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APPENDIX A
PROOF OF ρ̂i ≤ ρi
We first define the following stochastic processes gen-
erated by the queueing process at node i.

Ti,Q(t)/Ti,Q(t) := the total length of real time periods

up to time t that the queue at node i is
non-empty/empty (or i is busy/idle);

Ni,Q(t)/Ni,Q(t) := the total number of slots up to

time t that the queue at node i is
non-empty/empty at the beginning
of slots.

These processes are well-defined on the same sample
space Ω. Assume that the queue is stable, then due to
ergodicity ρi and ρ̂i can be expressed respectively as

ρi = lim
t→∞

Ti,Q(ω, t)

t
= lim

t→∞

Ti,Q(ω, t)

Ti,Q(ω, t) + Ti,Q(ω, t)
,

and

ρ̂i = lim
t→∞

Ni,Q(ω, t)

Ni,Q(ω, t) +Ni,Q(ω, t)
,

for all ω ∈ Ω. Let ∆i(t) be the total time fragmentation
of busy periods in idle slots of node i up to time t, and
let Si,Q(k) (Si,Q(k)) be the length of the kth busy (resp.
idle) slot. Quantities described above are illustrated in
Figure 1. Then, we have

Ti,Q(t)−∆i(t) =

Ni,Q(t)∑
k=1

Si,Q(k),

and

t =

Ni,Q(t)∑
k=1

Si,Q(k) +

Ni,Q(t)∑
k=1

Si,Q(k).

Therefore,

ρi ≥ lim
t→∞

Ti,Q(t)−∆i(t)

t

= lim
t→∞

∑Ni,Q(t)
k=1 Si,Q(k)∑Ni,Q(t)

k=1 Si,Q(k) +
∑Ni,Q(t)

k=1 Si,Q(k)

= lim
t→∞

[∑Ni,Q(t)
k=1 Si,Q(k)

Ni,Q(t)
Ni,Q(t)

/
(∑Ni,Q(t)

k=1 Si,Q(k)

Ni,Q(t)
Ni,Q(t)+

+

∑Ni,Q(t)

k=1 Si,Q(k)

Ni,Q(t)
Ni,Q(t)

)]
,

where we have suppressed the reference to a sample
point ω in all involved processes for simplicity, or
interpreted the equalities as with probability one. Let
E[Si,Q] and E[Si,Q] be the conditional average lengths
of an arbitrary slot, given that the queue at node
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Fig. 1. Slotted time dynamics.

i is non-empty or empty at the beginning of slot,
respectively. We claim that E[Si,Q] > E[Si,Q] (see
the next Appendix for justification). Note also that
Ni,Q(t) → ∞ and Ni,Q(t) → ∞ as t → ∞ due
to the stability assumption. Consequently, following
ergodicity, we obtain

ρi ≥ lim
t→∞

Ni,Q(t)E[Si,Q]

Ni,Q(t)E[Si,Q] +Ni,Q(t)E[Si,Q]

≥ lim
t→∞

Ni,Q(t)

Ni,Q(t) +Ni,Q(t)

= ρ̂i.

When the queue is unstable, we have ρi = ρ̂i = 1.
In either case, we have ρi ≥ ρ̂i. It remains to justify
the claim made above, which appears in the next
Appendix.

APPENDIX B
COMPUTATION OF E[S{·}] AND RELATED
QUANTITIES

Given an event {·}, let Pidle;{·}, Psucc;{·} and Pcoll;{·}
be the conditional probabilities that a slot is idle, that
the transmission attempt in the slot is a success, and
that the attempt is a collision, respectively. Notice that
Pcoll;{·} = 1− Pidle;{·} − Psucc;{·}. Therefore,

E[S{·}] = σ · Pidle;{·} + Ts · Psucc;{·} + Tc · Pcoll;{·}.

where σ, Ts and Tc are the lengths of an empty system
slot, a successful transmission, and a collision, respec-
tively. Define then by τi,Q the conditional probability
that node i transmits in an arbitrary slot, given its
queue is non-empty at the beginning of this slot, and
hence we have τi,Q = 1

W i
. Consequently,

Pidle;i,Q =
∏
j ̸=i

(1− τj),

Psucc;i,Q =
∑
j ̸=i

τj
∏
l ̸=i,j

(1− τl),

Pidle;i,Q = (1− τi,Q)
∏
j ̸=i

(1− τj),

Psucc;i,Q =
∑
l

τ̃l
∏
j ̸=l

(1− τ̃l),

where

τ̃j =

{
τi,Q, if j = i

τj , if j ̸= i
.
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Since Pidle;i,Q < Pidle;i,Q and σ < min{Ts, Tc}, we
have E[Si,Q] > E[Si,Q] and they are both finite. Ex-
plicit expressions for other variations of E[S{·}] can
be derived in a similar way, and are thus omitted.

APPENDIX C
APPROXIMATION OF ρ̂i
Due to the analytical intractability of ∆i(t), we are
interested in proper approximations of ρ̂i that can lead
to good estimate of Λ; a good estimate in the con-
text of stability study means a tight underestimation.
Recall that ρ̂i ≤ ρi and equality holds if and only if
ρi = 1 or ρi = 0; therefore by replacing ρ̂i by ρi in Σ(c),
solutions to the resulting system of equations form an
underestimation of Λ but accurate when ρi = 1 or 0
for all i. Moreover, when 0 < ρ̂i < 1, we have

ρ̂i = lim
t→∞

Ti,Q(t)−∆i(t)
Sav
i,Q(t)

Ti,Q(t)−∆i(t)
Sav
i,Q(t) +

Ti,Q(t)+∆i(t)

Sav
i,Q

(t)

≤ lim
t→∞

Ti,Q(t)
Ti,Q(t)+Ti,Q(t)S

av
i,Q

(t)

Ti,Q(t)
Ti,Q(t)+Ti,Q(t)S

av
i,Q

(t) +
Ti,Q(ω,t)

Ti,Q(t)+Ti,Q(t)S
av
i,Q(t)

=
ρiE[Si,Q]

ρiE[Si,Q] + (1− ρi)E[Si,Q]

≤ ρi,

where

Sav
i,Q(t) =

1

Ni,Q(t)

Ni,Q(t)∑
k=1

Si,Q(k)

and defining

ˆ̂ρi =
ρiE[Si,Q]

ρiE[Si,Q] + (1− ρi)E[Si,Q]
,

we have ρ̂i ≤ ˆ̂ρi ≤ ρi. Hence, substituting ρ̂i with
ˆ̂ρi in Σ(c), we can obtain a tighter underestimation
of Λ than with ρi, thus trading off computational
complexity for higher accuracy. Empirical results
suggest that ˆ̂ρ is sufficiently close to ρ̂, and we use
ˆ̂ρ as ρ̂ throughout our computation.

APPENDIX D
PROOF OF PROPOSITION 1
Substituting Σ̃(b) in (a), we obtain

τi =
2λi

P (W + 1)

[
W − 1

2

(
σ + T

∑
j ̸=i

τj

)
+

+ T

(
1 +

∑
j ̸=i

τj

)]
=

2λi

P (W + 1)

[
W + 1

2
T
∑
j ̸=i

τj +
W − 1

2
σ + T

]
=

λiT

P

∑
j ̸=i

τj +
λi((W − 1)σ + 2T )

P (W + 1)
,

which can be rewritten as

τi =
(λiT

P

∑
j

τj +
λi((W − 1)σ + 2T )

P (W + 1)

)/(
1 +

λiT

P

)
.

Therefore, let y =
∑

j τj , γ1
i = λiT

P

/(
1 + λiT

P

)
and

γ2
i = λi((W−1)σ+2T )

P (W+1)

/(
1 + λiT

P

)
, and we have

τi = γ1
i y + γ2

i .

Then, Σ̃ is equivalent to

Σ̃ :


τi = γ1

i y + γ2
i (a′)

y =
∑
i

(
γ1
i y + γ2

i

)
(b′)

which admits only one solution, namely

τi =
γ1
i

∑
j γ

2
j

1−
∑

i γ
1
j

+ γ2
i .

APPENDIX E
PROOF OF THEOREM 3
Using Σ̃gU

(a), we can rewrite Σ̃gU

(b) as follows:

ρi =
λi

P

∑
k∈C

{
q(k)

[
W − 1

2

(
σ + T

∑
j ̸=i

τ
(k)
j

)
+

+ T

(
1 +

∑
j ̸=i

τ
(k)
j

)]}
= θ1i

∑
k∈C

(
q(k)

∑
j ̸=i

τ
(k)
j

)
+ θ2i

= θ1i
∑
k∈C

ϕi(q
(k); ρj , j ̸= i) + θ2i ,

where θ1i = λi(W+1)T
2P , θ2i = λi(W−1)σ+2T

2P , and
ϕi(q

(k); ρj , j ̸= i) = q(k)
∑

j ̸=i τ
(k)
j =

∑
j ̸=i αj

[
q(k)

]2
with αj =

2ρj

W+1 > 0 for all j. Notice that ϕi(q
(k); ρj , j ̸=

i) is a convex function of q(k) given any fixed ρj where
j ̸= i, and it is also an increasing function of ρj ’s given
any fixed q(k). We then have

ρi = θ1i
∑
k∈C

ϕi(q
(k)) + θ2i

= θ1i ·K
∑
k∈C

(
1

K
ϕi(q

(k))

)
+ θ2i

≥ θ1i ·Kϕi

(∑
k∈C

(
1

K
q(k)

))
+ θ2i

= θ1i ·Kϕi

(
1

K

)
+ θ2i ,

where the equality holds when q
(k)
i = 1

K . Therefore,
when switching to the equi-occupancy policy from
any arbitrary unbiased policy, the utilization factor
of each node is always non-increasing. Hence, we
conclude that the equi-occupancy scheduling policy
is throughput optimal in GU .
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APPENDIX F
MISCELLANEOUS

Total bandwidth 11 Mbps
Data packet length P 1500 Bytes

DIFS 50 µs
SIFS 10 µs

ACK packet length (in time units) 203 µs
Header length (in time units) 192 µs

Empty system slot time σ 20 µs
Propagation delay δ 1 µs

Initial backoff window size W 32
Maximum backoff stage m 5
Data rate granularity ∆λ 100 Kbps

Instability threshold constant 1%
Total simulated time Tf 10 seconds

TABLE 1
Specifications of the implementation of test bench.


