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To summarize, the design of MathWorlds to utilize graphically editable

piecewise linear functions draws upon strength from each of the three

perspectives. Children have ample resources to make sense of segmented graphs,

and these graphs enable them to work on conceptually difficult and important

distinctions. Piecewise linear functions lead naturally to core MCV concepts, such

as mean value, approximation, and computing the integral via area under a curve.

Further, piecewise linear functions can be realized in a technological interface that

supports meaningful direct manipulation operations and sense-making

conversations.

Tools for Learning

Choosing suitable conceptual primitives, such as piecewise linear functions, is a

necessary but not sufficient basis for implementing learning technology. Thus

MathWorlds contains a number of features and tools intended to contextualize and

support the mathematical learning. Below we briefly describe some of the key

features.

Like many modern learning technologies, MathWorlds supports dynamic

linking among multiple representations of the same mathematical function

(Kozma, this volume; Goldenberg, 1995). An activity document can contain any

combination of position, velocity, and acceleration graphs. A mathematical object

can be linked to a particular graph by dragging and dropping, and once linked, with

all representations being updated simultaneously. Thus, a student can adjust a
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constant acceleration and watch simultaneous changes to the corresponding

straight line in the velocity and parabola in the position and graph. Our approach

to designing tools for multiple representations puts phenomena in the center. The

multiple representations of MathWorlds always connect to simulated motion or

real world motions, digitized via MBL hardware.

MathWorlds gets its name from the availability of different animated

backgrounds and characters for contextualizing a motion activity (and versions of

our software under development that present water flow, and other familiar

phenomena that involve change over time). Each world supports different kinds of

problems and challenges. For example, the elevator is used for vertical motion with

a natural ordinality including both positive and negative numbers, whereas the

walking characters move horizontally and invite complex motions of the sort that

might occur in marching or dancing. A space world provides a UFO that can pick

up rocks and drop them in a crusher, which is useful for setting up challenges that

involve hitting targets in position and time. A water world provides a momma and

baby ducks. The momma squawks if the babies get too far behind, which is useful

for activities where the goal is to match a given motion, or approximate a varying

motion with a mean value. MathWorlds also allows any (reasonable) number of

moving actors, not just two or three. This makes it possible to create activities in

which large numbers of actors move in patterned ways, such as a marching band

(see Kaput & Roschelle, 1996 for a scenario that uses this feature).
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With MathWorlds, SimCalc has also been exploring the relationships

between cybernetic (simulated) and kinesthetic (physical) experiences. For

example, students can import their own body motion into MathWorlds via an

MBL motion probe. TERC is developing complementary hardware that generates

physical motion in toy carts based on a directly edited graphs, hence we can bi-

directionally link the real world to graphical representations. Our conjecture is that

cybernetic and kinesthetic explorations have complementary pedagogical value:

cybernetics allow replay and re-examination of more controlled experiments,

whereas kinesthetic explorations directly involve bodily understanding and

connect directly to familiar experience. And our research is presently exploring the

best ways to use these complementary qualities.

Another important set of MathWorlds features involves performing

controlled experiments. A snap-to-grid option, Figures 6 and 7, constrains

manipulations on graphs to integer values such as positions, times, or velocities.

This can make it easier for students to produce graphs supporting direct

measurement of area or slope by counting grid squares. This constraint can easily

be removed to support free exploration of any values. Similarly, a flexible ÒstepÓ

command, Figures 8, 9 and 10, allows the student to control the clock, moving it

forward in fixed ("delta-t") increments, which can make it easier to examine the

correspondences among multiple representations at fixed time intervals.

MathWorlds also supports a variety of ways in which students (or the
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simulation) can place marks in the animated world or in graph, Figures 11 and 12.

"Marks" can provide a tool for making a prediction about behavior, or marks can

be used to record the actorÕs position at uniform time intervals, thus leaving a

trace of the actorÕs path through space that encodes velocity information, Figures

13 and 14.

Finally, MathWorlds also supports idealization by allowing a student to

toggle between the visually rich world of actors and a visually bare or schematic

view where the actors are replaced by dots color-coded to their respective graphs'

colors moving along an easily scaleable one-dimensional coordinate system,

Figures 13 and 14. This enables a move from qualitative examination of a situation

to a distinctly quantitative examination. (Note, however, that a "world-ruler" can

be invoked in any of the worlds to support quantitative analysis.)

STUDENT LEARNING WITH MATHWORLDS

In this section, we recount an episode from one of our early trial sessions

with MathWorlds. The session featured a teacher, James Early, working after

school with a middle school student in his inner city mathematics classroom. It

illustrates how MathWorlds enabled a young student to learn how to integrate a

velocity graph in order to determine the position of an elevator, and how the same

student developed considerable facility with interpreting the distance, rate, and

time represented in this graph. Compared to a typical calculus classroom, a

striking feature of this episode is the lack of symbolic equations. Indeed, by using
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MathWorlds, the student and teacher were able to explore the calculus concept of

integration using only graphing and counting skills. This episode shows students

can begin tackling significant concepts in the mathematics of change before taking

algebra and years before they would satisfy the prerequisites for a normal calculus

course.

Of particular interest here is the studentÕs transition from reasoning about

constant velocity graphs to reasoning about linear velocity graphs (constant

acceleration). It was not easy for this student to grasp the relevant features of a

linear velocity graph. Nonetheless, with the teacherÕs help, the student was able to

see that the relevant area is the area under the velocity graph. The student then

was able to quickly generalize to a variety of linear velocity situations, including

one in which velocity goes from positive to negative.

Prior to the beginning of the episodes recounted below, the student had

developed the ability to integrate a variety of piecewise constant velocity graphs,

and was able to correctly distinguish time, rate, and distance. Work in class had

centered on counting ÒblocksÓ of area under a velocity graph representing the

vertical displacement of an elevator, and on interpreting the significance of

different arrangements of the blocks. The studentÕs confidence in his abilities was

evident in his phrase: ÒYou canÕt stop me.Ó He uttered this phrase as a playful

taunt to his teacher. The following exchanges are excerpts from a larger series of

challenges and responses the teacher and student engaged in together. After
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working with a few piecewise constant velocity challenges, the teacher then began

setting up challenges using linear velocity segments.

Integrating by Counting

The transcript below begins with a linear velocity segment with a slope of

1 m/sec2 starting at zero velocity and extended for four seconds (to a velocity of 4

m/sec), as in Figure 15. As the transcript shows, the student was able to correctly

integrate velocity to predict position. Moreover, the student was able to predict

the change in speed of the elevator over time. Finally, the end of the transcript

shows that the student was able to predict the motion of the elevator with a very

challenging velocity graph Ñ a decreasing linear velocity that continues below the

axis.

<Insert Figure 15>

T: (Makes a linear velocity graph that extends over four seconds).

What about this one?

S: It gonna go 8 floors.

T: 8 floors?

S: Yeah.

T: Why?

S: There's 6 floors right there (points to the six whole grid squares

underneath the graph). That's a floor (places one finger on the half grid

square at t=1, and the other finger at the grid square at t=2, indicating that
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these two halves make a whole floor) and that's another floor (fingers on

the graph at t=3 and t=4).

T: So it's gonna go 8 floors.

S: Yep.

T: Try it and see. I don't know. Ooh, 8.

In excerpt above, we see the student attended to area under the graph, and used a

counting procedure that correctly integrates the velocity function.

Identifying Changing Speed

Below, the teacher next focused on the change of speed, which the student

correctly described but did not explain.

T: And then what else did we notice about the elevator?

S: First it went slow and then it goes faster and then it goes to another

one and goes faster.

T: Ok.

S: And then the last one it goes real fast.

T: Ok, do you have any idea why? What makes it do that?

S: No.

T: No idea.

The teacher then made another, related problem with the same area, but decreasing

speed.

T: Ok, what if I did this. (Flips the existing graph so it is decreasing
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over 4 seconds, instead of increasing.) How about if I did that?

S: It's still at 8.

T: It's still at 8?

S: It's the same problem.

T: Huh? Same problem.

S: Yeah.

T: The elevator going to go the same way.

S: Yeah.

T: So, how does it go up?

S: No, 1st it's going to go fast then slow.

T: Why?

S: Cuz it's a different way.

T: It's a different way.

S: That's high and that's low.

T: Ok. Try it. Let's see. It still wound up at 8.

With this contrast, the student was able to correctly describe both position and

rate. In particular, the student correctly identifies speed with the height of the

graph.

A Linear Decrease from Positive to Negative

Following this correct prediction, the teacher and student tried to make a graph

that would make the elevator travel four floors. However, by accident they made a
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graph instead that decreased linearly from two floors per second to negative two

floors per second. This is a challenging graph for students to interpret because, as

we noted above, many students interpret a linearly decreasing velocity graph as a

motion that continually goes down.

T: What do you think is going to happen here (a linearly decreasing

graph that starts at two floors per second and decreases to negative two

floors per second)? Let it go. What do you thinks gonna happen here?

S: Gonna go back to zero after it's finished.

T: You think so?

S: Yeah.

T: Try it. See. I don't know. Watch, wait, before you do that, why do

you think it's going to go back to zero?

S: Cuz it's the same up here, it's the same right there. There both the

same.

Note that here, the student correctly predicted the motion would return to its

initial position. Following this episode, the student confidently began to assert ÒI

can figure that outÓ as the teacher introduced additional graphical problems.

DISCUSSION

This episode demonstrates how a student, working with a teacher, can learn to

correctly interpret the motion described by a velocity graph. As should be clear

from the difficulties described in part two, this is not an easy concept to learn.



MATHEMATICS OF CHANGE 32

Indeed, it would be extremely rare to find students integrating graphs outside of a

physics or calculus classroom. But this middle school student was able to make

rapid progress, and eventually achieved a fairly robust and flexible interpretation

of linear velocity graphs. Of course, there is much more to learn. Our point is not

that this student is finished learning, but rather that is possible to begin making

progress towards learning the core conceptual facets of the mathematics of change

at a much younger age than traditional approaches to teaching calculus typically

attempt.

We would attribute the progress evident in this episode to the

interweaving of the three perspectives introduced earlier. From a student resources

perspective, it is clear that this episode built upon the studentÕs well-established

skills in counting and computing with whole numbers and simple fractions,

without the need of any algebraic symbols. MathWorlds enable the student to

build an understanding of the mathematics of change using conceptual tools that

were already firmly established by middle school. From a reconstructing subject

matter perspective, this episode moved from piecewise constant velocity

segments and then introduced linear velocity segments. Because of the studentÕs

prior experience with the very simple piecewise constant cases, meanings for a

single block (grid square) were already well established. Moreover, the student

already understood the meaning of height in a velocity graph, and the

interpretation of the horizontal (time) axis. Although it was initially difficult for
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the student to interpret a grid square that was Òcut in half,Ó with the teacherÕs

help the student soon overcame this difficulty, and was able to interpret quite

difficult graphs. Beginning with piecewise, constant velocity may be a radical

change to the conventional calculus curriculum, but such an approach seems to

provide a powerful route into this difficult conceptual space. Finally,

technological mediation clearly played a key role in allowing the rapid learning

evidenced here. Directly editable graphs allowed the teacher to quickly construct

and pose problem situations, and running the simulation allowed the student and

teacher jointly to ground the meaning of those graphs in observable motions. The

computer screen also served as an enabling conversation space in which the

student and teacher could identify and discuss the interpretation of various

features of the graph.

CONCLUSION

In choosing the title for this chapter, we drew inspiration from the concept of

Accelerated Schools (Levin & Hopfenberg, 1991). Levin so clearly captured the

paradox of conventional school reform: given evidence that student learning

outcomes are in trouble, a typical response is to slow everything down, which

only ensures that the students become further and further behind, and more and

more in trouble. To overcome this paradox, we must break outside the

conventional wisdom and find ways to dramatically accelerate studentsÕ progress.

Without question, dramatic acceleration will be required. One hundred
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years ago, only 3.5% of all students needed to finish high school, and virtually no

high school students took Calculus. Today all students must finish high school,

and 3.5% take calculus (U.S. Department of Education, 1996). In even less that

one hundred years into the future, we can comfortably predict that most students

will need access to the mathematics of change and variation, and acquire skill with

its core concepts such as rate, accumulation, limit, approximation, etc. Further, at

least 3.5% of them will likely need to conquer more advanced topics such as

dynamical systems modeling. Mathematics and science depend increasingly upon

concepts of greater complexity and abstraction, and society requires ever-greater

number of more diverse students to master these important and powerful

concepts.

Routine applications of technology will not meet the order of magnitude

challenges we face in bringing much more mathematics learning to many more

diverse students. The problem of access is not as simple as a wire, a transport

protocol, and a university willing to publish its courses on the Internet. Nor will

simply encoding the same lesson in different media radically change the rate at

which students master core concepts. We need to move beyond reforming

university courses, and repackaging dead pedagogies in media sound bites.

Yet, we cannot achieve scientific mastery from ordinary children without

technology either. Visualization, simulation, and modeling are increasingly

important aspects of professional mathematics and science, and rely deeply upon
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technology. As we have argued, these technologies also can draw upon some of

childrenÕs powerful, well-developed resources. The opportunity such innovations

present is more that the chance to teach an existing course better; technological

innovation opens a window to dramatically restructuring school curricula so that

we can accelerate student learning. Through iterative design that is mutually

sensitive to the unique affordances of technology for learning, childrenÕs resources,

and the need to radically reconstruct the curriculum, we believe our society can

provide democratic access for all children to the concepts most important to the

next millennium. The concepts must include the power to understand and control

physical phenomena through mathematical analysis of change and variation.
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