
Modeling TCP Performance with Proxies

Mingyan Liu, Navid Ehsan
Electrical Engineering and Computer Science Department

University of Michigan
Ann Arbor, MI 48109-2122, USA

Abstract— This paper investigates the TCP dynamics and perfor-
mance over proxies that shorten the TCP feedback loop by segmenting
the end-to-end connection. Such proxies are often used to improve TCP
performance, e.g., a splitting/spoofing proxy in the satellite communi-
cation, and more commonly, a web cache. By analysis, we attempt to
develop a basic understanding of the properties of TCP dynamics when
such proxies are used, and further obtain certain design principles of
systems involving such proxies. We present simple models capturing
some features of the proxy performance in both the lossless and lossy
scenarios. Due to the complexity involved, detailed analysis is only
available in the lossless scenario, and our discussion in the lossy sce-
nario is largely limited to steady state behavior. However we are able to
obtain useful insight through such analysis. We identify conditions un-
der which using a proxy provides significant or marginal performance
gain by investigating factors including initial window size, congestion
level of the proxy, and the level of asymmetry between the links seg-
regated by the proxy. We also discuss how these conditions affect the
deployment and provisioning of systems using proxies.

I. INTRODUCTION

�
HIS paper investigates certain type of proxies that
cause changes in the TCP dynamics and the result-

ing performance implications. In particular, we focus on
proxies that shorten the TCP feedback loop either by de-
sign or as a by-product. Such proxies are normally used
to reduce the connection response time and achieve higher
link utilization.

One typical example of such is a TCP connection split-
ting and spoofing proxy that pre-acknowledges the sender
on behalf of the receiver (by spoofing the receiver’s ad-
dress), and forwards packets to the receiver on behalf
of the sender (by spoofing the sender’s address). Such
a scheme is usually called split TCP, TCP spoofing [1]
or indirect TCP (I-TCP) [2], [3]. It is commonly used
in satellite communication to improve TCP performance
over the large bandwidth-delay-product of satellite link
since it can speed up the window growth and achieve
higher capacity utilization, especially for short connec-
tions. It has also been proposed for terrestrial wireless
networks (e.g., I-TCP) [3], [4], [5] as a means of sepa-
rating the wired and the wireless part of the connection,
and separating congestion losses and link failure losses.
The motivation behind this approach is TCP’s perfor-
mance degradation in a heterogeneous environment. The
idea is that if a communication path consists of physical
medium that have very different characteristics, the end-
to-end performance is optimized by isolating one type
of physical link from another and optimizing each sepa-

rately. However this approach generally violates the TCP
end-to-end semantics, and will not work if the IP packets
payload is encrypted [6].

Another example of such a proxy, which may seem
less obvious, is a common web cache (e.g., with the web
browser set to “proxy” mode). When there is a “hit” at
the cache, the file is directly sent to the client from the
cache. When there is a “miss”, the cache opens up a con-
nection to the remote server and starts downloading the
file to the cache (for cacheable objects), while forward-
ing packets to the client at the same time. Thus the cache
automatically “breaks” the server-client transfer into two
separate connections [5]. In terms of TCP performance
of the file transfer, this has exactly the same effect as split
TCP (although the connection establishment is different).
However, in this case the TCP semantics is preserved be-
cause the cache does not spoof the client’s address, and so
it acknowledges the server on behalf of itself rather than
“pre-ack” on behalf of the client. Caching not only re-
duces latency by pushing the content closer to end users
but also results in redirection of traffic that is meant for
web servers, and can achieve better load balancing.

There has been implementation and experimental study
of the TCP performance improvement using such prox-
ies, especially split TCP in satellite and terrestrial wire-
less communications (e.g., [1], [2], [3]). In this paper we
develop simple mathematical models to derive the TCP
performance (mainly latency) when such a proxy is used,
and analyze the level of performance improvement under
different scenarios. Our motivation is three-fold: to have
an analytical and quantitative study to gain insights into
the dynamics of a shortened TCP loop in addition to sim-
ulation and experimental studies; to investigate the use
of proxy as a general solution to problems involving het-
erogeneous links and large amounts of traffic; and more
importantly, to apply such understanding to system level
design issues.

In subsequent sections we will ignore whether the
proxy spoofs addresses or not since it does not affect our
analysis, and instead focus on a general model of server-
proxy-client communication. Due to the complexity in-
volved, detailed analysis is only available in the loss-
less scenario, and our discussion in the lossy scenario is
largely limited to steady state behavior. However we are
able to obtain useful insight through such analysis. In

ProxyServer Client

Fig. 1. Network Model

summary, we found that overall using the proxy results in
higher utilization of the link capacity and lower latency.
However, when the proxy becomes congested this perfor-
mance gain is limited. In addition, when a connection
is broken in two, the slower one always dominates the
overall performance, and as this dominance increases, the
gain from using the proxy is again reduced. These re-
sults imply that while optimization of separate parts of a
connection (segregated by the proxy) is important, it is
equally important to minimize the “asymmetry” between
these parts, especially in a heterogeneous environment.

The organization of the paper is as follows. In Sec-
tion 2 we present the network model and describe how
the proxy functions. In Sections 3 through 5 we analyze
the latency in file transfer with or without using the proxy.
Two cases are investigated by assuming the links are loss-
less and lossy, respectively. The accuracy of our model is
discussed. We then analyze the effect of initial window
size, the congestion level of the proxy and the asymmetry
between the two segments segregated by the proxy. Sec-
tion 6 summarizes our results and concludes the paper.

II. SPLIT CONNECTION AND THE NETWORK MODEL

A. Network Model

Our analysis is based on a two link model with one end
host on each side and a proxy in the middle, as shown
in Figure 1. In reality each of the two links may con-
tain multiple intermediate routers and physical links, but
are abstracted into a single link with a single round-trip
time (RTT) parameter and a single loss rate parameter.
In a real network, a spoofing proxy is usually placed be-
tween the wired part and the wireless (or satellite) link,
and the client is usually located at the end of the wireless
link. The location of a cache proxy is more arbitrary. File
transfer is our main application of interest, and without
loss of generality are considered to be from the server to
the client.

When an end-to-end connection is established, the
proxy functions as a normal router that forwards pack-
ets from the server to the client and vice versa. When
connection splitting is used, the proxy acknowledges to
the server, the client acknowledges to the proxy, and the
proxy relays packets from the server to the client. Same
procedure is used for the other direction of the connec-
tion. The two connections are inevitably coupled, but
they keep separate sequence numbers and queues, and the
proxy does not relay out-of-order packets from one to the
other thus acting as a virtual source of the file. In general,
with a spoofing proxy the initial connection establishment

(three-way handshake) and the final closing are done in
an end-to-end fashion. The connection is only split in
two during the data transfer period, as shown in Figure
2. With a cache proxy there are two separate connec-
tion from the very beginning, i.e., three-way handshake
is first conducted between the client and the proxy, and if
there is a miss, another three-way handshake is conducted
between the proxy and the server, as shown in Figure
3. Both situations result in approximately the same de-
lay in connection establishment for a single connection.
We therefore do no include this initial delay in our analy-
sis and instead focus on the delay solely of data transfer,
which is the duration between when the server sends the
first data packet of a file and the time when the client re-
ceives the last data packet of a file. For a cache proxy if
there is a hit on the file request, the content is retrieved di-
rectly from the cache. In this case the connection model
is simply end-to-end from the client to the proxy, with a
fraction of the entire server-client round-trip time. Our
analysis therefore only applies to situations where there
is a “miss”.

Fig. 2. File transfer using a splitting proxy

B. Assumptions and Parameters

We assume that a file contains exactly � segments of
the maximum segment size (MSS). This is an approxi-
mation to an arbitrary file size whose last segment may
be a fraction of MSS. However, this does not affect our
method of analysis, and also does not affect the compari-
son between with or without using the proxy. We assume
that both the end-to-end connection (server-client) and the
split connections (server-proxy and proxy-client) have the
same value of slow start threshold (ssthresh), ����� , and the
maximum window size �����
	 . These two values are also

Fig. 3. File transfer using a cache upon miss

assumed to be in number of segments rather than number
of bytes to simplify the analysis.

The server, the proxy and the client each has a trans-
mission rate of ��� , ��� , and ��� , respectively. Assuming
packet length of �	� ��
�
����� , (including both TCP
and IP headers) the time it takes for the server to trans-
mit a packet is ���������� , and ���������� , ��� �����! for
the proxy and the client, respectively. When there are two
separate connections, we assume a per-packet processing
delay of " � at the proxy. All other processing delays are
ignored. We assume that each link has the same propaga-
tion delay and transmission rate in both directions. The
one-way propagation delay on the server-proxy link and
the proxy-client link are denoted by # � and # � , respec-
tively. Throughout our analysis, we assume that the trans-
mission time of an ACK is negligible.

We further assume that the TCP sender is only con-
strained by the congestion window and not the advertised
receive window size. Most work in TCP analysis assumes
an infinite source, e.g., [7], [8], [9]. However, when we
have two connections, the window of the second connec-
tion (proxy-client) evolves not only according to the win-
dow dynamics of TCP, but also according to the availabil-
ity of packets (from the server-proxy connection), i.e., the
first connection may not “catch up” with the second con-
nection due to factors like initial window size, transmis-
sion rate, etc.. Therefore the window of the second con-
nection will be forced to grow at a slower rate. We will
discuss both in subsequent sections.

III. LOSSLESS LINKS

Assuming that the window grows in the slow start and
congestion avoidance stages until the maximum window
size is achieved, the number of windows that is needed to
cover a file of � segments can be calculated by extend-
ing the method presented in [10]. We also assume that
delayed ACK is implemented. As shown in [11], since
one ACK is generated for every $ packets received before
the timer expires, the rate of exponential growth of the
congestion window is %��'&(� �) , which equals 2 when
no delayed ACK is used. Let *(+ denote the initial win-
dow size. Let
 be such that *(+,%.-0/ �21 ��� �4365�*�+7%8- , if
�:9<; -=?> � * + % = / � , i.e., the slow start threshold ssthresh
is reached during the @A
�B&DC 3FE window if the file is big
enough. Similarly, let � 	 be such that ��� �43G�IH2J /K-�/ �) 1
� � � 	L5 ��� �43M�NH2J /�-) , i.e., the maximum window size
is achieved during the @ � 	 �O&PC 3FE window if the file is big
enough. All subsequent windows have the same window
size of � � � 	 . The number of windows needed to transfer
a file is then given by the following:

Q �
RSSSSST SSSSSU

VXW?YKZP[]\ ;_^=`> � *a+7% = / �2b �dc if [5e
VXW?YKZP[]\ ; -=`> � * + % = / � ��; ^=?> -gf � @ � � �43 �
= /K-�/ �) Cb �dc if
 1 [5 � 	VXW?YKZP[]\ ; -=`> � *a+7% = / � � ; H2J=?> -gf � @ ��� �43M�
= /K-�/ �) C�h; ^=?> H2J f � � � � 	 b �dc if � 	 1 [

i

A. Delay Models

We first consider an end-to-end connection between the
server and the client. Assuming that the links are lossless
and that connections are only constrained by congestion
window size, after the server sends a window’s packets it
waits for the first ACK to come back, if it takes longer for
the ACK to arrive than it takes to transmit the window’s
worth of data. The time it takes to transmit the [3FE win-
dow is a function of the packet transmission time at the
sender given by

" ^ @j� � C��
RT U *a+,% ^ / � ��� if [5e
@ � ���43M� ^ /K-0/ �) Ck��� if
 1 [5 � 	
� � � 	 � � if � 	 1 [i (1)

Therefore if ��� b ��� , which indicates that the proxy
transmits at least as fast as the server and thus packets will
not experience queueing delay at the proxy, the round-trip
time of the end-to-end connection is l�@A#P�m�n#7�DC . We defineo2p

to be the time it takes for the first ACK to arrive after
the first packet was sent, thus

o p �q� � �<� � �_l�@A# � �# � C��N@A$2r�&PCk� � �s$t� � �u� � �Bl�@A# � �B# � C . Note that
this expression assumes that there are at least $ packets
in a window so that the receiver can immediately return
an ACK upon receipt of the $ 3FE packet. If for example* + �v& and $O�wl , then the receiver may have to wait
for the delayed ACK timer to expired to return an ACK.
In the rest of our analysis we will ignore this difference,

which can be easily taken into account. The total time it
takes to transfer the file is then

��p @ ��C�� �B�����
� / ��

^ > �
� o p r " ^ @j���7C�� f � # ��� #7��� ����� (2)

where
� � � fB� �

for
�

positive and � otherwise. This la-
tency reflects the total transmission time, the time that the
server spends waiting for ACKs, and the time for the last
window to reached the client.

When ��� 1 ��� , packets could build up at the proxy
waiting to be transmitted into the slower link and experi-
ence additional queueing delay at the proxy. In this case
the ACKs of the same window arrive at the server ap-
proximately ��� apart instead of � � , thus the server may
need to wait for every ACK of the same window instead
of stalling after sending out the entire window. We derive
the latency by examining from the client’s side. Since��� 9 ��� , the client receives packets of the same window
continuously at rate &
	P��� . The time that the client is idle
is therefore

� ��� �]�����Ol�@A# �0� #,� C��@ $�r�&DC ����r " ^ @j����C�� f ,
where " ^ @j� � C is the time it takes the client to receive the[3FE window, and " ^ @�� C is given by (1). The latency is then

��p @ ��C � �B���a� # ��� #7� � ������ / ��

^ > �
� � � � l0@F# � � # � C�� $G� � r" ^ @j� � C� f (3)

which reflects the time the client spends receiving the file,
waiting for the next window, and the time for the first win-
dow to reach the client. Redefining

o p � VnW?Y @F� � � � � CM�$ V��
� @j����� ���mC��hl�@F#D���#7�DC , (2) and (3) can be combined
into

� p @ ��C�� � V��
� @j� � � � � C�� # � � # � �
VnW?Y @F����� ���7CM�

� / ��

^ > �
� o2p r" ^ @ V��
� @F����� ���mC C�� f i

When the proxy is used, we have two serial connec-
tions. Note that these two connections are not indepen-
dent but coupled by data. This is because the second con-
nection (proxy-client) cannot send any data packets it has
not received from the first connection (server-proxy) and
therefore be constrained. This can be caused by a much
larger initial window size and/or a much shorter round-
trip time on the second connection. In this scenario the
second connection has a limited source based on the send-
ing of the first connection. In [12] we developed a de-
tailed model for this scenario. Due to space limit we do
not present it here. However, similar qualitative insight
can be obtained without having to go through the detailed
analysis. For the rest of our discussion we will assume
that the second connection is never constrained by the first
connection, which could imply * + b *��+ � ���25 ��� and/or# �<5 #7� , where * �+ is the proxy’s initial window size.

0 1 2 3

x 10
5

0

1

2

3

4

5

6

7

8

9

File Size in Bytes, Wo=1

La
te

nc
y

in
 S

ec
on

ds

ETE sim
ETE mod
Proxy sim
Proxy mod

0 1 2 3

x 10
5

0

1

2

3

4

5

6

7

File Size in Bytes, Wo=4

La
te

nc
y

in
 S

ec
on

ds

ETE sim
ETE mod
Proxy sim
Proxy mod

Fig. 4. Latency vs. file sizes, with initial window size of 1 and 4,
respectively.

The proxy receives the first packet from the server at time� � � # � . Assuming there is " � delay for processing at the
proxy, the proxy starts sending this packet to the client at
time ���6�<# �6�e" � . From this point on, we only need to
focus on the second connection since the latency is only
determined by this connection. By following the same
analysis, we have the total latency for the proxy case

� � @ ��C � � � � # � � " � � �B� � �
� � / ��

^ > �
� o � r" ^ @j� � C� f � # � � (4)

where " ^ @�� C is given in (1),
Q � is the total number of win-

dows needed for the transfer, and
o � �u� � ��l8# � �_@A$ r&DC � � �	$t� � ��l8# � is the time it takes for the ACK to

come back to the proxy. This latency reflects the initial
delay for the first packet to arrive at the proxy, the total
transmission time at the proxy, stall time and the time for
the last packet to reach the client.

B. Validation

Figure 4 compares the numerical results from our
model with NS2 simulation, for both the end-to-end and
proxy schemes. In this case, � � �N� � �N� � �q& Mbps.
The initial window size is set to 1 and 4, respectively. Un-
less pointed out explicitly, our numerical results and sim-
ulation throughout this paper are based on the following
parameters: MSS=512 bytes, ssthresh=128 segments. In
both cases, # � � &��8� ms, # � ��l��8� ms. Each graph con-
tains four curves, two from ns simulation (sim) and two
from our model (mod). We see that each pair (sim and
mod) overlaps almost completely.

IV. LINKS WITH RANDOM LOSSES

When losses (either due to congestion or link fail-
ure) are present the analysis becomes more complicated.
Moreover the analysis is largely limited to the steady state

study of TCP connections which is applicable in the case
of an unlimited file transfer, less accurate in the case of
a finite TCP connection, and much less in the case of a
proxy as shown in this section.

A. The Server-Proxy Link is lossless

If we assume that the server-proxy is lossless, then the
methods introduced in [9], [8], [7] can be applied to de-
termine the throughput and delay of the proxy-client con-
nection. In particular, the TCP bulk data transfer through-
put is shown to be well approximated by �M@ o � � ����Cn�� ��) � ������ , where � is the probability of loss for a single

packet at low loss rate [9], and is more accurately approx-
imated in [8] by considering timeouts. These results were
developed for bulk TCP transfers and were based only
on analysis of the TCP congestion avoidance phase. In
[7] it was shown that they can be equally effective when
applied to short TCP connections if combined with slow
start analysis.

The performance implication of using a proxy when
losses are present immediately follows: these results
show that the throughput of a TCP transfer is inversely
proportional to the connection round-trip time and the
square root of the loss rate. If losses are concentrated
on the proxy-client link, then using the proxy effectively
isolates the part of the connection that involves loss, and
reduces the round-trip time required to recover the losses,
thus achieve higher throughput and lower latency. The
same key concept can be seen in schemes such as Snoop
TCP [13], [14], WTCP [15], [16], and [17], [18] that use
local retransmission (some at the link layer, some at the
transport layer).

Specifically, denoting the loss rate on the proxy-client
link by ��� , and the throughput by ��@ o � � �	���,C , the trans-
fer latency of a file of size � using end-to-end connection
is given by

� p � H�

 >�� ��@�MC,@ � p @��MCM� � r��

��@ o � � ��� � C C
� H�

 > � ��@�MC
��p @�MCM� � r���� + ���

��@Al�@A# ��� #7�PC ����� C (5)

where � @�MCa� @ &(r���C
 � for � 1 � ; � @�MCa� @ & r���C H
for � � � denotes the probability that � packets are
successfully sent before the first loss occurs. ��� + ��� �� � / � � / � !������ � � / � !��� ! � & is the expected number of pack-
ets sent before the first loss occurs.

� p @ � C is the latency
function of an end-to-end connection shown in Section 3.

When using the proxy, assuming that the proxy-client
connection is not constrained by the server-proxy connec-
tion (e.g., # � 1 # � , � � 1 � �),

� � � H�
 > � ��@�MC
� � @��MCM� � r���� + � �

�M@ l8#7������� C i (6)

The difference of the two (using results from Section 3)��p r � � is

H�

 > � ��@�MC,@

��p @�MC r � ��@�MC C�� @ � r�� � + � �,C�� lm$�� �
� � @ l8# �,C

� @ H�
 > � ��@��MC7@ [
 r�&DC��
@ � r�� � + � �7C�� l�$ � �

� � C7@ l8# �,C
where [
 is the number of window needed to cover a file
of � segments. The approximation in the last equation
is based on the assumption that the link capacity is not
filled during the transfer of � packets. For a given file
size and loss rate on the proxy-client link, the first term of
the above equation is a constant, and the amount of gain
in using the proxy depends on the round-trip time of the
server-proxy connection.

Figure 5 compares the latency obtained using this anal-
ysis with the result from simulation. Simulation is the
average over running 50 independent simulations. There
is an obvious discrepancy between the two curves. This
is mainly due to the fact that the delay model basically
assumes that the connection goes into steady state right
after the first loss. The two curves eventually approach
each other as the file size increases (number of packets
sent in this figure). This is because for a large file trans-
fer the effect of the above assumption is diluted (since the
effect of steady state will dominate).

0 2 4 6 8 10

100

200

300

400

500

600

700

800

900

1000

time (sec)
(a)

nu
m

be
r

of
 p

ac
ke

ts
 s

en
t

simulation
analysis

Fig. 5. Latency when splitting is used, where the first link lossless,!#"%$�&�'('*),+�-�.*/0!21#$�3('('*)4+�-�.*/65718$�':9 '('(;:/�<>= = ?@$�AB'

B. Random Losses on Both Links

When losses are present on both links, using the pre-
vious analysis for both connections provides only gross
approximation. Suppose the loss rates on the server-
proxy link and the proxy-client link are �M� and ��� , re-
spectively. Assuming losses are independent, the over-
all loss rate experienced by an end-to-end connection is
� �C�K�m�D� ��rE���0��� . For an infinite file transfer, in the long

run the server-proxy connection has an average through-

put ���n� � ��) � � ��M� and the proxy-client connection has

an average throughput ���n� � ��) � ! ��K! if unconstrainted

by the server-proxy connection. The slower one of the
two is going to dominate the combined throughput and
delay. However, both values are greater than the through-

put of the end-to-end connection ��� � ��) � �� � f � ! since

it has a larger loss rate and a larger round-trip time. There-
fore by segregating the server-client connection into parts
that each has a smaller loss rate and round-trip time, us-
ing the proxy achieves higher throughput and thus lower
latency.

For a finite file transfer, the latency of the end-to-end
connection is given by (5) with loss rate � . When using
the proxy, we consider � �
���O� , the expected number of
packets sent successfully before the first packet loss oc-
curs to the two connections, respectively. The two con-
nections have bulk transfer throughput ���� �M@ l�@F#D�2�#7�PC � �����	���,C ��� � � ��@Alm#7����� �DC , respectively. Following
this we can characterize the sending process and conges-
tion window evolution of the server for the first � � pack-
ets, and ��� as an approximation to the remaining of the
transfer. The characterization of the proxy can be ob-
tained by listing all possible cases comparing � � and � � ,��p @����,C and

� ��@�I�7C , ��� and �0� . Figure 6 compares the
results obtained from this analysis to the simulation re-
sults. It can be seen that the two do not match for a
wide range of file sizes. Indeed the discrepancy seems
to diverge. Our conclusion is the current model of TCP
throughput and latency is insufficient to accurately pre-
dict the proxy performance with losses on both segments.
The development of a more suitable model is part of our
on-going research.

2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

latency

p
a
ck

e
ts

 t
ra

n
sm

itt
e
d

simulation
analysis

Fig. 6. Latency when splitting is used with losses on both links,
! "2$3('('*)4+�-�.*/0! 1 $�AB'('*),+�-�.*/65 " $ ':9 ':&(/ 5 1 $�':9 '('(;

V. ANALYSIS AND DISCUSSIONS

In this section we focus on the model developed for
the lossless scenario. This is not a realistic scenario, nev-

TABLE I

INITIAL WINDOW SIZE OF THE END-TO-END CONNECTION

File Size (KBytes) 10 20 25 30 35* + 5 7 8 9 9

ertheless insights are obtained via certain simplification
and approximation especially for short file transfers.

A. Initial Window Size

From the definition of
 and � 	 ,
 � �������	� @�
������ C�� ,
� 	 �u$8@ � ���
	 r���� �,C��
 . Consider a file that finishes
transferring within the slow start phase, the total number
of windows needed to cover the file,

Q
, would be such

that
Q 5v
 . Since � 5 ; �=`> � *a+G% = / � � *a+

��� / �� / � ,

this means � 5
 ��� / ���� / � .
Q

is the smallest integer that

satisfies � 5q* + ��� / �� / � , therefore,
Q � �������	� @ H� � @j%Xr&DCG�X&PC�� � ����� � @ H��� @j%0r &DCG� &DCG�X& . Assume ��� � ���(5 o p ,

i.e., the link (or pipe capacity) is not filled during slow
start, and � � 1 � � that the proxy is slower than the server,
we have

� p �
�B�����u@ Q r�&DC o2p r

� / ��

^ > �
*a+7% ^ / � ���a� # ��� #7� � ���

� o p ������� @ �*a+ @F% r &PC�� &PC�� � � � (7)

where � � �<# � � # � ��� � . This last equation is the same
as presented in [7], but derived in a different way.

Similarly, for an initial window size * �+ used by
the proxy, assuming � � � ��� 5 o � , we have

Q � ��������	� @ H� �� @j% r &PC�� &PC�� � �����	� @ H� �� @F% r�&DCM�<&DC��<& and

� � � o � ����� � @ �* �+ @j% r�&DC��<&DC�� � ��� (8)

where � � ��# � ��# � � � � � " � . Note that � � � � � and
both are close to one half of

o p
. Since

o p 9 o � , *a+ has
to be great than * �+ in order to achieve the same delay.
More specifically, @ H� � @F% r_&DC�� &DC ��� � @ H� �� @j%nrB&DC �&DC �K! leads to * + � H � � / � �� �� ��

� � / � � f � ��� !�� � � / � . Table I shows

some values of � and *(+ based on this approximation for%n� l � * �+ �N& � o ��	 o p � � i � and � ��� � &Dl! segments.
We see that in order to achieve similar latency even for
relatively small files we need significantly larger initial
window size for the end-to-end connection.

B. Slow or Congested Proxy

When the same initial window size *(+ is used, the dif-
ference in delay between the two is

� p r � � � @ o p r o � C ����� � @ �*a+ @j% r &PC r &PC
� @ l8# � �����,C ������� @ �*a+ @F% r�&DC r�&DC (9)

0 2 4 6 8 10

x 10
5

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Proxy Rate (bps)

La
te

nc
y

in
 S

ec
on

ds

ETE
Proxy

0 2 4 6 8 10

x 10
5

3

4

5

6

7

8

9

10

11

12

Proxy Rate (bps)

La
te

nc
y

in
 S

ec
on

ds

ETE
Proxy

Fig. 7. Latency vs. ��� , the transmission rate of the proxy. File size
is 11 Kbytes and 51 Kbytes, for the graph on the left and right,
respectively. � " $ � 1 $ &

Mbps in both cases. These graphs are
derived from our model.

This difference increase as � and # � increase, but seems
invariant to changes in �K� . As ��� increases, which corre-
sponds to a slower proxy, the difference in delay remains
constant so long as � � * + % ^ / � 5 o � for any [5 Q .
However, as � � keeps increasing to the point where the
pipe is filled before the file transfer completes, the dif-
ference quickly reduces. In particular, if the pipe ca-
pacity is achieved during the [3FEp window for the end-
to-end connection, i.e., � � * + % ^ � / �_b o p , then [p ��������	� @ ���

� � ��� CM�<& � and

�Kp � �B���a� o2p ������� @ o2p� � * + C r
o p r���.*�+%2r &�2# ��� #7� � ��� i (10)

We can get a similar expression for
� � , and thus

�Kp r � � � o p ����� � @ o2p� � * + C r o � ����� � @
o �� � * �+ C

� ����@j*a+6r* �+ C r�l8# �6r ���% r & i (11)

This expression decreases as � � increases. This result
can be clearly observed in Figure 7. A slower proxy
(increased ��� and decreased transmission rate) can be
viewed as an approximation to a busier or more congested
proxy, because under such situation each TCP connec-
tion only gets a fraction of the total proxy capacity (as-
suming the proxy has sufficient buffer), and queuing is
increased. This result shows that as the proxy becomes
busy, the gain from using separate connections reduces
because the bottleneck dominates the overall performance
no matter which scheme we use. In a system where a
proxy is placed at the aggregation point of incoming traf-
fic, adequate provisioning of such a proxy becomes very
important since otherwise very little is gained from using
a proxy.

C. File Size

In the case where the file transfer enters the conges-
tion avoidance stage, i.e., � 9
��� / � �� / � , similar anal-
ysis apply and we have

�Mp � �B��� � o p @ [p rd&PC2r; ^ � / �^ > � " ^ @j���mC��I# �K� #7�M�I��� and
� � � �B����� o �8@ [�p r&DC r ; ^ � / �^ > � " ^ @j���mC��e# ��� #7�(�����6�e" � , where [p and[�p are the total number of window sent before the pipe

becomes full for the end-to-end and the split connection,
respectively. In case when the file finishes transfer before
the pipe is full, [p � [�p � Q , and the difference between
the two is mainly @ o p r o �PC7@ Q r�&DC , which increases
as � increases (

Q
increases with �). However, if �

is large enough and the pipe is filled up before the trans-
fer completes, then the difference between the two stays
constant, and both increase with rate ��� as the file size
increases. This can be observed in Figure 8.

D. Connection With Asymmetric Segments

Suppose *a+ 5<* �+ and
o � 9 o � , i.e., the proxy-client

connection is constrained by the server-proxy connection
throughout the entire file transfer. Further assume that the
file transfer is only limited to slow start phase. Following
our previous analysis, we can show

� � @ ��C � o � ����� � @ � @j% r &PC* + � &PC r#D��� #,�
� o � ����� � @ � @j% r &PC*a+ � &PC �

with an error within half of
o � .

Suppose we now let
o � 1 o � , but keep

o � � o �
unchanged, and let *(+q9 * �+ , then using our earlier
analysis we get

� � @ ��C�� o � ������� @ H � � / � �� �� �d&DC while

the latency of end-to-end connection remain the same��p @ ��C � @ o � � o � C ����� � @ H � � / � ���� � &PC . We see that
when using the proxy, the longer connection of the two
(V���� Z o � � o � c) determines the total latency. As the dif-
ference between the two round-trip times increases, the
gain from using the proxy reduces. Under this scenario
the performance of the proxy is maximized when the two
connections are “similar” –

o � � o � � * + � * �+ . Same
argument can also be derived for file transfers that enter
congestion avoidance phase. This is an interesting ob-
servation considering the fact that many such proxies are
used or proposed to be used in a heterogeneous environ-
ment where links have very different properties. This in-
dicates that while it is very important to optimize each
link separately, it is equally important to minimize the
asymmetry between links since if separate optimization
only increases the difference, e.g., making the fast link
even faster, the resulting performance might not be im-
proved.

0 2 4 6 8

x 10
5

0

2

4

6

8

10

12

14

File Size in Bytes

La
te

nc
y

in
 S

ec
on

ds

ETE
Proxy

0 1 2 3 4 5

x 10
6

5

10

15

20

25

30

35

40

45

File Size in Bytes

La
te

nc
y

in
 S

ec
on

ds

ETE
Proxy

Fig. 8. Latency vs. file size. For small files the latency of an end-to-end
connection increases faster than that of split connections. However
as file size grow big enough to fill up the capacity, the two have
same growth rate and the difference stays constant. These graphs
are derived from our model.

VI. DISCUSSIONS AND CONCLUSIONS

In this study we examined using proxy as a way of
improving TCP performance in various situations. Such
proxies typically break an end-to-end connection into two
segments, such as a spoofing proxy. We developed mod-
els to investigate the TCP dynamics when proxies are
used and compared its performance with end-to-end TCP
connection. We summarize our observations and conclu-
sions as follows.

In general using proxy (or separate TCP connections)
results in lower latency from our analysis. For an end-
to-end connection this can be compensated by increasing
the initial window size. However, as we show in Table I
it requires significantly larger initial window size even for
reasonably small file sizes, which makes it less practical
in real applications. When the proxy becomes the bottle-
neck, the gain from using the proxy quickly diminishes.
In systems where such a proxy is positioned at a place
that all connections have to go through, e.g., in a satellite
system the proxy is co-located with the satellite gateway
so that all connections go through the proxy, the perfor-
mance gain from the proxy can be limited especially dur-
ing busy hours. This may also cause buffer overflow at
the proxy, or cause the proxy to advertise smaller receive
window size, which we did not consider explicitly in this
paper. When this is the case, queueing becomes severe
and packets quickly build up at the proxy, especially if in
addition # � is much smaller than # � . It is therefore impor-
tant to properly provision such systems and implement
some form of dynamic flow control at the proxy. This
may be prevented by using a much larger initial window
size over the proxy-client link.

A proxy achieves the effect of localizing error/loss re-
covery and in general improves the throughput and re-
duces latency of a connection when losses are present.
One of the common situations where proxies are used is a

heterogeneous environment where parts segregated by the
proxy have very different link characteristics, e.g., propa-
gation delay, loss rate, etc.. Interestingly, the performance
gain in using a proxy is maximized when both parts have
similar properties. Since the slower part always domi-
nates the overall performance, as the level of asymmetry
increases, the performance gap between using a proxy and
using an end-to-end connection becomes smaller. This
implies that while it is important to separately optimize
these heterogeneous parts of the connection, it is also im-
portant that such optimization reduces the asymmetry be-
tween them.

REFERENCES

[1] V. G. Bharadwaj, “Improving TCP Performance
over High-Bandwidth Geostationary Satellite Links,”
Tech. Rep. MS 99-12, Institute for Systems Re-
search, University of Maryland, College Park, 1999,
http://http://www.isr.umd.edu/TechReports/ISR/1999/.

[2] A. Bakre and B.R. Badrinath, “I-TCP: Indirect TCP for Mobile
Hosts,” Proc. IEEE ICDCS, pp. 136–143, 1995.

[3] A. V. Bakre and B. R. Badrinath, “Implementation and Perfor-
mance Evaluation of Indirect TCP,” IEEE Transactions on Com-
puters, vol. 46, no. 3, pp. 260–278, 1997.

[4] K. Brown and S. Singh, “A Network Architecture for Mobile
Computing,” IEEE INFOCOM, pp. 1388–1396, 1996.

[5] S. Sibal P. Rodriguez and O. Spatscheck, “TPOT: Translucent
Proxying of TCP,” Tech. Rep., AT & T labs-Research and EURE-
COM Technical Report, 2000.

[6] M. Karir, “IPSEC and the Internet,” Tech. Rep. MS 99-14, Insti-
tute for Systems Research, University of Maryland, College Park,
1999, http://http://www.isr.umd.edu/TechReports/ISR/1999/.

[7] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP La-
tency,” IEEE INFOCOM, 2000.

[8] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Model-
ing TCP Reno Performance: A Simple Model and Its Empirical
Validation,” IEEE Trans. Networking, vol. 8, no. 2, pp. 133–145,
2000.

[9] T. V. Lakshman and U. Madhow, “The Performance of TCP/IP
for Networks with High Bandwidth-Delay Products and Random
Loss,” IEEE Trans. Networking, vol. 5, no. 3, pp. 336–350, 1997.

[10] J. Kurose and K. Rose, Computer Networking, A Top-Down Ap-
proach Featuring the Internet.

[11] M. Allman and V. Paxson, “On Estimating End-to-end Network
Path Properties,” SIGCOMM, 1999.

[12] M. Liu and N. Ehsan, “Modeling TCP performance with proxies,”
Technical Report, EECS Department, University of Michigan, Ann
Arbor, 2001.

[13] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improv-
ing TCP/IP Performance Over Wireless Networks,” ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom’95), vol. 2, no. 11, 1995.

[14] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz,
“A Comparison of Mechanisms for Improving TCP Performance
over Wireless Links,” IEEE/ACM Trans. on Networking, vol. 5,
no. 6, pp. 756–769, 1997.

[15] K. Ratnam and Ibrahim Matta, “WTCP: An Efficient Mechanism
for Improving TCP Performance Over Wireless Links,” Proc.
IEEE ISCC, pp. 74–78, 1998.

[16] K. Ratnam and Ibrahim Matta, “Effect of Local Retransmission
at Wireless Access Points on The Round Trip Time Estimation of
TCP,” Proc. 31st Annual Simulation Symp., pp. 150–156, 1998.

[17] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP Perfor-
mance Over Wireless Network at The Link Layer,” ACM Mobile
Networks & Applications Journal, 1999.

[18] C. Parsa and J. J. Garcia-Luna-Aceves, “TULIP: A Link-Level
Protocol for Improving TCP over Wireless Links,” Proc. IEEE
WCNC’99, pp. 1253–1257, 1999.

