ILB41_C:hl 1/26/95 93134 P4 Page 1

Mark Guzdial
Georgia Institute of Technology

Abstract

Programming is an activity through which stu-
dents can learn about other domains, but the diffi-
culty of programming diminishes its usefulness as
a learning activity. One approach to facilitate the
use of programming for learning is to view pro-
gramming as a skill like those taught through
appranticeships, and to use the appranticeship
concept of scaffolding to facilitate doing and
learning through programming. Scaffolding means
providing modifiable support {through fading) that
communicates process, coaches, and elicits artic-
ulation. Software-realized scaffolding embeds
scaffolding in a computer-based environment.
Emile implements software-realized scaffolding to
facilitate student learning of physics by facilitating
students building computer-based models and
simulations. In this article, | present Emile's fea-
tures as examples of software-realized scaffold-
ing, and | present the results of an evaluation of
Emile’s effectiveness. Students were able to use
Emile to create fairly sophisticated programs and
gained a qualitative understanding of kinematics
in the process.

Educators’ reasons for asking students to
program have changed since the early days of
Logo and Basic (Solomon, 1986). Claims that
programming alone might improve problem-
solving skills or other general metacognitive
skills have gone mostly unsupported (Palumbo,
1990). Today, education researchers are more
interested in programming as a medium, as a
way of thinking about and exploring disciplines
other than computer science (diSessa & Abelson,
1986; diSessa, Abelson, & Ploger, 1991; Soloway,
1993). We are still interested in having students
learn about programming, because we view pro-

The research on Emile was supported by Nation-
al Science Foundation grant #MDR-9010362 and by
Apple Computer. Appreciation for comments and
direction on this work go to the anonymous review-

" ers, Patricia Baggett, Carl Berger, Phyllis Blumenfeld,

Brian Schunck, and, especially, Elliot Soloway.

Correspondence and request for reprints should
be sent to Mark Guzdial, Georgia Institute of Tech-
nology, College of Computing, MIS 0280, 801 Atlantic
Drive, Atlanta, GA 303 32 9770,

——

DUPLICATE

“Software-Realized Scaffolding to Facilifate Programming for Science Learning

gramming as an important skill and as a medi-
um of communication. But now we are even
more interested in having students learn
through programming because we recognize
that programming is a good lever for under-
standing many domains,

Harel and Papert (1990) referred to this
notion of programming-as-leverage when they
wrote that programming is reflexive with other
domains, meaning that learning the combination
of programming and another domain can be eas-
ier than learning each separately. A synergy is
created when concepts in another domain are
easily reflected in the programming medium. In
this case, learning the programming means
learning to construct representations for the
concepts, which in turn supports learning the
concepts and provides motivation for learning to
program.

What has not changed is that programming
is still a hard activity and a difficult skill to learn.
Few students will understand programming well
enough after completing their first program-
ming courses to be able to write simple pro-
grams, let alone use programming as leverage
for understanding other domains (Pea & Kur-
land, 1986;" Soloway, Ehrlich, Bonar, &
Greenspan, 1982). The most critical reasons that
students have difficulty with programming seem
to be the following:

° Assernbling programs is hard. Program-
ming languages have only a few compo-
nents which are combined in many differ-
ent ways, and learning to understand the
semantic results of different combinations
is complex (Shneiderman, 1977). Under-
standing how to combine programs to
achieve particular goals is a challenge
(Spohrer, 1989; Spohrer & Soloway, 1985).

o Syntax is complex. When students try to
combine elements, syntax gets confused,
which leads to students battling syntax
problems as they struggle to understand
semantic ones (Johnson & Soloway, 1985;
Perkins, Martin, & Farady, 1986). When
the syntax problems are alleviated, stu-

INTERACTIVE LEARNING ENVIRONMENTS Vol. 4, Issue (1), 1-44 (1995) 1

iy

—h—

—p—

ILE41_Chl 1/26/95 9134 P Page 2

dents can focus on the semantic ones
(Anderson, Conrad, & Corbett, 1989; Gar-
lan & Miller, 1984; Hohmann, Guzdial, &
Soloway, 1992; Soloway, Guzdial, Brade,
Hohmann, Tabak, Weingrad, & Blumen-
feld, 1993).

o Students lack an understanding of comn-
putational process. Many students do not
understand how interpretation of tradi-
tional computer languages works, for
example, where does control flow and how
do variables get updated (DuBoulay,
(O’Shea, & Monk, 1989). If students are
presented with a simplified or clearer
description of the process, they can
understand their programs more easily
and perform more successfully (diSessa,
1985; diSessa, 1991).

The challenge in using programming to
learn other domains is to reduce the aspects of
programming which are simply about program-
ming and emphasize the aspects of program-
ming which are reflexive with another domain.
For example, a student using programming to
explore genetics should not have to be con-
cerned with declaring variables Aloats or inte-
gers, but on the other hand, being able to define
recursive structures is a relevant part of simu-
lating genetic structures computationally. Pro-
gramming should be an activity that builds upon
and adds value to learning in another domain,
not an activity that simply requires more skills
and knowledge which is disconnected from the
students’ purpose (Norman, 1993; Oren, 1990).

Programming is an activity that leads to a
skill, and teachers have techniques for support-
ing students engaging in an activity and learning
a skill. These techniques are called scaffolding
(Collins, Brown, & Newman, 1989; Merrill &
Reiser, 1993, Palincsar, 1986, Rogoff, 1990). The
goal of scaffolding is (a) to enable students to
achieve a process or goal which would not be
possible without the support and (b) to facilitate
learning to achieve without the support. A criti-
cal component of scaffolding is that it be capable
of fading: a gradual or leveled (Collins et al,
1989) reduction in the support provided to
match individual student ability, particularly as

that ability increases with students’ learning »

(Rogoff, 1990). As students learn the skill, they
need less support, so the scaffolding fades.

Scaffolding can be provided through soft-
ware, which results in soffware-realized scaffold-

——

ing. By providing scaffolding for programming
embedded within the programming environ-
ment, we can (a) provide the necessary support
for doing and learning the activity and (b) adapt
the programming task so that it emphasizes the
reflexive nature. Emile is a programming envi-
ronment that provides adaptable software-real-
ized scaffolding to support students as they use
programming to learn science, specifically, the
branch of physics addressing motion without
regard to forces: kinematics. Emile’s scaffolding
is adaptable in that students can fade their scaf-
folding and choose an appropriate level of sup-
port. Students use Emile to program models
(executable theories of phenomena) and simula-
tions (an executing model, being explored
through manipulation of parameters) in kine-
matics. Emile supports students without previ-
ous physics or programming background to

e successfully create models of kinematics
and execute these models as simulations
and

o learn about physics in the process.

Physics in general, and kinematics in partic-
ular, is a difficult topic for students to learn. Stu-
dents often have misconceptions of the physics
of motion (Arons, 1990; Eylon & Linn, 1988),
and education research has found that these
misconceptions are very difficult to correct (e.g.,
Champagne, Gunstone, & Klopfer, 1985; diSessa,
1982; Trowbridge & McDermott, 1980; Trow-
bridge & McDermott, 1981). Some evidence sug-
gests that hayving students program models and
simulations is a good way to learn physics. Stu-
dents can learn through use of pre-existing (e.g.,
pre-modeled) simulations (e.g., White, 1984;
diSessa, 1982), but only if students treat the sim-
ulations as more than a video game—if they rec-
ognize the simulation to be a model of the real
world (Richards, Barowy, & Levin, 1992). Having
students actually build the model requires them
to relate the real phenomena and the simulation,
that is, understand the model as an explanation
for the phenomena (Halloun & Hestenes, 1987;
Hestenes, 1987; Hestenes, 1992). There are other
ways to get students to relate a simulation to
real phenomena, such as through comparison of
simulation data to real world data (perhaps gath-
ered with microcomputer-based laboratory

probes; Brasell, 1987). However, as Tinker (1990)

points out (who is a pioneer in the use of such
probes for science education), modeling and sim-
ulation (which he refers to together as model
building) requires theory building, which is an

Mark Guzdial

—h—

ILE41l _Chl 1/258/95 9:34 PM Page 3

important learning activity and which can easily
be overlooked when the focus is on comparison
and not on explanation. The challenge is in pro-
viding a model-building environment that stu-
dents can use without incurring the difficulties
of learning to program.

Emile provides an example of such an envi-
ronment. Emile was evaluated in a 3-week sum-
mer workshop with high school students. The
results suggest that Emile was a success in
terms of facilitating construction of interesting
physics simulations and facilitating learning
about physics and programming. In this article,
I present the following:

e definitions of scaffolding and' sartware-
realized scaffolding;

° a description of Emile as an instance of a
computer-based learning environment
designed to provide software-realized scaf-
folding; -

o the setting for the evaluation of Emile,
data collected, and analysis methods used;
and

o the results, discussion, and my conclu-
sions.

1. SCAFFOLDING AND SOFTWARE-
REALIZED SCAFFOLDING

The challenge of supporting students
engaged in programming for modeling and sim-
ulation has two components:

e to facilitate students’ programming activ-
ity;

e to facilitate students’ learning about and
through the activity of programming.

The process of teaching an activity and facil-
itating learning about the activity has been

refined for ages in the practice educators refer to .

as scaffolding. Scaffolding is

° support which enables a student to

achieve a goal or action that would not be

possible without that support,

° support which facilitates the student
learning to achieve the goal or action
without the support in the future.

In apprenticeships, for example, the master
craftsman provided scaffolding (a) to enable the

Software-Realized Scaffolding

&

apprentice to perform the tasks assigned to him
and her and (b) to facilitate the apprentice’s
learning how to perform the tasks when the
master was not available. Similar scaffolding
activities occur in apprenticeship relationships
today (Lave, 1993). -

Collins and Brown have suggested that mod-
ern education should model itself on apprentice-
ship by providing cognitive apprenticeship, in
which the skills being scaffolded are more cog-
nitive than those taught in a traditional trade
apprenticeship, for example, they suggest teach-
ing reading, writing, and mathematics using an
approach based on apprenticeship (Collins, 1990;
Collins et al., 1989). They describe in their work
the essential qualities of zn apprenticeship, such
as the elicitation of articulation to encourage
reflection and a collaborative, supportive social
climate.

Synthesizing the descriptions of scaffolding
by Collins and Brown and by other researchers
(e.g., Fischer, Burton, & Brown, 1978; Palincsar,
1986; Rogoff, 1990; Wood, Bruner, & Ross,
1975), I can identify three critical types of sup-
port which are combined to provide scaffolding:

1. Communicating process: A master com-
municates a process to the apprentice,
which typically means demonstrating the
process with verbal annotation to high-
light key points. Students typically do not
know where to begin with a complex
process (Jeffries, Turner, Polson, &
Atwood, 1981). A good master strucfures
(often involving simplifying) the process
to make it easier to communicate. The
presentation itself may take on many
forms (including a simple lecture), all of
which are contextualized (or situated), in
that the master is providing necessary
knowledge for the apprentice who is
about to undertake the very same
process,

2. Coaching: When the apprentice is
atternpting the action or goal, the master
watches and makes comments, provides
hints, reminds the apprentice of the
process which was communicated, and so
forth, Again, because students will typi-
cally know little about the process, they
cannot be expected to remember the
process on first presentation (especially if
it is complex). A good coach balances the
number and kind of comments between
providing opportunities for the student to

—

ILE41_Chl 1/26/95 93134 P Page 4

learn through failure and keeping a stu-
dent motivated and preventing inefficient
exploration of blind alleys (Rogoff, 1990).

3. Eliciting articulation: The master occa-
sionally asks the apprentice to articulate
key concepts about the apprentice’s
action or goal, for example, “Why are you
doing that?” “Stopl Is that what I told
you to do?” “What do you call that?” and
so on. The point of eliciting the appren-
tice's articulation is to encourage reflec-
tion—an important cognitive activity
which is critical for effective learning
(Collins & Brown, 1988; Scardamalia,
Bereiter, & Steinbach, 1984; Schon,
1982).

A critical piece to the concept of scaffolding
is fading. If the scaffolding is successful, stu-
dents will learn to achieve the action or goal
without the scaffolding. For students to practice
the action or goal without the scaffolding, the
scaffolding must fade. However, scaffolding
should not be all-or-nothing. Instead, scaffolding
should be adapted to individual student needs,
typically through gradual reductions in scaffold-
ing (Rogoff, 1990). Students who are more capa-
ble (e.g., have more background knowledge,
learn the action or goal faster) should have less
scaffolding, that is, more fading of the provided
scaffolding. The best scaffolding is maximally
flexible—providing a continuous range of sup-
port. However, discrete levels of support can pro-
vide the necessary flexibility such that each stu-
dent is facilitated in performance and learning
without being stifled by too much scaffolding or
being left to flounder by too little scaffolding
(Collins et al., 1989).

Scaffolding differs from other forms of edu-
cational support in the emphasis on activity and

learning through activity. For example, an ency- .
clopedia or other source of authoritative infor--

mation is typically not scaffolding, although it
may be supportive. Although information
sources may be part of good performance, their
role is not to enable that performance or facili-
tate learning through that performance. Simi-
larly, a supportive social climate is indirect
scaffolding. The presence of peers (or communi-
cations channels, in a technologically supported
community) is not directly supportive. But these
peers can provide scaffolding: For example, other
people provide multiple models of the process,
opportunities to receive coaching, and ears to
listen to articulations. If there are many mem-
bers of the community, there will probably be

——

levels of expertise which can implement de facto
levels of scaffolding for fading.

Even after distinguishing scaffolding from
other forms of educational support, the kinds of
support which are scaffolding are still broad
ranging. In actual implementation, I find it use-
ful to distinguish two levels for scaffolding:

1. The macro level is- concerned with the
stages or collections of activities the stu-
dent undertakes. The macro stages corre-
spond to those used to describe general
problem-solving activity—for example,
Polya’s (1957) “devising” and “carrying
out a plan” stages of problem solving or
the generate and test stages of various
cognitive models of how programmers
work (Adelson & Soloway, 1984; Spohrer,
1989). A good macro-level process struc-
ture aids students in making strategic
decisions about how best to focus on a
project over time and complete it (Blu-
menfeld, Soloway, Marx, Krajcik, Guzdial,
& Palincsar, 1991).

2. The micro level identifies the individual
activities the students undertake. Polya's
problem-solving process is a macro-level-
only description because it remains the
same for programming or developing a
proof of a theorem. Because program-
ming and theorem proving have different
individual activities, the processes for
those activities differ at the micro level. A
good micro-level process structure aids
students in making tactical decisions
which lead them through complex tasks
without losing motivation (Blumenfeld et
al., 1991).

Table 1 describes how each of the three
kinds of scaffolding differ when the focus is on
the macro, stage-oriented level and the micro,
activity-oriented level.

The challenge for educational technology
researchers is to provide the same scaffolding a

good teacher provides in classroom environ- .

ments centered on activity. When student.leamn-
ing is to occur in a software environment cen-
tered on learning, the environment should
provide software-realized scaffolding, where the
designer of the software is defining and provid-
ing scaffolding as the teacher but through the
formal mechanism of the software. The goals in
software-realized scaffolding are the same as
those in traditional scaffolding: to facilitate stu-

Mark Guzdial

—h—

ILE41_Chl 1/26/95 $:34 PM Page 5

——

Table 1. Scaffolding at Both the Macro and Micro Levals

Communicating Process Coaching Eliciting Articulation
Macro Level Structures and presents Reminds students of the Encourages students to be
the stages of activities In ovarall structure of their explicit about and reflect
the process. process while they on their oversil process.
- engage in the activity.
Micro Level Structures and presents Reminds students of the Encourages students to

attributes of the articulats the role of the
individual activities to be individusl activities in their
performed {e.g., when processs,

arg they to be used, how

are they to be used),

the individual activities
of the process.

dent performance and to facilitate student learn-
ing. Resolving this challenge will require defin-
ing scaffolding in terms of facilities that cam be
provided in software.

Many of the successful innovations in edu-
cational software interfaces can be viewed as
examples of software-realized scaffolding:

° Communicating process with explicit
checklists or menus. Explicitly defining
the stages and operations of a process
with a checklist or a menu can communi-
cate a tremendous amount of information
about the process (especially to a novice
with little knowledge of the process)—it
constrains the process to discrete compo-
nents, it can imply an ordering, and it
provides a language for talking and think-
ing about the process. Examples of com-
municating process with a checklist or
menu include Inquire (a scientific inquiry
planning tool; Brunner, Hawkins, Mann,
& Moeller, 1990), Framer (a design envi-
ronment for program frameworks in win-
dow-based user interfaces; Fischer,
Lemke, Mastaglio, & Morch, 1991), and

the GPCeditor (a Pascal program design..

environment; Guzdial, 1991; Hohmann et
al.,, 1992; Soloway et al., 1993).

o Coaching with critics. Intelligent agents
that watch a user’s activity and provide
useful comments can be effective in high-
lighting for a user important perspectives
or problems that might have been over-
looked (especially a novice who has not
yet developed standards to apply to his or
her own work). Critics have been used to
highlight design principles that were bro-
ken in the user’s artifact (e.g., in Janus, a
kitchen design environment; Fischer,
Lemke, Mastaglio, & Morch, 1990) and to

Software-Realized Scaffolding

highlight when a user has strayed from a
predefired successful path, for example, in
GIL (a graphical tutor for Lisp; Merrill &
Reiser, 1993; Merrill, Reiser, Beekelaar, &
Hamid, 1992) and in the ACT* tutors
(Anderson, Boyle, Corbett, & Lewis, 1990;
Anderson et al.,, 1989).

° Elicifting articulation with predefined
prompts. At various points in the process

~ at which reflection is most profitable, stu-
dents can be presented with a prompt ask-
ing them to articulate what is most prof-
itable to reflect upon. The prompts are
based on the questions that a good
teacher might ask at a similar point, for
example, “What is your goal for the next
piece of code that you're going to
write/construct?” before the student iden-
tifies a piece of Pascal program to add to
his or her program (GPCeditor), and
“What are you going to do when you con-
tinue this tomorrow?” before the student
ends the program (Inquire), which is also
shown again to the student at the begin-
ning of the next session.

A complete implementation of software-real-
ized scaffolding should also include fading of the
scaffolding. Using the distinctions made in the
HCI community (e.g., Schneider-Hufschmidt,
Kiihme, & Malinowski, 1993; Suikaviriya &
Foley, 1993), we can define adaptable scaffolding

(i.e.,, scaffolding which can be changed or faded .

by the user) and adaptive scaffolding (i.e., scaf-
folding which changes or fades based on an
internal decision process). Anderson has
explored intelligent tutoring systems that offer a

choice of immediate or when-requested coaching

(Anderson et al., 1990), which is adaptable scaf-
folding, but with an all-or-nothing approach.
Riel, Levin, and Miller-Souviney (1987) proposed
a form of adaptive scaffolding which they call

—h—

—p—

ILE41_Chl 1/26/95 9:35 PX Page 6

dynamic support to detect and automatically
adapt interactions to the student’s ability.
Although adaptive scaffolding (or intelligent fad-
ing) is clearly desirable, current interface tech-
nology is not yet up to the challenge of chang-
ing the scaffolding in such significant ways for a
user who is rapidly changing in ability (as does a
novice when starting a new domain or new envi-
ronment). What success there has been in deter-
mining novice users’ ability is offset by the
amount of time needed to make the determina-
tion—much longer than can be afforded in order
to provide adequate scaffolding (Vaubel & Gettys,
1990).

2. EMILE: SOFTWARE-REALIZED
SCAFFOLDING FOR MODEL AND
SIMULATION ACTIVITIES

Emile facilitates student programming for
modeling and simulation by implementing soft-
ware-realized scaffolding in the programming
environment. The challenge in creating Emile
was to provide (a) the full set of scaffolding types
(i.e., communicating process, coaching, and elic-
iting articulation) with (b) adaptability. Thus,
Emile serves as an examnple of a complete imple-
mentation of software-realized scaffolding.
Emile’s scaffolding is adaptable by a student or
teacher, as will be seen, with the explicit sugges-
tion that the fading of scaffolding be accompanied
by discussions between students and teacher of
when scaffolding might be appropriately changed.

This section presents the following:

¢ an overview of Emile;

¢ a description of Emile as a learning envi-
ronment utilizing the range of software-
realized scaffolding: communicating
process, coaching, and eliciting articula-
tion, with fading.

2.1 Overview of Emile

Emile is an environment where students
build models and test them as simulations. They
are prompted to write about what they are doing
in a Design Notebook. The Design Notebook is
also where students define the components of
their model. The components are assembled in a
Project Window which is where the simulation
ran. In addition, 2 number of supporting facili-
ties are provided, which can be modified from a
Preferences page in the Design Notebook.

7

—p—

Figure 1 is the screen a student sees after
choosing to create a new, empty project from the
File menu.

° The main window (largest, seen at front)
is the Design Notebook which contains all
of a student’s programming representa-
tions, all of a student’s articulations about
the project, and descriptions of all the
components of the project——each on a
separate page of the Notebook. The Note-
book organizes the various pieces of a
project.

o The window which can be seen behind the
Design Notebook and to the right is the
Project Window where the components of
a student’s project are assembled and test-
ed. When a student completes his or her
project, the Project Window (stored in a
file separate from the Design Notebook)
can be given away to others to ekecute
without Emile—it is a stand-alone com-
ponent’.\l/ Figure 2 shows a Project Win-
dow which is a simulation of two objects
that fall as if under the influence of grav-
itational fields of different intensities.

o The window to the far right of Figure 1 is
the Recent List, one of several Notebook
navigation tools available in Emile. The
Recent List shows the name of each page
visited in an Emile session (seeded with
some imiportant pages at the start of a ses-
sion). A mouse click on any name turns to
that page. The right and left arrow keys at
the top left of each page allow page-to-
page navigation in the Notebook. The first
page of the Notebook (seen in Figure 1) is
the Table of Contents which is both a tex-
tual representation of all the pages in the
Notebook and a navigation tool: Clicking
on any page name (one per line in the
Table of Contents) turns to that page.

o The five main menus in Emile (seen at
the top of Figure 1) are named Initial
Review, Decomposition, Composition,
Debugging, and Final Review for five pro-
gramming activity stages which define the
process that is communicated to students
in Emile. All the operations associated

1 The Project Window does require Apple Hyper-
Card or HyperCard Player to execute, but these are
readily available. The task of crating simulation pro-
grams that could be used apart from Emile seemed to
enhance the authenticity of the task.

Mark Guzdial

—h—

ILE41l_Chl 1/26/95 9:35 PH Page 7 $

& Flla Edit Font Styls InitialRevlew DBecompose Compose Debug FinelReview

T

; d Daslgn Notebook = HiE]' .
B Clkfoviiipam 4
@w Table of Contents San
Project THist Falling Chjects

k /‘
s
/
s "/;
- apm
= =
> g
.
(.’
b=
/—."
e s
3
o
o
‘{—;
. Fipwt
°> W
L
. Vg
-

Figure 1. Emile as it appears after creating a new project.

with the activities in each stage appear
under the menu-named for that stage. For
example, the operation to create a new
planning articulation page appears in the
Initial Review menu, to correspond to the
planning activity associated with the ini-

program. Each of these graphical objects
can be clicked down upon (using the
mouse cursor), dragged to the top of the
screen, and released—after which the
object falls as if it were attracted by grav-

ity.

—h—

tial review stage. o The fields in the upper right corner hold
text and numeric data: Labels for the
fields, the values for the objects’ vertical
position on the screen, velocity, and sim-
ulation time. Each field in the Project
Window also has a page in the Design

° The graphical objects Positive Gravity, ; ihes i
Weaker Gravity, Compare Buttons, and ?ﬁ;ek?:}?;}g? ich describes its appearance

Clear Graphics are all dutfons which can .

be clicked on to generate program behav- .

ior, For example, clicking on Clear Graph- 2.2 Software-Realized Scaffolding
ics clears the screen of the small circles in Emile

which are used to trace the trail of the

buttons Positive Gravity and Weaker Grav- Emile is unique in the depth and breadth of

ity. Each button has a page to itself in the < - :)
Design Notebook defining its appearance Zﬁoldmg it provides to theAprogrammmg stu

and behavior.

° Positive Gravity and Weaker Gravity are
the focus of the model building in this

Figure 2 is a screenshot of a Project Window
depicting a sample of the kind of program that a
student might create with Emile.

e The full range of scaffolding (communi-
cating process, coaching, and eliciting

Software-Realized Scaffolding 7

——

ILE41_Chl 1/26/95 9135 PH Page 8

——

B e e e e

O O O 000
O O 00000

&

(Positive Gf(Weeaker Braultgj

Velocity

Tims

Claar Oraphies

Figure 2. A Project Window for a project named “Falling Objects.”

articulation) is all provided. There are
other programming environments which
perform some of these roles (e.g., Boxer
structures and presents a mode] of com-
putation; diSessa, 1985; diSessa, 1991;
and the LISP Tutor coaches students
through a process; Anderson et al., 1989),
but few provide all three.

o Fading of scaffolding is supported. Fading
is difficult to provide because it means
creating multiple interface paths to mul-
tiple functionality. Although some pro-
gramming environments have support
which can be turned on or off (e.g., the
LISP Tutor could have advice on dernand
rather than immediate), few implement
multiple levels of adaptation.

The goal of the scaffolding is to facilitate
learning and performance. In particular, Emile
addresses the three critical problems that stu-
dents have with programming:

1. Assembling programs is hard,

2. syntax is complex, and

3. students lack understanding of the com-
putational process.

The following subsections present each type
of software-realized scaffolding in Emile and fad-
ing of that scaffolding. Table 2 summarizes the
software-realized scaffolding in Emile.

2.2.1 Communicating Process. Com-
municating process, as described previously, has
two parts to it:

1. Structuring (often simplifying) the
process that the student will be perform-
ing, and

2. presenting that process to the student.

STRUCTURING: The process that is being
communicated with Emile’s scaffolding is pro-
gramming for model building: Creating models
in a computer-understandable language of phys-
ical phenomena and testing the models through
simulations. Specifically, Emile supports the cre-
ation of models with graphical representations,
which has become the de facto standard in mod-
eling and simulation (Earnshaw & Wiseman,
1992; Pidd, 1989; Tinker, 1990). In creating
Emile, I defined both specific macro and micro
definitions of this process which structured the
students’ activity, then developed presentation
mechanisms to commuhicate the defined
process.

The macro process supported in Emile is
based on the models of Polya, Adelson, Spohrer,
Hestenes, and others. Most directly, the macro

‘process is based on a process supported success-

fully by another scaffolded programming envi-
ronment, GPCeditor (Guzdial et al, 1992,
Hohmann et al.,, 1992; Soloway et al.,, 1993).
Emile extends the macro process supported in

Mark Guzdial

—h—

ILE41l_Chl 1/28/95 9:36 PH Page 9

GPCeditor with explicit stages for reflection. The
stages in Emile’s supported macro process are:

o Initial Review: Students in this stage
undertake activities to help understand
the problem and plan their future activity.
Initial Review is expected to take place
both at the beginning of a project and at
the beginning of a model-building session.
Initial Review is analogous to Polya’s
(1957) “understanding the problem” stage.

o Decomposition: Students in this stage
determine their program goals and choose
or create components to achieve those
goals. Decomposition is analogous to
Spohrer's (1989) Generate phase.

e Composition: Students in this stage
assemble components into executable
models. Composition is defined as an
explicit stage of program generation in
both GPCeditor and Emile because of the
difficulties students have in composition
activities (Spohrer & Soloway, 1985).

° Debugging: Students in this stage test
their models as simulations. Debugging is
an important stage in many different
models of problem solving, model build-
ing, and programming because of its role
in providing feedback to the student. If
debugging leads to an impasse which
forces successful reconsideration of the
model (and continued work at the Decom-
position or Composition stage), we expect
students to learn (Spohrer, 1989).

° Final Review: Students in this stage
review their model-building activity—sav-
ing pieces for later reuse or noting reflec-
tions in a journal. Final Review is analo-

Table 2. Software-Realized Scaffolding in Emile

——

gous to Polya’s (1957) “looking back”
stage, .

Within each of these macro process stages
are micro process activities. Some of the micro
activities are articulation activities which are
described in a later subsection. Most of the
micro activities are programming activities. The
metaphors and programming structures present-
ed in Emile simplify the activity of programming
to make it easier to define for the students the
process they are to follow in model building with
Emile.

There are many programming structures for
manipulating graphical elements—none of
which are particularly easy to program (see Lee,
1993, for a review of graphical user interface
programming structures and environments).
Apple’s HyperCard has one of the simplest struc-
tures for programming with graphical objects
(Goodman, 1977; Nielsen, Frehr, & Nymand,
1991), though it is still not simple enough for
students to readily program something as comn-
plicated as a model (Ambron & Hooper, 1990;
Decker & Hirshfield, 1990; Lehrer, 1992). The
structure for programming with graphical
objects which has been used in Emile is a sim-
plified form of HyperCard’s structure.

Emile’s programming structure has five
components, which extend from the high-level
groups and goals which organize components
into related modules, through butfons and fields,
which provide the graphical representations in
the model, finally to actions, which define the
low-level details of the simulation.

o Groups and goals collect and relate other
components. Thus, groups and goals serve

Macro Level Micro Level

Communicating Process

Structuring/Simplifying » Design stages * Actions and slots
* Goals and groups
Presenting * Design Stage pages * Menu items
: * Menu names e Library
» Representations
» Design Notebook
Coaching * Stage prompting * Top-down design enforcement
Eliciting Articulation * Project Descriptions * Naming
° Plans
* Goals
s Predictions
« Journals

Software-Realized Scaffolding

—dh—

ILE41_Chl 1/26/95 9:36 P Page 10

) é Flle Edlt Font Style

as the modularization structures in Emile,
and modularization can be an important
tool in simplifying programming (Parnas,
1972). Students create a goal to define an
objective: a statement of intent. A group
can encapsulate lower-level components:
buttons, fields, actions, and also goals.
Components are /inked to a group to iden-
tify relations. A group can be associated
with a goal by matching the group and
goal. Because a group can also contain a
goal (which in turn can be matched to
another group), a hierarchy of goals and
groups and subgoals and subgroups can
be created to reflect the program struc-
ture. Activities on groups and goals are:
— Composing and uncomposing an
entire group of components.
— Linking and unlinking a component
from a group.
— Declaring a match or removing a
match between a goal and a group.
— Creating new groups or goals.

—p—

lnltlameulew Uecumposatompose Debu

Deslgn Notebook | Ee——=====x——nrT

e Buttons and fields are the graphical

objects in Emile, which normally appear
in the Project Window but are defined in
the Design Notebook. Buttons are graphi-
cal entities which can be programmed to
respond to mouse clicks. Fields are graph-
ical entities into which text can be
entered or displayed. When a button is
programmed to execute some action, it is
said to have a behavior which is created
from one or more actions. A behavior is
executed upon receipt of a user-initiated
trigger event—by default, a mouse click
(a mouseup event, in the terminology of
HyperCard which Emile inherited). Activ-
ities on buttons and fields are:
~ Tailoring the graphical appearance of
the button or field (e.g., changmg the
shape of a field, specifying an icon for
a button, changing the position or
size of a fleld or button).
— Compose and uncompose a button or
field from the Project Window.

FinalRevlew

. Table of Contants

2 Q. ©

f_\ctin Accelerated Motion 1

Group Pesitivs Acceleration

> O What It does O How It works Users
< Positlve Gravi ey
1y Companents ' 7 L rars 215
4 - thatuse on
ity 44
. {number for start locetion} In line 1
72 Sotsand <Velus for where the cb munmg bntal |15
thelr {number for starting velodty} in lins iil ity
Deserd <Valus for the veledty the object has at tha gtart> i
P Pdcns (numberfnr &c‘elemﬂth) inlinsd4 - ntal 186
s Actlon cods on
= rt {xxady for st Joestion) indo Joseioa . 2
® {pader for Awthe wiorky) fo == IR
rl)uk Wb thasal to 999 e
o | B for podkintion) to wicdy
Bl £l wioaky to loeion . .
P |l rmpe “ . ing Yert | -40
- 1ty
|set

&5, Ceated 7/31/72 by MarkGuzdial in project Geavity Simalation

Figure 3. An action that implements the computation of position and velocity for accelerated motion.

10

Mark Guzdial

ILB4l_Chl 1/26/95 9336 PH Page 11

— Creating new and copying buttons or
fields.

o Actions are the lowest level of abstrac-
tionl An action is one or more program-
ming statement (in the programming lan-
guage HyperTalk) collected to achieve a
particular purpose. Figure 3 shows an
action, Accelerated Motion, which imple-
ments the computation of velocity and
position for an object freely falling. An
action can have certain expressions iden-
tified as tailorable through a mechanism
known as slofs. A slot is a named expres-
sion position which is filled by the student
at the time of use. For example, in Figure
3, a slot named number for acceleraiion
will be filled with an expression (e.g., a
constant, a reference to a field) which will
specify the acceleration due to gravity for
the model. Slots are not unlike terminal
holders in structure editors (e.g., Garlan
& Miller, 1984), but in Emile, only those
holders that are semantically significant
for the action are fillable slots (e.g., if an
indexed loop in an action always starts at
1, no slot will be defined for starting value
on that loop—the action will simply con-
tain the constant 1). Activities which can
be performed on actions are:

— Composing and uncomposing an
action from its use in a given button’s
behavior.

— Positioning an action within a pro-
gramyy to create an order which
achieves a particular goal. Positioning
actions will require users to read and
understand the semantics of program
components,

— Emptying a slot of its current value
and filling a slot with a new value.
Filling slots will require users to read
and understand slots in the context of
their actions in order to achieve the

users’ objectives. (Slots that are filled

may also be queried to retrieve their

20ne might imagine a level of abstraction
between buttons and actions where the domnain-ori-
ented name of an action and its slots are visible, but
the HyperTalk code itself is invisible. This would be a
welcome addition which could further insulate the
model builder from unnecessary programming details.

3 In the version of Emile described here and used
in this study, the positioning operations are cut-and-
paste actions. In future versions, actions will be posi-
tioned by dragging and dropping.

Software-Realized Scaffolding

—p—

original slot name without emptying
the slot.)

— When scaffolding fades, students can
create new actions and new slots and
also compose actions into fields, but
not at first.

To describe how Emile simplifies program-
ming activity, I compare Emile to HyperCard
(which is already a simplification of more tradi-
tional programming). The structure in Emile is
based on the programming structure provided
in HyperCard. HyperCard provides more flexibil-
ity, but does so through additional levels of
complexity and without modularity mecha-
nisms:

° HyperCard lacks a structure like groups
and goals for relating similar components
and manipulating them as a set. Instead,
it provides a visual encapsulation sys-
tem——all buttons and fields visible at once
on the screen are assumed to be related
and can be manipulated as a set by copy-
ing or pasting the card or background
which encapsulates the elements, Hyper-
Card’s structure does not allow for hierar-
chical decomposition to define lower level
relations and reduce complexity (Parnas,
1972).

e HyperCard also uses its encapsulation
mechanism to define an inheritance
mechanism where functionality for low-
level components (buttons and fields) can
be defined in encapsulating components
(cards "or backgrounds). Although inheri-
tance reduces complexity for building
large systemns, Emile does not support
inheritance because of the added com-
plexity it adds to understanding models
(Kay, 1993).

o Each button and field in HyperTalk can
respond to a large number of user events
or messages {e.d., mouse movement over
a button vs. a press of a mouse button vs.
a release of a mouse button) and any
number of programmer-defined messages.
Emile only allows a limited number of
events to be handled by a button or field
and no programmer-defined messages. In
fact, in the default scaffolding, only but-
tons can respond to messages and only
the message corresponding to a mouse-
button click.

e Programs in HyperCard are written in
HyperTalk, a procedural programming

11

—h—

ILR41_Chl 1/26/95 9136 PH Page 12

language with a phrase-oriented (e.g.,
wordy) grammar (Goodman, 1977;
Nielsen et al., 1991). Although such a lan-
guage is terrific for providing an easily
readable format, the large amount to be
entered for basic functionality requires a
lot of syntax to be learned and provides
ample opportunity for syntactic errors.
Emile does not require students o enter
HyperTalk (though it does permit it)—
instead, students can assemble and tailor
existing actions (which are written in
HyperTalk).

Thus, the process structure that Emile com-
municates to the student is much simpler than
in traditional programming. Specifically, the
process structure helps in addressing the three
critical problems of student programming iden-
tified earlier: (The coaching and eliciting articu-
lation scaffolding also helps to support this
structure and addresses these problems.)

o Assemnbling programs is hard, but placing
graphical objects on the screen, compos-
ing and ordering actions, and filling slots
are much more straightforward. Certainly,
some programming problems are still pre-
sent (e.g., how do I get a button to move
horizontally while falling?), but those are
the problems that we want students to
face—these problems are model-building
issues that are reflexive with program-
ming issues.

e Syntax is complex, but Emile makes syn-
tax relevant only for reading because the
syntax is embedded in actions and actions
can only be manipulated in specific ways.
Students must understand the syntax in
order to use them effectively, but they
don't need to be able to generate those
actions. The wordiness of HyperTalk then
becomes an asset rather than a liability,
because the extra words seem to aid in
readability (Nielsen et al., 1991).

e A computational process is made explicit
through the notions of triggers and
behaviors. It is an impoverished process
compared to HyperCard’s, however the

reduced computational process might ¥

be considered a benefit to understand-
ability and approachability (Fischer et al.,
1978).

PRESENTATION: Given the structure
described above, the ‘next piece of communicat-

12

——

ing process is to present that structure. Emile
uses a variety of interface strategies to present
the process structure. The goal of these strate-
gies is to perform the same task of a good
teacher: to communicate what is to be done and
to provide examples of how to do it.

The macro-level process in Emile is present-
ed through the menu system and the Design
Notebook Design Stage pages. Figure 4 shows an
example Design Stage page with the menu bar
appearing across the top of the figure.

° The menu bar lists the design stages
defined earlier, listed in the order in
which one would expect them to be used:
Initial Review, Decompose, Compose,
Debug, and Final Review. The menu bar
serves as a constant presentation of the
process structure defined for Emile.

o For each of the design stages, there is a
Design Stage page which is available in
every Design Notebook. The Design Stage
page describes the stage, identifies the
kind of actions which collect under that
stage, and defines each action.

Micro-level process is presented through
four components:

e The menu system, which clusters the
available activities into groups corre-
sponding to macro-level design stages.

o The Library, for providing example pro-
gram objects.

o The representations of objects and rela-
tionships between them.

o The Design Notebook, for organizing
components, tools (including representa-
tions), and prompts and articulations.

The activities associated with each macro-
level process stage appear under the menu
named for the process stage. As can be seen in
Figure 4, the menu under Decompose lists those
activities which are associated with the decom-
pose design stage. Figure 5 summarizes all the
menu activities in Emile by presenting all of the
Design Stage menus. The following bullet list
and figures present examples of how each Design

Stage menu might be used in actual use, where

the hypothetical scenario is a student creating a
project in which some objects are subject to a
weaker gravitational field than others (Guzdial,
1993).

Mark Guzdial

—h—

__GP;

ILE41_Chl 1/26/95 9138 PH Page 13 $

&é Flle Edit Font- Styls InltlalRsviow Decompose Compose Debug FinalRaulew

Design Notebaok FOD v il J¥ Recent |
Design Stage IO

Jy

Decompose

the provlam is to define Its pleces: ths goals that
you're trylng to mest, the ps of gcals, buttons, fields, and
actionsyou'll uss, and the and matches batween them,

Nsa&\:alcmatuanaw,blankg:ﬂ

New creaies & nsw, blank .
A Ecm collectan of cnmpcnmm‘tlzp
and goals,

New Battom crsates o new bution.

PR

Dapticaia Compenmt New Fzld crpates e new feld,

S
R

New Actlon creates a new action plan, if §
o Prary P
Cony th Hem ook your scatalding level sllows it.

Retara to Notebank

Du;:ﬁmhr:mnﬁnﬂm u create
Liak te Brogp anotheref the afdedg

Uslink frem Grom compeonent page you'rs on (goal, group, §
buttan, fleld, ereciien), This is useful
Mrimtoh Baxd when you want, say, a bution just liks
this one, but & littls different.

O?m I.ﬂraxyc;:erf thflyxﬂ I.jbmry

ey

oy
Ht

Chogosa Project Description New Goal Campose ObJects

Croats New Project Description New Sroup Uncomposze Ohjects

Make Plans New Buttan . Composa Action
New Fleld Uncomposa Retion
New Actlon

Start Talloring &7
Buplicate Componsant End Talloring
Show Taals...

Open Library Shaw Patteims...
Copy to Notebook
Rsturn to Natebook Cut Lins
Paste Line
- Link tg Group
Unlink from Group Cut Actlon
Paste Actlon
Match Goal
Unmatch Goal New Slot ~- 8L

Ramouse Slot &R

uy

" . Query Slot #su
New Prediction Maokos Journal Entry FUll Slot %F
Start Testing &S EdIt Inden Pheasas Empty Slot XE
End Testing Gensrate New Index
Trace Tast
Trace Speed... Open Library

Copy to Library
Raturn to Nolebook.

Figure 5. Emile’s Design Stage menus.

Software-Realized Scaffolding

—

ILE41_Chl 1/26/95 9:38 PH Page 14 $

o Initial Review: The initial review stage is
defining a Project Description (either
starting with one from a set of examples
or creating a new one from scratch) and
making plans. When a students selects the
Make Plans menu item, a new page in the
Design Notebook is created with prompts
for daily plans (Figure 6).

e Decornposition: The decomposition stage
is the set of activities to create new pro-
gram objects, duplicate objects, copy
objects from the Library of objects
(described below), and link groups, and
match goals. Students are expected to
define goals (see example in Figure 7),
define groups, then match the group to a
goal (Figure 8) and link related compo-
nents to the group.

e Composifion: The composition stage is
when students assemble the complete
project: composing buttons, fields, or
complete groups (Figure 9) onto the
Project Window; composing actions into
buttons; tailoring the appearance of but-
tons and fields (Figures 10 and 11); and
filling and emptying slots (Figures 12
and 13),

o Debugging: The debugging stage consists
of the activities making a prediction, test-
ing the program (Figure 14), and analyz-
ing the program by tracing it and slowing

o Final Review: The final review stage is
where students create a journal entry
(Figure 15), generate an index for the
Design Notebook to aid future readers,
and copy particularly useful components
into the student’s Library.

The Library is a key component of the
micro-level process. The Library appears as a
Design Notebook without the "articulation and
design tools pages (Figure 16). It provides com-
plete, useful groups and program components
(buttons, fields, and actions}—over 100 entries.
Table 3 lists the components in the basic Emile
library. These components range over the
domains of physics and multimedia and include
both high- and low-level (i.e., more abstract vs.
closer to the domain) components such as:

o The action Accelerated Motion, which
computes the velocity and location of a
freely falling object.

14

o The action Play a QT in Window, which

plays an Apple QuickTime™ format digi-
tal video in a floating window.

The actions Test for Equality and Test for
Greater-Than, which are conditional
statemments (If-Then-Else) with the corre-
sponding relational tests built-in to the
action.

The buttons Positive Gravity and Drop-
pable Object, which each simulate one-
dimensional projectile motion by falling
down the screen with acceleration. Pasi-
tive Gravity has its behavior defined with
high-level actions such as Accelerated
Motion, whereas Droppable Object's
behavior is defined with mare low-level
actions such as Repeat Up a Range (an
indexed repeat loop).

The group Gravity Simulation, which
includes Positive Gravity; the fields Veloc-
ity, Position, and Time; and all the associ-
ated actions. To construct a one-dimen-
sional projectile motion simulation,
students need only copy the Gravity Sim-
ulation group, compose it, and test it.
Because the group actually consists of all
the component program objects, students
may then tailor and add to the simulation
to get the desired functionality.

The library serves three important func-
it down. tions:

1. It serves as a starting place. By providing

already existing objects for use and tai-
loring by students, Emile reduces the
number of micro-level activities required
to create a simulation and thus reduces
complexity. As is seen in a later section,
students did use the Library frequently to
start their projects.

. It serves as a demonstration or presenta-

tion of model components. The Library
components are examples {or cases) of
working, useful elements. At one point
during the evaluation workshop for
Emile, a student kept both his Library
and his Design Notebook windows open
at once and compared them back and
forth to see if the programs he was writ-
ing were like those in the Library.

. Students can (and do, occasionally) save

out to the Library particularly useful
components for later reuse in a future
project.

Mark Guzdial

—h—

ILE41_Chl 1/26/95 9:39 P Page 15 $

@ Fllo Edit Fonl Styla talllemiens Bobug FinslRevlew
Choosa Project Description o e
Crsata Naw Prajast Description (33 Recent I

h:;- tHhlgen ..{!}

. Project Type:
e e Weksr

Project Description and Suggestions:
In this profect T am golng ta aeals two buttons:

- Tha first cnia falls straight down In poadtive gravity, ks wao saw In the
damonstration, : postiive gravliy

- Tha second falls mors alowly, e 1f 1t wras In weak gravity, Lika on tha
moon. ['m net surs bow I'm going o do thal right now,

Top-lavel goale for this projects

FPlansfor
1415793

List at lsast thres Design Camponents that you will bulld teday:
1. Goals &or the Toslive Cruvity and Weak Gravity butions,

21 35 12 A group for the Woak Gravity Stuff
< mwmkgwirybuﬂmmdmybameuﬂxmﬂutwmmugc

¥hat ideas In Physics will you bs uglng todey?

¥ [That gavity makes thlngs A1l 5 not surs Whal makes ramsatiing Rl
D | slower, o3 L tharo wes week gravity,

" Whatht&ﬁrstth!.ng that you want to do?
> lmlgénuwaﬂmbthatwophlhmb«ihﬁwcnwty&muhdm
grou

Figure 6. Choosing to make a plan from a Projgct Description page (a) and filling in the plan (b).

Software-Realized Scaffolding 15

—h—

ILE41_Chl 1/26/95 9:39 PX Page 16

Goal [Weaker Gravity Demo

1< Tablke of Contents Crou (Unlinbd)
. @ :> P
‘ Match (Unmatched)
? What part of the problem does this goal mest?

? A dsmonstratlon of weaksr gravily, too, 1L L &l slower,

{3 Describe two ways to match this goal, Why did you chooss this cns?

3 |1 could stert from ecratch with & Droppebls Obfects button, 1 guess, but Il
5 l]u:l duplicaie the Posltive Gravity button end use that,

G2 Coaateld 171573 by Am in prcoct Falling Chicts

Figure 7. Example goal filled in.

The programming objects used in Emile are
navigated, described, and manipulated using a
variety of representations. The representations
provide ancther presentation of the program
structure for students, Three representations are
particularly important:

o Table of Contents: The Design Notebook

and Library each begin with a hierarchical

list of each of the pages in the Notebook
(e.g., Figure 1). All pages in the Notebook

are listed: from Plans and Project Descrip- .

tions, to Buttons and Actions. Pages are
listed one-per-line of the list, with groups
(such as “Design Stages” or “Buttons”)
indicated with indentation. Clicking on
any line opens that page in the book.
(Only one page can be visible at once.)

e Project Chart: For each component in a
project, a corresponding icon is created
on the graphical Project Chart (Figure
17). The icon is named with the name of
the component. Icons on the Project
Chart can be organized in any way desired

16

by the student. Decomposition (match
and link relationships) or composition
(composed-within relationships) can be
overlaid as arcs on the icons. Students
can usé the Project Chart both to have
presented the current structure of their
project or to use the two-dimensional
space to create their own structure.

Individual Component Pages: Each com-
ponent in a project has a page on which
the characteristics of that component are
presented and can be modified. For exam-
ple, Figure 18 shows an example page for
specifying a button's characteristics:

— The name of the button is at the top.
— Below the name is the indication that

the button is currently not linked to

any group.

— The Show Me button causes the but-
ton to flash on the Project Window to
identify its location should the student
somehow lose it (e.g., make it invisi-
ble, or layer it behind).

Mark Guzdial

—h—

——

ILEB41_Chl 1/26/95 9:40 PH Page 17 $

Dabug FlnaiReulsw

New 6oal
New Group

Neuws Button
New Fleld
New Retion

¥ WN:PM&?“ pﬁio;“ uxinshmi?t Buplicate Componant
1t daznonstralas a bution In o weaker paviid
» |Gruvitybutton, I'm not sure how I'llmakel 0pan Library

Ithink weaker gravity meanal Copy to Natsbook
5 Beturn te Notebook

Link to Sroup
Unlink from Group

Components in the group: Unmatch Goal

FinalReuleus

N [
| Clicktevidipage 8
<l

Inltisifeulew Baco

an eb
Group [Weaker Gravity Simulation
g Tebke of Contents

o. Coal (Unmatched)

What doss this group do? How doss it do 17

What Physics concepts aro you using haro?
gdamammunbutmmafe&ergnvmdcmlﬁaldmmthemdﬁw
ot

LTI 3 A4, hdl 2 M .03 PN A S) '8
3 | = hat

Goai ta match ta this plen
Weskar Eravity Simulation

Positive Gruvity Bemo K
Weaker Eravity Deme

(_Cancal }

g Conted ISRy A i gmoject Palling Chiecto

S T

iz

Figure 8. Matchir?é a group to a goal.

Software-Realized Scaffolding

b

—p—

ILE4]_Chl 1/26/95 9:41 PM Page 18 $

com;au iju:u

Compase Actlien
Uncomposs Retlen

o

What does this group do? chdmltdoit? ::t:r‘}':l?lmg KT ;i
’ e < ls 0 pou using herw ghow Yaale...

‘ &“ms‘:gmw&wm L2ve shaw Pattems.

The Phipsics concopis vity causes ecssleration, wl Cut ling
changs for valcdly, whkhb?gmadchangaﬁm'pdﬁnn Pasta Una

Cut Retlon
Pastas 8ctloa

New ot
Remoue Slal

Query Slot
Flil Siat
Empty Stot

y Cizatad VTV Ry Mk Gadial b posjort Geavity Smulatio

Compase G5 jacts

Uncomposa Objacts - 0! Racant FOIE3

AR e

Compuose Betlon
Tah«c-uunu

& o Coal Positive Gravity Damo Uncomposa Retlan
What doss this groupdo? How deesltdolty . ERULLACIIIT
T P T T T T e Shoiv Taots.
ot bt gt nd ol b o AR TR g Pattemmsun
Tha Phyzlcs cancopts ero that gravity causes accelenntion, wl Cut Une
 |changs for veleity, whl:hhgnb of changs for position] Pastas Lids

Cut ficticn
Pasta Rcton

Naew $lot
Remoue Slot

Components in the group:
sutten Stulf

Flelds for Display

Query slot
Ful slot
Empty Slot

S Comated U/TU/R by Mack Greelial bn pocict Grsvity Simdatin

Figure 9. Composing (a) and starting t5 tailor {b) the Gravity Simulaticn group.

18 Mark Guzdial

—h—

—p—

ILE41_Chl 1/25/95 9:42 P Paga 19 $

& Flls Edit Font Style laitislReview Detompoze Compose Debug FinalRevlew
Beslgn Notebook FO

E Group [Gravity Simulation

’jg“ o Ced Positive Gravity Demo

Xz, AL X

= Falling ObJects

[Positive sravity) iPosition

valocity

TTYITTIUY ST T ORIy T

Figure 10. Talloring the Gravity Simulaticn components on the Project Window.

1 Design Notsbook FO
Button[Clear Graphics

AP

o Teblo of Contonts

g3
j: a o Group (Unlinked)

\

Camposed in profect Falling Cojects 7/15/53 858 PM

@ Rppesrance . O Behavlor O How It works
S

Q Transparent O RoundRact

QOU0paqus - O CheckBon Teut Style...

f\

& 'a\

. & showName

: O RutoHliite @ Ractangle (O RadloButton
Uisibla ’ .+ QOshadow

ke Examph
Uss No icon

S Coeatod U15/%0 by Mask G, in pasisct Falling Objacts

Figure 11. Changing the appearance of the Clear Graphics button.

Software-Realized Scaffolding

& Fle Edit Font Style InltlalReview Decompose Compose Dehbug FinalRevlew

18

——

——

ILE41_Chl 1/26/95 9143 PM Page 20

——

& Flle Edit- font Style In!tlaiﬂsulawnaopos

Composs ObJacts
Uncompose Objsects

Group Weakar Gravity Simulation

Compaose fActlon
Uncompose Action

3 Composed In project Falling Cbjects 7/15/9
' O Appesrancea @ Behavlor O How 1

& Mouselp O MousaStiliDown

Start Talloring &7

End Talloring
Shau Tagls...
Show Patfeins...

Triggers O MouseDown O Mouselithin,

Actians for ccelennied Motlan 1
ong Stop increasing i

r |Displaya Valued
this Trigger Displa; & Velue |

Cutllns
Paste Lins

Cut Actlon

» Variables for [2=%s} nyll‘]d.n‘har(rum.wdzﬁhﬁlgy 1
this Trigger M&xﬂi?ivmmwdgh e New ${ot

Pastes fAction

Remoue Slat

o Behavier

Qocsa wnser tool = Clar Ua Graghies, i
o | M Helet AR~ Clawr Ua Grapdies 2
|10t "l PItwn” = Claar tha Grapider,d

oot Jowra toal e Clior U Geaghics 4
3 2% ord Gald "Porkiex” tre Joestion = Asmlanded Mition L1
o 17 0 N0 WIMZY = Assdsrand Motiea 1,2
g, |PRR WED threxl o 999 w daplersted Motion 1.3

odd weloaXy to Joexion, - Accalrrsd Motiea 1.5
P tima ino ¢ " = DinplhyaValum 1,1
I lnaatian fua 23 (U Pueiriaw™ oo THolew g Tyitee 18

9 [3% U oy of gyl Ytop ~Veaker Gy v fato pad [“PorRion”

bl PN n oA to wloaty = Assdlerattd Motioa §,4

- Bavg T

] Cassted 7/31/$2Vy bark Gusdial in pacject Gravity Simala ten

Figure 12. Filling the acceleration slot on the button Weaker Gravity.

— The student can modify the appear-
ance of the button by choosing the
Appearance view of the page (Figure
11). In Figure 18, the Behavior view is
selected. The student can also choose
the How it Works view for a descrip-
tion of the button.

— The middle of the page shows that the
MouseUp trigger is currently selected.

— The MouseUp behavior is seen at the
bottom of the button’s page. This is
the same behavior as in the Positive
Gravity, but references to the Positive
Gravity button are changed to refer-
ences to the Weaker Gravity button.
Each line is marked with the action to
which it belongs and the line number
within that action. Underlined expres-
sions are slots.

— The actions and variables in the
behavior are listed above the behavior.

Finally, the Design Notebook is the

metaphor for presenting the structure of the
entire Emile project. The Design Notebook helps

20

in resolving the problem of how to handle the
complexity of so many supporting features. The
metaphor of a Notebook is enhanced with a spi-
ral-binding graphic on each page, a Table of Con-
tents, and an Index page. All the prompts for
artxculatxon representahonsVde&gn stage pre-
sentations, and components in Emile appear as
pages in the Design Notebook. Only one page
can be visible at any time. Several navigation

methods are available for moving between pages:

o Clicking on the name of a page in the
Table of Contents turns to that page.

e Each page of the Notebook contains but-
tons for turning forward or backward a
page or for jumping to the Table of Con-
tents.

o The Recent List is a floating window
showing the most recently visited pages.
Clicking on any name in the list turns to
that page.

4 The larger size of the Project Chart is explained
as a “fold-out” page.

Mark Guzdial

B N

—p—

ILZ41 _Chl 1/26/95 10:00 P Page 21 $

S fie GdM fant

8{yle IniMlalReuview Bacomposza {ompoza Dedbug FlnaiReview

Dssign Notebook.Fa

Button/Weaker Gravity

? 72;“ N Group Weaker Gravity Simulation
' Comaposed in project Falling Objects 7/15/%3 46 PM -
O Rppearanca @ Behavlor QO How It works
@ Mousslp O MousastliiDown MoussEater
Triggars O Mousebown O Mousallithin O Mouselaaua

Actionsfor [Stop insreasingy
i tVduSM : "

Displaye Velus §

:&B‘&:}’:’ﬁ:’*‘“ umﬂxgu =

Chooge a source for the number:

{((vertabie] (__flaid] § Number, |

¥

d Cseated 1/T1/52 iy Matk Guadinl n pject Goawity Somadafim

R

& Fflle Edit Font $iyle

\nl\lameulew Decomposs tompo:a Debug)‘(nn(kwlew

asign ntebonk Fa

Button|Weaker Gravity

Group Y¥saksr Gravity Stmulation
2 2 (ShowMe) Camposed in projoct Felling Cojects 7/15/%3 445 PM

QO RAppearancs & Behsulor O How it works
& MoussUp O MousastiiiDown O MoussEnter
Triggsrs () Mousabowa O Mousallithin O Mouselasus

Acczlented Mollan T
Stop increasing 1
Displaya Valus {
Cisplaya Value i

& Valin rrwardes $o displa
muy 1) mﬁa d Enter number to il slot

walecity, Displays vmmhw 1 {number for sccelsration)
[d - |
~Bemep ol Loy J (Ccancer]

mmb—xum Ml&cﬁsu '
W Ry = Akt Hatdsa L4

aﬂnbayab:tn w doakraed Motk 1,3

nmmmmm:. mu-vmu

Figure 13. Choosing a t?/ype and a value for a slot.

Software-Realized Scaffolding

21

SP.

ILE41_Chl 1/26/95 10302 PK¥ Page 22 $

22

$tyle inltielRevlew Dscompose Compose

@ Flls Edit Foni

Design Notebook FO
: Prediction at
 Teblo of Contants 4,39 PM 7/15/93

@ ©
What wre you locking for in this tast? What ars you golng to test?

Tha Weaker Gravity should Rll much slower now since tha velod <
wan't Always be Increasing like it did In the Pesitive Gravity Butten N

RESULTS

If it didn't work the way you expected, whers do you think the probler 1s?
1. Preblom with the dacomposition or compoddtion of compenant?
2. Problem with the Phrpeles?

e Y

Jowrnal for

Teble of Contents 7127193

Write what happened today as {f it were & letter to a grandmaother:

%« [Troade a buticn today that &l but slower than In real gravity. AtBrut[sel [0
o |the accalaration to zaro, but thal really wasn't right, Accelenslionatesro © |

. meﬁlllngum.So[madca::ﬂendansuﬂlehigcrfmlnc‘lubig

a . Then my ebject f2ll, but slowly, -

<l

What did you £&cus on the most teday: Design In generl, Emils, er Physics?
Summarizs in ona sentsnce what you learned shout that: .

lﬁm-m&ﬁng fn.lling bas szcelerstlen, "

&

<l

‘What ars the blggsst problem you're working an now?

What are you gaing to do about it?

, |1 thought that Alling had 10 do with gravity and moving down, Butit locks [0

T |UXxo it hes to do with sccalanation, Maybe gravity and sccelanation are -
, |connected somahow. 'l havets uksamecas(?

Figure 15. Journal entry for hypothetical session.

Mark Guzdial

—

ILB41_Chl 1/26/95 10:03 P Page 23

—&—

" & Flue EdIt Font styla InitislReulew Decompose Lompose Debug FinslReulew

Dasign Notebook FO
24 Plan Library B2

71
)

(74 Recent
1o wint pa

Table of Contents
Plan Library

SUPPORT TCXLS

Indaz

Coals
Actlong to do Tests
Actlons to do Tests 2
Buttan Stuff
Fialds for Displsy

ects to Test

Provide Addition
Wo need to sdd 2 varlables

Actlons to Copy & Name .
Corabina path and fils o -
SR
Pind a file
Get length of feld
Get lins of text

tuparangs

Basic Five Math Buticns
Additan R
Dividon
Do Division
Do Multl Hen
Da Subtrn:ﬂnpnmn
Multiplicaton
Pravide Addition
Reciprocal

N Y T Y Y Y Y Y Y Y Y Y Y

[ESIGN COMPIANENTS s

Tl
Prcject Chast

4

et 0 e el ST AR

39 I

SEana

K73 T o T 1

2t
ol

Figure 16. Basic Emile component library.

e Students can jump to the page for the
selected component icon from the Project
Chart.

2.2.2 Coaching. Coaching is the support
provided while the student works through a
process, in response to the student’s actions.
Coaching in Emile serves to remind students of
the macro-level process for Emile (i.e., design
stages) and the micro-level process for Emile
{specifically, the use of goals and groups). Two
kinds of coaching are implemented in Emile:

o Stage prompting: When a student ﬁrsté/
starts Emile, the five process stage menus
are all disabled. To enable a menu, the
student must visit the corresponding page
in the Design Notebook which describes
the stage, the menu, and the operations
on that menu and in that stage. This¥
coaching forces students to be reminded

5 Stage prompting is usually the first scaffolding
that students fade, so it is usually only new students
who are using stage prompting.

Software-Realized Scaffolding

of the definition and activities in the
macro-level stage before activity can be
selected from that stage.

o Top-down design enforcement: Some
research in programming suggests that
students will learn to program better
using a top-down -design methodology,
where students must articulate a purpose
for a component before defining a compo-
nent, and then move on to define the sub-
components in a sequence of articula-
tions-then-mechanisms (Jeffries et al.,
1981; Soloway, 1986). Emile provides
enforcement of top-down design by pre-
venting students «from manipulating
actions until all components have purpos-
es (goals) associated with them (i.e.,
linked to groups that all components
belong to).

There are other kinds of coaching support

“which have been described in the literature on

human-computer interfaces and on educational
technology. For example, critics would have been
a useful addition to Emile, not only to critique

23

ILR41l_Chl 1/286/95 10103 PH Page 24

—$—

" Table 3. Table of Contents in Basic Emile Library

Goals
Actions to do Tests
Actions to do Tests 2
Button Stuff
Fields for Display
Objects to Test
Provide Addition
We need to add 2 variables
Groups
Actions to Copy & Name
Basic Five Math Buttons
demonstrating drawing ovals
Do Addition w/asking
Fields to test
File Actions
File Actions 2
Gravity Simulation
Image Buttons
Multimedia Buttons
Pick from noun and verb fields
Pos/V/T/Labels
Positive Acceleration
SCSI Actions
Three multi-line tests
Three Test Buttons
Three Test Buttons 2
Tools for Sampling Keyboard
Tools for Simulating Velocity
Trignometric Functions
visual effects group
Fields
A Noun Phrase
A Verb Phrase
Current Visual Effect
File List
First
Labels
Noun Phrases
Position
Second
Sentence
Time
Velocity
Verb Phrasss
Buttons
A Droppeable Object
Addition
CD Stop
Clear Screen
Division
Do Demo
Draw Ovals
File Button
First < Second
First < Second 2
First = Second
First > Second
Generate Random Sentence
Graphiclmage
Multiplicaiton
Picture Show
Play one Track

Play Scale
Play Sound
Play Video
Positive Gravity
QuickTime On-Screen
QuickTime Window
Reciprocal
Record Sound
Rocket
Stop Video
Subtraction
VideoSequence
Visual Effects

Actlons
Accelerated Motion
Accelerated Motion 1
Add to Field
Ask the user for Something
Ask the user for Track
Clear the Field
Clear the Graphics
Clear the Whole Screen
Clear the Whola Screan 2
Combine path the file
Combine two pieces of text
Convert X to HC
Convert Y to HC
Copy a file
Display a Value
Display a Value 1
Dissolve effect
Do a bunch of ovals
Do Addition
Do Division
Do Multiplication
Do Subtraction
Drag-and-Drop
Drag-and-Drop 1
Draw a Line
Draw a line with 2 points
Draw a rectangle
Draw an Oval
Draw an X Axis
Draw an Y Axis
Find a file
Find SCSI Info
Get & random number
Get contents of folder
Get contents of folder 2
Get e~power
Get File Creation Date
Get File Type
Get length of field
Get fine of tékt
Get name of SCS! drive
Gst path to folder
Get SCSI Number for drive
Get the arctangent
Get the cosine
Get the first number
Get the natural log
Get the Power

Get the sacond number
Get the sine

Get the square root
Grab a random Noun Pharasa
Grab a random Verb Phrase
Hide an object
Increment Value
Increment Value 1

Iris close effect

Iris Open Effect

Iris Open Effect 2

Leave the Repeat

List SyQuaest Drives

Play a CD track

Play a QT in Window
Play a Sound

Play a videodisc segment
Play a videodisc segment 2
Play QT on-screen

Play some notas

Put words into field
Record a Sound from Mic
Repeat down a range
Repeat up a range
Repeat up a range 2
Save the left of button
Save the left of button 1
Save the location

Save Top of Object

Save Top of Object 1
Save Top of Object 2

Say Something

Sst the bottom

Set the left of button

Set the left of button 1
Set top of object

Set top of object 1

Set top of object 2

Show a graphic

Show a movie

Show a Picture

Show an object

Shrink to center effect
Sound a beep

Stop increasing

Stop increasing 1

Stop a CD

Stop Videodisc

Store a8 number to a field
Tell the usar something
Tell the user something 2
Tell the user something 3
Test for equality

Test for greater-than

Test for greater-than 2
Test for less-than

Test far less-than 2

Trace with dots

Truncate to integer

Wait a little

Wipe left effect

24

Mark Guzdial

—h—

ILE41_Chl 1/26/95 10:04 PH Page 25

*dnoJB uonenuig AllAein yum Ley) 1afosd -zL aanBig

FSUR0W pRRIROSDY popdedD ol ANHD) Sy doyg

vopepag g figaesg Jeopo s

330123 O

Q@ o

oyseyso) gy

=]

04 joaqo)oN ullisog e} g) 9 i s s o b ged o PN AR LT, L s 444, Jrimt e 0t

00 Ser e et ot 42 e,-fab.!ﬁﬂ»;!iﬂ.ﬁ.—ﬂ EM-SW

majasyoul Onqeg msodwoel osodwoasg mejasyppiul eifjs ol jipl ol S

b

25

Software-Realized Scaffolding

—p—

ILE41_Chl 1/26/95 10105 PH Page 26 $,

" & Flls Edit Font Style lnltlameuiew Decomposs Compose Debug FinalRoulaw

S = J3 Recent
‘ xR st
ravity
ol tenty
Tg“ N Group (Unlinked) Poject
Compossd In project Falling Cbjects 7/15/93 446 PM
O Rppearance Bahavlor QO How It warks

& Mouselp O MousestiliDown QO MousskEnter
Triggers O Mousebown O Mousslithin O Moussleaus
Accelenitad Motion {
Actdons for [Stop i.\'u:rt-«a.d.ng‘l1
this Tri Displaya Value
Bg=r Ditg{c;a Valued

I

displayfid
Vit [T 5
ﬁﬂsTx’igger walscityDisplaya Valuainumbar to displayhil |
o

Bshavior

¥ U 1oy of sl dwiton TVl Gavdy” dxto e [l "Porkion”
adoc trsar ool w Claar Lhe Graglhiss, i

Sod%aax “Balet A — Claar tha Geapiis 2
Sodhug "Cliar Pltun® o Claer U Gragdies,3
ket Jrowse 001 - Char Ua Grapddis,g
72 43 il “Poriionl izto bestion - Asealerntsd Mction 1,1
¥t 0 o wloclty = Asedlarated Motion 1,2
rgest whl Unesl 1o 899~ Aesaleniad Motea 13

0l 2 0 moaly - Assdaratel Kotloa §,4

sl wlodty (0 kool — besclaratad Motioa 15

e tag o e Gl Tz, -DlnleVW“

Craated 3/ by Mask Goedial in Inapd&sni’nym.hLm

- fave Toy £ Obhat 1,1

Figure 18. Example button page.

the students’ developing designs (Fischer et al.,
1990) but also to coach them through adapta-
tion of the scaffolding (described later in the
section on fading). However, critics can be
expensive to implement on several measures
(e.g., computational processing cost, the
requirement for a more elaborated process
description, and the requirement for software to
analyze user behavior and compare to the
process description), and I chose to forego that
implementation in Emile.

2.2.3 Eliciting Articulation. Eliciting
articulation is encouraging students to articulate
and reflect on their project and their learning.
Eliciting articulation in Emile has a macro- and
micro-level distinction to it. Macro-level eliciting
articulation consists of the prompts which occur
at specific points in the design process. mele
provides several of these macro prompts:

e Beginning a project: As a student begins
a project, he or she is expected to create a
Project Description which states a proj-
ect’s purpose.

26

© Beginning a session: As a student begins

a new session with Emile, he or she is
expected to create a Plan page (Figure 6b)
which prompts the student to describe
what he or.she is going to do in the given
session.

Before defining components: Before
defining or copying a component, a stu-
dent is expected to define a goal (intro-
duced earlier) which prompts the student
for the purpose of a component and alter-
native ways of achieving the given pur-
pose. ‘

Before testing: Before testing a complete
program, a student {5 expected to create a
Prediction page which prompts the stu-
dent to describe the expected behavior of
the simulation or program.

After testing: After testing, a student is
returned to the prediction page (if one
was created), He or she is shown a list of
user actions (e.g.,, which buttons were
clicked upon) and is prompted to describe
what went wrong and how he or she

Mark Cuzdial

B -

——

ILE41_Chl 1/26/95 10:05 PH Page 27

might correct it if the actual behavior
didn’t meet the prediction.

o Ending a session: Before ending a ses-
sion, a student is expected to create a
Journal page where he or she is prompt-
ed to describe the session’s events, sum-
marize what happened, and make initial
plans for the next session.

The micro-level eliciting articulation con-
sists of the prompts which are pervasive
throughout the model-building process: naming
components. Papert (1980) has emphasized the
importance of naming for student programmers
as a means to connect their understanding with
the computational objects being used to.model
that understanding. For the same reason, stu-
dents must name even primarily graphical
objects such as buttons and fields, besides goals,
groups, and actions. The naming is critical in
helping students understand the role of the com-
ponents, as seen in slot names like Number for
Acceleration and field names such as Velocity
and Time. The act of naming is important, too,
because the names appear so often—in refer-
ences in behaviors, in representations, in the
Project Window, and as Design Notebook page
names. Thus, naming is considered to be an
important elicitation of articulation which influ-
ences low-level activity and is seen as a micro-
level support.

2.2.4 Fading. One of the goals of Emile
is to provide adaptable scaffolding—software-
realized scaffolding that fades. There are two
roles for fading:

1. to support individual students as they
change over time, and

2. to support different students with their
individual strengths and weaknesses.

Not all of Emile’s scaffolding fades, but
much of it does. Emile provides fading in three
ways: '

° Through less use of voluntary supports.
Much of Emile’s scaffolding is not
enforced. For example, students are not
forced to use the library of components,
multiple representations of components,
groups, or articulation and reflection
prompts. This means that students can
choose to use fewer of these prompts as
they develop skills to supplant the scaf-
folding.

Software-Realized Scaffolding

—p—

v

For example, the Library is a voluntary sup-
port: Students do not have to use the
Library. As they develop the skills to create
their own components, they need not use
the Library. Continually revisable software-
realized scaffolding is provided by allowing
Library and student-created components to
co-exist in the same projects. In this way, a
student can choose how much he or she
wishes to rely on the Library components in
projects.

o Through student-selected levels of sup-
ported use, For other scaffolding, fading
occurs through manipulation of the Pref-
erences page in the Design Notebook (Fig-
ure 19). Fading for this scaffolding is not
as gradual as it is for voluntary-use scaf-
folding. Instead, different combinations of
Preferences settings introduce scaffolding
levels.

For example, actions and slots fade in levels.
When students begin using Emile, they are
limited in their manipulation of text pro-
gramming to positioning actions and filling
slots. Students can choose several levels of
manipulation beyond that, some of which
are:

— Students can choose to fill slots with
expressions, which requires some
knowledge of syntax but still provides
extensive support.

— Students can choose to create actions,
but still use composition operations

. for combining actions and for filling
slots.

— Finally, students can directly edit
behaviors.

Use of behaviors in buttons and fields is also
implemented in levels, When students begin
using Emile, they can only create behaviors
for buttons on a mouse-click user event
(trigger).

— Students can also choose to add
behavior to fields.

— Students can also choose to add
behavior to other triggers (e.d., a
behavior to be activated as soon as the
mouse passes over the boundaries of
the button).

An important benefit to Emile’s implemen-
tation of levels is that scaffolding can be
faded or returned at any point. Students
return to greater levels of support by simply
changing back the Preferences page. For

27

—h—

IL®41_Chl 1/26/95 10306 PH Page 28

28

——

$ Flle Edit Font Style InitlelRevisw Detompose Composs Dsbug FinalReview

=28 Design Notebook FO ==

3L1H Recent ||

y Table of Contents

Preferences

{0 visit

¢ od Contants
Weaks: Geavity
Patid

Pcject Chast

below changes your Stasfalding Level that ls, how

“Preferences define how Emile #orks for you, Chan the

trimtnﬂu;pmt
you in the process of design, guux\dm:hmgethn Nevigation Tock

that Emils forbel eround, Chenge themn ourefully, |3
mmﬁ;ﬁmm& ;

ces

NS LW MDELH R
A R T e

> | Brocess Control links menu snabling to pour visitin « Declgn Sags.
S | When on, you can use the menu when you vis Desl :g
. |describing it first, Dis Laltonl:ywbmyauummdwauw st
[Poocess Contal B3 Maltipls Triggus Types
[Requiza Connacted Actions [T Allew Fiald Bahavisz
3 Allow Gaephic Shortauds] Dizectly Edit Bahavicas
B Caeata and Edit Actions [0 Al Typed Bpressions
Navigation Toals:
B3 Recent Visits 0 Comparants
[Chast Contial [Designes's Tools
[Design Stages [Scocll Windsid
4

Figure 19. Preferences page.

example, Emile supports students intermix-
ing actions from the Library with directly
edited statements (Figure 20). Students can
fade the scaffolding in order to directly type
some lines of a behavior, then turn the scaf-
folding for action-oriented editing back on
in order to grab some useful actions from
the Library. Thus, a student can switch back
and forth between actions-oriented behavior
creation (for unfamniliar parts of a behavior)
and directly editing behaviors (for parts that
the student is comfortable with typing
directly). Rogoff says that real scaffolding
often has this characteristic—that it fades
and returns several times during learning
{Rogoff, 1990).

o Through immediate stopping. Some scaf-
folding ends immediately without fading.
Stage prompting and top-down design
enforcement both fade like this: It's either

on or off. One could imagine more flexi- ¥

ble top-down design enforcement. For
example, instead of outright prevention of
composition until top-down decomposi-
tion had occurred, partially faded top-
down design enforcement might suggest

other decomposition operations or
prompt the student for a justification.
However, I did not implement that level of
“flexibility in Emile,

Table 4 summarizes the kinds of fading

implemented in Emile for each category of soft-
ware-realized scaffolding:

e Communicating Process: Macro support
for communicating process does not fade
in Emile. Although one might imagine
creating a computer-based environment
that explicitly supports different macro-
level processes (e.g., a planner vs. a
bricoleur orientation, Turkle & Papert,
1991), Emile only*- supports a single
macro-level process.

Micro support is quite adaptable. While the

individual activities (as presented in menu
items) do not change, actions and slots can
be faded in levels {as mentioned above),
behaviors in buttons and fields can be faded
in levels (again, as described above), various
navigation tools in the Design Notebook can
be adapted, and functioning in some repre-

Mark Guzdial

—

ILE41_Chl 1/26/95 10:07 PH Pags 29

sentations is adaptable (i.e., whether decom-
position and composition relations can be
constructed graphically in the Project Chart
without using menu items). There is no
adaptable scaffolding associated with goals
and groups or the Library, but because their
use is not required, their use can be volun-
tarily reduced as the student desires.

e Coaching: All coaching in Emile is either
on or off—no levels are supported. One
can imagine providing coaching that is
adaptable, for example, critics that com-
ment less often to allow more exploration
by a user, but this was not implemented
in Emile.

o Eliciting Articulation: Students dre unly
required to enter names for objects—
none of the prompts for articulation are
required. This allows articulation
prompts to fade through less use volun-
tarily. One might imagine a graphical
programming environment where objects
are optionally named or in which only
certain objects need to be named, which
would allow for additional flexibility in

——

articulation scaffolding. Reference in
such a name-less environment might be
established through a drag-and-drop
interface and be represented as arcs
(some of which are explored in Petre &
Green, 1990, 1993). Such options were
not provided in Emile in order to mesh
easily with a more traditional textual pro-
gramming language.

A potential weakness in Emile’s implemen-
tation of scaffolding is that control over the fad-
ing of scaffolding rests in the student’s hands.
While some researchers argue that scaffolding is
always at least partially in the student's hands
and that scaffolding fading is a negatiated
process (Rogoff, 1330), other researchzrs point
out the weaknesses in students’ metacognitive
skills which reduces their ability to make deci-
sions about scaffolding for themselves (Farn-
ham-Diggdory, 1990). As an exploration of the
approach of offering fading for a wide range of
software-realized scaffolding, I chose to take the
extreme position of allowing students to control
their own fading, with only the classroom
instructor’s review to serve as a check.

% File Edit Font Styls InltlalReview Decomposs Composs Uebug FinalRevlaw

S ==——aea= Deslgn Notebook FO ey

58 Recent 0%

E Button|Compare Buttons e
B ' & tugeny
Tabls of Condents Prefazancas
<:3° C> Grcup (Unlinl@d) q,uc,%:‘,
Cleay tha Graphices
Compoeed In project Felling Chjects 7/15/93 942 PM mm
O Appearancs @ Behaulor QO How !! waorks Pmm&;zx%
® Mousslp C MousestiliDown O MoussEntsr wﬁ‘?‘“am“ -
Triggers O MouseBown O MouselWithin O Mouselesvs
Sond & Elggar)
Artlensfor [Send a trigesr
this Trigger L]
.{}_
Varlables for . KO
this Trigger A ||
’ 4
Behavior
4 Ua o) o eord 3tion Posiim GavRy 3 20 K
22t 4 B of earl Jwion “Potiive Gravky” to 20
52 U 1 of eard 330202 “Wasker Geavy” to 20
£ e B of tard Daston “Wasker Gravey” 1o 100
sod Jnowrn® to gl Jtoy "Pectin GavRy” - Bead s trigper,1
Al mowith” 1 g dwten “Vukr Gravey” - Sl atrigew,!
K ’ &
Gk orapives

Cieated 1/15/53 by Mask G in prcjact Falling Cbjects

Figure 20. Combining library actions with the typed statements.

Software-Realized Scaffolding

29

ILE41_Chl 1/26/95 10:07 P Page 30

——

Table 4. Fading In Emile's Software-Realized Scaffolding

Scaffolding Category

Emile Scaffolding Featurs

How Fades

Communicating Process

Macro

+ Dasign stages

= Design Stage Pages
* Menu names

Micro

* Actions and Slots

* Goals and Groups

» Design Notebook

Does not fade
Doss not fade
Does not fade

Levels
Voluntary less use
Levels

e Menu items
« Library

* Representations

Coaching Macro

= Stage Prompting

Micro

* Top-Down Design Enforcement

Eliciting Articulation Macro

* Project Descriptions

* Plans

* Goals

* Predictions
* Journals
Micro

* Naming

Does not fade
Voluntary less use
Levels

Immediate stop
Immediate stop
Voluntary less use
Voluntary less use
Voluntary less use
Voluntary less use

Voluntary less use

Does not fade

1. EVALUATION OF EMILE

Emile was evaluated to address three ques-
tions and corresponding hypotheses:

1. How do students use software-realized
scaffolding? In particular, do they fade
the scaffolding and use the scaffolding
differently over time and between stu-
dents? My hypothesis was that scaffolding
would be used by students (e.g., volun-
tary supports would be used), and that
this use would change over time.

2. Does the scaffolding successfully support
performance of the process: program-
ming for model building? My hypothesis
was that students would be able to build
models and execute simulations in
Emile—in fact, I expected them to com-
plete several programs in a relatively
short period of time,

3. Does the scaffolding successfully support
leamning of programming (learning
about) and physics (learning through)?
My hypothesis was that students would
learn about both programming and
physics.

The following subsections describe the

workshop in which Emile was evaluated and the
students who took part in the evaluation. Three

30

sources of data were collected to address the
evaluation questions:

e Log files were collected to note use of
scaffolding and adaptation of the scaffold-
ing.

o Student projects and Design Notebooks
were collected to assess performance.

e Clinical interviews were taken before and
after the workshop to assess learning.

3.1 Description of Workshop and
Students

Emile was evaluated in a 3-week surnmer
workshop with five volunteer high school stu-
dents from Ann Arbor, Michigan, and local
school districts. The workshop was advertised as
part of Ann Arbor’s summer school program.
The workshop was named Teaching Physics with
HyperCard and was described to students as an
opportunity for students to (a) learn program-
ming skills while (b) improving their physics
skills. The focus of the workshop was to create

software that high school physics students could

use. Students were offered high school science
credit for taking the course. The prerequisites
for the course were previous high school physics
coursework or permission of the instructor. Stu-

Mark Guzdial

|
T

ILE41_Chl 1/26/95 10:07 PH Page 31

'dents were not required to have previous pro-

gramming experience. The workshop ran for 3
weeks in August for 3 hours a day, 5 days a week,
which is comparable to the length of other sim-
ilar workshops to explore science education ini-
tiatives with high school students {Champagne
et al., 1985; Tinker, 1990).

Five students volunteered to attend the
course. In general, the students were fairly rep-
resentative of high school students in Ann Arbor
(a middle-class, Midwestern community) except
for gender and motivation:

o All five were male: Four were white, and
one was Hispanic.

o Two students were from different Ann
Arbor private schools, two others were
from different Ann Arbor public schools,
and one student was from a town adjacent
to Ann Arbor,

o Grade-point averages were not available
for all students. However, pre-workshop
interviews suggest that the students were
not remarkable in their understanding of
physics.

o Though I took no measure of motivation,
students must be considered more moti-
vated than in a traditional class to take a
3-week, 3 hour a day workshop during the
Summer. '

The ages, grades, and previous programming
and physics experience of the five students are
described in Table 5. None of the students had
previous high school physics coursework experi-
ence, so that requisite was waived. Only two had
previous significant programming experience
(students S and M), and no students had previ-
ous high school physics.

For most of the students, their primary
interest seemed to be programming and use of
computers, not the physics. For one student, C,
neither the programming nor the physics was
the draw—he needed high school science credit

—o—

to graduate, and his school district accepted the
summer Emile workshop as sufficient. In gener-
al, I think it is fair to say that the students did
not enter the workshop strongly motivated to
learn physics.

The workshop room was equipped with 10

multimedia computer systems. Half were Apple
Macintosh II computers, and the other half were
Apple Macintosh SE computers with accelerator
boards. All 10 were equipped with 19-inch black-
and-white monitors. Videodisk and CD players
and sound digitizers were available for all stu-
dents. Each computer’s hard disk was pre-loaded
with Emile, a drawing program (for creating
graphics), a collection of example Emile projects,
and MediaText (a multimedia composition tool,
which students used for previewing videodisks.)
The Macintosh II computers also were loaded
with sample Apple QuickTime™ digitized video
movies,

Students worked on three model-building

projects and one multimedia presentation pro-"

ject. I was the instructor for the course. The flow
of the course was cyclical. For each of the proj-
ects, there was one iteration of a cycle of instruc-
tor presentation, student work, and instructor
review.

 On the first day of a new project, I gave a
presentation on the physics that the stu-
dents would be using on the next project
and a demonstration of using Emile for
creating some of the project elements.

e Students would work on the project for 3
days (including the rest of the day after
the presentation and demonstration.)
During their programming and model-
building activities, I was available for
questions. The only articulation prompt I
insisted they use was a daily journal entry.
I encouraged use of others, but did not
require them.

© On the 3rd day, students would complete
a Project Evaluation for their programs,

Table 5. Summary of Student Prior Experiences in Programming and Physics

7 .
Programming Experience

Students Age Grade in Fall Physics Experiencs

B 14 9 None significant Jr. High Physical Science
o 18 <Graduated> None None

L 16 1 None significant None

M 15 10 Knew Basic, Pascal, and C None

S 14 - 9 Knew Basic and C

Software-Realized Scaffolding

Jr. High Physical Science

31

—h—

—p—

ILB41_Chl 1/26/95 10:13 P Page 32

then demonstrate their programs to me.
The Project Evaluation explained the pur-
pose of the program: What a student
should learn about physics from using
this program and what the student would
do with the program. Students received
no grades for their individual projects,é/
but each student did discuss the projects
and evaluations with me. One of the goals
of this discussion was to address miscon-
ceptions reflected in the evaluation. For
example, if a student wrote that “gravity
moves” on their Project Evaluation, I
would explain that gravity did not move,
and we would discuss why the student
thought it did.

Here are the abbreviated project descriptions
as they were given to students.

Project 1: Simulation of profectile
motion in one dimension. Starting with Drop-
pable Object or Positive Gravity buttons from
the Library (buttons that can be dropped and
fall as if under the influence of gravity), create
at least fwo new gravitational objects (buttons)
such as an object with negative gravity, an
object with stronger or weaker gravity, or an
object with gravity to either side of the win-
dow.

Project 2: Demonstration of projectile
mofion In fwo dimensions. Build a presenta-
tion on what projectile motion under the influ-
ence of gravity is like in two dimensions. Use at
least one text field explaining motion and grav-
ity in two dimensions. Use at least two buttons
that present physics in different media.

Project 3: Simulation of profectile
motion in two dimensions. Create a simula-
tion object (button) that has initial vertical
velocity and horizontal velocily and that falls
under the influence of gravity — moving in
twol dimensions. Your button should leave a
trail, :

Project 4: Final project, Students’ choice,
as long as the project is completed in 3 days
and teaches physics. Students must demon-
strate viability of completing the project after
the 1st day. All students chose to creale a sim-
ulation for their final project.

Projects were designed to provide increasing

complexity both in the programming expertise «

required and in the kinematics concepts stu-
dents were asked to deal with. Programming

6 As evidence of their motivation, students never
asked what the grading policy was, even when I
offered to discuss it with each of them.

32

——

complexity increased from a project involving
mostly modification of existing components
(Project 1), to a presentation (Project 2, which
required few actions), to a simulation, which
involves calculation and multiple interacting
actions. The kinematics concepts students were
asked to deal with went from one-dimensional
projectile motion to two dimensional projectile
motion, the standard sequence of increasing
complexity in physics” texts (Hewitt, 1989; Ser-
way & Faughn, 1989).

The purpose of Project 4 was to provide an
opportunity for the students to explore a direction
in which they were interested. I saw Project 4 as
an opportunity for students to demonstrate their
interest and engagement with the domains and
use Emile for that exploration. Researchers in
Logo and Boxer have noted how students, given
the opportunity to set their own design criteria,
will often invent creative and powerful represen-
tations suggesting that they are learning deep
understandings (Harel & Papert, 1990; Kafai,
1993; Ploger, 1991). In the examples of Logo and
Boxer, students spend a good deal of time devel-
oping their artifacts—time which is necessary to
develop this deep learning. Although I could not
then expect the same level of representations in
the Emile-using students in such a short period of
time, I saw Project 4 as an opportunity for stu-
dents to demonstrate their engagement by
attempting interesting projects. If the projects
were dull or uninteresting, it could be that the
students lacked interest in the domain or Emile.

3.2 Data Cc;llectad and Analysis
Methods

Three kinds of data were collected to address
the questions noted at the beginning of this sec-
tion:

1. Log files to determine use and fading of
scaffolding.

2. Student projects and Design Notebooks
to assess performance.

3. Clinical interviews were used to assess
learning. '

3.2.1 Studying Use and Fading of
Scaffolding With Log Files. 1 evaluated use

-of Emile through the analysis of log files and by

review of student Design Notebooks. Log files are
recordings of user interactions with software
which are created as the student uses Emile.

Mark Guzdial

L
T

—

ILB41_Chl 1/28/95 10:13 PH Page 33

(See Card, Moran, & Newell, 1983, for early
descriptions of log files and some examples of
use.) Emile’s log files record student button
clicks, menu selections, window clicks, when
text was entered, and other interface actions.
Student Design Notebooks provide examples of
how students used the scaffolding (e.g., what
they wrote for articulations, how they arranged
their Project Charts).

Sorme example log file entries are:

8/15/92,10:08:25 AM,Project Description,
Chapter Heqding, Edited, Project Description

8/13/92,10:16:20 AM,A Droppable Object,
Button, menuSelect, copyToNotebook

The first entry indicates that the user edited
the project description on the Project Descrip-
tion page, and the second indicates that the user
made a menu selectioh to copy the button “A
Droppable Object” to his notebook from the
component library.

By reviewing log files for adaptation inci-
dents (i.e., modifications to the Preferences
page) and noting which micro activities were
selected by students (e.g., creation of a Plan
page, positioning an action), I could identify:

e strategies that students used with Emile,
e differences in use between students, and
o when students adapted their scaffolding.

3.2.2 Assessing Performance With
Student Artifact Analysis. To evaluate a
student’s model-building and programming per-
formance as successful, 1 need to show that (a)
the student was able to program and understand
the program he created and (b) the student was
able to understand the program as a model of a
phenomenon in kinematics. I operationally
define successful performance of programming
for model-building activities with Emile as the
following student creations:

1. A working program which achieves proj-
ect goals through student modification

(i.e., simply assembling components as-is

from the Library was not success). Stud-
ies by Pea and Kurland (1986) and those
described in Ambron and Hooper (1990)
suggdest that few students are able to
achieve this part of the definition. These

Software-Realized Scaffolding

——

studies describe student programmers as
understanding little more than how to
write correct program code (Pea & Kur-
land, 1986) or not being able to write
complex programs (e.g., no longer than 5
or 10 lines; Ambron & Hooper, 1990). To
achieve the four projects described previ-
ously, students had to construct pro-
grams at least 40 lines long and demon-
strate understanding by modifying those
programs. .

2. Articulations that explain the program as
representing kinematics content. This
part of the definition says that there is
kinematics content in creating the proj-
ects and that a successful performance of
model building involves recognition of
that content.

As an example application of the test, I use
student Ls two-dimensional projectile motion
simulation. Figure 21 is a screenshot from stu-
dent Us project. The button Positive Gravity can
be dragged on the screen, and when released, it
will launch with the specified horizontal velocity
and starting vertical velocity. Using the defini-
tion of successful performance described in this
section, student L was successful at this project:
He achieved the project goals with a working
program on which he made extensive modifica-
tions, and he recognized the kinematics content’
of the project.

e This project successfully meets the project
goals: No buttons cause errors when
clicked upon, and the Positive Gravity
button does launch and fall with action
similar to that of a real-world projectile in
two dimensions.

o The student not only made the modifica-
tions necessary to achieve the minimum
goal, but he made others besides. The
modifications he made suggests a good
understanding of the program. For exam-
ple, he changed how the path of the
falling projectile is traced from dots to a
line, which required understanding of the
falling behavior enough to understand
where and how tracing should occur with
lines {which involved recording different
kinds of data about the falling projectile
than was used previously).

o The student indicated that he understood
the physics content of this project
through his project evaluation, quoted

33

ILE41_Chl 1/26/95 10:14 P Page 34

below. (Statements in bold are prompts
on the evaluation form.)

What will a student who uses this profect
learn about Physics?

They will learn about horizontal and ver-
tical velocity, and how the curves change
according to their velocity.

What will they do or see in this project
which will help them learn about Physics?

They will see a field in which there's charts
where the user can set the horizontal and ver-
tical velocity to move the butfon “Positive
Gravity.”

3.2.3 Assessing Learning V/ith Clinical
Interviews. A clinical interview approach was
used to study student learning with Emile. Clin-
ical interviews as an assessment technique are
described in Finley (1984), Novak and Gowin
(1984), and Posner and Gertzog (1982). Alterna-
tive forms for assessing student learning include
a multiple-choice test (as used in Roschelle,
1991; White, 1984) or other standardized mea-
sure. As Posner and Finley both point out, how-
ever, only with the interview can the evaluator
have any opportunity to note interactions and
unexpected results from an instructional inter-
vention. I chose the clinical interview format
because of the unusual nature of the interven-
tion.

——

Students were interviewed at the beginning
and end of the workshop. They were asked to
respond to a task (same tasks in pre- and postin-
terviews), to a set of probes asked of every stu-
dent in both interviews, and to additional probes
based on student responses to explore their
understanding of four scenarios—two on physics
and two on programming. I conducted all inter-
views. The style of interview was based on Novak
and Gowin (1984) in terms of use of counter-
suggestions (e.g,, students were occasionally
queried if they were sure of their response on
both correct and incorrect responses) and allow-
ing reference to the pre-interview on the postin-
terview to invite student comparison of respons-
es (e.g., “Last time I said X, can I just say it
again?”’). All interviews were videotaped and
transcribed to text. .

The four problem situations posed to stu-
dents, with the instructions given to students
and the standard probes used by the interviewer,
are described below:

Question 1: On velocity and acceleration. Let’s
say that you left right now for the Baskin-Rob-
bins up on the corner of South and East Uni-
versity (an ice creamn store about fwo blocks
from the workshop site), and it takes you 2
minutes to get there. Using whatever units you

%osmue Grault%

verrmn (250
N
o
e

| werm SETes
TR AL
v
STARTER VERTIS
ey

(CLEHH SCBEEN)[RESET)

Figure 21. Student L's two-dimensional projectile motion simulation.

Mark Guzdial

—h—

__.QP__.

ILE41_Chl 1/25/95 10:14 PH Page 35

might typically use to measure speed, how fast
did you travel? Probes include: What is veloci-
ty? Did you accelerate? What is acceleration?

Question 2: On projectile motion. You're
standing on the edge of the roof of this build-
ing, and you drop a rock off the roof, Where
does it land relative fo the edge of the building?
Using whatever units you would typically use
to measure speed, how fast is it going when it
hits? Probes include: Would it matter if you just
dropped the rock or if you threw it? What is the
rock’s vertical and horizontal velocity?

Question 3: On reading end writing a
mived media (text and graphics) program. I
start a computer program for you that has the

. screen like this (a screenshot is provided to the
student). What do you think it’s for? What do
you think it does? How do you think it works?
Frobes include: What is a button? What™is a
field? How would you make this button? Would
it be hard to change this program?

Question 4: On reading a text program.]
Here's a computer program, the behavior of
some button (a program text is provided). Can
you ltell me what it does? Probes include: What
are your clues to tell you what this program
does? Where have you seen a line like that
before? What does the user see while the pro-
gram runs?

Interviews were coded using a technique
similar to that used by Krajcik and Magnusson
(Krajcik & Layman, 1990; Magnusson, 1991;
Magnusson, 1993), which Magnusson refers to as
the constant comparative method. I reviewed the
students’ responses to the clinical interview and
identified student statements about physics and
programming concepts. I compared these state-
ments to descriptions of student conceptualiza-
tions for physics and programming in the litera-
ture. Based on this comparison, I created a
categorization scheme which included literature
categories but extended them to include cate-
gories that I saw reflected in the students’
responses. :

The three key physics topics for categoriza-
tion were velocity, acceleration, and projectile
motion. I chose these as the key three topics in
kinematics (Hewitt, 1989; Serway & Vaughn,
1989). Literature on student conceptualizations
of these topics (e.g., Arons, 1990; diSessa, 1982;

Trowbridge & McDermott, 1980, 1981; Van-

71 chose not to focus a problem on writing a text
program because students were not required to write
programs in Emile. One of the probes for Questions
3 does ask students to describe a text program (just
define the components, not write the syntax), and
even on that task, students performed poorly.

Software-Rezalized Scaffolding

——

Heuvelen, 1991) dichotomizes student conceptu-
alizations into two types: Pretheoretical (naive
physics) and theoretical (correct and expertlike
conceptualizations). Starting from these litera-
ture distinctions and informed by the interview
statements, a three-level categorization emerged
of increasing sophistication—Level 1 was prethe-
oretical and Level 3 was the most expertlike (see
Guzdial, 1993, for more details on the coding
scheme).

Programming concepts were categorized on
two levels:

1. Student knowledge on reading versus
writing programs. Because Emile activities
required reading text language programs
but not necessarily write them, such a dis-
tinction was important to explore.

2. Student knowledge of fext (traditional)
versus fext-and-graphics (nontraditional,
e.g,, including buttons and fields, trig-
gers, and behaviors).

4, RESULTS OF EVALUATION

Results of the evaluation on each of the
three evaluation topics (use and fading of scaf-
folding, performance, and learning) follow.

4.1 Results on Use and Fading of
Scaffolding

Students differed dramatically in their use of
Emile’s scaffolding and when they faded their
scaffolding. Program 3 (the creation of a two-
dimensional projectile motion simulation) is a
good place to characterize differences between
students. All students had completed two pro-
grams and were developing individual styles.
This was the second simulation they had built,
so they were farniliar with the format and the
tools available to them. This section will contrast
students C and B to highlight the diversity in
terms of use of the scaffolding, even though each
had the same Preferences at the beginning of
Program 3. On the day that the students began
working on Program 3, I had given a presenta-
tion which left them with only 1 hour of the 3-
hour session to begin work.

Student C made extensive use of the Library
with frequent testing as he began his program:

o First, he copied both the Droppable
Object button and the Gravity Simula-

35

—h—

—P—

ILE41_Chl 1/26/95 10314 P¥ Page 36

36

tion group into his Design Notebook
from the Library. His explanation at the
time was that he wasn't sure which he
would need, so he thought he would take
both.

He composed the entire Gravity Simula-
tion group, tailored his Project Chart (i.e.,
organized the icons in a structure he pre-
ferred), and tested his project.

He then emptied the slot for the initial
velocity in the simulation object (Posifive
Gravity button) and selected the menu
item to fill the slot, but canceled out of
that action.

He created a field, named it Starting
Velocity, and linked it to the Gravity Sim-
ulation group.

He then returned to the Pasitive Gravity
button, again asked to fill the slot, and
selected the field Starfing Velocity to fill
the initial velocity slot.

He tested his project again with different
values for the initial velocity entered into
the Starting Velocity field,

He returned to the Library and copied
actions Save Left of Bution, Set Left of
Button, and Increment Value (which had

——

been discussed as being useful in imple-
menting horizontal motion).

e He composed all three actions into the
button Pasitive Gravity.

e He ended the day with making a Journal
page and typing an entry:

Today I started fo create my button which will
move up and have horizontal pull at the same
time.

Student C’s completed project is Figure 22.

Student B began with articulation and more
creation of new objects than copying of Library
objects:

e Student B began by entering a Project
Description:

This project will be fo create a button fo launch
from any particular place on the screen that
the user defines. The user can also select the
velocity (both vertical and horizontal). This will
help people to understand the strange and
crazy laws of physics. So I hope you like if.

e He copied the button Droppable Object to
his Notebook and tailored the appearance
of his Project Chart.

Labels 215
Position
OO
O o O Velocity 44
o @)
O
O Horizontal 15
O Yelocity
o Horizontal 186
position
(Positive Gravity) 12
) Time
Starting Yert |-40
Velocity

Figure 22. Student C's 2-D projectile motion simulation.

Mark Guzdial

—h—

—P—

ILE41_Chl 1/26/95 10:15 PH Page 37

4

‘ Launch % l

N]

Tims B |
V. Yelocity 50

V. Position | |302

| Fo
Initisl H. V.

Inftial v. v. | [-20
H. Position | {194

Clear Screen |

Figure 23. Student B’s 2-D projectile motion simulation.

o He returned to the library and copied sev-
eral actions to his Notebook: Sef Left of
Button, Save Left of Button, Sound a
Beep, and Clear the Graphics.

e He created a new button and named it
Clear Screen.

e He composed the actions Clear the
Graphics and Sound a Beep into the new
button, then tested it five times.

o He created a new field and named it Tirme
in Motion.

© He created two new goals and named
them Initial Vertical Velocity and Initial
Horizontal Velocity.

o He created two new fields and named
them also Initial Vertical Velocity and Ini-
tial Hortzontal Velocity.

o He composed the button Droppable
Object and tested it, but received an error
because some of the fields that Droppable ¥
Object required (e.g., the field Time) were
not created.

e He made a Journal entry:

Today was an OK day in tenms of productivity,
but I didn’t do that much. This is a new project

Software-Realized Scaffolding

called Launching Things. It is going fo work
but I don’t know when.

Student B's completed project is Figure 23.
1t looks different than student C's or Us program
because B decided to separate the launching
function from the object to be launched. In B's
version of the two-dimensional projectile motion
simulation, the user moves the Launching Thing
(what he renamed Droppable Object) and clicks
Launch It to begin the simulation. The distinc-
tion is notable because, in order to separate this
funictionality, student B had to recreate all the
functionality of the original Droppable Object in
the button Launch It.

These two sequences of actions exemplify
how students used Emile’s scaffolding:

o Communicating Process: Students made
frequent use of most of the components
in the structure presented to the stu-
dents by Emile’s scaffolding. Groups and
goals were not used frequently (i.e,, the
majority of student-created objects
belonged to no groups, and less than one
group per student per project had a
matching goal), except for copying large
groups of objects from the library, How-

37

_\%

ILE41_Chl 1/26/95 10:15 PX Page 38

¢

Table 6. Projects at Which Students Changed Scaffolding Controlling Behavior Construction

B c L M)
Project 1 * Type expressions
for slots
« Create actions
» Directly edit behaviors
Project 2 » Type expressions
for slots
s Create actions
» Directly edit behaviors
Project 3
Project 4 ° Directly edit = Creats actions

behaviors

ever, all other elements (buttons, fields,
actions) were used frequently—even as
scaffolding faded.

Table 6 notes in which projects students first
turned off the scaffolding Preferences associ-
ated with actions and slots. Note that differ-
ent students turned off various scaffolding at
various times: Student S faded his scaffold-
ing early on, student M soon after, and stu-
dents C and L never created actions nor
directly edited their behaviors. Not shown in
this table is that all students (including S)
turned the scaffolding back on occasionally,
even in the fourth program, to go back to
actions and slots during difficult parts of
their programs.

o Coaching: Notice that neither student in
the above examples referred to Design
Stage pages or were careful about using
goals and groups before defining lower-
level components. Coaching scaffolding
was faded by all students by the second
program, though not all with positive
results. Students C and L frequently
requested help in their process after
removing all the coaching scaffolding.
Perhaps they would have understood their
process better had they left the scaffolding
on for longer.

e Eliciting Articulation: As seen in the
above examples, prompts were infrequent-
ly accessed by students, for example, pre-
dictions were not used in the above exam-
ples and rarely over all. Journals were
used often due to instructor’s prodding,
but in general, the macro elicitation of
scaffolding was not wildly successful.
Instead, students tended to talk to one
another; showing off their programs, and
discussing their programs’ validity. 1 sus-

38

pect this social articulation and reflection
(a) alleviated the need for prompted artic-
ulation and reflection and (b) had a
greater perceived benefit for the students
than writing notes to themselves in their
Design Notebooks.

However, the above examples do suggest the
importance of the micro-level eliciting articula-
tion scaffolding. Students chose names for their
objects which corresponded well with the
physics concepts they were exploring. These
names were important in helping the students
understand the computational process of their
programs and in assernbling the programs to
correspond to their physics understandings—
two of the critical problems in programming
identified earlier.

4.2 Results.on Performance

Table 7 summarizes the performance of the
five students on each of the four projects in
terms of programming performance (e.g., con-
structing a working program that achieved the
project goals through student modifications) and
model-building performanced/(e.g., demonstrat-
ing an understanding of the program as a model
of kinematics). Check marks indicate successful
performance, and a dash indicates partially or
not successful performance,

Students were remarkably successful at both
programming and model-building activities,
given the problems from the literature described
earlier. Students using Emile did construct sev-

-eral interesting programs (e.g., nontrivial with

8 Because Project 2 was not a simulation, physics
performance is rated here in terms of accuracy of
physics concepts.

Mark Guzdial

i

ILE41_Chl 1/26/95 10:15 PH Page 39 $

Table 7. Student Performance on Projects

Project 1 Project 2 Project 3 Project 4
Prog M-B Prog Physics Prog M-B Prog M-B
B)) \’ ¥)) v . N
c v -) N)) N N
L ¥ vy ¥ -) ¥) ¥
M - ¥) - - v v)
s)))) - -))
Note. ¥ = successful performance, - = partially or not successful.
physics content), and their articulations indicate dents could have created relatively simple final
that they saw their programs as simulations of programs, but all of them chose sophisticated
kinematics concepts. For example, note the proj- and interesting objectives. On the last day of
ects by students L (Figure 21), C (Figure 22), class, I offered students the opportunity to take
and B (Figure 23). All three of these were suc- their final programs home with them (which was
cessful simulations of two-dimensional projectile possible because the final product could be run
motion, completed by students in 9 hours (after outside of Emile). I expected that students would
completing two other programs), with no previ- want to take their final programs home with
ous programming experience before beginning them because of their interest in those pro-
the class. . grams. Instead, all the students asked to take all
of their programs home with them, and several
As mentioned earlier, the students’ final pro- of the students asked if they could have copies of
jects were self-directed, to see whether students Emile as well. This anecdotal evidence suggests
did choose interesting projects. As seen by their that students were interested in what they were
choices, they attempted some sophisticated pro- doing with Emile,
grams:
‘ — L created a game where the user .
. chooses initial horizontal and vertical 4.3 Results on Learning
/ r:}igfnty to launch a golf ball over a ’I:his section presents .the results on student
(— B created a game in which a plane learning about programming and physics as evi-
\ moved across the top of the screen denced by their comments in clinical interviews.
- and released a jumper. The user Table 8 summarizes the change in physics con-
chooses the point at which the ceptualizations (}earmpg) for the f_ive st}xdents
jumper’s parachute opens. The para- between the pre—mtemewg/and postinterview. In
chute’s opening changes the accelera- general, all students learned about physics dur-
tion for the jumper. ing then: activity with }gmlle,'whxch_ is a striking
— C created a bouncing object which result given the learning difficulties that stu-

repeatedly freely falls then bounces up dent§ experiepce as described in the literatpre on

with reduced vglocity on each bounce. physics learning (e.g., Arons, 1990; Trowbridge &
— M extended Droppable Objects by con- McDermott, 1980).

trasting an erroneous use of instanta-

neous velocity to calculate the simula- Student B is a particularly good example of
tion object’stgosition (which was used the robv:xst p@ysxcs understanding exhibited in
in the Library simulation objects to the postinterviews.

simplify the computations) with a

more accurate method using average e Pre-interview conceptualization of projec-

tile motion. Student B’s comments in

velocity.

— S extetrfded Launchable Objects by cor- 7 response to the s_econd problem (about
recting the position calculation (as M dropping or throwing a rock off the roof
had) and adding effects due to wind . of_a b_ulldmg) suggest a Leyel 2 conceptu-
(i.e., taking into account “resistance.”) alization of projectile motion—he did not

These results are particularly indicative of S Illness prevented student M from participating
student engagement in their use of Emile. Stu- in the pre-interview.

Software-Realized Scaffolding 39

ILe4l_Chl 1/26/95 10315 PH Page 40

Table 8. Summarizing Physlcs Learning

o

B c L M S
Concept of velocity 232 1= 1-1 -3 33
Concept of acceleration 12 1 =2 T—2 -2 253
Concept of projectile motion 2-3 -2 i-2 -3 242

aPreglevel — = Postlevel.

have traditional pretheoretical conceptu-
alization (e.g., that the weight of an object
determines the speed of a falling object),
but nor could he explain time and veloci-
ty of a falling object. In the quote below,
he gives up trying to compute the veloci-
ty of the rock falling.

R: (Question 2 on where a rock lands that
is dropped from the roof and how fast it's going
when it hits)

B: Where does it land? Beneath me, below
where my hand is, unless there'’s wind. And the
velocity is, let’s see, gravity ... umm ... I can’t
remember that

o Postinterview conceptualization of projec-
tile motion: Student B's responses to
Problem 2 in the postinterview suggest a
sophisticated (Level 3) conceptualization
of projectile motion. Although he does
make mistakes in his calculations, he
recovers from them and demonstrates
that he understands the relationships
between horizontal and vertical velocity
and even instantaneous and average veloc-
ity. His understanding of the interaction
between acceleration, velocity, and posi-
tion at a detailed level during a projec-
tile’s flight is particularly interesting. He
has progressed from simply recognizing
that acceleration increases vertical veloci-
ty (as he stated in his pre-interview, a
statement indicating a Level 2 conceptu-
alization), to being able to simulate on &
second-by-second basis what he thinks is
going on with the projectile.

R: Can you tell me how long it took the
rock to get to the ground?

B: It would be about one second

R: Okay, where did you get that from?

B: If the acceleration is 30 feet per second
per second, then per second it will be going 30
feet per second, then it will just take a little
longer for it to get fo the ground.

R: Why?

B: Because you have to divide the, to get
the average velocily, which is how fast it’s
going, and how you can measure how far it’s
gone, you have fo ... let's see ... if will be

40

going, it will be going 15 melers per second. NP e

Maybe two seconds, I guess.

R: Why? .

B: Because ... 15 seconds. Because, by
the time it's accelerated the second second, it
will be going about 45 feet per second, so it'll
have to be between the first and second second
that it hits the ground.

R: In the second second, it'’s going 45 feet
per second? .

B: Yeah, I think so. '

R: Where did you get that number from?

B: Umm, adding the 30 meters per second,
you add that to the 45, and you have to divide
it by 2. Oh yeah, I forgot about that part. So
that'll be 22.5 feet per second, 22.5 meters, I
mean, feet per second. Then it'll probably be 2
and a half seconds.

Students’ learning about programming was
similarly positive, but not as powerful. On the
pre-interview, no student was able to explain
how to read or write a HyperTalk program, and
no student was able to explain how to write a
graphics-and-text program. All students were
able to interpret the buttons and fields shown to
themn and explain what they did.

On the postinterview, students were able to
describe how to write graphics-and-text pro-
grams using the metaphors of Emile (e.g., but-
tons, triggers, slots), but only three students
were able to read a text program (students B, M,
and S), and none were able to write one. This
last result was somewhat surprising because sev-
eral of-the students were directly typing text pro-
grams in the last program. However, even stu-
dent S, the first student to begin typing
programs directly, referred-to actions instead of

text code when asked to explain how to build a

fext program:

R: Do you know what it takes to make
these buttons do what they do? If I gave you
pencil and paper, could you write it down?

S: No, I don’t think that I know, well ... I
dori’t know. I might be able to figure it out with
HyperCard—that’s the only Mac language I
know.

R: Well, assumne that this is Emile. Do you
think you could do it?

Mark Guzdial

. N

ILB41_Chl 1/26/95 10:15 PH Page 41

S: Yeah! Go fo the Library, find the actions
Play a Sound and Record. That's all there is—
play and record, And you'd need to load the
picture.

Student C is a good example of a student
who created several interesting programs and
developed confidence in his programming abili-
ty, though that ability was dependent on the
scaffolding in Emile, Student C had no previous
programming experience before this class.

R: How hard would it be to change what
these things do?

C: Not hard at all. You go to click on it,
and it'll show you what it took fo create if all.
Then go find what you want fo ckange. If zero
was two, or it's 10 and you want to make it"20:
Just click on it and change it.

R: Could you write doun for me what each
of these behaviors look like?

[C: Not without looking at it

o] .

R: Let’s say that you're building something
new. Let’s say that you're building one of these
things. What would you do first? :

C: I go copy all these down from the main
library ... Then I could look at them, and if I
needed them, they'd be there. Then I'd just read
the whole thing in and see how it works. ...
Then I'd go to the Froject Chart—it’s probably
got to have one of them like we do—io see
what all links together to cause it fo make it to
work.

5. DISCUSSION AND CONCLUSIONS

The results indicate that Emile was quite
successful in this study.

o Students did use Emile’s scaffolding and
changed that scaffolding based on individ-
ual needs and interests,

e Students were successful at programming“

interesting models of physics.

© They learned about programming and
new conceptualizations of physics.
— What students learned about program-
ming was the process being commu-
nicated by Emile's scaffolding (e.g.,

actions, slots, fields, and so on). That ¥

they did not learn more (e.g, the
underlying text programming lan-
guage) is acceptable because learning
traditional programming was not the
goal. This result suggests that Emile
was successful at facilitating learning
about programming.

Software-Realized Scaffolding

——

— Students learned new ways of looking
at velocity, acceleration, and projectile
motion. This suggests that Emile was
successful at facilitating learning
through programming—that is, using
programming as leverage-to learning
another domain (kinematics).

After declaring Emile a successful environ-
ment for teaching physics through program-
ming, one next question is whether Emile is
more successful than other kinds of interven-
tions—that is, is it an efficient way to teach
physics. I think that the question is, in at least
one sense, unimportant because of the well-doc-
umented difficulty of getting any kinematics
learning at all among high schoo! students—
even with comparable hours spent on the subject
(Arons, 1990; Champagne et al., 1985; Roschelle,
1991). Nonetheless, it may be that the students’
learning documented here may be realizable
with less time—that is, students may have
gained the same concepts with fewer projects.
On the other hand, students in a more tradi-
tional physics class do not have access to the
same computational resources as these students
in the same large blocks of time, It is an inter-
esting challenge to explore just how efficient
physics learning through programming could
become.

Although Emile is just one example of soft-
ware-realized scaffolding, we can use the expe-
rience as an indication of what we might expect
from software-realized scaffolding in other con-
texts, Of the three kinds of scaffolding, it seems
that communicating process in Emile was the
most successful in terms of student reference to
the relevant facilities in interviews, the fre-
quency of use, and least fading to the lowest
levels. Coaching and eliciting articulation were
less successful on these same grounds. This
may nof be an indication of the relative impor-
tance of these scaffolding forms overall but may
have been hindered by the implementations in
Emile. Coaching in Emile was not state of the
art, as compared with Anderson (Anderson et

al., 1990; Anderson et al., 1989) or Fischer (Fis-

cher & Lemke, 1987; Fischer et al., 1990). Fur-
thermore, articulating may be elicited more
effectively if the articulations were used to
some purpose, such as in a collaborative learn-

ing environment (e.g., Scardamalia & Bereiter,

1991; Scardamalia, Bereiter, McLean, Swallow,
& Woodruff, 1989).

The fading of scaffolding was quite success-
ful. Students did use Emile at many different

41

—h—

ILE41_Chl 1/26/95 10:15 P Page 42

levels of scaffolding and developed a wide range
of strategies for use of the scaffolding. Never-
theless, there were definite flaws. First, there
was no real structure to the fading of scaffold-
ing. Preferences were not ordered in any way
that was meaningful to the students, and stu-
dents were given little support on when and
how to fade scaffolding. Advising on scaffolding
would be a useful addition to any future imple-
mentation of adaptable software-realized scaf-
folding. Second, and more importantly, there
was no coach or critic to analyze how students
manipulated the scaffolding to insure that they
did not hurt their performance or learning. Stu-
dents do not typically have good metacognitive
skills (Brown, Bransford, Ferrara, & Campione,
1983). Choosing one's scaffolding level is clear-
ly a metacognitive activity. While it's a good
strategy for students to explore their ability by
reducing their scaffolding, there needs to be
some safety measure to inform the student
when the experiment is unsuccessful—a net to
catch them if they fall. Such a net was not
implemented in Emile.

While an interpretation of educational soft-
ware features as scaffolding is not a panacea
which explains all innovation in educational
software or serves as a complete guideline for
design of new educational software, software-
realized scaffolding presents an important per-
spective which can provide new explanatory and
design leverage. Teaching is not a new activity,
and important pedagogical principles have been
identified over the millennia. The approach of
software-realized scaffolding is to identify an
important set of teaching activities and to
implement them (as much as possible) in soft-
ware.

e As an explanatory tool, software-realized
scaffolding can be used to classify features
of software and perhaps identify where
some components of software-realized
scaffolding are missing.

e As a design tool, software-realized scaf-
folding provides a list of features which
are important to provide in order to facil-
itate learning through and about student
activity.

REFERENCES

Adelson, B., & Soloway, E. (1984). A cognitive model of soft-
ware design (Cognition and Programming Project Tech-
nical Report). New Haven, CT: Yale University.

Ambron, S., & Hooper, K. (Ed.). (1990). Learning with inter-
active multimedia: Developing and using multimedia

42

—%—

tools in education. Redmond, WA: Microsoft Press.

Anderson, J.R.,, Boyle, C.F, Corbett, AT, & Lewis, MW,
(1990). Cognitive modeling intelligent tutoring. Artificial
Intelligence, 42, 749,

Anderson, J.R., Conrad, G, & Corbett, AT. (1989). Skill
acquisition and the LISP tutor. Cogmitive Science, 13,
467-505.

Arons, A.B. {1990). A guide to introductory physics teaching.
New York: Wiley.

Blumenfeld, P.C., Soloway, E., Marx, RW,, Krajcik, J.S., Guz-
dial, M., & Palincsar, A. (1991). Motivating project-based
learning: Sustaining the doing, supporting the learing.
Educational Psychologist, 26(3 & 4), 369398,

Brasell, H. (1987). The effect of real-time laboratory graph-
ing on learning graphic representations of distance and
velocity. Journal of Research in Science Teaching, 24(4),
385-395.

Brown, A.L., Bransford, J.D., Ferrara, RA., & Campione, J.C.
(1983). Learning, remembering, and understanding. In
W. Kessen (Eds.), Handbook of child psychology: Cogni-
tive development. New York: Wiley,

Brunner, C., Hawkins, J, Mann, F, & Moeller, B, (1990).
Designing inquire. In B. Bowen (Eds.), Design for leam-
ing. Cupertino, CA: Apple Computer.

Card, S.K., Moran, TP, & Newell, A. (1983). The pyschology
of human—compuler inferaction. Hillsdale, NJ: Erlbaum.

Champagne, A.B.,, Gunstone, RF, & Klopfer, LE. (1985).
Effecting changes in cognitive structures among physics
students. In L.H.T. West & A.L. Pines (Eds.), Cognitive
structure and conceptual change (pp. 163~188). Orlando,
FL: Academic.

Collins, A. (1990). Cognitive apprenticeship and instruction-
al technology. In B. F. Jones & L. Idol (Eds.), Dimensions
of thinking and cognitive Instruction. Hillsdale, NJ: Erl-
baum.

Collins, A., & Brown, J.S. (1988). The computer as a tool for
learning through reflection. In H. Mandl & A. Lesgold
(Eds.), Learming issues for intelligent tutoring systems.
New York: Springer.

Collins, A, Brown, 1.S., & Newman, S.E. (1989). Cognitive
apprenticeship: Teaching the craft of reading, writing,
and mathematics. In L.B. Resnick (Eds.), Knowing, learmn-
ing, and instruction: Essays in honor of Robert Glaser.
Hillsdale, NJ: Erlbaum,

Decker, R.W,, & Hirshfield, S.H. (1990). A survey course in
computer science using HyperCard. SIGCSE Bulletin,
22(1), 229-235.

diSessa, A. (1982). Unlearning Aristotelian physics: A study of
knowledge-based learning. Cognitive Science, 6, 37~75.

diSessa, A. (1985). A principled design for an integrated com-
putational environment. Human—-Computer Interaction,
(1), 1-47.

diSessa, A. (1991). Local sciences: Viewing the design of
human-computer systems as cognitive science. In J. Car-
roll (Eds.), Designing interactior: Psychology at the
human-computer inferface. New York: Cambridge Uni-
versity Press.

- diSessa, A.A., & Abelson, H. (1986). Boxer: A reconstructible

computational medium. Communications of the ACM,
29(9), 859-868.

diSessa, AA., Abelson, H., & Ploger, D. (1991), An overview
of Boxer. TheJournal of Mathemnatical Behavior, 10(1),
3-15.

DuBoulay, B., O'Shea, T, & Monk, J. (1989). The black box

Mark Guzdial

e N

ILE41_Chl 1/26/95 10115 PH Page 43

inside the glass box: Presenting computing concepts to
novices. In E. Soloway & J. C. Spohrer (Eds.), Studying
the novice programmer, Hillsdale, NJ: Erlbaum.

Earnshaw, RA, & Wiseman, N. (1992). An miroductory
guide to scientific visualization. Berlin: Springer-Verlag.

Eylon, B.-S,, & Linn, M.C. (1988). Learning and instruction:
An examnination of four research perspectives in science
education. Review of Educaticnal Research, 58(3),
251-301.

Farnham-Diggory, S. (1990). Schooling. Cambridge, MA:
Harvard University Press,

Finley, EN, (1984). Using propositions from clinical inter-
views as variables to compare student knowledge. Journa!
of Research in Science Teaching, 21(8), 803-818.

Fischer, G, Burton, RR., & Brown, J.S. (1978). Aspects of a
theory of simplification, debugging, and coaching {Tech-
nical Report No, 3912). BBN Labs.

Fischer, G, & Lemke, A.C. (1987). Construction kits and
design environments: Steps toward human problem-
domain comunication, Human-Computer Interaction, 3,
179-222,

Fischer, G,, Lemke, A.C., Mastaglio, T,, & Morch, A (1990).
Using critics to empower users. Human Factors in Com-
puting Systems, CHI'90 Conference Proceedings (Seattle,
WA) (pp. 337-347). New York: ACM.

Fischer, G., Lemke, A.C., Mastaglio, T., & Morch, A. 1. (1991).
The role of critiquing in cooperative problem solving.
ACM Transactions on Information Systems, 9(3),
123-151,

Garlan, D., & Miller, P. (1984). Gnome: An introductory pro-
gramming environment based on a family of structure
editors. Proceedings of the Software Engineering Sympo-
sium on Practical Software Development Environments.
New York: ACM-SIGSOFT/SIGPLAN.

Goodman, D. (1977). The two faces of HyperCard. MacWorld,
122129,

Guzdial, M, Soloway, E. Blumenfeld, P, Hohmann, L.
Ewing, K, Tabak, I, Brade, K., & Kafai, Y. (1992). The
future of CAD: Technological support for kids building
artifacts. In D. Balestri, S. Ehrmann, & D. L. Ferguson
(Eds.), Leaming to design, designing to learn: Using
technology fo transform the curriculum. Norwood, NJ:
Ablex.

Guzdial, MJ. (1981). The need for education and technology:
Examples from the GPCeditor. Proceedings of the Nation-
al Educational Computing Conference (pp. 16-23).
Phoenix, AZ,

Guzdial, MJ, (1993). Emile: Software-realized scaffolding for
science learners programming in mixed media. Unpub-
lished doctoral dissertation, University of Michigan.

Halloun, 1A, & Hestenes, D. (1987). Modeling instruction in
mechanics, American Journal of Physics, 55(5), 455462,

Harel, 1, & Papert, S. (1990). Software design as a learning
environment. Inferactive Learning Enwironments, 1 1),
1-32,

Hestenes, D. (1987). Toward a modeling theory of physics
instruction. American Journal of Physics, 55 (5), 440454,

Hestenes, D. (1992). Modeling games in the Newtonian
world. American Journal of Physics, 60(8), 732-748.

Hewitt, P.G. (1989). Conceptual physics (6th ed.). Glenview,
IL: Scott, Foresman and Company.

Hohmann, L., Guzdial, M., & Soloway, E. (1992). SODA: A
computer-aided design environment for the doing and
learning of software design. Computer assisted learning:

Software-Reallzed Scaffolding

—p—

dth international conference, ICCAL ‘92 Proceedings (pp.
307N319). Berlin: Springer-Verlag.

Jeffries, R., Turner, AA, Polson, PG, & Atwood, M.E, (1981).
The processes involved in designing software, In J. R
Anderson (Eds.), Cognitive skills and their acquisition.
Hillsdale, NJ: Erlbaum,

Johnsen, W.L., & Soloway, E. (1985). PROUST: An automatic
debugger for Pascal programs. BYTE, 10(4), 179-190.
Kafai, Y.B, (1993). Minds in play: Computer game design as
a context for children’s learning. Unpublished doctoral
dissertation, Graduate School of Education of Harvard

University.

Kay, A.C. (1993). The early history of Smalltalk. In J.E. Sam-
met (Eds.), History of programming languages (HOPL-II)
(pp. 69-95). New York: ACM.

Krajcik, J.S., & Layman, JW. (1990). Middle schoo! teachers’
conceptions of heat and temperature: Personal and
teaching inowledge. Paper prasented at the meeting of
the National Association for Research in Science Teach-
ing meeting, San Francisco, CA.

Lave, J. (1993). Tailored learning: Education and everyday
practice among craftsmen in West Africa. Manuscript in
preparation. ’

Lee, G. (1893). Object-oriented GUI application development.
Englewood Cliffs, NJ: PTR Prentice-Hall.

Lehrer, R. (1982). Authors of knowledge: Patterns of hyper-
media design. In S. Lajoie & S. Derry (Eds.), Computers
as Cognitive Tools Hillsdale, NJ: Erlbaumn.

Magnusson, S. (1991) The relationship between teachers’
content and pedagogical content knowledge and stu-
dents’ content knowledge of heat energy and tempera-
fure. Unpublished doctoral dissertztion, University of
Maryland.

Magnusson, S. (1993). Approaches to interpretive research.
Personal electronic mail note.

Merrill, D.C,, & Reiser, BJ. (1993). Scaffolding the acquisi-
tion of complex skills with reasoning-congruent learning
environments., Workshop in Graphical Representations,
Reasoning and Communication from the World Confer-
ence on Artificial Intelligence in Education (AI-ED'93)
{pp. 9-16). Scotland: The University of Edinburgh.

Merrill, D.C., Reiser, BJ,, Beekelaar, R, & Hamid, A. (1992).
Making processes visible: Scaffolding learning with rea-
soning-congruent representations. Intelligence Tutoring
Systems: Second International Conference, ITS'92
{pp. 103-110). New York: Springer-Verlag.

Nielsen, J,, Frehr, I, & Nymand, H.0. (1991). The learnabil-
ity of HyperCard as an object-oriented programming
system. Behaviour & Information Technology, 10(2),
111-120.

Norman, DA (1993). Things that inake us smart: Defending
human attributes in the age of the machine. Reading,
MA: Addison-Wesley.)

Novak, J.D., & Gowin, D.B. (1984). Learning how to learn.
Cambridge: Cambridge University Press.

Oren, T. (1990). Designing a new medium. In B. Laure]
(Eds.), The art of human—computer interface design
{pp. 467-479). Addison-Wesley.

Palincsar, A.S. (1986). The role of dialogue in providing scaf-
folded instruction. Educational Psychologist, 21(1-2),
73-98. ‘

Palumbo, D.B. (1990). Programming language/problem-
solving research: A review of relevant issues. Review of
Educational Research, 60(1), 65-89.

43

—p—

ILR41_Chl 1/26/95 10115 PH Page 44

Papert, S. {1980). Mindstorms: Children, computers, and
powerful ideas. New York: Basic Books.

Parnas, D. (1972). On the criteria to be used in decomposing
systerns into modules, Communications of the ACH,
15(2), 1053-1058.

Pea, R.D., & Kurland, D.M. (1986), On the cognitive effects
of learning computer programming. In R.D. Pea & K.
Sheingold (Eds.), Mirrors of minds. Norwood, NJ: Ablex.

Perkins, D.N., Martin, F,, & Farady, M. (1986). Loci of diffi-
culty in learning fo program (Tech. Rep.). Educational
Technology Center.

Petre, M., & Green, TR.G. (1990, August). Where fo draw the
line with text: Some claims by logic designers about
graphics in notation. Paper presented at INTERACT'90,
Cambridge, England.

Petre, M., & Green, TR.G. (1993). Learning to read graphics:
Some evidence that “seeing” an information display is an
acquired skill. Journal of Visual Languages and-Cor:put-
ing, 4, 55-70. -

Pidd, M. (Ed.). (1989). Computer modelling for discrete sim-
wlation, Chichester, England: Wiley.

Ploger, D. {1991), Learning about the genetic code via pro-
gramming: Representing the process of translation. The
Journal of Mathematical Behavior, 10(1), 55~77.

Polya, G. (1957). How to solve it. Princeton, NJ: Princeton
University Press.

Posner, GJ., & Gertzog, W.A. (1982). The clinical interview
and the measurement of cognitive change, Science Edu-
cation, 66(2), 195-209.

Richards, J., Barowy, W, & Levin, D, (1992). Computer sim-
ulations in the science classroom. Joumal of Science
Education end Technology, 1(1), 67-79.

Riel, M.M,, Levin, JAA, & Miller-Souviney, B, (1987). Learn-
ing with interactive media: Dynamic support for students
and teachers. In RW, Lawler & M. Yazdani (Eds.), Artifi-
cial intelligence and education (pp., 117-134). Norwood,
NJ: Ablex.

Rogoff, B. (1990). Apprenticeship in thinking: Cognitive
development in social context, New York: Oxford Univer-
sity Press.

Roschelle, JM. (1991) Students’ construction of qualitative
physics knowledge: Learning about velocity and acceler-
ation in a compuler microworld, Unpublished doctoral
dissertation, University of California at Berkeley.

Scardamalia, M., & Bereiter, C. {1991). Higher levels of
agency for children in knowledge building: A challenge
for the design of new knowledge media. Journal of the
Learning Sciences, 1(1), 37-68. ‘

Scardamnalia, M., Bereiter, C., McLean, R., Swallow, J, &
Woodruff, E. (1989). Computer-supported intentional
learning environments, Journal of Educational Comput-
ing Research, 5(1), 51-68.

Scardamalia, M., Bereiter, C., & Steinbach, R. (1984). Teach-
ability of reflective processes in written composition.
Cognitive Science, 8, 173-190.

Schneider-Hufschmidt, M., Kihme, T, & Malinowski, U. ©

(E4.)., (1993). Adaptive user interfaces: Principles and
practice. Amsterdam: North-Holland.
Schneiderman, B. (1977). Teaching programming: A spiral

——

approach to syntax and semantics. Computers end Edu-
cation, 1, 193-197,

Schon, D.A. (1982). The reflective practitioner: How profes-
sionals think In action. New York: Basic Books.

Serway, R.A., & Faughn, J.S. (1989). College physics (2nd
ed.). Philadelphia: Saunders College Publishing.

Solomon, C. (1986). Computer environments for children: A
reflection on theories of learning and education. Cam-
bridge, MA:MIT Press.

Soloway, E. (1986), Learning to program = learning to con-
struct mechanisms and explanations, Communications of
the ACM, 29(9), 850-858.

Soloway, E. (1993). Should we teach students to program?
Communications of the ACM, 36(10), 21-24.

Soloway, E., Ehrlich, K., Bonar, J,, & Greenspan, J. (1982).
What do novices know about programming? In A. Badre
& B. Shneiderman (Eds.), Directions in humar-comput-

. er inferaction. Norwood, NJ: Ablex.

Soloway, E., Guzdial, M., Brade, K., Hohmann, L., Tabak, I.,
Weingrad, P, & Blumenfeld, P. (1993). Technological sup-
port for the learning and doing of design. In M. Jones &
P. H. Winne (Eds.), Foundations and frontiers of adaptive
leaming enwironments. New York: Springer-Verlag,

Spohrer, J.C. (1989) MARCEL: A generate-test-and-debug
(GTD) impasselrepair model of student programmers.
Unpublished doctoral dissertation, Yale University, New
Haven, CT.

Spohrer, J.C., & Soloway, E. (1985). Putting it all together is
hard for novice programmers. Paper presented at the
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics

Suikaviriya, P, & Foley, J. (1993). Supporting adaptive inter-
faces in a knowledge-based user interface environment.
Proceedings of the Intelligent Interfaces Workshop,
pp. 107-114,

Tinker, R. F. (1990). Teaching theory building (Tech. Rep.).
Cambridge, MA: Technical Education Research Centers.

Trowbridge, D.E., & McDermott, L.C. (1980). Investigations
of student understanding of the concept of velocity in one
dimension. American Journal of Physics, 48(12),
1020-1028.

Trowbridge, D.E,, & McDermott, L.C. (1981). Investigation of

student understanding of the concept of acceleration in one
dimension. American Journal of Physics, 49(3), 242-253,

Turkle, S., & Papert, S. (1991). Epistemological pluralism and
the revaluation of the concrete. In I Harel & S. Papert
(Eds.), Constructionism (pp. 161-192). Norwood, NJ: Ablex.

VanHeuvelen, A. (1991). Learning to think like a physicist: A
review of research-based instructional strategies. Ameri-
can Journal of Physics, 59(10), 891-897.

Vaubel, K.P, & Gettys, C.F. (1990). Inferring user expertise
for adaptive interfaces. Human-Computer Interaction, §,
95-117. .

White, B.Y. (1984). Designing computer games to help
physics students understand Newton’s laws of motion.
Cognition and Instruction, 1(1), 69-108,

Wood, D., Bruner, J.S., & Ross, G. (1975). The role of tutor-
ing in problem-solving. Journal of Child Psychology and
Psychiatry, 17, 89-100.

HMark Guzdial

—

