APPENDIX A
We first define the following stochastic processes gen-
erated by the queueing process at node 1.

Tio(t)/T; 5(t) =

up to time ¢ that the queue at node i is

the total length of real time periods

non-empty/empty (or i is busy/idle);
Niq(t)/N, 5(t) := the total number of slots up to
time ¢ that the queue at node i is
non-empty/empty at the beginning
of slots.

These processes are well-defined on the same sample
space ). Assume that the queue is stable, then due to
ergodicity p; and p; can be expressed respectively as
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for all w € Q. Let A;(t) be the total time fragmentation
of busy periods in idle slots of node ¢ up to time ¢, and
let S; (k) (S; 5(k)) be the length of the kth busy (resp.
idle) slot. Quantities described above are illustrated in
Figure 1. Then, we have
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where we have suppressed the reference to a sample
point w in all involved processes for simplicity, or
interpreted the equalities as with probability one. Let
E[Si,q] and E[S, 5] be the conditional average lengths
of an arbitrary slot, given that the queue at node
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Fig. 1. Slotted time dynamics.

i is non-empty or empty at the beginning of slot,
respectively. We claim that E[S; o] > E[S, 5] (see
the next Appendix for justification). Note also that
Nig(t) — oo and N;5(t) — oo as t — oo due
to the stability assumption. Consequently, following
ergodicity, we obtain
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= p.

When the queue is unstable, we have p; = p; = 1.
In either case, we have p; > p;. It remains to justify
the claim made above, which appears in the next
Appendix.

APPENDIX B
COMPUTATION OF E[S;;] AND RELATED
QUANTITIES

Given an event {-}, let Pige.q.}, Psucei{.y and Peoyy
be the conditional probabilities that a slot is idle, that
the transmission attempt in the slot is a success, and
that the attempt is a collision, respectively. Notice that
Pcoll;{-} =1- Pidle;{»} — Psucc;{-}- Therefore,

E[S{}] =0- Pidle;{-} +Ts - Psucc;{~} + T - Pcoll;{-}-

where o, T and 7 are the lengths of an empty system
slot, a successful transmission, and a collision, respec-
tively. Define then by 7; ¢ the conditional probability
that node ¢ transmits in an arbitrary slot, given its
queue is non-empty at the beginning of this slot, and

hence we have 7; ¢ = % Consequently,
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Since Pidie;i,q < Piye.g and o < min{Ts,T.}, we
have E[S; o] > E[S,; 5] and they are both finite. Ex-
plicit expressions fo,r other variations of E[S(;] can
be derived in a similar way, and are thus omitted.

APPENDIX C
APPROXIMATION OF p;

Due to the analytical intractability of A;(t), we are
interested in proper approximations of p; that can lead
to good estimate of A; a good estimate in the con-
text of stability study means a tight underestimation.
Recall that p; < p; and equality holds if and only if
pi = 1 or p; = 0; therefore by replacing p; by p; in 3(c),
solutions to the resulting system of equations form an
underestimation of A but accurate when p; =1 or 0
for all 4. Moreover, when 0 < p; < 1, we have
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we have p; < 51 < p;. Hence, substituting p; with
in in ¥(c), we can obtain a tighter underestimation
of A than with p;, thus trading off computational
complexity for higher accuracy. Empirical results
suggest that ;3 is sufficiently close to p, and we use
pasp throughout our computation.

APPENDIX D
PROOF OF PROPOSITION 1

Substituting fl(b) in (a), we obtain
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which can be rewritten as
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Therefore, let y = Z Tjs % = 4 T/(l + /\l?T) and
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APPENDIX E
PROOF OF THEOREM 3
Using f]gU(a), we can rewrite igU(b) as follows:
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where the equality holds when ¢;’ = . Therefore,
when switching to the equi-occupancy policy from
any arbitrary unbiased policy, the utilization factor
of each node is always non-increasing. Hence, we
conclude that the equi-occupancy scheduling policy
is throughput optimal in GY.



APPENDIX F
MISCELLANEOUS

Total bandwidth 11 Mbps
Data packet length P 1500 Bytes
DIFS 50 us
SIFS 10 ps
ACK packet length (in time units) 203 ps
Header length (in time units) 192 us
Empty system slot time o 20 ps
Propagation delay ¢ 1 us
Initial backoff window size W 32
Maximum backoff stage m 5
Data rate granularity A\ 100 Kbps
Instability threshold constant 1%
Total simulated time 7' 10 seconds
TABLE 1

Specifications of the implementation of test bench.



