APPENDIX A

PROOF OF $\hat{\rho}_i \leq \rho_i$

We first define the following stochastic processes generated by the queueing process at node *i*.

 $T_{i,Q}(t)/T_{i,\overline{Q}}(t) :=$ the total length of real time periods up to time *t* that the queue at node *i* is non-empty/empty (or *i* is busy/idle);

 $N_{i,Q}(t)/N_{i,\overline{Q}}(t) :=$ the total number of slots up to time *t* that the queue at node *i* is non-empty/empty at the beginning of slots.

These processes are well-defined on the same sample space Ω . Assume that the queue is stable, then due to ergodicity ρ_i and $\hat{\rho}_i$ can be expressed respectively as

$$\rho_i = \lim_{t \to \infty} \frac{T_{i,Q}(\omega, t)}{t} = \lim_{t \to \infty} \frac{T_{i,Q}(\omega, t)}{T_{i,Q}(\omega, t) + T_{i,\overline{Q}}(\omega, t)},$$

and

$$\hat{\rho}_i = \lim_{t \to \infty} \frac{N_{i,Q}(\omega, t)}{N_{i,Q}(\omega, t) + N_{i,\overline{Q}}(\omega, t)},$$

for all $\omega \in \Omega$. Let $\Delta_i(t)$ be the total time fragmentation of busy periods in idle slots of node *i* up to time *t*, and let $S_{i,Q}(k)$ ($S_{i,\overline{Q}}(k)$) be the length of the *k*th busy (resp. idle) slot. Quantities described above are illustrated in Figure 1. Then, we have

$$T_{i,Q}(t) - \Delta_i(t) = \sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k),$$

and

$$t = \sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k) + \sum_{k=1}^{N_{i,\overline{Q}}(t)} S_{i,\overline{Q}}(k).$$

Therefore,

$$\begin{split} \rho_i &\geq \lim_{t \to \infty} \frac{T_{i,Q}(t) - \Delta_i(t)}{t} \\ &= \lim_{t \to \infty} \frac{\sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k)}{\sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k) + \sum_{k=1}^{N_{i,\overline{Q}}(t)} S_{i,\overline{Q}}(k)} \\ &= \lim_{t \to \infty} \left[\frac{\sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k)}{N_{i,Q}(t)} N_{i,Q}(t) \right/ \\ & \left(\frac{\sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k)}{N_{i,Q}(t)} N_{i,Q}(t) + \right. \\ & \left. + \frac{\sum_{k=1}^{N_{i,\overline{Q}}(t)} S_{i,\overline{Q}}(k)}{N_{i,\overline{Q}}(t)} N_{i,\overline{Q}}(t) \right) \right], \end{split}$$

where we have suppressed the reference to a sample point ω in all involved processes for simplicity, or interpreted the equalities as with probability one. Let $\mathbb{E}[S_{i,Q}]$ and $\mathbb{E}[S_{i,\overline{Q}}]$ be the conditional average lengths of an arbitrary slot, given that the queue at node

Fig. 1. Slotted time dynamics.

i is non-empty or empty at the beginning of slot, respectively. We claim that $\mathbb{E}[S_{i,Q}] > \mathbb{E}[S_{i,\overline{Q}}]$ (see the next Appendix for justification). Note also that $N_{i,Q}(t) \to \infty$ and $N_{i,\overline{Q}}(t) \to \infty$ as $t \to \infty$ due to the stability assumption. Consequently, following ergodicity, we obtain

$$\begin{split} \rho_i &\geq \lim_{t \to \infty} \frac{N_{i,Q}(t) \mathbb{E}[S_{i,Q}]}{N_{i,Q}(t) \mathbb{E}[S_{i,Q}] + N_{i,\overline{Q}}(t) \mathbb{E}[S_{i,\overline{Q}}]} \\ &\geq \lim_{t \to \infty} \frac{N_{i,Q}(t)}{N_{i,Q}(t) + N_{i,\overline{Q}}(t)} \\ &= \hat{\rho}_i. \end{split}$$

When the queue is unstable, we have $\rho_i = \hat{\rho}_i = 1$. In either case, we have $\rho_i \ge \hat{\rho}_i$. It remains to justify the claim made above, which appears in the next Appendix.

Appendix B Computation of $\mathbb{E}[S_{\{\cdot\}}]$ and Related Quantities

Given an event {·}, let $P_{idle;{\cdot}}$, $P_{succ;{\cdot}}$ and $P_{coll;{\cdot}}$ be the conditional probabilities that a slot is idle, that the transmission attempt in the slot is a success, and that the attempt is a collision, respectively. Notice that $P_{coll;{\cdot}} = 1 - P_{idle;{\cdot}} - P_{succ;{\cdot}}$. Therefore,

$$\mathbb{E}[S_{\{\cdot\}}] = \sigma \cdot P_{idle;\{\cdot\}} + T_s \cdot P_{succ;\{\cdot\}} + T_c \cdot P_{coll;\{\cdot\}}.$$

where σ , T_s and T_c are the lengths of an empty system slot, a successful transmission, and a collision, respectively. Define then by $\tau_{i,Q}$ the conditional probability that node *i* transmits in an arbitrary slot, given its queue is non-empty at the beginning of this slot, and hence we have $\tau_{i,Q} = \frac{1}{W_i}$. Consequently,

$$\begin{split} P_{idle;i,\overline{Q}} &= \prod_{j \neq i} (1 - \tau_j), \\ P_{succ;i,\overline{Q}} &= \sum_{j \neq i} \tau_j \prod_{l \neq i,j} (1 - \tau_l), \\ P_{idle;i,Q} &= (1 - \tau_{i,Q}) \prod_{j \neq i} (1 - \tau_j) \\ P_{succ;i,Q} &= \sum_l \tilde{\tau}_l \prod_{j \neq l} (1 - \tilde{\tau}_l), \end{split}$$

where

$$\tilde{\tau}_j = \begin{cases} \tau_{i,Q}, & \text{if } j = i \\ \tau_j, & \text{if } j \neq i \end{cases}.$$

2

Since $P_{idle;i,Q} < P_{idle;i,\overline{Q}}$ and $\sigma < \min\{T_s, T_c\}$, we have $\mathbb{E}[S_{i,Q}] > \mathbb{E}[S_{i,\overline{Q}}]$ and they are both finite. Explicit expressions for other variations of $\mathbb{E}[S_{\{\cdot\}}]$ can be derived in a similar way, and are thus omitted.

APPENDIX C APPROXIMATION OF $\hat{\rho}_i$

Due to the analytical intractability of $\Delta_i(t)$, we are interested in proper approximations of $\hat{\rho}_i$ that can lead to good estimate of Λ ; a good estimate in the context of stability study means a tight underestimation. Recall that $\hat{\rho}_i \leq \rho_i$ and equality holds if and only if $\rho_i = 1$ or $\rho_i = 0$; therefore by replacing $\hat{\rho}_i$ by ρ_i in $\Sigma(c)$, solutions to the resulting system of equations form an underestimation of Λ but accurate when $\rho_i = 1$ or 0 for all *i*. Moreover, when $0 < \hat{\rho}_i < 1$, we have

$$\begin{split} \hat{\rho}_{i} &= \lim_{t \to \infty} \frac{\frac{T_{i,Q}(t) - \Delta_{i}(t)}{S_{i,Q}^{\mathrm{av}}(t)}}{\frac{T_{i,Q}(t) - \Delta_{i}(t)}{S_{i,Q}^{\mathrm{av}}(t)} + \frac{T_{i,\overline{Q}}(t) + \Delta_{i}(t)}{S_{i,\overline{Q}}^{\mathrm{av}}(t)}} \\ &\leq \lim_{t \to \infty} \frac{\frac{T_{i,Q}(t)}{T_{i,Q}(t) + T_{i,\overline{Q}}(t)} S_{i,\overline{Q}}^{\mathrm{av}}(t)}{\frac{T_{i,Q}(t) + T_{i,\overline{Q}}(t)}{T_{i,Q}(t) + T_{i,\overline{Q}}(t)} S_{i,Q}^{\mathrm{av}}(t)} + \frac{T_{i,\overline{Q}}(\omega,t)}{T_{i,Q}(t) + T_{i,\overline{Q}}(t)} S_{i,Q}^{\mathrm{av}}(t)} \\ &= \frac{\rho_{i} \mathbb{E}[S_{i,\overline{Q}}]}{\rho_{i} \mathbb{E}[S_{i,\overline{Q}}] + (1 - \rho_{i}) \mathbb{E}[S_{i,Q}]} \\ &\leq \rho_{i}, \end{split}$$

where

$$S_{i,Q}^{\text{av}}(t) = \frac{1}{N_{i,Q}(t)} \sum_{k=1}^{N_{i,Q}(t)} S_{i,Q}(k)$$

and defining

$$\hat{\hat{\rho}}_i = \frac{\rho_i \mathbb{E}[S_{i,\overline{Q}}]}{\rho_i \mathbb{E}[S_{i,\overline{Q}}] + (1 - \rho_i) \mathbb{E}[S_{i,Q}]},$$

we have $\hat{\rho}_i \leq \hat{\rho}_i \leq \rho_i$. Hence, substituting $\hat{\rho}_i$ with $\hat{\rho}_i$ in $\Sigma(c)$, we can obtain a tighter underestimation of Λ than with ρ_i , thus trading off computational complexity for higher accuracy. Empirical results suggest that $\hat{\rho}$ is sufficiently close to $\hat{\rho}$, and we use $\hat{\rho}$ as $\hat{\rho}$ throughout our computation.

APPENDIX D PROOF OF PROPOSITION 1

Substituting $\Sigma(b)$ in (a), we obtain

$$\begin{split} \tau_i &= \frac{2\lambda_i}{P(W+1)} \bigg[\frac{W-1}{2} \bigg(\sigma + T \sum_{j \neq i} \tau_j \bigg) + \\ &+ T \bigg(1 + \sum_{j \neq i} \tau_j \bigg) \bigg] \\ &= \frac{2\lambda_i}{P(W+1)} \bigg[\frac{W+1}{2} T \sum_{j \neq i} \tau_j + \frac{W-1}{2} \sigma + T \bigg] \\ &= \frac{\lambda_i T}{P} \sum_{j \neq i} \tau_j + \frac{\lambda_i ((W-1)\sigma + 2T)}{P(W+1)}, \end{split}$$

which can be rewritten as

$$\tau_i = \left(\frac{\lambda_i T}{P} \sum_j \tau_j + \frac{\lambda_i ((W-1)\sigma + 2T)}{P(W+1)}\right) / \left(1 + \frac{\lambda_i T}{P}\right).$$

Therefore, let $y = \sum_{j} \tau_{j}$, $\gamma_{i}^{1} = \frac{\lambda_{i}T}{P} / \left(1 + \frac{\lambda_{i}T}{P}\right)$ and $\gamma_{i}^{2} = \frac{\lambda_{i}((W-1)\sigma+2T)}{P(W+1)} / \left(1 + \frac{\lambda_{i}T}{P}\right)$, and we have $\tau_{i} = \gamma_{i}^{1}y + \gamma_{i}^{2}$.

Then, $\tilde{\Sigma}$ is equivalent to

$$\widetilde{\Sigma}: \begin{cases} \tau_i = \gamma_i^1 y + \gamma_i^2 & \text{(a')} \\ y = \sum_i \left(\gamma_i^1 y + \gamma_i^2\right) & \text{(b')} \end{cases}$$

which admits only one solution, namely

$$\tau_i = \frac{\gamma_i^1 \sum_j \gamma_j^2}{1 - \sum_i \gamma_j^1} + \gamma_i^2.$$

APPENDIX E PROOF OF THEOREM 3

Using $\widetilde{\Sigma}^{\mathbf{g}^U}(\mathbf{a})$, we can rewrite $\widetilde{\Sigma}^{\mathbf{g}^U}(\mathbf{b})$ as follows:

$$\rho_{i} = \frac{\lambda_{i}}{P} \sum_{k \in \mathcal{C}} \left\{ q^{(k)} \left[\frac{W - 1}{2} \left(\sigma + T \sum_{j \neq i} \tau_{j}^{(k)} \right) + T \left(1 + \sum_{j \neq i} \tau_{j}^{(k)} \right) \right] \right\}$$
$$= \theta_{i}^{1} \sum_{k \in \mathcal{C}} \left(q^{(k)} \sum_{j \neq i} \tau_{j}^{(k)} \right) + \theta_{i}^{2}$$
$$= \theta_{i}^{1} \sum_{k \in \mathcal{C}} \phi_{i}(q^{(k)}; \rho_{j}, j \neq i) + \theta_{i}^{2},$$

where $\theta_i^1 = \frac{\lambda_i(W+1)T}{2P}$, $\theta_i^2 = \frac{\lambda_i(W-1)\sigma+2T}{2P}$, and $\phi_i(q^{(k)}; \rho_j, j \neq i) = q^{(k)} \sum_{j\neq i} \tau_j^{(k)} = \sum_{j\neq i} \alpha_j [q^{(k)}]^2$ with $\alpha_j = \frac{2\rho_j}{W+1} > 0$ for all *j*. Notice that $\phi_i(q^{(k)}; \rho_j, j \neq i)$ is a convex function of $q^{(k)}$ given any fixed ρ_j where $j \neq i$, and it is also an increasing function of ρ_j 's given any fixed $q^{(k)}$. We then have

$$\begin{split} \rho_i &= \theta_i^1 \sum_{k \in \mathcal{C}} \phi_i(q^{(k)}) + \theta_i^2 \\ &= \theta_i^1 \cdot K \sum_{k \in \mathcal{C}} \left(\frac{1}{K} \phi_i(q^{(k)}) \right) + \theta_i^2 \\ &\geq \theta_i^1 \cdot K \phi_i \left(\sum_{k \in \mathcal{C}} \left(\frac{1}{K} q^{(k)} \right) \right) + \theta_i^2 \\ &= \theta_i^1 \cdot K \phi_i \left(\frac{1}{K} \right) + \theta_i^2, \end{split}$$

where the equality holds when $q_i^{(k)} = \frac{1}{K}$. Therefore, when switching to the equi-occupancy policy from any arbitrary unbiased policy, the utilization factor of each node is always non-increasing. Hence, we conclude that the equi-occupancy scheduling policy is throughput optimal in \mathcal{G}^U .

Appendix F Miscellaneous

Total bandwidth	11 Mbps
Data packet length P	1500 Bytes
DIFS	$50 \ \mu s$
SIFS	10 µs
ACK packet length (in time units)	203 µs
Header length (in time units)	192 μs
Empty system slot time σ	20 µs
Propagation delay δ	$1 \ \mu s$
Initial backoff window size W	32
Maximum backoff stage m	5
Data rate granularity $\Delta\lambda$	100 Kbps
Instability threshold constant	1%
Total simulated time T_f	10 seconds

TABLE 1Specifications of the implementation of test bench.