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Abstract—In this paper we formulate a contract design prob-
lem where a primary license holder wishes to profit from its
excess spectrum capacity by selling it to potential secondary
users/buyers. It needs to determine how to optimally price the
excess spectrum so as to maximize its profit, knowing that
this excess capacity is stochastic in nature, does not come
with exclusive access, and cannot provide deterministic service
guarantees to a buyer. At the same time, buyers are of different
types, characterized by different communication needs, tolerance
for the channel uncertainty, and so on, all of which a buyer’s
private information. The license holder must then try to design
different contracts catered to different types of buyers inorder
to maximize its profit. We address this problem by adopting as
a reference a traditional spectrum market where the buyer can
purchase exclusive access with fixed/deterministic guarantees. We
fully characterize the optimal solution in the cases where there
is a single buyer type, and when multiple types of buyers share
the same, known channel condition as a result of the primary
user activity. In the most general case we construct an algorithm
that generates a set of contracts in a computationally efficient
manner, and show that this set is optimal when the buyer types
satisfy a monotonicity condition.

I. I NTRODUCTION

The scarcity of spectrum resources and the desire to im-
prove spectrum efficiency have led to extensive research and
development in recent years in such concepts as dynamic
spectrum access/sharing, open access, and secondary (spot
or short-term) spectrum market, see e.g., [1], [2]. From the
inception of the open access paradigm, it was clear that for it
to work two issues must be adequately addressed: sensing and
pricing. The first refers to the ability of a (secondary) device
to accurately detect channel opportunity and more generally to
acquire information on the spectrum environment. The second
refers to mechanisms that provide license holders with the
right incentives so that they will willingly allow access by
unlicensed devices.

There has been a number of mechanisms proposed to
address this incentive issue, the most often used being the
auction mechanism, see e.g., [3]–[5]. Auction is also the
primary mechanism used in allocating spectrum on the primary
market [6]. In this paper we consider an alternative approach,
that based oncontracts, to the trading of spectrum access
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on the secondary market (see Section VII-D on a discussion
comparing the two mechanisms). This is conceptually like the
design of pricing plans by a cellular operator: it presents a
potential user with a set of contract options, each consisting of
parameters including the duration of the contract, discount on
the device, number of free minutes per month, price per minute
for those over the free limit, window of unlimited calling
time, and so on. In coming up with these calling plans the
operator typically studies carefully the types of callers it wants
to attract and their calling patterns/habits; the subsequent plans
are catered to these patterns with the objective of maximizing
its revenue. A caller interested in entering into contract with
the operator is expected to look through these plans and pick
one that is the best suited for him/her needs.

In this paper we adopt such a contract design approach
in the context of the secondary spectrum market, where a
license holder advertises a set of prices and service plans
in the hope that a potential buyer will find one of them
sufficiently appealing to enter into contract. The contracts are
designed with the goal of maximizing the expected revenue of
the license holder given a set of buyertypes(more precisely
defined in the next section).

To make the contracts appealing to a buyer, one must
address the issue that the spectrum offered on the secondary
(short-term) market is typically the excess capacity due tothe
primary license holder’s own spectrum under-utilization.Its
quality is therefore often uncontrolled and random, both spa-
tially and temporally, and strongly dependent on the behavior
of the primary users. The primary license holder can of course
choose to eliminate the randomness by setting aside resources
(e.g., bandwidth) exclusively for secondary users. This will
however likely impinge on its current users and may not be in
the interest of its primary business model. The alternativeis to
simply give non-exclusive access to secondary users for a fee,
which allows the secondary users tosharea certain amount of
bandwidth simultaneously with its existing licensed users, but
only under certain conditions on the primary traffic/spectrum
usage. For instance, a secondary user is given access but can
only use the bandwidth if the current activity by the licensed
users is below a certain level, e.g., as measured by received
SNR, the so-called spectrum overlay. Many spectrum sharing
schemes proposed in the literature fall under this scenario, see
e.g., [7]–[10].

In this case a secondary user pays (either in the form of
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money or services in return) to gain spectrum access but not
for guaranteed use of the spectrum. This presents a challenge
to both the primary and the secondary users: On one hand, the
secondary user must assess its needs and determine whether
the uncertainty in spectrum quality is worth the price asked
for and what level of uncertainty can be tolerated. On the
other hand, the primary must decide how stochastic service
quality should be priced so as to remain competitive against
guaranteed (or deterministic) services which the secondary
user may be able to purchase from a traditional market or
a different primary license holder.

To address this challenge we adopt a reference point in the
form of a traditional spectrum market from where a secondary
user can purchase guaranteed service, i.e., exclusive access
rights to certain bandwidth, at a fixed price per unit. This
makes it possible for the secondary user to reject the offer from
the primary if it is risk-averse or if the primary’s offer is not
attractive. This also implies that the price per unit of bandwidth
offered by the primary user must reflect its stochastic quality.

Work most relevant to the study presented in this paper
includes [11]–[14]. In [11] a contract problem is studied where
the secondary users help relay primary user’s data and in return
are allowed to send their own data. In [12] an optimal portfolio
problem is studied, where a secondary user can purchase a
bundle of different stochastic channels, with the price of each
already determined, and seeks to find the optimal purchase. In
[13] a network revenue management problem is studied, where
the customers arrive according to a Poisson process and the
performance of a class of certainty-equivalent heuristic control
policies was studied. In [14], spectrum trading is modeled as
a monopoly market where the primary determines a price-
quality contract. While our problem setting bears similarity to
that considered in [14], there are several major differences, the
chief of which is the fact that our model is not monopolistic
due to the existence of a traditional market (exclusive access)
mentioned above, that serves as a reference for the value
of spectrum products offered on the secondary market (non-
exclusive access). In addition, we model different buyer types
by their required bandwidth, service quality and loss tolerance.
As a result the types can only be partially ordered.

Main contributions of this paper are as follows:
1) We formulate a contract design problem where the spec-

trum license holder seeks to sell his excess bandwidth
to potential buyers. The model captures the following
essential features: (1) excess bandwidth on the secondary
spectrum market often comes with non-exclusive use
and therefore highly uncertain channel conditions; (2)
incentives are built in for both the seller and the buyer
to conduct spectrum trading on the secondary market.

2) We fully characterize the optimal set of contracts the
seller should provide in the case of a single or two types
of buyers, and when multiple types of buyers share the
same channel condition due to primary user activities.

3) When there are multiple types of buyers and each
experiences different channel conditions, we construct
a computationally efficient algorithm and show that the
set of contracts it generates is optimal when the buyer
types satisfy a monotonicity condition.

4) When the spectrum holder has limited amount of band-
width, we discuss three different scenarios and show
how to modify our algorithm accordingly.

The remainder of the paper is organized as follows. We
present the contract design problem in Section II. Section III
characterizes the utility region and the optimal contract in
the single buyer case. Section V deals with the case when
the channel condition is common knowledge, while Section
VI focuses on the case when channel conditions are private
knowledge. Discussion is given in Section VII-B, VII-D and
VII-C and numerical results in Section VIII.

II. M ODEL AND ASSUMPTIONS

In this section we describe in detail the models for the two
parties under the contract framework: the seller and the buyer,
and their considerations in designing and accepting a contract,
respectively. We also illustrate a basic idea underlying our
model to capture the value of secondary spectrum service,
which is random and non-guaranteed in nature, by using
guaranteed service as a reference.

A. The Seller

There are two parties to a contract, the seller and the buyer.
The seller is also referred to as the owner or the primary
license holder, who uses the spectrum to provide business and
service to itsprimary users, and carryprimary traffic. He is
willing to sell underutilized bandwidth he has as long as it
generates positive profit and does not impact negatively his
primary business. We will assume that the seller can pre-design
up toM contracts and announce them to potential buyers.

B. The contract

Each contract is in the form of a pair of real numbers(x, p),
wherex ∈ R+ andp ∈ R+.

• x is the amount of bandwidth they agree to trade on (i.e.,
access to this amount of bandwidth is given from the
seller to buyer).

• p is the price per unit ofx; thus a total ofxp is paid to
the seller if the buyer purchases this contract.

The seller’s profit or utility from contract(x, p) is given as

U(x, p) = x(p− c)

wherec is a predetermined constant that takes into account the
operating cost of the seller. We will assume that any contract
the seller presents must be such thatp > c; that is, the seller
will not sell at a loss. If none of the contracts is accepted
by the buyer, thereserve utilityof the owner is defined by
U(0, 0) = 0.

C. A reference market of fixed/deterministic service or exclu-
sive use

We next consider what a contract specified by the pair
(x, p) means to a potential buyer. To see this, we will assume
that there exists a traditional (as opposed to this emerging,
secondary) market from where the buyer can purchase services
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with fixed or deterministic guarantees. What this means is
that the buyer can purchaseexclusiveuse of certain amount
of bandwidth, which does not have to be shared with other
(primary) users. This serves as an alternative to the buyer,and
is used in our model as a point of reference. We will not
specify how the price of exclusive use is set, and will simply
normalize it to be unit price per unit of bandwidth (or per unit
of transmission rate). The idea is that given this alternative,
the seller cannot arbitrarily set his price because the buyer can
always walk away and purchase from this traditional market.
This traditional market will also be referred to as thereference
market, and the service it offers as thefixed or deterministic
service. Our model allows a buyer to purchase from both
markets should that be in the interest of the buyer. Note that
even though we have assumed a single seller model, this is not
a monopoly because of the existence of this reference market.
However, we do not explicitly model the competition between
multiple sellers on the secondary market, which remains an
interesting subject of future study.

D. The buyer’s consideration

When the set ofM contracts are presented to a buyer, his
choices are (1) to choose one of the contracts and abide by
its terms, (2) to reject all contracts and go to the traditional
market, and (3) to purchase a certain combination from both
markets. The buyer’s goal is to minimize his purchasing cost
as long as certain quality constraints are satisfied.

While the framework presented here applies to any mean-
ingful quality constraint, to make our discussion concrete
below we will focus on a loss constraint. Suppose the buyer
chooses to purchasey units of fixed service from the reference
market together with a contract(x, p). Then its constraint on
expected loss of transmission can be expressed as:

E[(q − y − xB)+] ≤ ǫ ,where

• q is the amount of data/traffic the buyer wishes to
transmit.

• B ∈ {0, 1} is a binary random variable denoting the
quality of the channel for this buyer. We will denote
b := P (B = 1).

• ǫ is a threshold on the expected loss acceptable to the
buyer.

• y is the amount of bandwidth the buyer purchases addi-
tionally from the reference market; its price is1 per unit
bandwidth.

Note that quantitiesx, y and q are of the same unit; this
unit can be bit (total amount of transmission), or rate (bits
per second), and so on. Here we have adopted a simplifying
assumption that the purchased service (in the amount ofx) is
either available in the full amount (whenB = 1) or unavailable
(whenB = 0), with xb being the expected availability. If the
contract duration is comparable to the time constant of the
primary user activity (e.g., peak vs. off-peak hours) then this
model captures the spectrum condition at the time of contract
signing. More sophisticated models can be adopted here, by
replacingxB with another random variableX(x) denoting the
random amount of data transmission the buyer can actually

realize. Although the technical details will become different,
the basics ideas are the same. More is discussed on how to
incorporate a general model ofB in Section VII.

With a purchase of(y, (x, p)), the buyer’s cost is given by
y + xp. The cost of the contract(x, p) to this buyer is given
by the value of the following minimization problem:

C(x, p) = minimize
y

y + xp (1)

subject to E[(q − y − xB)+] ≤ ǫ (2)

That is, to assess how much this contract actually costs him,
the buyer has to consider how much additional fixed service
he needs to purchase to fulfill his needs.

The buyer can always choose to not enter into any of the
presented contracts and only purchase from the traditional
market. In this case, his cost is given by the value of the
following minimization problem:

C(0, 0) = minimize
y

y, subject toE[(q − y)+] ≤ ǫ

Since every term is deterministic in the above problem, we
immediately conclude thatC(0, 0) = q − ǫ, which will be
referred to as thereserve priceof the buyer. It is natural to
assume that any buyer must be such thatq ≥ ǫ, for otherwise
the buyer does not need to perform any transmission as it can
tolerate the loss of all of its data.

In deciding whether to accept a given contract(x, p), the
buyer has to consider (1) whether the contract would satisfyits
quality (loss) constraint, and (2) whether there is an incentive
to enter into this contract, i.e., whether the cost of this
contract is no higher than the reserve price. The latter is
also referred to as theindividual rationality (IR) constraint,
C(x, p) ≤ C(0, 0) = q − ǫ. Any contract that satisfies both
constraints of a buyer is referred to asacceptableto that buyer.

If a buyer accepts one of the contracts, the two sides come
to an agreement and have to follow the contract up to a
predetermined period of time. We will leave this duration
unspecified as it does not affect our analysis under the current
model assuming the buyer’s need is to transmit a certain
amount of data over the entire contract period. However, the
binary channel model would be more reasonable if the contract
considered is short term.

E. Buyer types and informational constraints

We will assume that a potential buyer may be one of a
number of differenttypes; each type is characterized by a
unique triple(q, ǫ, b), which is a buyer’sprivate information.
That is, a type is characterized by its transmission needs
(amountq to be transferred and loss requirementǫ), as well
as its perceived spectrum/channel quality (b). Throughout the
paper we will assume that a type(q, ǫ, b) is such that there
exists a contract withp > c acceptable to the buyer, for
otherwise the seller has no incentive to sell.

We will further assume two cases, whereb is common to
all types and whereb may be different for different types.
The first case models the scenario where buyers are relatively
homogeneous and their perceived channel quality is largely
determined by the primary user traffic reflected inb. In this
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case it is also natural to assume thatb is known to the seller.
The second case models the scenario where buyers may differ
significantly in their location, quality of transceiver devices,
and so on, which leads to different perceived channel quality,
which is only known to a buyer himself.

The seller is assumed to know the distribution of the buyer
types but not the actual type of a particular buyer. The buyer
types and their distribution may be estimated from the seller’s
past experience. Specifically, we will assume there areK types
of buyers, and a buyer is of typei with probability ri and
is given by the triple(qi, bi, ǫi). In subsequent sections we
proceed in the following sequence: (1) single user type, (2)
multiple user types; commonb, and (3) multiple user types;
different and privateb.

III. O PTIMAL CONTRACT FOR A SINGLE BUYER TYPE

We begin by considering the case where there is only one
type of buyer(q, ǫ, b). Through this simplified scenario we
will introduce a number of concepts key to our analysis and
obtain some basic understanding of the nature of this problem.

Under our assumption that the seller knows the buyer type
distribution, having a single type (i.e., a singleton distribution)
essentially means that the triple(q, ǫ, b) is known to the seller.
Denote byT = {(x, p) : C(x, p) ≤ C(0, 0)} the set of all
acceptable contracts for the buyer, or theacceptance region.
This is characterized by the next result.

Theorem 1. Whenq(1− b) ≤ ǫ, the buyer accepts a contract
(x, p) iff

p ≤

{

b if x ≤ q−ǫ
b

q−ǫ
x

if x > q−ǫ
b

. (3)

Whenq(1− b) > ǫ, the buyer accepts the contract iff

p ≤

{

b if x ≤ ǫ
1−b

bǫ
x(1−b) if x > ǫ

1−b

. (4)

The above theorem can be proved for each of the cases
listed above. For brevity below we only show the proof for
the sufficient condition underq(1 − b) ≤ ǫ for the first case
in Eqn (3); other cases can be done using similar arguments.

Lemma 1. Whenq(1− b) ≤ ǫ, the buyer accepts the contract
(x, p) if x ≤ q−ǫ

b
and p ≤ b.

Proof: If both the IR constraint and the loss constraint are
satisfied under the stated conditions, then the buyer accepts
the contract. Below we check these two constraints. Let the
buyer supplement this contract with an additional purchaseof
y = q−ǫ−xp deterministic service. Note thaty ≥ 0 under the
stated conditions. The total cost of this contract to the buyer
is then given by:

C(x, p) = y + xp = q − ǫ − xp+ xp = q − ǫ = C(0, 0).

The IR constraint is therefore satisfied. The buyer’s loss under
this combination of purchases is given by:

E [(q − y − xB)+]

= (q − y − x)+b+ (q − y)+(1− b)
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Fig. 1. The upper curve is whenq(1− b) < ǫ (q = 5, b = 0.8, ǫ = 3), the
lower curve is whenq(1− b) > ǫ (q = 5, b = 0.3, ǫ = 3)

= (ǫ+ xp− x)+b+ (ǫ+ xp)(1 − b)
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(ǫ+ xp)(1 − b) ≤ (ǫ+ b q−ǫ
b
)(1− b)

= q(1− b) ≤ ǫ, if ǫ+ x(p− 1) ≤ 0
(ǫ+ x(p− 1))b + (ǫ+ xp)(1 − b)

= ǫ+ x(p− b) ≤ ǫ, if ǫ+ x(p− 1) > 0

Thus the loss constraint is also satisfied.
The two acceptance regions given by Theorem 1 are illus-

trated in Figs. 1. Any contract that falls below the boundary
is acceptable to the buyer. The two cases have the following
interpretations. In the first case (q(1 − b) ≤ ǫ), the quality
of the stochastic channel is sufficiently good such that the
loss constraint (2) may be met without any purchase of the
deterministic channel. In this case the buyer is willing to spend
up to the entire reserve priceC(0, 0) = q− ǫ on the contract.
In the second case (q(1− b) > ǫ), the quality of the stochastic
channel is such that no matter how much is purchased, some
deterministic channel is needed (y > 0) in order to satisfy the
loss constraint (notexp ≤ bǫ

1−b
< q− ǫ becauseq(1− b) > ǫ).

Consequently, in the first case, further purchase from the
reference market is needed only if the contract hasx < x∗,
whereas in the second case, the buyer always has to purchase
from the reference market to satisfy the loss constraint. This
observation holds throughout the paper including when we
introduce multiple buyer types.

For a given buyer type (q, ǫ, b), the seller can choose any
point in the corresponding acceptance regionT to maximize
its utility: max(x,p)∈T U(x, p). We next show that the optimal
contract for the seller is given by the “knee” (the intersection
point where the straight line meets the curve) on the boundary
of the acceptance region, denoted as(x∗, p∗).

Theorem 2. The optimal contract for the seller is the inter-
section point(x∗, p∗) on the acceptance region boundary of
the buyer.

Proof: We prove the optimality in two steps. First we
show that the seller’s utility is strictly increasing inp which
implies that the optimal contract must be such that (3) and (4)
hold with strict equality. Then we show that the intersection
point is strictly better than any other point on the boundary.
For anyx > 0 and∀p′ > p, we have

U(x, p′) = x(p′ − c) > x(p− c) = U(x, p).

ThusU(x, p) is strictly increasing inp. For anyx < x∗ (points
on the straight line) we have

U(x∗, p∗) = x∗(p∗ − c) > x(p∗ − c) = U(x, p∗),
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which used the fact thatp∗ > c. (Recall we have assumed that
for any buyer there must exist a contract withp > c that it
finds acceptable. This implies such a point must be within the
acceptance region, which in turn implies that we must have
p∗ > c sincep∗ ≥ p, ∀p in the region.) For any pair(x, p)
such thatxp = x∗p∗ andx > x∗ (points on the curve),

U(x, p) = x(p− c) = x∗p∗ − xc > x∗(p∗ − c) = U(x∗, p∗).

ThusU(x∗, p∗) is strictly greater than any pointU(x, p) on
the boundary.

Once the seller determines the optimal contract and presents
it to the buyer, the buyer will accept because it satisfies both
the loss and the IR constraints. It can be easily shown that
the buyer’s cost in accepting is exactlyC(0, 0). Note that
technically since the cost of the contract is exactly equal
to the reserve price, the buyer is indifferent between getting
only deterministic service and getting a mix of both types
of services. In practice the seller can always lower the unit
price p∗ by an arbitrarily small amount to provide a positive
incentive so that the buyer will accept the contract. For this
reason even though the costs are equal, for simplicity we will
assume that the buyer will accept this contract. For the same
reason, we will also assume that when there exist multiple
contracts of equal cost to the buyer, the seller can always
induce the desired choice from the buyer by introducing a
small difference to the desired contract. We have now a
complete characterization of the contract design for a single
type of buyer.

We will now introduce the concept of anequal-cost lineof
a buyer. Consider a contract(x′, p′). Denote byP (x′, p′, x)
a price such that the contract(x, P (x′, p′ , x)) has the same
cost as contract(x′, p′) to a buyer.

Definition 1. The equal-cost lineE of a buyer of type(q, ǫ, b)
is the set of contracts within the buyer’s acceptance regionT
that are of equal cost to the buyer. Thus(x, p) ∈ E if and
only if p = P (x′, p′, x) for some other(x′, p′) ∈ E. The cost
of this line is given byC(x′, p′), ∀(x′, p′) ∈ E.

It should be clear that there are many equal-cost lines, each
with a different cost. Figure 2 shows an example of a set of
equal-cost lines. The next theorem gives a precise expression
for the equivalent price that characterizes an equal-cost line.

Theorem 3. For a buyer of type(q, ǫ, b) with an intersection
point (x∗, p∗) on its acceptance region boundary, and given
a contract(x′, p′), an equal-cost line consists of all contracts

(x, P (x′, p′, x)) such that

P (x′, p′, x) =















b− x′

x
(b− p′) if x, x′ ≤ x∗

x′p′/x if x, x′ ≥ x∗

(b(x∗ − x′) + x′p′)/x if x′ < x∗ < x
b− (x∗b− x′p′)/x if x < x∗ < x′

Proof: We will prove this for the caseq(1 − b) ≤ ǫ; the
other case can be shown with similar arguments and is thus
omitted for brevity. In this casex∗ = q−ǫ

b
. Whenx, x′ ≤ x∗,

without buying deterministic service the loss is given by

E[(q − xB)+] = (q − x)+b+ q(1− b)

= (q − x)b+ q(1 − b) = q − xb ≥ ǫ,

where the second equality is due to the fact thatq(1 − b) ≤
ǫ⇒ q−ǫ

b
≤ q ⇒ x ≤ q−ǫ

b
≤ q. The incentive for the buyer is

to purchasey such that the loss is just equal toǫ.

E[(q − y − xB)+] = (q − y − x)b + (q − y)(1− b)

= q − y − xb = ǫ .

The first equality follows from the fact thatq(1 − b) ≤ ǫ,
which implies both(q − y − x) ≥ 0 and (q − y) ≥ 0. This is
true for both(x, p) and (x′, p′). Since(x, p) is on the equal
cost lineEx′,p′ , we know thatC(x, p) = C(x′, p′). We also
know thatC(x, p) = y + xp andC(x′, p′) = y′ + x′p′,

C(x, p) = q − ǫ− xb + xp = q − ǫ− x′b+ x′p′ = C(x′, p′) .

Rearranging the second equality such thatp is a function of
x, x′, p′ immediately gives the result. Whenx, x′ > x∗, x (x′)
alone is sufficient to achieve the loss constraint. ForC(x, p) =
C(x′, p′) we must havex′p′ = xp, resulting in the second
branch. The third and fourth branch can be directly derived
from the first two branches. Whenx > x∗ > x′ (x′ > x∗ < x),
we first find the equivalent price atx∗ by the first branch
(second branch), and then use the second branch (first branch)
to findP (x′, p′, x). This gives the third branch (fourth branch)

The form of the equal-cost line is the same regardless
whetherq(1− b) ≤ ǫ or q(1− b) > ǫ. Note that every contract
below an equal-cost line is strictly preferable to a contract on
the line for the buyer. This is an observation we will use in
subsequent sections. We end this section with a property of
the equivalent price we will use later.

Lemma 2. P (x′, p′, x) is strictly increasing inp′ whenx′ > 0.

This lemma is easily shown by notingC(x′, p′) = y +
x′p′, wherey is only a function ofx′. Thus,p > p′ implies
C(x′, p) > C(x′, p′) whenx′ > 0.

IV. M ULTIPLE BUYER TYPES: PRELIMINARIES

We now considerK types of buyers indexed byi =
1, 2, · · · ,K, each defined by the triple(qi, ǫi, bi) with an
associated acceptance regionTi. We will use the notation

maxi = (x∗
i , p

∗
i ) = argmax(x,p)∈Ti

U(x, p)

to denote the optimal contract if typei were the only type
existing. Similarly, we will useCi(x, p) to denote the cost to
a type-i buyer for accepting contract(x, p).
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A buyer is of typei with probability ri. We assume that
the seller knows only this distribution of types but not the
actual type of a given buyer. Consequently it has to design
the contracts in a way that maximizes its expected payoff.
Since the payoff is measured in expectation, it turns out that
it does not matter whether the seller is faced with a single
buyer or multiple buyers as long as they are drawn from the
same, known type distribution and the seller has sufficient
bandwidth to honor its contracts. For this reason throughout
our discussion we will take the view of a single buyer drawn
from a certain type distribution. In Section VII-B we discuss
the case when the seller has limited bandwidth to trade.

Consider a set of contractsC = {(x1, p1), ..., (xK , pK)}
designed by the seller with the intention that a buyer of typei
prefers(xi, pi). This is true iffCi(xi, pi) ≤ Ci(xj , pj),∀j 6= i.
Let Ri(C) denote the contract that a type-i buyer selects given
a setC. ThenRi(C) = argmin(x,p)∈C

Ci(x, p) and the seller’s
expected utility for a givenC is E[U(C)] =

∑

i U(Ri(C))ri.
Note that there is no point in offering more thanK contracts.
In the case of more thanK contracts offered, there will
always be a contract not taken by any buyer type.

V. M ULTIPLE BUYER TYPES: COMMON CHANNEL

CONDITION

In this section we consider the case where different types
share the same channel conditionbi = b, i = 1, · · · ,K, which
is also known to the seller. As mentioned earlier, this models
the case where the condition is primarily determined by the
seller’s primary user traffic. An example of the acceptance
regions of three buyer types are shown in Figure 3. Note that
maxi’s need not be ordered ini; however, in the interest of
simplicity in presentation, we will reindex them in ascending
order for the remainder of this section. There are two possible
cases: (1) the seller can announce as many contracts as he
likes (M = K); (2) the seller is limited to at mostM < K
contracts. Below we fully characterize the optimal contract set
in both cases.
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Fig. 3. Three buyer types with commonb

Theorem 4. WhenM = K, the contract set that maximizes
the seller’s profit is(max1,max2, ...,maxK).

As shown in Figure 3, with a constantb, the intersection
points of all acceptance regions are on the same linep = b.
For a buyer of typei, all points to the left ofmaxi on this
line cost the same asmaxi, and all points to its right are
outside the buyer’s acceptance region. Therefore the type-i
buyer will select the contractmaxi given this contract set (see

earlier discussion on how the seller can always incentivizethis
contract over others with equal cost). Since this is the bestthe
seller can do with a type-i buyer (see Theorem 3) this set is
optimal for the seller. It is also relatively straightforward to
obtain a similar results in the case ofM < K given next.

Lemma 3. WhenM < K and ∀bi = b, the optimal contract
set is a subset of(max1, ...,maxK).

Proof: Assume the optimal contractC is not a subset
of (max1, ...,maxK). Then it must consists of some contract
points from at least one of theIi regions as demonstrated in
Figure 3. Let these contracts beAi ⊂ Ii and

⋃

iAi = C. For
each non-emptyAi, we replace it by the contractmaxi and
call this new contract setC′. The proof is to show that this
contract set generates profit at least as large as the original one.
For each type-i buyer that picked some contract(x, p) ∈ Aj

from the optimal contractC, it must had a type greater than
or equal toj otherwise(x, p) is not in its acceptance region.
In the contract setC′, type-i will now pick maxj or maxl

with l > j. The choice of each possible type of buyer picks
from C′ is at least as profitable as the one they picked from
C. Thus, the expected profit ofC′ is at least as good asC.

This lemma suggests the following iterative way of finding
the optimal contract set without having to solve what would
seem like a combinatorial problem. Define functiong(m, i)
as the the maximum expected profit for the seller by picking
contractmaxi and selecting optimallym − 1 contracts from
the set(maxi+1, ...,maxK). Note that if we includemaxi and
maxj (i < j) in the contract set but nothing else in between
i and j, then a buyer of typel (i ≤ l < j) will pick contract
maxi. These types contribute to an expected profit ofx∗

i (b−
c)
∑j−1

l=i rl. At the same time, no types belowi will select
maxi (as it is outside their acceptance regions), and no types at
or abovej will selectmaxi (as for themmaxj is preferable).

The functiong(m, i) can be recursively obtained as follows:

g(m, i) = max
j:i<j≤K−m+2

g(m− 1, j) + x∗
i (b− c)

j−1
∑

l=i

rl,

with the boundary conditiong(1, i) = x∗
i (b− c)

∑K

l=i rl.

Finally, it should be clear that the maximum expected
profit for the seller is given bymax1≤i≤K g(M, i), and the
optimal contract set can be determined by going backwards:
first determinei∗M = argmax1≤i≤K g(M, i), then i∗M−1 =
argmax1≤i≤K−1 g(M−1, i), and so on. In computing the set
of MK values ofg(m, i), we note that each can be computed
in less thanK steps if g(m − 1, i), i = 1, ...,K is already
known. These values can therefore be computed backwards,
resulting in a complexity ofO(K2M). By comparison a
brute force search onK chooseM possible contract sets is
exponential.

Theorem 5. The set{maxi∗
1
,maxi∗

2
, · · · ,maxi∗

M
} obtained

using the above procedure is optimal and its expected profit
is given byg(M, i∗M ).
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Fig. 4. (left) max1 /∈ T2 andmax2 /∈ T1; (right) max1 ∈ T2

VI. M ULTIPLE BUYER TYPES: PRIVATE CHANNEL

CONDITION

We now consider multiple buyer types each with a different
channel conditionbi, i = 1, · · · ,K. We will start with the
special case ofK = 2 and characterize the optimal contracts
in this case. Using these results we then construct an algorithm
to compute a set of contracts for the case ofK ≥ 2.

A. Two buyer types:K = 2

Consider two buyer types(qi, ǫi, bi), i = 1, 2, with proba-
bility ri, r1+ r2 = 1. We first consider the case that the seller
is limited to one contract:M = 1.

Theorem 6. The optimal contract whenK = 2 and M = 1
is as follows:

1) If max1 /∈ T2 andmax2 /∈ T1,

optimal=































max1 if r1U(max1) ≥ r2U(max2)
and r1U(max1) ≥ U(G)

max2 if r2U(max2) ≥ r1U(max1)
and r2U(max2) ≥ U(G)

G if U(G) ≥ r2U(max2)
and U(G) ≥ r1U(max1)

whereG denotes the intersecting point between accep-
tance region boundaries of the two types.

2) If max1 ∈ T2.

optimal =

{

max1 if U(max1) ≥ r2U(max2)
max2 if r2U(max2) ≥ U(max1)

3) If max2 ∈ T1.

optimal =

{

max2 if U(max2) ≥ r1U(max1)
max1 if r1U(max1) ≥ U(max2)

The above result is illustrated in Figure 4 and can be argued
by showing the profit of every contract in a particular region
(such asI1) is no greater than some specific contract (such
as max1). Take the casemax1 /∈ T2 and max2 /∈ T1 for
example, any point inI3 is suboptimal to pointG because
any contract inI3 is acceptable by both types of buyers, but
G has a strictly higher profit than any other point inI3.

We now consider the caseM = 2. We shall see that
providing multiple contracts can help the obtain higher profits.

Theorem 7. In the case ofM = 2, max1 /∈ T2 andmax2 /∈
T1, the optimal contract set is{max1,max2}.

Proof: The setC = {max1,max2} gives an expected
payoff of

E[U(C)] = r1U(R1(C)) + r2U(R2(C)))

= r1U(R1(max1)) + r2U(R2(max2)).

The second equality holds becausemax1 /∈ T2 and max2

/∈ T1 and thus typei will pick maxi. SupposeC is not the
optimal set of 2 contracts, then there must exists someC′ =
{(x1, p1), (x2, p2)} such that

E[U((C′))] = r1U(R1(x1, p1)) + r2U(R2(x2, p2))

> E[U(C)]

= r1U(R1(max1)) + r2U(R2(max2))

This implies eitherU(R1(x1, p1)) > U(R1(max1)), or
U(R2(x2, p2)) > U(R2(max2)), or both, all of which con-
tradict the definition ofmaxi. Thus, {max1,max2} is the
optimal contract set.

The proof as well as the intuition behind the above result
are straightforward. The next case,M = 2, max1 ∈ T2 or
max2 ∈ T1, is more complicated. Without loss of generality,
we will assume that the type-1 buyer has a smallerb1 (b1 ≤
b2), thusmax1 ∈ T2. We first determine the optimal contract
whenx∗

1 ≤ x∗
2; this result is then used for the case whenx∗

1 >
x∗
2. Without loss of optimality we consider only contract pairs
{(x1, p1), (x2, p2)} where type-i buyer picks(xi, pi) instead
of the other one.

To find the optimal contract, we 1) first show that for each
(x1, p1) we can express the optimal(x2, p2) in terms ofx1 and
p1; 2) then we show that(x1, p1) must be on the boundary of
T1 with x1 ≤ x∗

1; 3) using 1) and 2) we optimize the expected
profit over possible choices ofx1.

Lemma 4. WhenK = 2, if max1 ∈ T2 and x∗
1 ≤ x∗

2, then
given a contract for type-1(x1, p1), the optimal contract for
type-2 must be(x∗

2, P2(x1, p1, x
∗
2)).

Proof: Given a contract(x1, p1), the feasible region for
the contract of type-2 buyer is the area belowP2(x1, p1, x) as
defined in Theorem 3 (see Figure 5). Since the seller’s profit
is increasing in bothp andx, the contract that generates the
highest profit is atx2 = x∗

2 andp2 = P2(x1, p1, x
∗
2).

Lemma 5. WhenK = 2, if max1 ∈ T2 and x∗
1 ≤ x∗

2, an
optimal contract for type-1 must bep1 = b1 and x1 ≤ x∗

1.

Proof: Assume the optimal contract has(x1, p1) ∈ T1 and
given someδ > 0 we still have(x1, p1+ δ) ∈ T1. By noticing
that bothU(x, p) andP (x, p, x′) are increasing inp. We know
that bothU(x1, p1 + δ) and U(x∗

2, P2(x1, p1 + δ, x∗
2))) are

strictly larger thanU(x1, p1) andU(x∗
2, P2(x1, p1, x

∗
2))). This

contradicts the assumption that it was optimal before, thus, we
know that the optimal contract for(x1, p1) must be on the two
lines (the upper boundary ofT1) defined in Theorem 1. Then
we exclude the possibility of having optimal contract with
x1 > x∗

1. If x1 > x∗
1, we can move(x1, x

∗
1b1/x1) to (x∗

1, b1).
This will increase the profit from type-1, leaving the profit
from type-2 unchanged.

Using Lemmas 4, 5 and Theorem 3, the expected profit can
be expressed as follows.

E[U(C)] = r1U(x1, p1) + r2U(x2, P2(x1, p1, x
∗
2))

= r1U(x1, b1) + r2U(x∗
2, b2 −

x1

x∗
2

(b2 − b1))
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= r1x1(b1 − c) + r2x
∗
2(b2 −

x1

x∗
2

(b2 − b1)− c)

∂E[U(C)]

∂x1
= r1(b1 − c)− r2(b2 − b1)

Thex1 acheiving the optimal contractC is given by,

x1 =

{

0 if r1(b1 − c)− r2(b2 − b1) < 0

x∗
1 if r1(b1 − c)− r2(b2 − b1) > 0

C =

{

{max2} if r1(b1 − c)− r2(b2 − b1) < 0

{max1, (x
∗
2, b2 −

x∗

1

x∗

2

(b2 − b1))} o.w.

This result shows two operating regimes: 1) Whenr1
r2

< b2−b1
b1−c

,
type-2 is more profitable and the seller will offermax2. In
this case there is no way to offer another contract for type-
1 without affecting the behavior of type-2. Consequently, the
seller only offers one contract. 2) Whenr1

r2
> b2−b1

b1−c
, type-1 is

more profitable and the seller will offermax1. After choosing
max1, the seller can also choose(x∗

2, b2 −
x∗

1

x∗

2

(b2 − b1)) for
the type-2 buyer without affecting the type-1 buyer’s choice.
As a result, the seller offers a pair of contracts to get the most
profit.

The optimal contract forx∗
1 > x∗

2 can be determined with
a similar argument. Again, we can prove that the optimal
contract must havep1 = b1 and x1 ≤ x∗

1. The difference
is that whenx∗

1 > x∗
2, the expression for(x∗

2, P2(x1, p1, x
∗
2))

has two cases depending on whetherx1 > x∗
2 or x1 ≤ x∗

2.

∂E[U(C)]

∂x1
=

{

r1(b1 − c)− r2(b2 − b1) if x1 ≤ x∗
2

r1(b1 − c) + r2b1 if x1 > x∗
2

To summarize, whenr1(b1−c)−r2(b2−b1) > 0, E[R(C)] is
strictly increasing inx1 and we know thatx1 = x∗

1 maximizes
the expected profit. Whenr1(b1−c)−r2(b2−b1) < 0, E[R(C)]
is decreasing inx1 if x1 ∈ [0, x∗

2] and increasing inx1 if
x1 ∈ [x∗

2, x
∗
1]. We can only conclude that eitherx1 = 0 or

x1 = x∗
1 maximizes the expected profit.

x1 =

{

0 or x∗
1 if r1(b1 − c)− r2(b2 − b1) < 0

x∗
1 if r1(b1 − c)− r2(b2 − b1) > 0

C =
{

max2/{max1, (x
∗
2,

x∗

1
b1

x∗

2

)} if r1(b1 − c)− r2(b2 − b1) < 0

{max1, (x
∗
2,

x∗

1
b1

x∗

2

)} if r1(b1 − c)− r2(b2 − b1) > 0

In the first condition, we can calculate the expected profit of
the two contract sets and pick the one with the higher profit.
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Fig. 6. Example of a possible optimal contract

B. K buyer types,K > 2

The previous section gives the explicit solution to the
contract design problem whenK = 2. When K > 2 we
no longer have explicit solutions; even numerically searching
for the optimal contract set becomes very complicated. For
instance, even if we assume that bothx andp are from discrete
sets, withX andP possible values, respectively, the search
must be done over the space of all possible sets ofK different
contracts, on the order of(XP )K . In generalX andP both
take on real values, making the search space uncountable. In
order to reduce the complexity we will need to exploit special
properties of the problem. We first reindex the buyer types
such thatb1 ≤ ... ≤ bK . Then under certain conditions we
will determine a procedure which finds the optimal contract.
In the remainder of this section, we will assume the seller can
design up toK contracts.

Definition 2. The buyer types are said to satisfy a monotonic-
ity condition (MC), if∀i, j, bi ≤ bj impliesx∗

i ≤ x∗
j .

Thus when the types are orderedb1 ≤ ... ≤ bK , we have
x∗
1 ≤ ... ≤ x∗

K . This monotonicity condition (MC) says
that the amount a buyer willing to buy is strictly increasing
in the quality it gets from buying the secondary spectrum.
This condition leads to special properties which allows us to
construct simpler ways to find the optimal contracts.

Theorem 8. When the MC is satisfied,bi ≤ bj and x < x′

impliesPi(x
′, p′, x) ≥ Pj(x

′, p′, x).

Theorem 9. When the MC is satisfied,bi ≤ bj and x > x′

impliesPi(x
′, p′, x) ≤ Pj(x

′, p′, x).

Proof: The proofs for Theorem 8 and Theorem 9 are
moved to the Appendix.

Lemma 6. When the MC is satisfied, the optimal contract
such that type i buyer picks(xi, pi) for all i must havex1 ≤
... ≤ xK .

Proof: Let (xi, pi) denote the contract designed for the
type i buyer. Consider now the contract for the type j buyer
wherebj < bi andxj > xi. From Theorem 9 we know that
Pj(xi, pi, xj) ≤ Pi(xi, pi, xj) when the MC is satisfied. This
implies that whateverpj we determined, if the type j buyer
prefers(xj , pj) over (xi, pi) then the type i buyer must think
the same way. From the IC constraint, the type j buyer has to
prefer the(xj , pj) over (xi, pi). Thus, we must havexj ≤ xi

in the optimal contract where each type of buyer selects its
own designated contract.

Lemma 7. When the MC is satisfied, the optimal contract
must havexi ≤ x∗

i ∀i = 1...K.
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Proof: Proof by contradiction. Consider some optimal
contract havingxi > x∗

i , we show that replacingxi = x∗
i

is actually better. By Theorem 10, we know thatpi =
Pi(xi−1, pi−1, xi) and by definition ofPi it is better off
to the seller by providingx∗

i instead if we only consider
the profit from the typei buyer. Now, by Theorem 8
Pi+1(xi, pi, x

∗
i ) ≤ Pi(xi, pi, x

∗
i ). Also, becausePi(x

′, p′, x)
is a strictly increasing function inp′. The pricepi+1 is strictly
higher for assigningx∗

i instead ofxi. This results in every
pj j > i is strictly increased and the payoff change must
be positive. The only question is whether we can assignx∗

i

without affecting the contracts(xj , pj) j < i. The answer is if
∀j < i xj ≤ x∗

j we can do it. By mathematical induction, we
can again prove that for alli = 1...K xi ≤ x∗

i . An example
is illustrated in Figure 6.

This result allows us to restrict our search for the optimal
contract to the set wherexi ≤ x∗

i . We can further simplify our
search by expressing the valuespi, ∀i = 1...K as functions
of xi ∀i = 1...K, by the following theorem.

Theorem 10. Given a setx1 ≤ ... ≤ xK , define(x0, p0) =
(0, 0) and find the contracts(xi, pi) = (xi, Pi(xi−1, pi−1, xi))
in the orderi = 1...K. When the MC is satisfied this procedure
produces a contract set that maximizes the seller’s profit,
where each type-i buyer accepts(xi, pi).

Proof:
a) Each buyer of typei picks (xi, pi).
Induction hypothesis: At each step, when we pick contract
(xi, pi) ∀i = 0...K, each buyer type-j with j < i prefers
contract(xj , pj) and each buyer type-j with j ≥ i prefers
contract(xi, pi).

1) Base Case: When picking(x0, p0) = (0, 0), it is clear
that each buyer type is greater than0 and each buyer
prefers the only contract that is the same as not buying.

2) Assume the induction hypothesis is true when pick-
ing (xi, pi), we will show that the hypothesis is also
true for (xi+1, pi+1). Assume the hypothesis is true
for step i means we have determined the contracts
((x1, p1), ..., (xi, pi)) and a type-j buyer (j ≤ i) prefers
(xj , pj) over other contracts, while a type-j buyer
(j > i) prefers theith contract over all contracts. By
Theorem. 9 andxi+1 > xi,

∀j ≤ i, pi+1 = Pi+1(xi, pi, xi+1) ≥ Pj(xi, pi, xi+1)

The contract(xi+1, pi+1) is above the equal cost line
of the contract(xi, pi) for buyer type less than or equal
to i. Which means they prefer theith contract over the
i + 1th contract. But from stepi, they prefer their own
contract over existing contracts. Thus, buyerj (j ≤ i)
prefers(xj , pj) over all contracts. By Theorem. 8 and
xi+1 > xi,

∀j ≥ i+ 1, pi+1 = Pi+1(xi, pi, xi+1) ≤ Pj(xi, pi, xi+1)

Thus, the contract(xi+1, pi+1) is below the equal cost
line of the contract(xi, pi) for buyer typej > i and they
prefer (xi+1, pi+1) over (xi, pi). But from stepi, they
prefer the(xi, pi) contract over all existing contracts.

This shows that the hypothesis is true for stepi+ 1.
3) By Mathematical Induction, the hypothesis is true for

all i ≤ K.
b) This process results in the highest profit.
Since thex′

is are fixed, the only way one could increase the
buyer’s profit is to increase one of thepi’s. We will show that
this is not possible. Assume there exists some contract with
the contract set(x1, p

′
1)...(xK , p′K) with somep′i > pi, by the

increasing property ofPi (Lemma 2) we needp′i−1 > pi−1 to
insure that type-i buyer picks(xi, p

′
i). By induction, we can

show that it must be that(p′1 > p1). Sincep1 = b1, (x1, p1)
is already on the boundary of acceptance region of the type-1
buyer. Thus, any contract with somep′i > pi is not a contract
where each buyer accepts its own designated contract.

Figure 6 shows an example of applying this theorem with
three buyer types: givenx1 = 2, x2 = 4, x3 = 6, pi is
sequentially determined on the equal-cost line of the previous
contract. With Lemma 7, the equal cost line can be restricted
to the formPi(xi−1, pi−1, xi) = bi −

xi−1

xi
(bi − pi−1). The

expected profit of the seller can now be expressed as:

E[R(C)] = max
x1,..,xK

r1x1(b1 − c)

+ ...+ rixi(pi − c) + ...+ rKxK(pK − c)

= max
x1≤...≤xK

r1x1(b1 − c) + ...+ rixi(Pi(xi−1, pi−1, xi)− c)

+ ...+ rKxK(PK(xK−1, pK−1, xK)− c)

By plugging in the values ofpi = Pi(xi−1, pi−1, xi) = bi −
xi−1

xi
(bi − pi−1) recursively. Each term in the optimization

problem can be simplified to

rixi(pi − c) = ri(xi(bi − c)−
i−1
∑

j=1

xj(bj+1 − bj))

By simplifying and separate the terms with respect toxi, the
expected profit of the seller can be expressed as,

E[R(C)] = max
x1≤...≤xK

K
∑

i=1

xi[ri(bi − c)− (bi+1 − bi)

K
∑

j=i+1

rj ]

Firstly, we observe that the above expression is linear in every
xi. Thus differentiating with respect toxi we get a constant:

∂E[R(C)]

∂xi

= ri(bi − c)−

K
∑

j=i+1

rj(bi+1 − bi)

Secondly, because the term∂E[R(C)]
∂xi

does not depend on any

xj , the optimizer can be easily determined. When∂E[R(C)]
∂xi

>
0 we want to makexi as large as possible (≤ x∗

i ); when
∂E[R(C)]

∂xi
< 0 we want to makexi as small as possible. This

leads us to the following algorithm which finds the optimal set
of (x1, ..., xK). The variableLD (Last Determined) below is
used to keep track of the last type for which we have already
determined its value.

This algorithm works as follows: We start from determining
the value ofxK , then we determinexK−1 and so on all the
way tox1. At stepi we take the derivative with respect toxi.
If it is better to maximize it, we assign it to bex∗

i . If it is
better to minimize it, we push the value toxi−1 (which we
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Algorithm 1 Optimal contract under monotonicity condition

Let xK ← xK∗, LD ← K ⊲ because∂E[R(C)]
∂xK

> 0
for i = K − 1→ 1 do

π ← (bi − c)
∑LD−1

j=i rj − (bi+1 − bi)
∑K

j=LD rj
if π > 0 then
∀i ≤ j < LD, xj ← x∗

i

LD ← i
else if i = 1 then
∀1 ≤ j < LD, xj ← 0

end if
end for

have not determined). However, we have to add the probability
of occurrenceri to the value(xi−1) we pushed to so that it
reflects the weight of occurrence when determining the value
xi−1. Once we determined the value for somexi, everyxj

previously pushed to it will be assigned the same value.
Together with Theorem 10 the above algorithm produces

a set of (xi, pi)’s that’s optimal under the monotonicity
condition. This algorithm takes exactlyK steps to find the
optimal contract set. While calculating the

∑

ri might also
takeK steps, with careful calculation the method can still be
completed inO(K) time. By comparison, an exhaustive search
method will takeO((XP )K) time to find the optimal contract
even if we discretize the search space ofx andp with X and
P possible values. Whenx andp are continuos, an exhaustive
search might not even be possible.

VII. D ISCUSSIONS

A. More general models of channel qualityB

Although some of the analysis in this paper relies onB
being a binary random variable, most of our definitions can
be easily generalized to any random variable, such as the
acceptance region, equal-cost line andmaxi are general to any
B. Take for instance the notion of acceptance region. Consider
any random variableB with support[0, 1]. By the definition of
C(x, p), the reserved costC(0, 0) = q − ǫ is unchanged. The
acceptance region of a single buyer type can still be calculated
using T = {(x, p) : C(x, p) ≤ C(0, 0)} with the boundary
beingf(x) = maxp C(x, p) ∈ T . It is also easy to show that
the optimal contract for the buyer must be on this boundary,
thus optimal = maxx U(x, f(x)). Similarly, the equal-cost
line will continue to be strictly ordered according to the price
p. With these set calculated explicitly, the same process of
contract selection can be used. For example, if under some
ordered conditions ofB, the equal-cost lines can be shown to
satisfy Theorem 8, 9; then the process of Algorithm 1 can be
applied to the problem.

B. A seller with limited resource

Our analysis so far has been based on the assumption
that the seller has sufficient bandwidth to fulfill all accepted
contracts. We now discuss what happens when the seller’s
resources are limited. In the full information case when the
seller knows the type of each of a group of potential buyers,

it will extract the most by offering(bi, x∗
i ) to a buyer of type

i. Under a resource constraint, because the seller can offer any
0 < x < x∗

i (whenp is set tobi), this becomes a form of the
continuous (fractional) knapsack problem [15].

When buyer types are private information, we consider
3 possible scenarios and methods to determine the optimal
contract solution by modifying Algorithm 1 in Section VI. We
assume at most̄X bandwidth can be sold and the monotonicity
condition is satisfied for simplicity.

Case 1: The seller knows that there is only one buyer, does
not know its type, but knows the distribution of the type. This
is the same as the case ofK > 2 under MC condition except
that the maximum bandwidth sold is limited bȳX. If we have
∀x∗

i ≤ X̄ , then Algorithm 1 works without modification. But
if for somei, x∗

i > X̄, then the algorithm no long works. Note
that in determining the optimal setxi, Algorithm 1 does not
explicitly determine the value of eachxi but only whether we
need to push thexi value bigger or smaller. Also the analysis
does not rely on the actual values ofx∗

i , but only that∀i <
j, x∗

i ≤ x∗
j . This discussion leads to the next result.

Corollary 1. Let ∀i, x̂∗
i = min(x∗

i , X̄), then running Algo-
rithm 1 on the set(bi, x̂∗

i ) will result in the optimal contract
for limited bandwidthX̄ with a single customer.

Case 2: The seller knows that there areNi of each possible
type, but cannot distinguish between the different types. Let-
ting ri = Ni, Algorithm 2 finds the optimal contract when
there is insufficient bandwidth. Note that this algorithm is
similar to Algorithm 1 with two differences: 1) it replaces the
distribution in Algorithm 1 by the actual number of buyers
of each type. 2) it designs contracts for higher buyer types.
Changing the distribution of buyers to actual number of buyers
will not change the optimality of Algorithm 1 if the bandwidth
is sufficient. If bandwidth is insufficient, because an optimal
contract must havepi ≥ pj for bi ≥ bj , it is preferable to keep
higher buyer types. The stepi where the algorithm breaks is
the cutoff type that should be accepted; any type smaller will
not be considered in the contract. All previous types pushedto
the same values of this cutoff type are then recalculated such
that the bandwidth amount satisfies the constraint (X̄). The
price determining process (pi+1 = Pi(xi), pi, xi+1)) is then
applied on this set, with pricepi = bi as the first contract.

Case 3: Users arrive as a Poisson random process. This is
a case that is similar to that studied in [13], where it is shown
that repeatedly solving the expected version of the stochastic
optimization problem will result in a policy with expected
revenue lost upper bounded by a constant which is independent
of the size(X̄) of the problem. Notice that Case 2 is exactly
the expected version of this stochastic optimization problem,
thus, we can again use Algorithm 2 to solve the problem.

C. Learning buyer types

We have assumed in our analysis that the seller knows a
priori the buyer distribution which is discrete. If this distribu-
tion is unknown, it can be obtained through online learning.
Consider a stream of arriving buyers and a seller offering
contracts designed not only to make profit (exploit) but also



11

Algorithm 2 Limited resource

Let xK ← xK∗, LD ← K ⊲ because∂E[R(C)]
∂xK

> 0
for i = K − 1→ 1 do

π ← (bi − c)
∑LD−1

j=i rj − (bi+1 − bi)
∑K

j=LD rj
if π > 0 then
∀i ≤ j < LD, xj ← x∗

i

if
∑K

j=LD xj ≥ X̄ then
FLAG← true
break

end if
LD ← i

else if i = 1 then
∀1 ≤ j < LD, xj ← 0

end if
end for
if FLAG then
∀i ≤ k < LD, xk ←

(
∑K

j=i
xj)−X̄

∑LD−1

j=i
Nj

end if

to learn the buyer type distribution (explore) by observing
whether the contract is accepted or rejected. This can be
cast as a multi-armed bandit problem with an independent
reward process (assuming buyers are independently drawn
from a distribution), and potentially a continuum of arms
(each contract is an arm under this model). Algorithms exist
in the literature that produce sublinear regret (defined as the
profit difference between the best single contract and the
algorithm) in time [16], and logarithmic regret in time when
the number of arms is finite [17]. Although the continuum
contract (arm) space might seem a challenge, we note that
Algorithm 1 always generates a set of contracts withxis a
subset of{x∗

1, x
∗
2...x

∗
K}. From Theorem 10, if we know the

set ofxis, we can explicitly determine the optimal price. Thus,
there are only2K possible contracts that can be optimal. Using
this observation, one can construct a learning algorithm like
that in [16] to achieve logarithmic regret.

D. Comparing to auction

Auction has been used extensively for the allocation of
spectrum on the traditional, wholesale market, and has been
proposed for the secondary market as well, see e.g., [3]–
[5]. Auction is a mechanism aimed at extracting profit from
the sale of rare goods for which potential buyers’ valuation
is unknown and can be very hard to obtain. The contract
mechanism studied in this paper may be viewed as a form
of sale byposted price. Compared to auction, posted price
is more often used in the sale of multiple (and potentially
large quantity of) similar goods, the valuation of which is
obtained through market research [18]. Since the cost spenton
market research can be amortized over multiple goods, posted
price sale can be more efficient than auction which incurs cost
in conducting each single auction [19]. It has been shown
that under ideal conditions the two are equivalent in profit
generation [20]. As more and more license holders become
interested in the secondary market trading smaller quantities
for shorter duration of time compared to the primary wholesale

market, we believe pricing schemes like the contracts studied
in this paper offer a valid alternative to spectrum auctions.

VIII. N UMERICAL EVALUATION

In this section, we compare the performance of contracts
generated by the following methods under limited and unlim-
ited resource constraints.

1) The optimal set ofM contracts (denoted OPT(M) in the
figures): Finding this set is done by an exhaustive search
over a set of discretized valuesx andp as an approxi-
mation of the uncountable choices (the step size forx is
0.5 and the step size forp is 0.1). As discussed earlier
in Section VI-B, the complexity increases exponentially
in M . This restricts us to run at mostM = 2 in our
evaluation.

2) The algorithm we introduced in the previous section
(Algorithm 1 (Algorithm 2) in the unlimited (limited) re-
source setting, denoted as ALG1 (ALG2) in the figures):
As previously shown, ALG1/ALG2 is optimal when the
monotonicity condition holds. Since the complexity of
this algorithm increases only linearly inM , M can be
on the order of thousands in our numerical evaluation.

3) A K-choose-1 method (denoted as MAX in the
figures): This is the method that selects the con-
tract with the highest expected profit over the set
{max1,max2, · · · ,maxK}: maximize

maxi,i=1...K
E[U(maxi)].

This is done by checking all(bi, x∗
i ) pairs; the com-

plexity increases linearly inM .

A. Unlimited resource

The experiments are run by increasingK = 1...7. For each
K value the parameters(qi, bi, ǫi, ri) are independently and
randomly generated from uniform distributions (bi ∈ [0, 1],
qi ∈ [0, 10], ǫi ∈ [0, 2] and ri ∈ [0, 1] but normalized such
that

∑

ri = 1) For eachK we record the average (in expected
profit) over 12000 randomly generated cases; these are plotted
in Figure 7. We repeat the same but only for cases that satisfy
the monotonicity condition; results are shown in Figure 8.
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Fig. 7. Simulation results of the sellers profit versus different contracts in
the general case. (The inset is the standard deviation of OPT(2))

Our observations are as follows. Being able to use more
contracts is always better as expected (i.e., OPT(1)≤ OPT(2)
in all cases). When the monotonicity condition holds, ALG1
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Fig. 8. Simulation results of the sellers profit versus different contracts when
increasing property holds. (The inset is the standard deviation of ALG1)

is optimal and thus outperforms all other algorithms. When
K = 1, 2 OPT(2) should have been optimal but it falls below
ALG1 due to the discretization error. WhenK > 2, ALG1
further has the advantage of being able to use more than2
contracts. Recall that MAX is the optimal contract when the
seller knows exactly the type; thus, MAX is optimal when
K = 1 and outperforms exhaustive search because it does not
suffer from discretization error. In the general case when the
monotonicity does not necessarily hold, although ALG1 is not
always optimal it still outperforms both OPT(1) and OPT(2).
Finally, when there are more possible buyer types (asK
increases), the maximum expected profit decreases because it
is harder to put all the contracts right on the buyers’ acceptance
boundaries while still satisfying the incentive compatibility
condition.

We show the standard deviation for ALG1 under the
monotonicity condition and OPT(2) under the general case in
Figures 7 and 8, respectively. Other cases are similar and thus
not shown for better readability. We see that the the deviation
is decreases as the number of buyer types increases. This is
because the amount of profit depends on the realization of the
buyer types (q, b, ǫ). With fewer buyer types, the profit changes
heavily depends on the realization, e.g., a type with very low
channel quality can lead to low profit. With more buyer types,
the profit is averaged out over the buyer distribution and thus
has a smaller variation.
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Fig. 9. Buyer utility

In Figures 9, 10 and 11 we show the results for the case
satisfying the monotonicity condition. In Figure 9, we show
the buyers gain over not accepting any contract. It shows that
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Fig. 11. Buyer participation rate

as more buyer types exist, the buyer’s average gain increases as
expected. In Figure 10, we show the sum of the buyers’ and the
seller’s gains. We see that only in the case of ALG1, the total
utility remains constant as the number of types increases. This
shows that ALG1 generates contracts that are more socially
optimal. In Figure 11, we show the portion of buyers accepting
one of the contracts. We observe that as the number of buyer
types increases, a larger portion of buyers walk away from all
contracts. Note that ALG1 has the highest participation rate.

B. Limited resource

We next perform the same experiments under the limited
resource condition. The simulations are done with randomly
generated buyer typesnot satisfying the monotonicity condi-
tion. Algorithm 2 is used to replace Algorithm 1. The possible
buyer type is fixed atK = 3 with 3 buyers of each type.
We change the x-axis to the resource limit and test it from
insufficient bandwidth to sufficient bandwidth.
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Fig. 12. Seller profit per bandwidth limit
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Fig. 13. Amount of bandwidth left
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Fig. 14. Number of buyers participated

Figure 12 shows the seller’s profitper unit of bandwidth
(y-axis) as a function of its bandwidth limit (x-axis), while
Figure 13 shows the amount left unsold. We see that when
the seller has very limited amount of bandwidth, it can sell all
of it and enjoys a high unit profit. When it has more bandwidth
than the purchasing need, its unit profit drops. This happens
for two reasons: 1) When it has little to sell, the seller tends to
target the higher type that accepts the contract at higher prices.
When it has more, the seller wants to sell more. In this case,
it will have to sell to lower buyer types which only accept at
lower prices. 2) When there is a surplus of supply, bandwidth
left unsold generates no profit. Also from Figure 12, we see
that ALG2 generates the most profit over all other methods
considered. In Figure 14 we observe that ALG2 acquires the
most number of buyers to the contract. Although there is a
total of 9 buyers (3 buyers of each of 3 types), all methods on
average sell to much fewer than 9 in the sufficient bandwidth
region (4 to 6 buyers). This is explained by our earlier analysis
(in the unlimited case) where it is shown that it may be in the
seller’s interest to not sell to the smaller buyer types in order
to increase profit from the higher types.

C. Bandwidth purchased from the reference market

We end this section by considering the amount of bandwidth
the buyer needs to purchase from the reference market, shown
in Figure 15 as a function of the transmission needq and
different toleranceǫ. Here we assume a common channel
condition where the seller can sell at the optimal contract
(x∗, b). We fix the channel quality atb = 0.5 and vary the other
quantities. We can see that for eachǫ, the purchased bandwidth
is 0 while q is small. Whenq increases, the amount needed
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Fig. 15. Amount of bandwidth purchased from the reference market

starts to increase. Note that this is the minimum amount of
guaranteed service the buyer has to purchase regardless of how
much secondary bandwidth already purchased (see discussion
after Lemma 1).

IX. CONCLUSION

We considered a contract design problem where a primary
license holder wishes to profit from its excess spectrum
capacity by selling it to potential secondary users/buyers
via designing a set of profitable contracts. We completely
characterize the optimal solution in the cases where there is a
single buyer type, and when multiple types of buyers share a
common, known channel condition. In the case when each type
of buyers have different channel conditions we construct an
algorithm that generates a set of contracts in a computationally
efficient manner, and show that this set is optimal when the
buyer types satisfy a monotonicity condition.
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APPENDIX

Theorem. 9
Proof:

Case 1.x′ ≤ x∗
i ≤ x∗

j

Whenx′ ≤ x∗
i andx′ ≤ x∗

j , the equal cost lines forx < x′

are of the form,

Pi(x
′, p′, x) = bi −

qi − ǫi − δi
x

Pj(x
′, p′, x) = bj −

qj − ǫj − δj
x

where we letδi = Ci(x
′, p′) and δj = Cj(x

′, p′). Take the
derivatives with respect tox.

∂Pi(x
′, p′, x)

∂x
= (qi − ǫi − δi)x

−2

∂Pj(x
′, p′, x)

∂x
= (qj − ǫj − δj)x

−2

By definition,Pi(x
′, p′, x′) = p′ = Pj(x

′, p′, x′),

p′ = bi −
qi − ǫi − δi

x′
= bj −

qj − ǫj − δj
x′

Consideringbi < bj, we know thatqj − ǫj − δj > qi −

ǫi − δi. Which implies ∂Pj(x
′,p′,x)

∂x
≥ ∂Pi(x

′,p′,x)
∂x

, and thus
Pi(x

′, p′, x) ≥ Pj(x
′, p′, x), ∀x < x′.

Case 2.x∗
i ≤ x′ ≤ x∗

j

The equal cost lines are,

Pi(x
′, p′, x) =

{

x′p′

x
x∗
i ≤ x ≤ x′

bi −
qi−ǫi−δi

x
x ≤ x∗

i

Pj(x
′, p′, x) = bj −

qj−ǫj−δj
x

x ≤ x′

Where δi = Ci(x
′, p′) and δj = Cj(x

′, p′). Taking the
derivatives,

P ′
i (x

′, p′, x) =

{

−x′p′x−2 < 0 xi∗ ≤ x ≤ x′

(qi − ǫi − δi)x
−2 > 0 x ≤ xi∗

P ′
j(x

′, p′, x) = (qj − ǫj − δj)x
−2 > 0 x ≤ x′

This impliesPi(x
′, p′, x) > Pj(x

′, p′, x), ∀x x∗
i ≤ x ≤ x′.

Pi(x
′, p′, x∗

i ) = bi −
qi − ǫi − δi

x∗
i

> Pj(x
′, p′, x∗

i ) = bj −
qj − ǫj − δj

x∗
i

Since bi < bj, we conclude thatqj − ǫj − δj ≥ qi −

ǫi − δi. Which indicates that∂Pj(x
′,p′,x)

∂x
≥ ∂pi(x

′,p′,x)
∂x

and

Pi(x
′, p′, x) ≥ Pj(x

′, p′, x), ∀x ≤ x∗
i .

Case 3.x′ ≥ x∗
j ≥ x∗

i

When x ≥ x∗
j ≥ x∗

i , the equal cost line of both types
follow x′p′ = xp. Thus,Pi(x

′, p′, x∗
j ) = Pj(x

′, p′, x∗
j ). Then

the case falls into Case 2 andPi(x
∗
j , Pj(x

′, p′, x∗
j ), x) ≥

Pj(x
∗
j , Pj(x

′, p′, x∗
j ), x), ∀x < x∗

j .
Theorem. 8

Proof:
Case 1.x′ ≤ x∗

i ≤ x∗
j

Whenx′ ≤ x∗
i ≤ x∗

j , both types have equal utiliy line of the
same form.

Pi(x
′, p′, x) = bi −

qi − ǫi − Ci(x
′, p′)

x

Pi(x
′, p′, x) = bj −

qj − ǫj − Cj(x
′, p′)

x
(A1)

By exactly the same argument as in Theorem. 9 we can find
out that. ∂Pj(x

′,p′,x)
∂x

≥ ∂pi(x
′,p′,x)
∂x

, and thus,

Pi(x
′, p′, x) ≤ Pj(x

′, p′, x) ∀x∗
i ≥ x ≥ x′

When x∗
i < x < x∗

j , while Pj(x
′, p′, x) still follows the

same formula (Equation. A1),Pi(x
′, p′, x) starts to decrease

by following the linePi(x
′, p′, x) = x′Pi(x

′, p′, x∗
i )/x. Thus,

Pi(x
′, p′, x) ≤ Pj(x

′, p′, x) ∀x∗
i ≤ x ≤ x∗

j

When x > x∗
j , both i, j follow the form P (x′, p′, x) =

P (x′, p′, x∗
j )/x. ButPi(x

′, p′, x∗
j ) ≤ Pj(x

′, p′, x∗
j ), they never

cross andPj(x
′, p′, x) ≥ Pi(x

′, p′, x) ∀x > x∗
j .

Case 2.x∗
i < x′ < x∗

j

Whenx∗
i < x′ < x < x∗

j they are of the form,

Pi(x
′, p′, x) =

x′p′

x

Pj(x
′, p′, x) = bj −

qj − ǫj − Cj(x
′, p′)

x

respectively. By the same argument as in Theorem. 9,Pi

is decreasing whilePj is increasing. Thus,Pi(x
′, p′, x∗

j ) ≤
Pj(x

′, p′, x∗
j ). Whenx > x∗

j ,

Pi(x
′, p′, x) =

x∗
jPi(x

′, p′, x∗
j )

x

Pj(x
′, p′, x) =

x∗
jPj(x

′, p′, x∗
j )

x

Since Pi(x
′, p′, x∗

j ) < Pj(x
′, p′, x∗

j ) we know that
Pi(x

′, p′, x) < Pj(x
′, p′, x) ∀x > x∗

j .
Case 3.x′ > x∗

j > x∗
i

Whenx > x∗
j , both types have equal cost line asxp = x′p′.

Thus,Pi(x
′, p′, x) = Pj(x

′, p′, x) ∀x > x∗
j .


