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Abstract

In this paper we consider the problem of searching for
a node or an object (i.e., piece of data, file, etc.) in a
large wireless network. We consider the class of controlled
flooding search strategies where query/search packets are
broadcast and propagated in the network until a preset TTL
(time-to-live) value carried in the packet expires. Every un-
successful search attempt results in an increased TTL value
(i.e., larger search area) and the same process is repeated.
We derive search strategies that minimize the search cost in
the worst-case, via a performance measure in the form of
the competitive ratio between the average search cost of a
strategy and that of an omniscient observer. This ratio is
shown in prior work to be lower bounded by 4 among all
deterministic search strategies. In this paper we show that
by using randomized strategies this ratio is lower bounded
by e. We derive an optimal strategy that achieves this lower
bound, and discuss its performance under other perfor-
mance criteria.

1 Introduction

In this paper we consider the problem of searching for
a node or an object (e.g., piece of data, file, etc.) in a
large wireless network. A prime example is data query in a
wireless sensor network, where different sensing data is dis-
tributed among a large number of sensor nodes [3]. It has
also been extensively used in mobile ad hoc networks, in-
cluding searching for a destination node by a source node in
the route establishment procedure of an ad hoc routing pro-
tocol (e.g., [8]), searching for a multicast group by a node
looking to join the group (e.g., [12]), and locating one or
multiple servers by a node requesting distributed services
(e.g., [4]).
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A variety of mechanisms may be used to locate a node
in a network. For instance, a centralized directory ser-
vice, which is periodically updated, can be established from
which location information may be obtained. The central
directory is constantly updated as the network topology and
data content change. Such systems tend to have very short
response time, if the directory information is kept afresh.
On the other hand, centralized systems often scale poorly
as the network increases in size and as location information
changes more frequently (either due to topology change as a
result of mobility or due to the information content change
in the network). The latter necessitates a large amount of
information update which can cause significant energy con-
sumption overhead, especially when the queries occur less
frequently compared to changes in the network. The central
directory may also result in a single point of failure. One
can also use the decentralized random walk based search,
where the querier sends out a query packet to be forwarded
in some random fashion, e.g., random walks or controlled
walks such that the propagation of the packet follows a con-
sistent direction, until it hits the search target. For example,
[3] proposed random walks initiated by both the querier and
the node that has data of potential interest (called adver-
tisement). There have been many results on estimating the
search cost and response time using such approaches, see
for example [11].

In this paper we focus on a widely used search mecha-
nism known as the TTL-based controlled flooding of query
packets. This method is widely used in ad hoc routing pro-
tocols [7] as well as wired networks [1]. This is also a de-
centralized approach in that no central directory of infor-
mation is maintained. Under this scheme the query/search
packet is broadcast and propagated in the network. A preset
TTL (time-to-live) value is carried in the packet and every
time the packet is relayed the TTL value is decremented.
This continues until TTL reaches zero and the propagation
stops. Therefore the extent/area of the search is controlled
by the TTL value. If the target is located within this area,
it will reply with the queried information. Otherwise, the



origin of the search will eventually time out and initiate an-
other round of search covering a bigger area using a larger
TTL value. This continues until either the object is found
or the querier gives up. Consequently the performance of a
search strategy is determined by the sequence of TTL values
used.

Compared to random walk based approaches, controlled
flooding search is much easier to implement, and likely re-
sults in shorter response times on average. On the other
hand, it may incur more energy consumption (in terms of
number of transmissions and receptions needed) in the net-
work if not used properly.

Our primary goal is to derive controlled flooding search
strategies, i.e., sequences of TTL values, that minimize the
cost of such searches in terms of energy consumption (i.e.,
the amount of packet transmission/reception) 1. We will
also limit our analysis to the case of searching for a single
target, which is assumed to exist in the network. For the
rest of our discussion we will use the term object to indicate
the target of a search, be it a node, a piece of data or a file.
We will measure the position of an object by its distance to
the source originating the searching. We will use the term
location of an object to indicate both the actual position of
the search target within the network and the minimum TTL
value required to locate this object. The terms search strat-
egy or simply strategy will take on a more limited meaning
within the context of controlled flooding search and refer to
a TTL sequence.

When the probability distribution of the location of the
object is known a priori, search strategies that minimize the
expected search cost can be obtained via a dynamic pro-
gramming formulation [6]. The necessary and sufficient
conditions were also derived in [6] for two very commonly
used search strategies to be optimal. When the distribution
of the object location is not known a priori, one may eval-
uate the effectiveness of a strategy by its worst case perfor-
mance. In [1] such a criterion, in the form of the compet-
itive ratio (or worst-case cost ratio) between the expected
cost of a given strategy and that of an omniscient observer,
was used and it was shown under a linear cost model (to
be precisely defined in the next section) that the best worst-
case search strategy among all fixed strategies is the Cal-
ifornia Split Search algorithm, which achieves a compet-
itive ratio of 4 (also the lower bound on all fixed strate-
gies). In [6] it was shown that to minimize this ratio, the
best strategies are randomized strategies that consist of se-
quence of random variables, i.e., successive TTL values are
drawn from certain probability distributions rather than de-
terministic values. In particular, it was shown that given a
deterministic TTL sequence, there exists a randomized ver-

1We will not explicitly consider the response time of a search strategy
in this paper, as within the class of controlled flooding search the fastest
search is to flood the entire network.

sion that has a lower worst-case expected search cost. [6]
introduced a class of uniformly randomized strategies and
showed that within this class the best strategy achieves a
competitive ratio of approximately 2.9142. In this paper we
show that for a much more general class of cost models, the
best worst-case strategy among all fixed and random strate-
gies achieves a worst-case cost ratio of e. We derive an
optimal randomized strategy that attains this ratio and dis-
cuss how it can be adjusted to account for alternative per-
formance criteria.

The rest of the paper is organized as follows. Sections 2
and 3 present the network model and the performance ob-
jectives under consideration. In Section 4 we derive the op-
timal strategy among all random and non-random strategies.
We examine a few alternative performance measures in Sec-
tion 5, discuss some practical implications in Section 6, and
conclude the paper in Section 7.

2 Network model

We will assume that the timeout values are perfectly set
such that when the timer expires for a query with TTL value
k, that query has reached all nodes k hops away. We denote
by L the minimum TTL value required to search every node
within the network, and will also refer to L as the dimension
or size of the network.

A search strategy u is a TTL sequence of certain
length N , u = [u1, u2, · · · , uN ]. It can be either
fixed/deterministic where ui, i = 1, · · · , N, are determin-
istic values, or random where ui are drawn from probability
distributions. For a fixed strategy we assume that u is an in-
creasing sequence. In practice, it is natural to only consider
integer-valued policies. However, considering real-valued
sequences can often reveal fundamental properties that are
helpful in deriving optimal integer-valued strategies. We
therefore also consider continuous (real-valued) strategies,
denoted by v, where v = [v1, v2, · · · , vN ], and vi is either
a fixed or continuous random variable that takes any real
value on [1,∞), for 1 ≤ i ≤ L.

A strategy is admissible if it locates any object of finite
location with probability 1. For a fixed strategy this implies
uN = L, and for a random strategy, this implies Pr(ui =
L) = 1 for some 1 ≤ i ≤ N . In the asymptotic case as
L → ∞, a strategy u is admissible if ∀ x ≥ 1, ∃ n ∈
Z+ s.t. P r (un ≥ x) = 1.

We let V denote the set of all real-valued admissible
strategies (random or fixed). V d denotes the set of all ad-
missible real-valued deterministic strategies. U denotes the
set of all integer-valued admissible strategies (random or
fixed). Finally, Ud denotes the set of all admissible integer-
valued deterministic strategies. Note that it is always true
that Ud ⊂ U ⊂ V , and similarly Ud ⊂ V d ⊂ V .

In a practical system, a variety of techniques may be



used to reduce the number of query packets flowing in the
network and to alleviate the broadcast storm problem [10].
In our analysis we will assume that a search with a TTL
value of k will reach all neighbors that are k hops away
from the originating node, and that the cost associated with
this search is a function of k, denoted by C(k). This cost
may include the total number of transmissions, receptions,
etc. Thus C(k) is the ultimate abstraction of the nature of
the underlying network and the specific broadcast schemes
used.

For real-valued sequences, we require that the cost func-
tion C(v) be defined for all v ∈ [1,∞), while for integer-
valued sequences we only require that the cost function
be defined for positive integers. When the cost function
is invertible, we write C−1(·) to denote its inverse. We
will adopt the natural assumption that C(v1) > C(v2) if
v1 > v2. We also denote by C the class of cost functions
C : [1,∞) → [C(1),∞), that are increasing, differentiable,
and have the property limv→∞ C(v) = ∞.

Two example cost functions are the linear cost and
quadratic cost, defined as C(v) = αv and C(v) = αv2,
respectively, for some constant α > 0. The first is a good
model in a network where the number of transmissions in-
curred by the search query is proportional to the TTL value
used, e.g., in a linear network with constant node density.
The latter is a more reasonable model for a two-dimensional
network, as the number of nodes reached (as well as the
number of transmissions) in v hops is on the order of v2 [1].

We will use X to denote the minimum TTL value re-
quired to locate the object. We will also loosely refer to X
as the object “location”. When considering discrete strate-
gies u ∈ U , we require X to be an integer-valued random
variable taking values between 1 and L such that Pr(X ∈
{1, 2, · · · , L − 1, L}) = 1. When considering continuous
strategies v ∈ V , we relax the integer restriction on X , and
allow the location to take any real value in the interval [1, L].
In both cases, we denote the cumulative distribution of X by
F (x), where F (x) = Pr(X ≤ x). Similarly, the tail distri-
bution of X is denoted by F̄ (x) = 1−F (x) = Pr(X > x).
Note that F (L) = 1 and F̄ (L) = 0 for any X .

3 Problem formulation and preliminaries

We adopt the following worst-case performance measure
(a generalization of the one used in [1]):

ρu = sup
{pX(x)}

Ju

X

E[C(X)]
, (1)

where Ju

X denotes the expected search cost of using strategy
u for object location X ; E[C(X)] is the expected search
cost of an ideal omniscient observer who knows precisely
the location (i.e., realization of X). The ratio between these

two terms for a given X will be referred to as the (expected)
cost ratio. {pX(x)} denotes the set of all probability mass
functions of X such that E[C(X)] < ∞. We will only con-
sider the case where the random vector u and X are mutu-
ally independent. Also note that if u is deterministic then
Ju

X is a single expectation with respect to X , whereas if u

is random then Ju

X is the average over both X and u. The
worst-case cost ratio ρu can also be viewed as the compet-
itive ratio with respect to an oblivious adversary [2] who
knows the search strategy u. We will use the two terms
interchangeably.

It should be mentioned that the quantity ρu has slightly
different meanings for deterministic and randomized strate-
gies. When u is a fixed sequence Ju

X is a single expectation
with respect to X as noted before. In this case, the search
cost of using u is always within a factor ρu of the omni-
scient observer cost for any given location. On the other
hand, when u is random, ρu only provides an upper bound
on the average search cost but does not necessarily upper
bound any particular realization of this cost, as Ju

X is a dou-
ble expectation with respect to both the strategy and the lo-
cation. In this case, it is the expected search cost of u that is
always within ρu of the cost of an omniscient observer. For
some realizations of u and X , the cost ratio may be higher
than ρu. In Section 5, we will present other performance
measures in order to account for these differences.

The corresponding objective is to find search strategies
that minimize this ratio, with the best worst-case discrete
strategy denoted by u

∗:

ρ∗ = inf
u∈U

ρu = inf
u∈U

sup
{pX(x)}

Ju

X

E[C(X)]
. (2)

For any continuous strategy, v ∈ V , the worst-case cost
ratio is similarly defined as in (1):

ρv = sup
{fX (x)}

Jv

X

E[C(X)]
, (3)

where {fX(x)} denotes the set of all probability density
functions for X such that E[C(X)] < ∞. The best worst-
case continuous strategy v

∗ ∈ V is similarly defined as in
(2) with {fX(x)} replacing {pX(x)}.

The following lemmas are critical in our subsequent
analysis.

Lemma 1. For any search strategy v ∈ V , we have

sup
{fX (x)}

Jv

X

E[C(X)]
= sup

x∈[1,∞)

Jv
x

C(x)
, (4)

where Jv

X is the expected search cost using TTL sequence
v when object location X has pdf fX(x), and Jv

x is the
expected search cost using TTL sequence v when object lo-
cation density is fX(x′) = δ(x′ − x), i.e., a single fixed
point.



Proof. We begin by noting that for every x ∈ [1,∞),
there corresponds a singleton probability density fX(x′) =
δ(x′ − x), such that E[C(X)] = C(x) and Jv

X = Jv

x . We
thus have the following inequality

sup
{fX (x)}

Jv

X

E[C(X)]
≥ sup

x∈[1,∞)

Jv

x

C(x)
, (5)

since the left-hand side is a supremum over a larger set.
On the other hand, setting A = supx∈[1,∞)

Jv

x

C(x) we have
Jv

x

C(x) ≤ A for all x ∈ [1,∞). Thus Jv

x ≤ AC(x). Then
for any random variable X denoting object location, we can
use this inequality along with the independence between v

and X to obtain:

Jv

X

E[C(X)]
=

∫

[1,∞)
Jv

x fX(x) dx
∫

[1,∞)
C(y)fX(x) dx

≤

∫

[1,∞)
AC(x)fX (x) dx

∫

[1,∞) C(x)fX (x) dx
= A . (6)

Equation (6) implies that Jv

X

E[C(X)] ≤ A = supx∈[1,∞)
Jv

x

C(x) .
Since this inequality holds for all possible random variables
X , we have:

sup
{fX (x)}

Jv

X

E[C(X)]
≤ sup

x∈[1,∞)

Jv
x

C(x)
. (7)

Inequalities (5) and (7) collectively imply the equality in
Lemma 1, thereby completing the proof.

Because U ⊂ V , the following result can be proven in
a very similar fashion to Lemma 1. Alternatively, one can
find the proof in [6].

Lemma 2. For any search strategy u ∈ U , we have

ρu = sup
{pX (x)}

Ju

X

E[C(X)]
= sup

x∈Z+

Ju

x

C(x)
, (8)

where Ju

x denotes the expected search cost using TTL se-
quence u when Pr(X = x) = 1, and Z+ denotes the set of
natural numbers.

In words, these lemmas imply that for any TTL se-
quence, the worst case scenario is when the object location
is a constant with a singleton probability distribution, sub-
sequently referred to as a point. This result allows us to
limit our attention to singleton-valued X and equivalently
redefine the minimum worst-case cost ratio ρ∗ in equation
(2) as

ρ∗ = inf
u∈U

ρu = inf
u∈U

sup
x∈Z+

Ju

x

C(x)
, (9)

and similarly for continuous strategies.

It has been shown in [1] that under a linear cost function
C(u) = α · u for some constant α, and as the network size
increases, the minimum worst-case cost ratio over all deter-
ministic integer-valued sequences is 4, achieved by the Cal-
ifornia Split Search ū =

{

2i−1 : i ∈ Z
+

}

= [1, 2, 4, 8, ...].
In the next section we derive randomized strategies that are
optimal among all admissible strategies. Whereas [1] and
[6] derive strategies under linear cost functions, our optimal
strategy achieves a much smaller worst-case cost ratio, e,
for any cost function C(·) ∈ C.

4 Optimal worst-case strategies

In this section, we derive asymptotically optimal con-
tinuous and discrete strategies in the limit as the network
dimension L → ∞. Consequently we will consider TTL
sequences of infinite length that are admissible as outlined
earlier. The asymptotic case is studied as we are particularly
interested in the performance of flooding search in a large
network. In addition, it is difficult if at all possible to ob-
tain a general strategy that is optimal for all finite-dimension
networks because the optimal TTL sequence often depends
on the value of L. In this sense, an asymptotically optimal
strategy may provide much more insight into the intrinsic
structure of the problem. We will see that asymptotically
optimal TTL sequences can also perform very well in a net-
work of arbitrary finite dimension.

In what follows we will first derive a tight lower bound
on the worst-case cost ratio for continuous strategies. We
then introduce a particular randomized continuous strategy
that achieves the lower bound, therefore proving that this
strategy is optimal in the worst-case. We then repeat the
process for the discrete case.

In deriving a tight lower bound on the worst-case cost
ratio, we first use Yao’s minimax principle [2] and Lemma
1 to obtain the following inequality:

Lemma 3.

sup
{fX (x)}

inf
v∈V d

Jv

X

E[C(X)]
≤ inf

v∈V
sup

x∈[1,∞)

Jv

x

C(x)
. (10)

Proof. First note that for any given object probability distri-
bution, there exists an optimal strategy that is deterministic.
Hence the following holds:

sup
{fX (x)}

inf
v∈V d

Jv

X

E[C(X)]
= sup

{fX (x)}

inf
v∈V

Jv

X

E[C(X)]
. (11)

We also have the following in interchanging the supremum
and infimum, see for example [9]:

sup
{fX (x)}

inf
v∈V

Jv

X

E[C(X)]
≤ inf

v∈V
sup

{fX (x)}

Jv

X

E[C(X)]
. (12)

Finally, applying Lemma 1 to the right-hand side of (12) and
combining this inequality with (11) establishes (10).



Using this lemma, we note that any lower bound can be
found by first selecting a location distribution fX(x) and
deriving the optimal deterministic strategy that minimizes
the cost ratio under this distribution. We will assume that
the cost function C(x) ∈ C.

Consider an object location distribution given by F̄ (x) =

Pr(X > x) =
(

C(x)
C(1)

)−α

for all x ≥ 1 and some constant

α > 1. A special case of this distribution where cost C(·)
is linear, also known as the Zipf distribution, was studied in
[1] for which the optimal deterministic strategy was com-
puted. Here we will follow a similar method (generalized to
any cost function in C) to derive the class of optimal strate-
gies. For any deterministic TTL sequence v = [v1, v2, ...],
the corresponding expected search cost is given by the fol-
lowing expression, where v0 = 1 is assumed for simplicity
of notation:

Jv

X =
∞
∑

j=1

C(vj)F̄ (vj−1) =
∞
∑

j=1

C(vj)

(

C(vj−1)

C(1)

)−α

.

(13)
Taking the partial derivative of (13) with respect to vj and
then setting this equal to 0 gives a necessary condition for
any optimal strategy, for all j ≥ 1. From this condition, it
can be shown that for a given fixed v1, the optimal strategy
is to recursively choose vj that satisfy the following equa-
tion for all j ≥ 1:

C(vj+1) =
C(vj)

α

(

C(vj)

C(vj−1)

)α

. (14)

From this, it can be shown [5] that the optimal strategy
must satisfy Jv

X
α−1

α
= C(v1). On the other hand, the mean

of the object location cost can be calculated by integrating
the tail distribution of the random variable C(X), giving
E [C(X)] = α

α−1C(1). Combining these two results gives:

Jv

X

E [C (X)]
= Jv

X

(α − 1)

αC(1)
=

C(v1)

C(1)
. (15)

This result implies that for a given α, the sequence that gen-
erates the smallest cost ratio will follow recursion (14) and
use the smallest possible value of v1. However, not all val-
ues of v1 lead to an increasing sequence v, which is ob-
viously a requirement for an optimal strategy. It can be
shown [5] that v is an increasing sequence if and only if
C(v1)
C(1) > α

1
α−1 . Therefore, for a given α > 1, the minimum

cost ratio of any continuous strategy is lower-bounded by
α

1
α−1 .
Using recursion (14) a TTL sequence is completely de-

fined by the selection of v1. Therefore we can come arbi-
trarily close to the value α

1
α−1 by using a TTL sequence

defined by some v1 such that C(v1)
C(1) is arbitrarily close to

α
1

α−1 .

To establish a tight lower bound in Lemma 3, we need
to find the value of α with the highest minimum cost ratio.
It can be seen that as α approaches 1 from above, the mini-
mum cost ratio increases. Thus the maximum value of this
can be calculated by taking the limit limα→1+ α

1
α−1 = e.

Hence from Lemma 3 we have the following:

Lemma 4. For any C(x) ∈ C, the worst-case cost ratio of
any continuous strategy is lower-bounded by e, i.e.,

inf
v∈V

sup
x∈[1,∞)

Jv
x

C(x)
≥ e. (16)

This result implies that if we can obtain a TTL sequence
whose worst-case ratio is e, then it is optimal. We consider
the class of strategies given by the following definition:

Definition 1. Assume C(x) ∈ C. v[r, Fv1
(x)] denotes a

jointly defined sequence v = [v1, v2, ...] with a configurable
parameter r generated as follows:

(J.1) The first TTL v1 is a continuous random variable tak-
ing values in the interval

[

1, C−1(r · C(1))
)

, with its
cdf given by a nondecreasing (right-continuous) func-
tion Fv1

(x) = Pr(v1 ≤ x).

(J.2) The k-th TTL vk is defined by the equation vk =
C−1

(

rk−1C(v1)
)

for all positive integers k.

From (J.1) and (J.2), it can be seen that r and Fv1
(x)

uniquely define the TTL strategy.

For this family of strategies, the space over which the
supremum is taken in order to calculate the worst-case cost
ratio can be reduced. In particular, we have the following:

Lemma 5. Consider any strategy v[r, Fv1
(x)] constructed

using steps (J.1) and (J.2) in Definition 1. Assume C(x) ∈
C. Let F̄v1

(y) = 1−Fv1
(y). Then the worst-case cost ratio

supx∈[1,∞)
Jv

x

C(x) is given by:

sup
1≤z<r

{

r

r − 1

h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)

C(1)

}

, (17)

where h(z) is defined as follows for 1 ≤ z < r:

h(z) = C(1) +

∫ z·C(1)

C(1)

F̄v1
(C−1(y)) dy , (18)

and h′(z) denotes the derivative of h with respect to z.

Proof of this lemma can be found in [5]. Using this
lemma, for a given r the corresponding distribution Fv1

(x)
that minimizes worst-case cost ratio can be determined by
trying to produce a smooth cost ratio curve, e.g. one in
which (17) has a derivative of 0 with respect to z. The rea-
son for this will become clearer in Section 5. These steps
lead to the following result.



Theorem 1. Assume C(x) ∈ C. Within the class of contin-
uous (real-valued) TTL sequences V , the smallest obtain-
able worst-case cost ratio is e, i.e.,

inf
v∈V

sup
x∈[1,∞)

Jv
x

C(x)
= e.

Moreover, this worst-case ratio is obtained by the strategy
v
∗[e, ln C(x)

C(1) ] as defined in Definition 1.

To prove the theorem, first apply Lemma 5 to show that
the worst-case cost ratio of v

∗[e, ln C(x)
C(1) ] is equal to e. The-

orem 1 then follows from Lemma 4.
As an example, when the cost is linear, i.e. C(x) = αx

for all x, the optimal strategy v
∗ = [v∗1 , v∗2 , ...] is defined as

follows. The first TTL value is a random variable v∗
1 with

cdf Fv∗

1
(z) = ln z for 1 ≤ z < e. Successive TTL values

are defined as v∗
k = ek−1v∗1 .

In addition, it follows from Lemma 5 that a strat-
egy v[r, Fv1

(x)] given in Definition 1, with Fv1
(x) =

1
ln r

ln C(x)
C(1) , has a worst-case cost ratio of r

ln r
. We will con-

sider this family of strategies later when discussing other
performance criteria.

Using the above optimal continuous strategy, we next de-
rive an optimal discrete strategy.

Lemma 6. For C(x) ∈ C we have

inf
u∈U

sup
x∈Z+

Ju
x

C(x)
≥ inf

v∈V
sup

x∈[1,∞)

Jv
x

C(x)
= e. (19)

That is, the minimum worst-case cost ratio over all integer-
valued strategies is lower-bounded by the minimum worst-
case cost ratio over all real-valued strategies.

Proof. Consider any discrete strategy u ∈ U . It is also true
that u ∈ V . Note that for any 0 < ε < 1 and positive
integer x, we have Ju

x+ε = Ju

x . Hence:

Ju
x+ε

C(x + ε)
<

Ju

x

C(x)
,

since the cost function is strictly increasing. Thus the worst-
case cost ratio occurs at some positive integer x. This means
that the following is true:

inf
u∈U

sup
x∈[1,∞)

Ju

x

C(x)
= inf

u∈U
sup

x∈Z+

Ju

x

C(x)
.

Since U ⊆ V , we have the following:

inf
u∈U

sup
x∈Z+

Ju
x

C(x)
= inf

u∈U
sup

x∈[1,∞)

Ju
x

C(x)
≥ inf

v∈V
sup

x∈[1,∞)

Jv
x

C(x)
,

where the right inequality holds because the infimum is over
a larger set, thus completing the proof.

This result says that if we can find a discrete strategy
whose worst-case cost ratio is e, then it is optimal among
all admissible discrete strategies.

Theorem 2. Consider the cost function C(x) ∈ C. Within
the class of discrete TTL sequences, the best worst-case cost
ratio is e, i.e.,

inf
u∈U

sup
x∈Z+

Ju

x

C(x)
= e.

Moreover, this worst-case ratio is obtainable by the strat-
egy u

∗, which is constructed as follows. Construct a real-
valued TTL sequence v

∗ by using the strategy v
∗[e, ln C(x)

C(1) ]

described in Theorem 1. Then set u∗
k = bv∗kc for all k to ob-

tain the discrete strategy u
∗ = [u∗

1, u
∗
2, ...].

Proof. Consider the strategies u
∗ and v

∗ as described in

the theorem. Lemma 6 implies that supx∈Z+

Ju
∗

x

C(x) ≥ e.
Therefore, to complete the proof we need to show that the
worst-case cost ratio of u

∗ is less than or equal to e.
For any positive integer k, u∗

k takes integer values
between

⌊

C−1
(

ek−1C(1)
)⌋

and
⌊

C−1
(

ekC(1)
)⌋

. In
addition,

⌊

C−1
(

ekC(1)
)⌋

is a nondecreasing sequence
with respect to integer values of k, and approaches ∞
as k approaches ∞. Fix the object location as a pos-
itive integer x, and choose the smallest integer k such
that x ≤

⌊

C−1
(

ekC(1)
)⌋

. Note that E [C(u∗
k)] =

E [C (bv∗kc)] ≤ E [C (v∗
k)] for all integers k. Since x is a

positive integer, we have Pr (u∗
k < x) = Pr (bv∗

kc < x) =
Pr (v∗k < x). Hence we have the following for this x:

Ju
∗

x =

k
∑

j=1

E[C
(

u∗
j

)

] + Pr(u∗
k < x) E[C

(

u∗
k+1

)∣

∣u∗
k < x]

≤
k

∑

j=1

E
[

C
(

v∗j
)]

+ Pr (v∗k < x) E
[

C
(

v∗k+1

)∣

∣ v∗k < x
]

= Jv
∗

x ≤ eC(x) ,

where the last inequality holds because the worst-case cost
ratio for v

∗ is e as proven in Theorem 1. Since this result

holds for all integers x, we have supx∈Z+

Ju
∗

x

C(x) ≤ e. This
implies that the worst-case cost ratio is exactly e. Finally,
from Lemma 6 it follows that the minimum worst-case cost
ratio of all discrete sequences is e, which means that u

∗ is
optimal.

As an example, consider when the cost is given by the
function C(x) = α(x − 1)2 + β for some positive con-
stants α and β. Note that C−1(y) =

√

(y − β)/α + 1 for
y ≥ β. The optimal continuous strategy v

∗ is constructed
as follows. From Theorem 1, the first TTL value v∗

1 is a
continuous random variable taking values in the interval
[

1, 1 +
√

β(e − 1)/α
)

, and with cdf given by Fv∗

1
(x) =
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Figure 1. Cost ratio as a function of object
location for the optimal discrete sequence u

∗

described in Theorem 2, and California Split
Search defined by uk = 2k−1 for all k. Cost is
assumed to be linear

ln
(

α(x − 1)2/β + 1
)

. Successive TTL values are defined
as v∗k = 1 +

√

ek−1(v∗1 − 1)2 + β(ek−1 − 1)/α. Then
from Theorem 2, the optimal discrete strategy u

∗ is derived
by setting u∗

k = bv∗kc for all k.

5 Performance comparison

In Figure 1 we compare the cost ratio of the optimal dis-
crete strategy given by Theorem 2 to that of the non-random
TTL sequence given by the California Split Search uk =
2k−1 for all k under the linear cost function C(k) = αk for
α > 0. We see that the cost ratio oscillates for the fixed TTL
sequence while randomization essentially has the averaging
effect that “smooths out” the cost ratio across neighboring
locations/points. In fact the curve of the optimal continuous
strategy does not have local minima or maxima. One may
view this as the built-in robustness of a randomized pol-
icy for the underlying criterion of worst-case performance.
Also note that the worst-case cost ratio e is reached asymp-
totically from below as L → ∞, and hence the cost ratio
at any finite object location is less than the worst-case cost
ratio.

The performance measure we have been using is the
worst-case cost ratio with respect to an oblivious adversary,
who knows the strategy but not every realization of the strat-
egy. However, the same randomized strategy can result in
different realizations. This leads us to consider the compet-
itive ratio with respect to an adaptive offline adversary [2]
who knows the realization of the real-valued strategy v for

every search. Let the worst-realization cost ratio Γv

X denote
the maximum (over all realizations of strategy v) cost ratio
for strategy v when the object location is a random variable
X . Specifically,

Γv

X = sup
ṽ∈Υv

J ṽ

X

E [C(X)]
, (20)

where Υv denotes the set of all possible realizations of strat-
egy v. Let the worst-case worst realization cost ratio Γv

denote the maximum of Γv

X over all possible object loca-
tions. Then the performance of a search strategy against an
adaptive offline adversary can be measured by the following
competitive ratio (worst-case, worst-realization):

Γv = sup
{fX (x)}

Γv

X = sup
x∈[1,∞)

Γv

x , (21)

where the second equality can be shown in a manner similar
to the proof of Lemma 1. To distinguish, we will refer to ρv

as the worst-case average cost ratio.
As discussed in [2], the minimum of Γv over all strate-

gies is the same as the minimum worst-case average cost
ratio of all deterministic strategies, which can be shown to
be 4 under C(x) ∈ C 2.

Theorem 3. Consider a real-valued randomized strategy
v[r, Fv1

(x)] that is constructed as given by Definition 1.
Then we have Γv ≤ r2

r−1 .

Proof of this result can be found in [5]. The
inequality in this theorem becomes an equality when
the pdf of v1 is strictly positive in the interval
[

C−1
(

C(x)
rk−1

)

− ε, C−1
(

C(x)
rk−1

))

, for some ε > 0. This is

true when Fv1
(x) = 1

ln r
ln C(x)

C(1) , and hence strategies with
this family of cdf have a worst-case worst-realization cost
ratio of r2/(r − 1), which can be adjusted by selecting the
appropriate value of r.

Similar quantities can be defined for best-realization.
These results for this family of continuous strategies are
depicted in Figure 2 as a function of r. As can be seen,
one can appropriately select the value of r depending on
whether the goal is to minimize worst-case average cost ra-
tio, worst-case worst-realization cost ratio, etc. In particu-
lar, we note that by using r = 2, we can obtain a worst-case
worst-realization cost ratio of 4, with a worst-case average
cost ratio of approximately 2.8854. Therefore this partic-
ular strategy strictly outperforms the deterministic Califor-
nia Split Rule. The performance of the optimal continuous
strategy, i.e. when r = e as stated in Theorem 1, is depicted
in Figure 3 as a function of object location cost.

2This can be shown in a similar manner to that used in [1] for discrete
strategies under linear cost. In particular, in [5] we establish an equivalency
between linear and general cost functions, which can used to show that 4
is minimum worst-case cost ratio among deterministic strategies under any
C(x) ∈ C
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Figure 2. Performance of strategies given by
Definition 1 with cdf Fv1

(x) = 1
ln r

ln C(x)
C(1) , as

a function of r. Worst-case average cost ra-
tio (solid), worst and best realization cost ra-
tio for location x → ∞ (dashed), and worst-
case average cost ratio +/− standard devia-
tion (dotted) are shown.

Similar analysis can be carried out for discrete strategies,
although in this case the calculations are much more com-
plicated and do not provide any more insight. We therefore
do not present the numerical calculations here, but note that
the performance is very similar to its continuous version.

6 Discussion

In this paper we have introduced a class of optimal ran-
domized strategies. The derived optimal continuous and
discrete randomized strategies rely on the knowledge of
the functional form of the search cost C(·). Specifically,
construction of the optimal strategy depends on the abil-
ity to define and invert a cost function that is defined for
all x ∈ [1,∞). While conceptually and fundamentally ap-
pealing, this construction may pose a problem in a practical
setting. Note that the physical meaning of search costs only
exists over integer values, while continuous cost functions
are introduced as a mathematical tool. If the search cost
is only known for integer TTL values, then in order to ob-
tain the optimal discrete search strategy given in Theorem 2,
we would need to interpolate and create an increasing, dif-
ferentiable, and continuous cost function defined over the
positive real line.

Such a process is not always easy to carry through. In
this case certain approximation may be used. Alternatively
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Figure 3. Performance of optimal continuous
strategy (Theorem 1) as a function of object
location cost. Worst and best realization cost
ratio (top and bottom dashed), the average
cost ratio (solid), average cost ratio +/− one
standard deviation (top and bottom dotted)
are shown.

we could also try to develop simpler randomized strategies
that are sub-optimal with respect to our performance mea-
sure but still outperform deterministic strategies and that are
much easier to derive and implement than those introduced
in Section 4. Such strategies, known as uniformly random-
ized, were introduced in [6] for linear cost. These strategies
can be adjusted for more general cost functions as described
in [5].

The worst-case cost ratio we have been using so far is
in general a conservative/pessimistic performance measure.
As mentioned earlier, if the probability distribution of the
location of the object is known a priori, then we can de-
rive the optimal strategy that achieves the lowest average
cost for the given object distribution, using a dynamic pro-
gramming formulation [6]. On the other hand, the optimal
average-cost strategy can potentially be highly sensitive to
small disturbances to our knowledge about the object loca-
tion distribution, while worst-case strategies may be more
robust.

We compare the two under the following example sce-
narios. Consider a network of finite dimension L and the
linear cost function C(k) = k. We examine what happens
when there are errors in our estimate of the location distri-
bution. Consider when the object location has probability
mass function P (X = x) = βxα for all 1 ≤ x ≤ L, where
the constant α defines the distribution and β is a normal-
izing constant. Note that α = 0 corresponds to uniform
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Figure 4. Performance of DP(0), DP(-2.5) and
RAND as functions of α when L = 100.

location distribution. Let DP(α′) denote the optimal (deter-
ministic) average-cost strategy derived using dynamic pro-
gramming when assuming α = α′ in the distribution of
X . We then compute the expected search cost of DP(0) and
DP(−2.5) when the location distribution is in fact defined
by some other α, for −10 ≤ α ≤ 10. Similarly, we calcu-
late the average search cost under these distributions when
using the optimal worst-case (randomized) strategy, RAND.

These results are shown in Figure 4, where the perfor-
mance of these strategies are plotted for L = 100 as func-
tions of α. As can be seen, DP(0) is more robust (less sen-
sitive in the change in α) than RAND, while for DP(−2.5)
the opposite is true. For small (negative) α, RAND outper-
forms DP(0) and in some cases the average-cost of DP(0)
is 38 times larger. On the other hand, for large (positive)
α, DP(0) is better, but the average-cost of RAND is greater
only by a factor of 1.3. Thus we see that the dynamic pro-
gramming strategy should only be used if we are fairly cer-
tain about the object location distribution.

This quantitative relationship obviously varies with the
underlying assumptions on the location distribution and the
errors introduced. This specific example nonetheless illus-
trates the general trade-off between search cost and robust-
ness.

7 Conclusion

In this paper we study the class of TTL-based controlled
flooding search methods used to locate an object/node in
a large network. We derived an asymptotically optimal
strategy whose search cost, under a general class of cost
functions, is always within a factor of e of the cost of an

omniscient observer. We examined its performance under
other criterion, and discussed how the strategy’s parameters
can be adjusted to account for these new measures. These
results are directly applicable in designing practical algo-
rithms.
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