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Abstract—In this paper we formulate a contract design prob- on the secondary market (see Section VII-D on a discussion
lem where a primary license holder wishes to profit from its comparing the two mechanisms). This is conceptually like th
excess spectrum capacity by selling it to potential seconda  agign of pricing plans by a cellular operator: it presents a
users/buyers. It needs to determine how to optimally price tie . ; ) .
excess spectrum so as to maximize its profit, knowing that potential use_rwﬂh_aset of Cont_ract options, each co_mgslf
this excess capacity is stochastic in nature, does not comeParameters including the duration of the contract, distoun
with exclusive access, and cannot provide deterministic séce the device, number of free minutes per month, price per minut
guarantees to a buyer. At the same time, buyers are of differe  for those over the free limit, window of unlimited calling
types, characterized by different communication needs, tolerane time, and so on. In coming up with these calling plans the

for the channel uncertainty, and so on, all of which a buyer's . . .
private information. The license holder must then try to desgn operator typically studies carefully the types of callénsants

different contracts catered to different types of buyers inorder ~ t0 attract and their calling patterns/habits; the subsetpians
to maximize its profit. We address this problem by adopting as are catered to these patterns with the objective of maxigizi
a reference a traditional spectrum market where the buyer ca jts revenue. A caller interested in entering into contraithw

purchase exclusive access with fixed/deterministic guarées. We - e gperator is expected to look through these plans and pick
fully characterize the optimal solution in the cases wherettere . . .
one that is the best suited for him/her needs.

is a single buyer type, and when multiple types of buyers shar X .
the same, known channel condition as a result of the primary I this paper we adopt such a contract design approach
user activity. In the most general case we construct an algghm in the context of the secondary spectrum market, where a

that generates a set of contracts in a computationally effient |icense holder advertises a set of prices and service plans
manner, and show that this set is optimal when the buyer types i, the hope that a potential buyer will find one of them
satisfy a monotonicity condition. sufficiently appealing to enter into contract. The consaute
designed with the goal of maximizing the expected revenue of
l. INTRODUCTION thellicen_se holder giver! a set of buygpes(more precisely
defined in the next section).

The scarcity of spectrum resources and the desire t0 iM-1y5 make the contracts appealing to a buyer, one must
prove spectrum efficiency have led to extensive research afigfjress the issue that the spectrum offered on the secondary
development in recent years in such concepts as dynamifort-term) market is typically the excess capacity dugéo
spectrum access/sharing, open access, and secondary (Spefary license holder's own spectrum under-utilizatidts.
or short-term) spectrum market, see e.g., [1], [2]. From thg ity is therefore often uncontrolled and random, bota-sp
inception of the open access paradigm, it was clear that fokjh v and temporally, and strongly dependent on the bedravi
to work two issues must be adequately addressed: sensing e primary users. The primary license holder can of aurs
pricing. The first refers to the ability of a (secondary) devi cpoose to eliminate the randomness by setting aside resourc
to accurately detect channel opportunity and more geyex@ll (¢ g bandwidth) exclusively for secondary users. Thi#f wi
acquire information on the spectrum environment. The S&CoRgvever likely impinge on its current users and may not be in
refers to mechanisms that provide license holders with th&s interest of its primary business model. The alternasite
right incentives_ so that they will willingly allow access bysimply give non-exclusive access to secondary users foe,a fe
unlicensed devices. which allows the secondary userssioarea certain amount of

There has been a number of mechanisms proposedpihdwidth simultaneously with its existing licensed usbrg
address this incentive issue, the most often used being g}qy under certain conditions on the primary traffic/spectr
auction mechanism, see e.g., [3]-[5]. Auction is also thgsage. For instance, a secondary user is given access but can
primary mechanism used in allocating spectrum on the p§imagny use the bandwidth if the current activity by the licethse
market [6]. In this paper we consider an alternative apToag,sers is below a certain level, e.g., as measured by received
that based orcontracts to the trading of spectrum accesgNR, the so-called spectrum overlay. Many spectrum sharing

_ _ _ schemes proposed in the literature fall under this scensei®
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and CNS 1217689, a preliminary version of this work is goiagappear in e.g. [ ]_[ ]

INFOCOM 2013. In this case a secondary user pays (either in the form of



money or services in return) to gain spectrum access but nod) When the spectrum holder has limited amount of band-
for guaranteed use of the spectrum. This presents a challeng  width, we discuss three different scenarios and show
to both the primary and the secondary users: On one hand, the how to modify our algorithm accordingly.

secondary user must assess its needs and determine whethghe remainder of the paper is organized as follows. We
the uncertainty in spectrum quality is worth the price askgstesent the contract design problem in Section II. Sectibn |
for and what level of uncertainty can be tolerated. On théharacterizes the utility region and the optimal contract i
other hand, the primary must decide how stochastic servigr: single buyer case. Section V deals with the case when
quality should be priced so as to remain competitive againfe channel condition is common knowledge, while Section
guaranteed (or deterministic) services which the secgnday| focuses on the case when channel conditions are private
user may be able to purchase from a traditional market Riowledge. Discussion is given in Section VII-B, VII-D and

a different primary license holder. VII-C and numerical results in Section VIII.
To address this challenge we adopt a reference point in the

form of a traditional spectrum market from where a secondary
user can purchase guaranteed service, i.e., exclusivessacce . ) o _
fights to certain bandwidth, at a fixed price per unit. This In_ this section we describe in detail the models for the two
makes it possible for the secondary user to reject the affenf Partiés under the contract framework: the seller and thehuy
the primary if it is risk-averse or if the primary’s offer ipn 2nd their considerations in designing and accepting a aoitr
attractive. This also implies that the price per unit of baiutth  "€SPectively. We also illustrate a basic idea underlying ou
offered by the primary user must reflect its stochastic gualiMode! to capture the value of secondary spectrum service,
Work most relevant to the study presented in this pap@hich is random and non-guaranteed in nature, by using
includes [11]-[14]. In [11] a contract problem is studiedesd 9ua@ranteed service as a reference.
the secondary users help relay primary user’s data andumret
are allowed to send their own data. In [12] an optimal poitfol A. The Seller

problem is studied, where a secondary user can purchase fnere are two parties to a contract, the seller and the buyer.
bundle of different stochastic channels, with the priceadre The seller is also referred to as the owner or the primary

already determined, and seeks to find the optimal purchasejitense holder, who uses the spectrum to provide businebs an
[13] & network revenue management problem is studied, Whet&vice to itsprimary users and carryprimary traffic He is

the customers arrive according to a Poisson process and \fiing to sell underutilized bandwidth he has as long as it
performance of a class of certainty-equivalent heuristittiol generates positive profit and does not impact negatively his

policies was studied. In [14], spectrum trading is modeled @rjmary business. We will assume that the seller can prigdes

a monopoly market where the primary determines a pricgy (o A/ contracts and announce them to potential buyers.
quality contract. While our problem setting bears similato

that considered in [14], there are several major differsntte

chief of which is the fact that our model is not monopolisti®: The contract

due to the existence of a traditional market (exclusive s&ce Each contract is in the form of a pair of real numbersp),
mentioned above, that serves as a reference for the valfeerer € R™ andp € R™.

of spectrum products offered on the secondary market (non-  is the amount of bandwidth they agree to trade on (i.e.,

II. MODEL AND ASSUMPTIONS

exclusive access). In addition, we model different buyeety access to this amount of bandwidth is given from the

by their required bandwidth, service quality and loss tnhee. seller to buyer).

As a result the types can only be partially ordered. . pis the price per unit of:; thus a total ofzp is paid to
Main contributions of this paper are as follows: the seller if the buyer purchases this contract.

1) We formulate a contract design problem where the Spec-The seller's profit or utility from contractz, p) is given as
trum license holder seeks to sell his excess bandwidth

to potential buyers. The model captures the following U(z,p) =z(p—c)

essential features: (1) excess bandwidth on the second@fy, e . is a predetermined constant that takes into account the
spectrum marke_t often COMes with non-excllu.swe u%eperating cost of the seller. We will assume that any cohtrac
and therefore h'@!h',y uncertain channel conditions; (%Ple seller presents must be such that ¢; that is, the seller
incentives are built in for both the seller and the buy%i" not sell at a loss. If none of the contracts is accepted

to conduct spectrum trading on the secondary market, yhe puyer, thereserve utilityof the owner is defined by
2) We fully characterize the optimal set of contracts th&(o 0)=0

seller should provide in the case of a single or two types

of buyers, and when multiple types of buyers share the ] o )

same channel condition due to primary user activities.q- A reference market of fixed/deterministic service orwexcl
3) When there are multiple types of buyers and eaciVe US€

experiences different channel conditions, we constructWe next consider what a contract specified by the pair

a computationally efficient algorithm and show that théz, p) means to a potential buyer. To see this, we will assume

set of contracts it generates is optimal when the buytitat there exists a traditional (as opposed to this emerging

types satisfy a monotonicity condition. secondary) market from where the buyer can purchase ssrvice



with fixed or deterministic guarantees. What this means iisalize. Although the technical details will become diéfet,

that the buyer can purchassclusiveuse of certain amount the basics ideas are the same. More is discussed on how to
of bandwidth, which does not have to be shared with othgrcorporate a general model &f in Section VII.

(primary) users. This serves as an alternative to the bayelr,  With a purchase ofy, (z,p)), the buyer’s cost is given by

is used in our model as a point of reference. We will nat+ xp. The cost of the contragtz, p) to this buyer is given
specify how the price of exclusive use is set, and will simplgy the value of the following minimization problem:

normalize it to be unit price per unit of bandwidth (or pertuni
of transmission rate). The idea is that given this alteveati
the seller cannot arbitrarily set his price because the e subjectto  E[(g—y—zB)T]<e (2
always walk away and purchase from this traditional market.

This traditional market will also be referred to as teéerence That is, to assess how much this contract actually costs him,
market, and the service it offers as tfieed or deterministic the buyer has to consider how much additional fixed service
service. Our model allows a buyer to purchase from boft¢ needs to purchase to fulfill his needs.

markets should that be in the interest of the buyer. Note thatThe buyer can always choose to not enter into any of the
even though we have assumed a single seller model, this is Bgsented contracts and only purchase from the traditional
a monopoly because of the existence of this reference markggrket. In this case, his cost is given by the value of the
However, we do not explicitly model the competition betweefpllowing minimization problem:

multiple sellers on the secondary market, which remains an -
interesting subject of future study.

C(z,p) = minimize  y+ap Q)
Yy

(0,0) = minimizey, subject toE[(¢ —y)T] <e
Yy

Since every term is deterministic in the above problem, we
D. The buyer's consideration immediately conclude thaf’(0,0) = ¢ — ¢, which will be
referred to as theeserve priceof the buyer. It is natural to

When the set of\/ contracts are presented to a buyer, his .
b yer, ssume that any buyer must be such that ¢, for otherwise

choices are (1) to choose one of the contracts and ab|deah¥ o :
. , ... __the buyer does not need to perform any transmission as it can
its terms, (2) to reject all contracts and go to the tradélon :

t&lerate the loss of all of its data.

market, and (3) to purchase a certain combination from bo In deciding whether to accept a given contréetp), the

markets. The buyer's goal is to minimize his purchasing Coﬁltjyer has to consider (1) whether the contract would saitisfy

as long as certain quality constraints are satisfied. i . . S
While the framework presented here applies to any me %qahty ('O.SS) con_stralnt, and (.2) whether there is an itien .
18 enter into this contract, i.e., whether the cost of this

ingful quality constraint, to make our discussion concre . ; . .
gu g y contract is no higher than the reserve price. The latter is

below we will focus on a loss constraint. Suppose the buye L : : .
. . . PP yalrso referred to as thmdividual rationality (IR) constraint,
chooses to purchageunits of fixed service from the reference

market logethr wih  convact ). Thn s constaiton (120 = (101 "1 " A eoniact i setes v
expected loss of transmission can be expressed as: y P yer.

If a buyer accepts one of the contracts, the two sides come

El(q—y—xB)%] < e ,where to an agreement and have to follow the contract up to a

redetermined period of time. We will leave this duration

) nspecified as it does not affect our analysis under the murre

transmit. : ) ) . .
B 01V i bi d iable denoting th model assuming the buyer’s need is to transmit a certain

* el't{ ’f }thls ah |nar|)/franthqmbvar|a Vev enl(l) Ich teamount of data over the entire contract period. However, the
quality ot the channel for this buyer. WWe will deno eoinary channel model would be more reasonable if the contrac

o ¢ is the amount of data/traffic the buyer wishes tE

b:=P(B=1). ; .
. onsidered is short term.
o ¢ is a threshold on the expected loss acceptable to t%e
buyer.

« y is the amount of bandwidth the buyer purchases addi- Buyer types and informational constraints

tionally from the reference market; its priceliper unit We will assume that a potential buyer may be one of a

bandwidth. number of differenttypes each type is characterized by a
Note that quantitiest,y and ¢ are of the same unit; this unique triple(q, ¢,b), which is a buyer'sprivate information
unit can be bit (total amount of transmission), or rate (bifEhat is, a type is characterized by its transmission needs
per second), and so on. Here we have adopted a simplifyi@@nountq to be transferred and loss requirementas well
assumption that the purchased service (in the amounj & as its perceived spectrum/channel quality Throughout the
either available in the full amount (whé® = 1) or unavailable paper we will assume that a tyge, ¢, b) is such that there
(when B = 0), with zb being the expected availability. If theexists a contract witlp > ¢ acceptable to the buyer, for
contract duration is comparable to the time constant of tletherwise the seller has no incentive to sell.
primary user activity (e.g., peak vs. off-peak hours) thes t  We will further assume two cases, wherés common to
model captures the spectrum condition at the time of contradl types and wheré may be different for different types.
signing. More sophisticated models can be adopted here, Thye first case models the scenario where buyers are relativel
replacingz B with another random variabl& (x) denoting the homogeneous and their perceived channel quality is largely
random amount of data transmission the buyer can actuallgtermined by the primary user traffic reflectedbinin this



Acceptance boundary of two types of buyer

case it is also natural to assume thas known to the seller.
The second case models the scenario where buyers may differ
significantly in their location, quality of transceiver dess,

and so on, which leads to different perceived channel gualit
which is only known to a buyer himself.

The seller is assumed to know the distribution of the buyer
types but not the actual type of a particular buyer. The buyer
types and their distribution may be estimated from the sglle % 5 7 s A 0
past experience. Specifically, we will assume therefatgpes bandwidth ()
of buyers, and a buyer is of typewith probability »; and

A . k Fig. 1. Th is wher(1 — b =5b=08,e=3),th
is given by the triple(g;, b;, ¢;). In subsequent sections qul\?ver Cuweei:%ﬁér;?lrv_e ;,S)Vl Eel((q - 5)7 ;;0(?376 _ 3) € =3). the
proc_eed in the follc?wmg sequence: (1) sm_gle user type, .(2) = (e+ap—2)Tb+ (e+xp)(1 —0)
multiple user types; commoh, and (3) multiple user types; v
different and private. (e+ap)(1 —b) < (e+b%=)(1-b)
- =q(1-0) <k, if e+az(p—1)<0
o (e+x(p—1)b+ (e+ap)(l —b)
[1l. OPTIMAL CONTRACT FOR A SINGLE BUYER TYPE —et+a(p—b<e, ifetap—1)>0
We begin by considering the case where there is only ofius the loss constraint is also satisfied. ]

type of buyer(qg,e,b). Through this simplified scenario we The two acceptance regions given by Theorem 1 are illus-
will introduce a number of concepts key to our analysis anghted in Figs. 1. Any contract that falls below the boundary
obtain some basic understanding of the nature of this pnobles acceptable to the buyer. The two cases have the following
Under our assumption that the seller knows the buyer YRferpretations. In the first casg({ — b) < ¢), the quality
distribution, having a single type (i.e., a singleton dittion) of the stochastic channel is sufficiently good such that the
essentially means that the trigle, €, b) is known to the seller. |oss constraint (2) may be met without any purchase of the
Denote byT = {(z,p) : C(z,p) < C(0,0)} the set of all deterministic channel. In this case the buyer is willingpersd
acceptable contracts for the buyer, or teceptance regian yp to the entire reserve pric&(0,0) = ¢ — e on the contract.

This is characterized by the next result. In the second case((l —b) > ¢), the quality of the stochastic
Theorem 1. Wheng(1 — b) < e, the buyer accepts a contractChan”e_l i_s _such that no matter how much is purchgsed, some
(z,p) iff determmlsth channel is needeg % 0) in order to satisfy the
_ loss constraint (notep < % < q— ¢ becausg(1 —b) > ).
p < { b ifr < LS 3) Consequently, in the first case, further purchase from the
- =L ifr > G reference market is needed only if the contract has z*,

whereas in the second case, the buyer always has to purchase
from the reference market to satisfy the loss constrainis Th
observation holds throughout the paper including when we
) introduce multiple buyer types.
For a given buyer typeq(e,b), the seller can choose any
The above theorem can be proved for each of the casgsint in the corresponding acceptance regmo maximize
listed above. For brevity below we only show the proof fofg utility: max(, ez U (z, p). We next show that the optimal
the sufficient condition undey(1 —b) < e for the first case contract for the seller is given by the “knee” (the interamct
in Eqn (3); other cases can be done using similar argumernigint where the straight line meets the curve) on the boyndar

Lemma 1. Wheng(1 —b) < ¢, the buyer accepts the contract®f the acceptance region, denoted(as, p*).

(z,p) if # < 4= andp < b. Theorem 2. The optimal contract for the seller is the inter-
Proof: If both the IR constraint and the loss constraint aréection point(z*, p*) on the acceptance region boundary of

satisfied under the stated conditions, then the buyer a&céﬁfe buyer.

the contract. Below we check these two constraints. Let the pygof- We prove the optimality in two steps. First we

buyer supplement this contract with an additional purctedse show that the seller’s utility is strictly increasing jnwhich

y = q—e—xp deterministic service. Note that> 0 under the jmplies that the optimal contract must be such that (3) ajd (4
stated conditions. The total cost of this contract to theebuyho|g with strict equality. Then we show that the intersettio

Wheng(1 — b) > ¢, the buyer accepts the contract iff

- b if z < 5
p = be H
=] if x> 1=

™

k=l

o |

=

is then given by: point is strictly better than any other point on the boundary
Clz,p)=y+ap=q—e—ap+ap=q—c=C(0,0). For anyz > 0 andVp’ > p, we have
The IR constraint is therefore satisfied. The buyer’s lostenn Ulz,p') =(p —¢) > x(p — ) = Ula, p).
this combination of purchases is given by: ThusU (z, p) is strictly increasing ip. For anyz < z* (points
E [(g-y-=zB)"] on the straight line) we have

= (g-y-2)"b+(¢—y)"(A-b) U™, p") = 2" (p" = ¢) > z(p* —¢) = U(x,p"),



Equal cost line (Cost of accepting)

08 —T (z, P(«',p’,x)) such that
—13.15 , .
06 —12.75 b—Z(b—p) if z, 2/ <a*
—12 10/ ; / *
=2 —115 P /AW _ Ip/x |f§C,ZC ZSC
go4 ] (@0, 2) (b(x* —a')+a'p)/z fa <z*<z
= b— (z*b—a'p)/x if o <a*<a
0.2
/\ Proof: We will prove this for the case(l — b) < ¢; the

other case can be shown with similar arguments and is thus

0 2 4 B 8 10 : ) ! <

bandwidth (x) omitted for brevity. In this case* = 4=. Whenz, 2" < 2%,

Fig. 2. Example of equal cost lines without buying deterministic service the loss is given by
Ellg—xB)*] = (¢—2)"b+q(1-b)

which used the fact that* > c. (Recall we have assumed that
for any buyer there must exist a contract wjih> ¢ that it = (g-2)b+ql-b)=g-ab>¢

finds acceptable. This implies such a point must be within thghere the second equality is due to the fact that— b) <
acceptance region, which in turn implies that we must haye, Lf < g = x < 93° < ¢. The incentive for the buyer is
p* > c sincep” > p, Vp in the region.) For any paifz,p) to purchases such that the loss is just equal ¢o

such thatrp = z*p* andx > z* (points on the curve),
Ellg—y—2B)"] = (¢—y—2)b+(¢a—y)(1-0)

Ulz,p) = x(p—c) =a"p" —we>z"(p" —¢) = U(z",p").

Thus U(z", p") is strictly greater than any poirif (, p) on The first equality follows from the fact that(1 — b) < ¢,

the boundary. _ _ which implies both(¢ —y — z) > 0 and (¢ — y) > 0. This is
Once the seller determines the optimal contract and preseffie for both(x, p) and («’,p’). Since(z,p) is on the equal

it to the buyer, the buyer will accept because it satisfied btost jine £, o, we know thatC/(z,p) = C(a’,p'). We also
the loss and the IR constraints. It can be easily shown thgiow thatc(,xvp) =y+axpandC(z,p) =y +2'p,

the buyer’'s cost in accepting is exactly(0,0). Note that ) . o,

technically since the cost of the contract is exactly eunI(Iap) =q—e—abtap=q—e—2'b+a’p'=C(,p).
to the reserve p.rice, thle buyer is in.different. between wygtti Rearranging the second equality such thas a function of
only deterministic service and getting a mix of both types ./ ' immediately gives the result. Whenz' > z*, z (')

of services. In practice the seller can always lower the u'?:{ione is sufficient to achieve the loss constraint. €, p) =
price p* by an arbitrarily small amount to provide a positiv («/,p') we must haver’p’ = ap, resulting in the second

incentive so that the buyer will accept the Co_”"a_Ct_- Fos th'_Jranch. The third and fourth branch can be directly derived
reason even though the costs are equal, for simplicity we Wil . the first two branches. When> z* > o/ (' > z* < 1)
assume that the buyer will accept this contract. qu the Same first find the equivalent price at* by the first branch
reason, we will also assume that when there exist multipléocong pranch), and then use the second branch (first hranch

contracts of equal cost to the buyer, the seller can awasing p(,/ 4y ). This gives the third branch (fourth branch)
induce the desired choice from the buyer by introducing a -

small difference to the desired contract. We have now athe form of the equal-cost line is the same regardless

complete characterization of the contract design for aISinQNhetherq(l —b) < eorq(l—b) > . Note that every contract
type of buyer. below an equal-cost line is strictly preferable to a coritrac

We will now introduce the concept of aqual-cost lineof  the line for the buyer. This is an observation we will use in
a buyer. Consider a contra¢t’,p’). Denote byP(z',p’,z) subsequent sections. We end this section with a property of

a price such that the contract, P(«’,p’ ,x)) has the same the equivalent price we will use later.

cost as contracdtzr’, p’) to a buyer. . o N
o', p') 4 Lemma 2. P(z/,p’, x) is strictly increasing irp’ whenz’ > 0.

Definition 1. The equal-cost lind of a buyer of typdg, ¢, b)

is the set of contracts within the buyer's acceptance redion
that are of equal cost to the buyer. This,p) € E if and
only if p = P(2/,p’,x) for some otherz’,p’) € E. The cost
of this line is given byC'(z',p"), V(2',p’) € E. IV. MULTIPLE BUYER TYPES PRELIMINARIES

It should be clear that there are many equal-cost lines, eaclé(ve no}v{v cons;dgrl: tﬁpf)s o;: buyelrs mdtzxed .bz —
with a different cost. Figure 2 shows an example of a set 0f% """ d each defined by \tNe ml? éqi,ea i) with an
equal-cost lines. The next theorem gives a precise expmss"flssoc'ate acceptance regibn We will use the notation

for the equivalent price that characterizes an equal-@ost | max; = (x},p}) = argmax, p)eTU(Iap)

This lemma is easily shown by noting(z’,p') = y +
2'p’, wherey is only a function ofz’. Thus,p > p’ implies
C(z',p) > C(2/,p’) whenz' > 0.

Theorem 3. For a buyer of typgq, ¢,b) with an intersection to denote the optimal contract if typewere the only type
point (z*, p*) on its acceptance region boundary, and giveexisting. Similarly, we will useC;(z, p) to denote the cost to
a contract(a’, p’), an equal-cost line consists of all contracts types buyer for accepting contragt:, p).



A buyer is of typei with probability ;. We assume that earlier discussion on how the seller can always incentitrize
the seller knows only this distribution of types but not theontract over others with equal cost). Since this is the thest
actual type of a given buyer. Consequently it has to desigeller can do with a typé-buyer (see Theorem 3) this set is
the contracts in a way that maximizes its expected payoffptimal for the seller. It is also relatively straightfomelato
Since the payoff is measured in expectation, it turns out thabtain a similar results in the case df < K given next.
it does not matter whether the seller is faced with a single
buyer or multiple buyers as long as they are drawn from th@mma 3. WhenM < K andVb; = b, the optimal contract
same, known type distribution and the seller has sufficiesét is a subset dfmaxy, ..., mark).
bandwidth to honor its contracts. For this reason throughou
our discussion we will take the view of a single buyer drawn  proof: Assume the optimal contradt is not a subset

from a certain type distribution. In Section VII-B we dissus of (maz1, ..., mazg). Then it must consists of some contract
the case when the seller has limited bandwidth to trade. points from at least one of thg regions as demonstrated in
Consider a set of contracts = {(z1,p1),.., (zx,px)} Figure 3. Let these contracts bg ¢ I; and|J, 4; = C. For
designed by the seller with the intention that a buyer of typeeach non-empty!;, we replace it by the contractaz; and
prefers(z;, p;). This is true iffC; (2, p;) < Ci(z;,p;),Vj #i. call this new contract sef’. The proof is to show that this
Let R;(C) denote the contract that a typ&uyer selects given contract set generates profit at least as large as the drigiaa
a setC. ThenR;(C) = argmin,, ,, . Ci(z,p) and the seller's For each type-buyer that picked some contragt,p) € A;
expected utility for a giverC is E[U(C)] = >, U(R;(C))ri.  from the optimal contract, it must had a type greater than
Note that there is no point in offering more th&hcontracts. or equal toj otherwise(z, p) is not in its acceptance region.
In the case of more thak contracts offered, there will |n the contract seC’, type< will now pick mazx; OF max;
always be a contract not taken by any buyer type. with I > j. The choice of each possible type of buyer picks
from C’ is at least as profitable as the one they picked from
C. Thus, the expected profit @’ is at least as good &5. m
V. MULTIPLE BUYER TYPES COMMON CHANNEL

CONDITION This lemma suggests the following iterative way of finding

_ ) ) ) the optimal contract set without having to solve what would
In this section we conS|der_ the case where dlfferer_1t tyP&€8em like a combinatorial problem. Define functigfim, i)
share the same channel condition= 0,7 = 1,--- , K, which 55 the the maximum expected profit for the seller by picking
is also known to the seIIe_r..As _men_‘uongd earlier, .thIS mde&ontraetmaxi and selecting optimallyn — 1 contracts from
the case where the condition is primarily determined by thge setimaz;,1, ..., maz ). Note that if we includenaz; and
seller's primary user traffic. An example of the acceptanGg,, . (i < j) in the contract set but nothing else in between
regions of three buyer types are shown in Figure 3. Note t@a&ndj, then a buyer of typé (i < I < j) will pick contract

maz;'s need not be ordered ify however, in the interest of maz;. These types contribute to an expected profit:p —
simplicity in presentation, we will reindex them in ascergli ¢) J—

: : ¢ . ] Z.l r;. At the same time, no types belowwill select
order for the remainder of this section. There are two pdrss@naxi (as it is outside their acceptance regions), and no types at

cases: (1) the seller can announce as many contracts aghghove; will selectmaz; (as for themmaz, is preferable).
likes (M = K); (2) the seller is limited to at most/ < K

contracts. Below we fully characterize the optimal corttest ~ The functiong(m, i) can be recursively obtained as follows:

in both cases. j—1
07 Three puyer typeg with same channel cqndmon g(Tn7 2) = max g(m — L]) + Z; (b — C) E T,

Ju<j<K-—m+2 ‘

0.6F max, max, max, J =1

with the boundary conditiog(1,4) = 2} (b — ¢) Zf;- .

Finally, it should be clear that the maximum expected
profit for the seller is given bynax;<;<x g(M,4), and the
optimal contract set can be determined by going backwards:
first determinei}, = argmaxi<;<x g(M,1), thend}, | =

price (p)

0 2 é‘andwidth (xé) C 0 argmaxi<;<x—1 g(M —1,4), and so on. In computing the set
of M K values ofg(m, i), we note that each can be computed
Fig. 3. Three buyer types with comman in less thank steps ifg(m — 1,4),i = 1,..., K is already
Theorem 4. WhenM = K, the contract set that maximizesknown. These values can therefore be computed backwards,
the seller's profit is(maz:, maw, ..., maxr). resulting in a complexity ofO(K2M). By comparison a

As shown in Figure 3, with a constaht the intersection brute force search o chooseM possible contract sets is

points of all acceptance regions are on the samejline, €XPonential.

For a buyer of type, all points to the left ofmax; on this

line cost the same aswaz;, and all points to its right are Theorem 5. The set{maw;;, max;;,--- ,max;; } obtained
outside the buyer's acceptance region. Therefore the typHSing the above procedure is optimal and its expected profit
buyer will select the contragtaz; given this contract set (seelS given byg(M, i3,).



= 1 U(Ri(maxy)) + roU(Ra(maxz)).
0.8
Bo. Bos max, The second equality holds becauseiz; ¢ To and maxs
8 .. max, 's ¢ Ty and thus type will pick maz;. SupposeC is not the
= = I optimal set of 2 contracts, then there must exists s@he-
o {(x1,p1), (z2,p2)} such that
0 0
? bandwidth x) 10 ° bandwidth (X) 1 E[U(((C’))] = TlU(Rl (xl,pl)) + TgU(Rg(xg,pg))
Fig. 4. (leftymazy ¢ T» andmazs ¢ Ti; (right) maz: € T > EU(C)]
VI. MULTIPLE BUYER TYPES PRIVATE CHANNEL = nU(Ri(maz1)) + raU(Rz(mazz))
CONDITION This implies eitherU(R:(z1,p1)) > U(Ri(maxy)), or
We now consider multiple buyer types each with a differerf (R2(22, p2)) > U(Ry(mazw,)), or both, all of which con-
channel conditiorb;, i = 1,---, K. We will start with the tradict the definition ofmax;. Thus, {mazx,maz,} is the
special case of( = 2 and characterize the optimal contract§Ptimal contract set. o _ ]
in this case. Using these results we then construct an gigori  The proof as well as the intuition behind the above result
to compute a set of contracts for the casekof> 2. are straightforward. The next cas&] = 2, max; € T> or

maxs € Ty, is more complicated. Without loss of generality,
we will assume that the type-buyer has a smalle; (b <
bs), thusmaz, € To. We first determine the optimal contract
Consider two buyer type§y;, €;,b;), i = 1,2, with proba- whenz < 3; this result is then used for the case whgn>
bility r;, r1 +r2 = 1. We first consider the case that the selles. without loss of optimality we consider only contract pairs

A. Two buyer typesk = 2

is limited to one contracth/ = 1. {(z1,p1), (z2,p2)} where typer buyer picks(z;, p;) instead
Theorem 6. The optimal contract whe = 2 and M = 1 of the_other one.. )
is as follows: To find the optimal contract, we 1) first show that for each

(z1,p1) we can express the optimals, p2) in terms ofz; and

p1; 2) then we show thatxy, p;) must be on the boundary of

mazxy i rU(mazy) > rU(mazxy) Ty with 2, < 2%; 3) using 1) and 2) we optimize the expected
and rU(max) > U(G) profit over possible choices af;.

mazxs if  roU(maxg) > rU(maxy) . . .
and rU(mazs) > U(G) Lemma 4. WhenK = 2, if maz, € Ty and 27 < z3, then

G it U(G) > rU(maxs) given a contract for type-1z1,p;), the optimal contract for
and U_(G) > U (maz1) type2 must be(x, Po(x1,p1,23)).

where G denotes the intersecting point between accep- Proof: Given a contrac{z1,p1), the feasible region for

1) If mazy ¢ T andmaxs ¢ Th,

optimal=

tance region boundaries of the two types. the contract of type:buyer is the area below,(z1, p1,z) as
2) If maz, € To. plefmed in Th_eorem 3 (see Figure 5). Since the seller’s profit
, is increasing in botlp and x, the contract that generates the
optimal = { %1 it U(mazy) > raU(maz,) highest profit is atro = 23 andps = Po (1, p1,23). [
maxe If  roU(maxe) > U(maxy)

3) If T Lemma 5. WhenK = 2, if maz; € Ty and 2z} < z3, an
) If maz € Ty optimal contract for type-1 must hg = b, and z; < z7.
mazy if U(mazg) > riU(max)

optimal = { mazy if r1U(max) > U(maxs)

Proof: Assume the optimal contract has,, p1) € 71 and

given some) > 0 we still have(z1,p; +0) € T3. By noticing

The above result is illustrated in Figure 4 and can be argugfht bothU (z, p) and P(x, p, 2') are increasing ip. We know
by showing the profit of every contract in a particular regiothat both U (z1,p; + 6) and U(z3, Pa(z1,p1 + 6,23))) are
(such asly) is no greater than some specific contract (surictly larger thari/ (1, p1) andU (3, Po (1, p1, 23))). This
as max1). Take the casenar: ¢ T> and maxy ¢ T1 for  contradicts the assumption that it was optimal before,, ttves
example, any point in/; is suboptimal to pointz because know that the optimal contract fdr:;, p;) must be on the two
any contract in/3 is acceptable by both types of buyers, buines (the upper boundary @f,) defined in Theorem 1. Then
G has a strictly higher profit than any other pointii we exclude the possibility of having optimal contract with

We now consider the cas&/ = 2. We shall see that 5, > . 0f 2y > 2%, we can movex,, ziby /x1) to (z],by).
providing multiple contracts can help the obtain higherfiggo This will increase the profit from typé; leaving the profit
Theorem 7. In the case of\Ml = 2, maxy ¢ T> andmaxy ¢ from _type-2 unchanged. ._
T, the optimal contract set i§maz1, mazs}. Using Lemmas 4, 5 and Theorem 3, the expected profit can
be expressed as follows.

Proof: The setC = {max1, max2} gives an expected .
payoff of EUC)] = nrU(z1,p1) + r2U(zs, Pa(21,p1,73))

EU©)] = nU(R(C) +raU(Ro(C) = UG b) U b= (b))



Optimal contract to give type—2

Equal-cost line of type-2 |
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Fig. 5. The regions to distinguish type-2 givén;, p1)
* T
= nzi(b =) +razh(be — — (b = b1) — ¢)
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IE[U(C)]
(91'1
The 21 acheiving the optimal contraét is given by,
0 if Tl(bl—C)—T‘Q(bQ—bl)<0
xr1 =
! l"{ if Tl(bl—C)—T‘g(bg—bl)>0

C o {mazxs} if r1(by —c)—ra(ba—b1) <0
{maxl, (l‘;, by — i—%(bg — bl))} 0.Ww.

T1 (b1 — C) — 7’2(b2 — bl)

This result shows two operating regimes: 1) When< %=t

type2 is more profitable and the seller will offenaz,. In

this case there is no way to offer another contract for typ
1 without affecting the behavior of typ&- Consequently, the

seller only offers one contract. 2) Whéh > %=, type- is

more profitable and the seller will offenaz,. After choosing
maz1, the seller can also chooges;, by — i—i(bg —by)) for =7 < ..
the type2 buyer without affecting the typefbuyer’s choice.

[

0.8
(x5P5)
—~ 3'M3
Eo.6
° x,p,)
8 ()
= 0.4
o
0.2
0 . .
0 2 éandwidth (9) 8 10

Fig. 6. Example of a possible optimal contract

B. K buyer typesK > 2

The previous section gives the explicit solution to the
contract design problem wheR = 2. When K > 2 we
no longer have explicit solutions; even numerically segrgh
for the optimal contract set becomes very complicated. For
instance, even if we assume that botandp are from discrete
sets, with X and P possible values, respectively, the search
must be done over the space of all possible sefs alifferent
contracts, on the order ¢fX P)%. In generalX and P both
take on real values, making the search space uncountable. In
order to reduce the complexity we will need to exploit specia
properties of the problem. We first reindex the buyer types
such thatb; < ... < bg. Then under certain conditions we
will determine a procedure which finds the optimal contract.
In the remainder of this section, we will assume the seller ca
design up toK contracts.

Befinition 2. The buyer types are said to satisfy a monotonic-
ity condition (MC), ifVi, j, b; < b; impliesz} < z7.

Thus when the types are ordered< ... < bg, we have
< z%.. This monotonicity condition (MC) says
that the amount a buyer willing to buy is strictly increasing

As a result, the seller offers a pair of contracts to get thetmdn the quality it gets from buying the secondary spectrum.

profit.

The optimal contract for; > x5 can be determined with

This condition leads to special properties which allowsas t
construct simpler ways to find the optimal contracts.

a similar argument. Again, we can prove that the optimdheorem 8. When the MC is satisfied, < b; andz < 2’
contract must have; = b, andz; < z7. The difference implies P;(z',p’, z) > P;(a',p, z).

is that whenz; > 3, the expression fofxs, Pa(x1, p1,x3))
has two cases depending on whether> z5 or z; < z3.

OE[U(C)] _ Jri(by —¢) = ra(ba — b)
0z r1(b1 — ¢) + r2by

if 297 <ua}

if x4 > a3

To summarize, when; (b; —c) —ra(bs —b1) > 0, E[R(C)] is

strictly increasing inc; and we know that; = xj maximizes
the expected profit. When (b1 —c)—r2(ba—b1) < 0, E[R(C)]

is decreasing inz; if x; € [0,23] and increasing inzy if

x1 € [z5,x7]. We can only conclude that either = 0 or
x1 = x] maximizes the expected profit.

0 or z7]
xr, = «
Ly

(C:

maxal{maxy, (x5, Iifl )}
. 2
{maxla (‘T; in )}

=
Ty

if Tl(bl —C) —TQ(bQ — bl) <0
if ’f‘1(b1 —C) —Tg(bg — bl) >0

if Tl(bl — C) — 7’2(b2 — bl) <0
if Tl(bl — C) —T‘Q(bg —bl) >0

Theorem 9. When the MC is satisfied; < b; and z > 2’
implies P;(«/, p', x) < P;j(2',p’, x).

Proof: The proofs for Theorem 8 and Theorem 9 are
moved to the Appendix. [ |

Lemma 6. When the MC is satisfied, the optimal contract
such that type i buyer pick&e;, p;) for all i must haver; <
S TK.

Proof: Let (z;,p;) denote the contract designed for the
type i buyer. Consider now the contract for the type j buyer
whereb; < b; andx; > x;. From Theorem 9 we know that
Pj(xi,pi, ;) < Pi(x;,p;, x;) when the MC is satisfied. This
implies that whatevep; we determined, if the type j buyer
prefers(z;,p;) over (x;, p;) then the type i buyer must think
the same way. From the IC constraint, the type j buyer has to
prefer the(x;, p;) over (z;,p;). Thus, we must have; < x;
in the optimal contract where each type of buyer selects its
own designated contract. [ |

In the first condition, we can calculate the expected profit ademma 7. When the MC is satisfied, the optimal contract
the two contract sets and pick the one with the higher profinust haver; <z} Vi =1...K.



Proof: Proof by contradiction. Consider some optimal This shows that the hypothesis is true for step 1.
contract havingz; > =z}, we show that replacing; = z; 3) By Mathematical Induction, the hypothesis is true for
is actually better. By Theorem 10, we know thai = alli < K.

Pi(x;—1,pi—1,2;) and by definition of P; it is better off b) This process results in the highest profit.

to the seller by providingr; instead if we only consider Since thex’s are fixed, the only way one could increase the

the profit from the typei buyer. Now, by Theorem 8 buyer's profit is to increase one of tipgls. We will show that

Piyi(zi,pi,x}) < Pi(wq, pi, 7). Also, becauseP;(2',p’,z) this is not possible. Assume there exists some contract with

is a strictly increasing function ip’. The pricep; 1 is strictly  the contract setzy,p})...(xk, ) With somep) > p;, by the

higher for assigningr; instead ofz;. This results in every increasing property ofP; (Lemma 2) we neeg@’ , > p;_1 to

p; j > 1 is strictly increased and the payoff change mustsure that type-buyer picks(z;,p}). By induction, we can

be positive. The only question is whether we can assign show that it must be thatp] > p1). Sincep; = b1, (z1,p1)

without affecting the contracts:;, p;) j < . The answer is if is already on the boundary of acceptance region of the type-

Vj <iz; <zj we can do it. By mathematical induction, webuyer. Thus, any contract with somé > p; is not a contract

can again prove that for all= 1...K x; < zj. An example where each buyer accepts its own designated contractm

is illustrated in Figure 6. ] Figure 6 shows an example of applying this theorem with
This result allows us to restrict our search for the optiméihree buyer types: given; = 2, zo = 4, z3 = 6, p; iS

contract to the set where < z}. We can further simplify our sequentially determined on the equal-cost line of the previ

search by expressing the valugs Vi = 1...K as functions contract. With Lemma 7, the equal cost line can be restricted

of z; Vi = 1...K, by the following theorem. to the form P;(x;—1,pi—1, ;) = bi — “5+(bi — pi—1). The

expected profit of the seller can now be expressed as:

Theorem 10. Given a setr; < ... < xg, define(xzg,py) =
(0,0) and find the contractér;, p;) = (v, Pi(zi_1,pi—1,2:)) E[R(C)] = max riz1(bi —c)
in the orderi = 1...K. When the MC is satisfied this procedure Tt
produces a contract set that maximizes the seller’s profit,

where each typeé-buyer acceptsz;, p;). =, ag rizy(by —¢) + ... + rizi(Py(@i1, pim1, @) — ¢)

+ .ot rxipi—o)+ ..+ rxek(px —c)

Proof: + ..+ ek (Pr(Tx-1,PK—1,TK) — C)
a) Each buyer of type picks (z;, p;). _ _
’ plugging in the values of; = Pj(x;—1,pi—1,%;) = b; —
InducUog thgth}e{ss AL ebach sE[ep, Whtehn we pick (;ontraegi (b; — pi—1) recursively. Each term in the optimization
(zi,pi) Vi = 0..K, each buyer ypg-with j <z prefers  ,rqpjem can be simplified to
contract(z;,p;) and each buyer typg-with j > i prefers
contract(x;, p;).

1) Base Case: When pickingo,po) = (0,0), it is clear

that each buyer type is greater tharand each buyer

prefers the only contract that is the same as not buyir‘@' simplifying_ and separate the terms with respeckjpthe
2) Assume the induction hypothesis is true when pick- pected profit of the seller can be expressed as,

rixi(pi —¢) = ri(x;(b; — ¢) ij i1 —0j))

ing (z;,p;), we will show that the hypothesis is also K

true for (z;11,pir1). Assume the hypothesis is trueE[R(C)] = o maz E w3 [ri(bi — ¢) — (biy1 — by) E 74
. 1 K L

for step ¢ means we have determined the contracts j=i+1

((x1,p1), .., (w4, p:)) and a typej buyer (j < i) prefers Firstly, we observe that the above expression is linear émev
Yy p e

(zj,p;) over other contracts, while a type-buyer ., Thus differentiating with respect te; we get a constant:

(j > i) prefers theith contract over all contracts. By X

Theorem. 9 and:; 1 > x5, OE[R(C

+1 r % = Tz(bz — C) — Z ’I’j(bi+1 — bl)
Vi <4,pit1 = Pip1 (@, pis wiv1) > Pj(2i, i, Tit1) j=itl
The contract(z1,pi+1) is above the equal cost line Secondly, because the tef#¥.2El does not depend on any

of the contrac{(z;, p;) for buyer type less than or equalz;, the optimizer can be ea5|ly determined. Wi?(%w >

to 7. Which means they prefer thiéh contract over the 0 we want to maker; as large as possible<( z}); when

i -+ 1th contract. But from step, they prefer their own 6E[R(C>] < 0 we want to maker; as small as possible. This
contract over existing contracts. Thus, buyefj < i) leads us to the following algorithm which finds the optimal se
prefers(z;,p;) over all contracts. By Theorem. 8 andof (z, ..., 2 ). The variableLD (Last Determined) below is
Tit1 > T, used to keep track of the last type for which we have already
determined its value.

This algorithm works as follows: We start from determining
Thus, the contractz;;1,p;+1) IS below the equal cost the value ofxx, then we determine _; and so on all the
line of the contractx;, p;) for buyer typej > ¢ and they way toz;. At stepi we take the derivative with respect 9.
prefer (x;+1,piy1) over (x;,p;). But from stepi, they If it is better to maximize it, we assign it to he'. If it is
prefer the(z;,p;) contract over all existing contracts.better to minimize it, we push the value #9_, (which we

Vj>i+1,piv1 = P (@i, pis i) < Py, pis Tig1)
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Algorithm 1 Optimal contract under monotonicity conditionijt will extract the most by offeringb;, 2) to a buyer of type

Let zx < xx%, LD — K > becauseaEa[R(C)] ~ 0 ¢ Under aresource constraint, because the seller can offer a
fori=K—-1—1do o 0 <z <z} (whenp is set tob;), this becomes a form of the
7+ (b — ) ij—l rj — (bip1 — by) Zf:w rj continuous (fractional) knapsack problem [15].
if 7> 0 then When buyer types are private information, we consider
Vi<j<LD,xj < x} 3 possible scenarios and methods to determine the optimal
LD «— i contract solution by modifying Algorithm 1 in Section VI. We
else ifi = 1 then assume at most bandwidth can be sold and the monotonicity
V1<j<LD,z; <0 condition is satisfied for simplicity.
end if Case 1: The seller knows that there is only one buyer, does
end for not know its type, but knows the distribution of the type. g hi

is the same as the case &f> 2 under MC condition except
that the maximum bandwidth sold is limited By. If we have

have not determined). However, we have to add the probabilzi < X, then Algorithm 1 works without modification. But

of occurrencer; to the value(z;_,) we pushed to so that it if for_somez‘, x> X, then the algorithm no_Iong works. Note

reflects the weight of occurrence when determining the valffét in determining the optimal sef, Algorithm 1 does not

z;_1. Once we determined the value for somg every z; explicitly determine the va_Iue of eaah but only whether we.

previously pushed to it will be assigned the same value. need to push the; value bigger or smaller. Also the analysis
Together with Theorem 10 the above algorithm produc€€€s not rely on the actual values cf, but only thatvi <

a set of (z;,p;)’'s that's optimal under the monotonicity/: i < ;. This discussion leads to the next result.

condition. This algorithm takes exactli( steps to find the Corollary 1. Let i,z = min(z?, X), then running Algo-

optimal contract set. While calculating the r; might also 0 1 on the setb;, z*) will result in the optimal contract
take K steps, with careful calculation the method can still bg), |imited bandwidthX with a single customer.

completed inD(K) time. By comparison, an exhaustive search
method will takeO((X P)*¥) time to find the optimal contract ~ Case 2: The seller knows that there afgof each possible
even if we discretize the search spaceraindp with X and type, but cannot distinguish between the different typet- L

P possible values. When andp are continuos, an exhaustiveling 7; = N;, Algorithm 2 finds the optimal contract when
search might not even be possible. there is insufficient bandwidth. Note that this algorithm is
similar to Algorithm 1 with two differences: 1) it replaceset
distribution in Algorithm 1 by the actual number of buyers
) of each type. 2) it designs contracts for higher buyer types.
A. More general models of channel qualiy Changing the distribution of buyers to actual number of bsye
Although some of the analysis in this paper relies Bn will not change the optimality of Algorithm 1 if the bandwidt
being a binary random variable, most of our definitions cda sufficient. If bandwidth is insufficient, because an ojtim
be easily generalized to any random variable, such as tmntract must have; > p; for b; > b;, it is preferable to keep
acceptance region, equal-cost line andz; are general to any higher buyer types. The stepwhere the algorithm breaks is
B. Take for instance the notion of acceptance region. Considbe cutoff type that should be accepted; any type smalldr wil
any random variablé& with support|0, 1]. By the definition of not be considered in the contract. All previous types pusbed
C(x,p), the reserved cosf'(0,0) = g — € is unchanged. The the same values of this cutoff type are then recalculatet suc
acceptance region of a single buyer type can still be catedilathat the bandwidth amount satisfies the constrai}. (The
usingT = {(z,p) : C(x,p) < C(0,0)} with the boundary price determining proces®i(1 = Pi(z;),pi, zi+1)) is then
being f(z) = max, C(x,p) € T. It is also easy to show thatapplied on this set, with pricg; = b; as the first contract.
the optimal contract for the buyer must be on this boundary,Case 3: Users arrive as a Poisson random process. This is
thus optimal = max, U(z, f(x)). Similarly, the equal-cost a case that is similar to that studied in [13], where it is show
line will continue to be strictly ordered according to thécpr that repeatedly solving the expected version of the stdichas
p. With these set calculated explicitly, the same process @ftimization problem will result in a policy with expected
contract selection can be used. For example, if under sonesenue lost upper bounded by a constant which is indepénden
ordered conditions of3, the equal-cost lines can be shown tof the size(X) of the problem. Notice that Case 2 is exactly
satisfy Theorem 8, 9; then the process of Algorithm 1 can llee expected version of this stochastic optimization bl
applied to the problem. thus, we can again use Algorithm 2 to solve the problem.

VII. DISCUSSIONS

B. A seller with limited resource C. Learning buyer types

Our analysis so far has been based on the assumptiofe have assumed in our analysis that the seller knows a
that the seller has sufficient bandwidth to fulfill all ace=bt priori the buyer distribution which is discrete. If this ttibu-
contracts. We now discuss what happens when the selléitm is unknown, it can be obtained through online learning.
resources are limited. In the full information case when th@onsider a stream of arriving buyers and a seller offering
seller knows the type of each of a group of potential buyerspntracts designed not only to make profit (exploit) but also



Algorithm 2 Limited resource

> becausea%[f# >0

K
(bit1 — bi) Zj:LD Ty

Letxg < xg*, LD < K
fori=K—-1—1do
me (bi— o)Xy -
if 7> 0 then
Vi<j<LD,xj< aj
if Y20, pa; > X then
FLAG <+ true
break
end if
LD + 1
else ifi = 1 then
V1 <j<LD,xj+0

end if
end for
if FLAG then « <
Vi <k < LD,ay  Zimp X
j=i J
end if

to learn the buyer type distribution (explore) by observing
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market, we believe pricing schemes like the contracts studi
in this paper offer a valid alternative to spectrum auctions

VIII.

In this section, we compare the performance of contracts
generated by the following methods under limited and unlim-
ited resource constraints.

1) The optimal set of\/ contracts (denoted OPT(M) in the
figures): Finding this set is done by an exhaustive search
over a set of discretized valuasandp as an approxi-
mation of the uncountable choices (the step sizexfa
0.5 and the step size far is 0.1). As discussed earlier
in Section VI-B, the complexity increases exponentially
in M. This restricts us to run at most/ = 2 in our
evaluation.

2) The algorithm we introduced in the previous section
(Algorithm 1 (Algorithm 2) in the unlimited (limited) re-
source setting, denoted as ALG1 (ALG2) in the figures):
As previously shown, ALG1/ALG2 is optimal when the
monotonicity condition holds. Since the complexity of
this algorithm increases only linearly it/, M can be

N UMERICAL EVALUATION

whether the contract is accepted or rejected. This can be
cast as a multi-armed bandit problem with an independentg)
reward process (assuming buyers are independently drawn

on the order of thousands in our numerical evaluation.
A K-choose-1 method (denoted as MAX in the
figures): This is the method that selects the con-

from a distribution), and potentially a continuum of arms
(each contract is an arm under this model). Algorithms exist
in the literature that produce sublinear regret (definedhas t
profit difference between the best single contract and the
algorithm) in time [16], and logarithmic regret in time when
the number of arms is finite [17]. Although the continuum
contract (arm) space might seem a challenge, we note thatUnlimited resource

Algorithm 1 always generates a set of contracts wif8 @  The experiments are run by increasiAig= 1...7. For each
subset of{x7, z5...2% }. From Theorem 10, if we know the ¢ value the parameters, b;, ¢;, ;) are independently and
set ofz;s, we can explicitly determine the optimal price. Thugandomly generated from uniform distributions; (€ [0, 1],
there are onlR2X possible contracts that can be optimal. Using. ¢ 0,10], ¢; € [0,2] andr; € [0,1] but normalized such
this observation, one can construct a learning algorittka "thatzn = 1) For eachK we record the average (in expected
that in [16] to achieve logarithmic regret. profit) over 12000 randomly generated cases; these areglott
in Figure 7. We repeat the same but only for cases that satisfy

D. Comparing to auction the monotonicity condition; results are shown in Figure 8.

Auction has been used extensively for the allocation of
spectrum on the traditional, wholesale market, and has been
proposed for the secondary market as well, see e.g., [3]- A\
[5]. Auction is a mechanism aimed at extracting profit from 095§
the sale of rare goods for which potential buyers’ valuation
is unknown and can be very hard to obtain. The contract
mechanism studied in this paper may be viewed as a form

tract with the highest expected profit over the set

{mazx1, maxs, - ,maxg}: maximize E[U(max;)].
max;,i=1...K

This is done by checking al(b;,z}) pairs; the com-
plexity increases linearly id/.

g,€,b Independently generated

—o-ALG1
—+—=MAX [l
—OPT(2)
—O0PT(1)}

Seller profit

of sale byposted price Compared to auction, posted price ol

is more often used in the sale of multiple (and potentially occhs

large quantity of) similar goods, the valuation of which is osfl L] 1
obtained through market research [18]. Since the cost spent 055, 2 ; ; : s 7

3 4 5
market research can be amortized over multiple goods, ghoste Number of types

price sale can be more efficient than auction which incurs C"ﬁg. 7. Simulation results of the sellers profit versus défé contracts in

in conducting each single auction [19]. It has been showtie general case. (The inset is the standard deviation of PT

that under ideal conditions the two are equivalent in profit

generation [20]. As more and more license holders becomeOur observations are as follows. Being able to use more
interested in the secondary market trading smaller questitcontracts is always better as expected (i.e., OPE(QPT(2)

for shorter duration of time compared to the primary whdkesain all cases). When the monotonicity condition holds, ALG1
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Fig. 8. Simulation results of the sellers profit versus défé contracts when

increasing property holds. (The inset is the standard tewiaf ALG1) q.6,b satisfying Increasing Property

° i —o-ALG1

b == MAX
is optimal and thus outperforms all other algorithms. When 508 ——OPT(2) ]
K =1,2 OPT(2) should have been optimal but it falls below g —OoPT@)
ALG1 due to the discretization error. Whei > 2, ALG1 '(%;05 b
further has the advantage of being able to use more #han @
contracts. Recall that MAX is the optimal contract when the g 04
seller knows exactly the type; thus, MAX is optimal when @
K =1 and outperforms exhaustive search because it does not 02 2 3 4 5 6 7

suffer from discretization error. In the general case when t Number of types

monotonicity does not necessarily hold, although ALG1 i n@ig 11,
always optimal it still outperforms both OPT(1) and OPT(2).
Finally, when there are more possible buyer types fas
increases), the maximum expected profit decreases bedauss imore buyer types exist, the buyer’s average gain ins@ase
is harder to put all the contracts right on the buyers’ acoegd  expected. In Figure 10, we show the sum of the buyers’ and the
boundaries while still satisfying the incentive compdiifpi seller’s gains. We see that only in the case of ALG1, the total
condition. utility remains constant as the number of types increades. T
We show the standard deviation for ALG1l under thehows that ALG1 generates contracts that are more socially
monotonicity condition and OPT(2) under the general case ¢ptimal. In Figure 11, we show the portion of buyers acceptin
Figures 7 and 8, respectively. Other cases are similar argl tione of the contracts. We observe that as the number of buyer
not shown for better readability. We see that the the denatitypes increases, a larger portion of buyers walk away frdm al
is decreases as the number of buyer types increases. Thieoltracts. Note that ALG1 has the highest participatioa.rat
because the amount of profit depends on the realization of the
buyer typesd, b, €). With fewer buyer types, the profit change®. Limited resource
heavily depends on the realization, e.g., a type with vew |0 v next perform the same experiments under the limited
channel quality can lead to low profit. With more buyer typeseqqrce condition. The simulations are done with randomly
the profit is average_d out over the buyer distribution and;tht!enerated buyer typewmot satisfying the monotonicity condi-
has a smaller variation. tion. Algorithm 2 is used to replace Algorithm 1. The possibl
buyer type is fixed at = 3 with 3 buyers of each type.
We change the x-axis to the resource limit and test it from

Buyer participation rate

q,&,b satisfying Increasing Property

—5—ALG1 ; L : . :
0.251] = MAX insufficient bandwidth to sufficient bandwidth.
—OPT(2)
.% 0.2f| =—0OPT(1) 1 0 g,€,b Independently generated
(=2} . T T T T T
2015 i s 4 —o—ALG2
e}
> 206 ——MAX ||
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g
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Fig. 9. Buyer utility @ o2 ‘ ‘ ‘ ‘ a2
: 5 10 15 20 25

. Bandwidth Limit
In Figures 9, 10 and 11 we show the results for the case

satisfying the monotonicity condition. In Figure 9, we showig. 12. Seller profit per bandwidth limit
the buyers gain over not accepting any contract. It shows tha
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Figure 12 shows the seller's profiter unit of bandwidth
(y-axis) as a function of its bandwidth limit (x-axis), wail

13

reference bandwidth purchased under different g and € (b=0.5)
10 : : . . .
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y (reference market)
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Fig. 15. Amount of bandwidth purchased from the referenceketa

starts to increase. Note that this is the minimum amount of
guaranteed service the buyer has to purchase regardleswof h
much secondary bandwidth already purchased (see disnussio
after Lemma 1).

IX. CONCLUSION

We considered a contract design problem where a primary
license holder wishes to profit from its excess spectrum
capacity by selling it to potential secondary users/buyers
via designing a set of profitable contracts. We completely
characterize the optimal solution in the cases where tiseae i
single buyer type, and when multiple types of buyers share a
common, known channel condition. In the case when each type
of buyers have different channel conditions we construct an
algorithm that generates a set of contracts in a computtjon

Figure 13 shows the amount left unsold. We see that whefiicient manner, and show that this set is optimal when the

the seller has very limited amount of bandwidth, it can skl abuyer types satisfy a monotonicity condition.

of it and enjoys a high unit profit. When it has more bandwidth
than the purchasing need, its unit profit drops. This happens
for two reasons: 1) When it has little to sell, the seller ®etal [1]
target the higher type that accepts the contract at highezgr
When it has more, the seller wants to sell more. In this cas
it will have to sell to lower buyer types which only accept at
lower prices. 2) When there is a surplus of supply, bandwidtf?]
left unsold generates no profit. Also from Figure 12, we see
that ALG2 generates the most profit over all other methodg
considered. In Figure 14 we observe that ALG2 acquires the
most number of buyers to the contract. Although there is
total of 9 buyers (3 buyers of each of 3 types), all methods on
average sell to much fewer than 9 in the sufficient bandwidtf]
region (4 to 6 buyers). This is explained by our earlier asialy

(in the unlimited case) where it is shown that it may be in thg7
seller’s interest to not sell to the smaller buyer types ideor
to increase profit from the higher types. (8]

9
C. Bandwidth purchased from the reference market )

We end this section by considering the amount of bandwi

] M.M. Buddhikot.
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APPENDIX

Theorem. 9
Proof:
Case 12’ <uaf < T}
Whena' < zf andz’ < 7, the equal cost lines far < '
are of the form,
e — 8§
Pi(:v',p’,:v) =b, — 4 — & —0i
X
e §-
Pz, p',x) = bj — 4 — € J
T
where we lets; = C;(2',p") andd; = C;(«’,p’). Take the
derivatives with respect to.
OP;(z',p,x _
on(«,p' x) (gi — € — 0;)z 2

Ox
OP;(z',p, x) _
— e = G- ?
By definition, P;(«',p’, 2") = p' = P;j(a/,p’, 2'),
4 — € —0; 4 — € —9j
p/:bi_ = :bj— J xﬂ/ J

Consideringb; < b;, we know thatg; —e; — d; > ¢; —
¢; — 0;. Which implies apf(g;p/’m) > Bpi(”g;;pl’m), and thus
P2, p x) > Pj(2',p,x), Vo < 2.

Case 2xf <a' < T}
The equal cost lines are,

T p * L < /

ro T, ST ST
Pi(a’p'x) = Y e ’ *
b — L% g < g?
T = 4y
Pz, px) = b;—U €i—9; < o
i@ p'x) = ;i — 4 r<uz

Where 6; = C;(2',p') and §; = C;(«/,p’). Taking the
derivatives,

oo o —2 1% /
TN o —Irpx <0 <<z
Pi(l',p,l') - { (Qi_ei_5i)x72>0 ISI”
Pi(a',p' ) = (¢j—€—0)z>>0 x<a
This impliesP;(z',p', x) > P;(2/,p', ), Vo af <z <z’
R
‘Pi(x/7p/7xz) = bz - 1 Ei !
€Ty
e 5.
> Pyl p,ap) = by - B0
: e

K2
conclude thatg; — ¢; — §; qi —
> Bm(ag;p %) and

Since b; < b;, we
¢; — 0;. Which indicates tha@Z:Z-7-%)
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P2, p x) > Pj(2',p', x), Vo < xf.

Case 32’ > T} > )
When z > z% > 2z}, the equal cost line of both types
follow 2'p’ = xp. Thus, P;(2',p',2}) = P;(',p',2}). Then
the case falls into Case 2 anB(z}, P;(2,p',2}),x) >
Pj(x}, Pi(2',p', x}), ), Vo < j. [ |

Theorem. 8

Proof:

Case 12/ <zf < T}
Whenz' <z} < 7, both types have equal utiliy line of the
same form.

g — e — Ci(2',p')
xZ
Ci(',p)
X
By exactly the same argument as in Theorem. 9 we can find
out that, 22-r"0) > dpiep’0) ang thus
T - T ! !

Pi(il?/,p/,ilf) = bl -

Pi(a',px) = b; - L=

(A1)

Pi(z',p',x) < Pj(a!,p',x) Vo > x> a'
<z < x¥

When z} %, while P;(z',p’,x) still follows the
same formula (Equation. ALY (2/,p’, z) starts to decrease
by following the line P;(z',p’, x) = 2/ P;(«’,p’, x}) /2. Thus,

Pi(z',p',x) < Pj(2,p,z) Vo] <x < x}

When z > z7, both 4, follow the form P(z',p’,z) =
P(a',p' x})/z. But Pi(a', p', z3) < Pj(a', p', x}), they never
cross andp; («',p’,x) > Pi(2',p',x) Yo > 7.

Case 2z} <2’ <7}

Whenz; <2’ <z <z} they are of the form,

x/p/
T

b; —

P'L('r/7p/7'r)
¢ — Ci(a',p)

X
respectively. By the same argument as in TheoremP)9,
is decreasing while?; is increasing. Thusp;(z',p’,z}) <
Pj(a',p' 7). Whenz > a7,

¥ Pi(x,p, x*
Py ) = L)

4 —

Pj (xlvplv .”L')

xZ

Pj (x/7p/7 x) _ x;kp7 (xlvplv .’L‘;k)

xZ
Since Pi(a',p',z5) < Pj(a’,p',2;) we know that
Pi(a',p',x) < Pj(2',p',x) Yo > 7.

Case 32’ > o} > o}

Whenz > z7, both types have equal cost line @s = z'p’.
Thus, P;(2',p',z) = Pj(a',p', x) Vo > a7. [ ]



