
Optimal Stochastic Routing in Low Duty-Cycled
Wireless Sensor Networks

Dongsook Kim and Mingyan Liu 1

Abstract

We study a routing problem in wireless sensor networks where sensors are duty-cycled.
When sensors alternate between on and off modes, delay encountered in packet delivery due
to loss in connectivity can become a critical problem, and how to achieve delay-optimality is
non-trivial. For instance, when sensors’ sleep schedules are uncoordinated, it is not immedi-
ately clear whether a sensor with data to transmit should wait for a particular neighbor (who
may be on a short route) to become available/active before transmission, or simply transmit
to an available/active neighbor to avoid waiting. To obtain some insight into this problem, in
this paper we formulate it as an optimal stochastic routing problem, where the randomness in
the system comes from random duty cycling, as well as the uncertainty in packet transmission
due to channel variations. Similar framework has been used in prior work which results in
optimal routing algorithms that are sample-path dependent, also referred to as opportunistic
in some cases. We show such algorithms are no longer optimal when duty cycling is introduced.
We first develop and analyze an optimal centralized stochastic routing algorithm for randomly
duty-cycled wireless sensor networks, and then simplify the algorithm to work with only local
information. We further develop a distributed algorithm utilizing only local sleep/wake infor-
mation of neighbors. This algorithm is shown to perform better than some existing distributed
opportunistic routing algorithms such as ExOR.

1 Introduction

For the past decade or so, wireless sensor networks have been extensively studied for a variety of
applications, many of which require remote and autonomous operations of the sensors that are
battery powered and not easily renewable. As a result, energy efficient design of such networks at
all levels, from material to circuit to protocol, has long been a critical research issue. Of different
energy conservation approaches, low duty-cycling, the act of periodically turning off the sensors
not in active use, has been considered as one of the most effective. Its main drawback is the
temporary unavailability of sensors which can adversely affect both the coverage and connectivity
of the network. This in turn can cause delay in sensing, detection, and packet delivery (routing).

In this study, we are interested in designing good routing algorithms (measured by low delay
and low energy consumption) for wireless sensor networks in the presence of very low duty cycles.
In particular, we will consider a class of random sleep schedules where sensors go to sleep inde-
pendent of each other and for a random duration given by a certain probability distribution. In
such a scenario, when a node does not have future information on other nodes’ sleep schedules
but only which of its neighbors are currently available, its routing decision (the selection of a
neighbor to relay a packet) must properly balance the immediate availability of a node against
the future performance of the corresponding route. For instance, we may pre-determine a best
route based on average performance (say delay or number of transmissions needed) using prior
statistics, and at each hop of this route the upstream node simply waits for the downstream node
to become available. Alternatively, we can make a state-dependent decision depending on which

1D. Kim is with Samsung Electronics Co. LTD, Telecommunication R&D Center, Korea. M. Liu is with
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.
This work was done while D. Kim was at the University of Michigan, and through collaborative participation
in the Communications and Networks Consortium sponsored by the U. S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. An earlier version of this
paper appeared at ACM WICON, November 2008, Maui, Hawaii.

1

set of neighboring nodes are available. An extreme example of this latter method is to forward
the packet to the earliest available neighbor.

Low duty-cycling creates significant uncertainty in the availability and connectivity of the
network, which is both a challenge and an opportunity that can be potentially exploited. Prior
work in routing has primarily focused on the uncertainty caused by time-varying channel quality
2. The goal of the present paper is to take both sources of uncertainty into account in designing
a good routing algorithm.

Generally speaking, to deal with uncertainty, one could either choose to perform routing in a
deterministic way by selecting a route independent of the sleep state or the success/failure state
of the network (an open-loop approach)3, or try to utilize information available to the nodes
in making a closed-loop routing decision. Traditionally, most routing algorithms fall under the
former category, see for instance [1–8], and thus do not react to transmission failures actively.
More recently, there have been a number of stochastic routing (also referred to as opportunistic
routing) algorithms proposed in the literature [9–11] to address the uncertainty in transmission.
The key idea underlying this class of approaches is to make routing decisions after having observed
the outcome of an earlier transmission, i.e., after knowing which down stream nodes have or have
not successfully received the transmission, thereby making a closed-loop decision. Given different
realizations of these transmission events, the actual routes taken by different packets will be
different, thus the term event-based routing or sample-path dependent routing [9], or opportunistic
routing [10].

It was shown in [9] that there exists an optimal Markov routing policy in the form of an index
policy in a wireless network. Specifically, there exists a priority-ordering of nodes that can be
computed off-line; a node continues to transmit till a higher-priority neighbor receives the packet
successfully and becomes the next relay. A conceptually very similar but sub-optimal, though
more practical, routing algorithm called ExOR was proposed in [10]. Compared to [9] ExOR has a
different relay selection criterion; a node selects a relay among its neighbors based on a metric called
estimated transmission count (ETX) which is the smallest estimated number of transmissions it
takes to reach the destination along any possible path. Zhong et al. in [11] further improved
ExOR by using a metric called expected any-path transmissions (EAX) in making relay selection
decisions. EAX captures the expected number of transmissions needed to successfully deliver a
data packet to a destination under opportunistic routing whereas ETX is the expected number of
transmissions along a best path with the largest delivery probability. This work may be considered
as an alternative implementation of the algorithm in [9]. This class of routing algorithms like the
ones cited above has a clear advantage over traditional deterministic routing in that it takes into
account state information available to the nodes.

In this paper we will adopt the event-based/opportunistic routing idea and extend it to low
duty-cycled sensor networks. In particular, we will follow closely the stochastic decision framework
developed in [9]. Within this framework, transmissions are costly and a certain reward is obtained
if the packet reaches a certain node. The objective is to find a routing algorithm that maximizes
the total expected reward less the total cost. It was shown in [9] that there exists an optimal
Markov policy for this problem with time-invariant transmission success probabilities, in the form
of a priority policy. As we will show, optimal policies for the problem considered in [9] are not
in general optimal for low duty-cycled sensor networks because they do not take into account the
current sleep state of nodes. In particular, a sender may be forced to wait when a subset of its

2Uncertainty can also be caused by mobility, which we will not consider in this paper by assuming a quasi-static
sensor network.

3Note that this does not mean that a deterministic routing cannot take into account average statistics, e.g., the
average quality of a link; many routing protocols indeed do so.

2

neighbors are asleep, a scenario that does not arise in the setting of [9].
The model used in this paper is an extension to [9] in that it captures the randomness of topol-

ogy caused by duty-cycling in addition to the randomness in channel conditions. The objective is
to seek an optimal routing policy in such networks with respect to performance metrics such as
transmission cost and delay. In the next section we will formally define this optimization problem.
Various policies are then explored and characterized for optimality. The main contributions of
this paper are as follows.

1. As a benchmark we develop and analyze a centralized optimal stochastic algorithm for ran-
domly duty-cycled wireless sensor network.

2. We develop a centralized stochastic routing algorithm with reduced state space which per-
forms near-optimal when local sleep/wake states of neighbors are available.

3. We further develop a decentralized and distributed algorithm utilizing local sleep/wake states
of neighbors. This algorithm is shown to perform better than existing distributed oppor-
tunistic algorithms such as ExOR, both ETX-based [10] and EAX-based [11].

The remainder of this paper is organized as follows. Section 2 provides the description of
the network model with assumptions and definitions. Based on the specified model, we consider
the centralized stochastic routing problem in Section 4. In Section 5, we present two centralized
stochastic routing algorithms, one exactly optimal and the other near-optimal. In Section 6 we
develop a distributed algorithm to compute a policy that resembles the near-optimal centralized
algorithm. The performance of these algorithms is numerically evaluated in Section 7 and is also
compared to ExOR. We conclude the paper in Section 8.

2 Model Description and Problem Formulation

We consider a static wireless ad-hoc or sensor network where nodes are duty-cycled independently
from one another. We will limit our attention to the delivery of a single message (or packet, a term
used interchangeably) from a source node to a destination node in this model, but our performance
evaluation of the resulting policy in Section 7 is not restricted to a single message. We note that
this done primarily for the simplicity of presentation; the same policy can be equally applied to
the routing of multiple packets.

At a high level, our problem is to find a good (in terms of delay and transmission cost) route
from a source node to a destination node. In a non-duty cycled static network, a typical method is
to associate a measure/cost with each link in the network and perform shortest path routing. For
instance, if such a cost is unit, then one ends up with a minimum hop-count route; if such a cost
indicates the expected number of transmissions over a link (by using a predefined transmission
success probability), then the resulting route has the least number of expected transmissions.
Similar measures can also be defined to take into account factors such as energy consumption.

In our scenario, these nodes are not always available due to duty-cycling, and not available
all at the same time. Since a node can potentially obtain the information on whether each of its
neighbors is available when a packet needs to be transmitted, a routing decision (i.e., the selection
of the next hop relay node) must be made as to whether one should select the least-cost node
among all wake nodes, or to wait for a particular node to wake up who has the least-cost among
all nodes (wake and asleep), or some variations of these. In this context, it is not immediately
clear what principles a good routing algorithm should employ.

To address this problem, we will start by considering a centralized system, where at each
instance of time (we assume discrete time) some central agent has the full knowledge of which

3

subset of nodes have already received the message, and which subset of nodes are currently awake.
The central agent cannot foresee future sleep state of the nodes, but knows the current state. The
routing decision at each time step then reduces to the question of among this set of nodes that
have already received the message, which one should be selected as the relay node to retransmit
the message, and whether we should simply do nothing, wait for one time step and reconsider the
decision at the next time. This is the routing decision problem we seek to address in this paper. For
this centralized version of the problem we will derive structural properties of the optimal routing
policy and construct an algorithm that computes such a policy. To reduce the computational
complexity we will further propose a sub-optimal routing algorithm and is considerably simpler.
We then consider a distributed implementation of this sub-optimal algorithm, whereby each node
only has access to local information: who among its neighbors have received the message, and
who among its neighbors are currently awake or asleep. This effectively results in a decentralized
routing problem: a node must decide, based on such local information whether it should serve
as a relay for the message it receives. Because such decisions are made by individual nodes in a
decentralized fashion, it is possible that multiple nodes may decide to relay the same message. Such
a distributed implementation is accomplished via packet exchange and certain local information
update procedure.

2.1 Assumptions

Below we summarize the main assumptions used in our analysis.

• We will focus on the unicast routing of a single message originated from somewhere in the
network with a pre-specified destination. Under the stochastic routing framework, since the
routing is sample-path dependent, each message may follow a different path. It should be
noted that the exact same framework can be used to solve the more general, anycast problem
where the message is considered successfully delivered if it reaches at least one of a set of
destination nodes.

• We consider a discrete time system, where in each time step (or time slot) a node is ac-
tive/awake with a time-invariant probability, independent of other time slots and other
nodes. For simplicity in our derivation we will assume that this active probability is the
same for all nodes, though they need not be. The complement of active probability is also
called the sleep probability.

• Any node that has successfully received the message will remain awake. This assumption
is adopted for simplicity in presentation. In practice, we only need to ensure that the node
who is designated as the relay should stay awake till the next hop/relay receives the message
successfully.

• The lossy wireless medium is modeled by a pair-wise time-invariant transmission success
probability pij between the sender i and receiver j, independent of other transmission at-
tempts. If this success probability is nonzero or above a given threshold, then j is called a
“neighbor” of i. This probability does not have to be symmetric between two nodes.

• A transmission and its acknowledgment (ACK) from successful receivers occur within a single
time slot. ACKs are assumed error-free.

4

2.2 Notations

A summary list of notations used in this paper is as follows.
N is the number of nodes in the network.
Ω = {1, · · · , N} is the set of all nodes; |Ω| = N .
I denotes a nonexistent node; this is used to represent the idle action.
qij is the transmission success probability from node i to node j, given that both nodes are

awake.
p is the active probability for all nodes.
(W,A) refers to a state of the system, where W ⊆ Ω and A ∈ {0, 1}N . W is defined as the set

of nodes that have received the message. A is defined as the sequence of sleep(0)/active(1) status
of all nodes. In particular, node i is awake if it has received a message as stated in the assumption:
Given A = {a1, a2, · · · , aN}, ai = 1 for all i ∈ W .

F (W) denotes a feasible set of all possible sleep/active states A induced by W , such that A
is consistent with W . More specifically, given W , there are a total of 2N−|W | sets of A’s in F (W)
where ai = 1 for all i ∈ W and ai ∈ {0, 1} for all i ∈ Ω − W .

F (W |W ′, A′) for W ⊂ W ′, A′ ∈ F (W ′) denotes a subset of sleep/active states A ∈ F (W), such
that that A is identical to A′ except that ai ∈ {0, 1} for all i ∈ W ′ − W .

F (W |W ′, A′) for W ⊃ W ′, A′ ∈ F (W ′) denotes a subset of sleep/active states A ∈ F (W), such
that that A is identical to A′ except that ai = 1 for all i ∈ W − W ′. Note that there is only one
such A in this set.

T : 2Ω → 2N is defined as a mapping from W ⊆ Ω to a vector T (W) = {w1, w2, · · · , wN},
where each element wi = 1 if node i has received the message, and 0 otherwise.

P i(W ′, A′|W,A) denotes the probability of reaching state (W ′, A′) from state (W,A) by choos-
ing i for transmission, i ∈ W . Let T (W) = {w1, w2, · · · , wN}, A = {a1, a2, · · · , aN} ∈ F (W),
T (W ′) = {w′

1, w
′
2, · · · , w′

N}, and A′ = {a′1, a
′
2, · · · , a′N} ∈ F (W ′). If node i is chosen for transmis-

sion, this transition probability is given by

P i(W ′, A′|W,A)

=

∏

∀j:wj=0,aj=1,w′

j
=1

qij

·

∏

∀j:wj=0,aj=1,w′

j
=0

(1 − qij)

·

∏

∀j:aj=0,w′

j
=1

0

· p1a′−1w′ (1 − p)N−1a′ ,

for ∀i ∈ W, (1)

where 1w′ is the number of 1’s in T (W ′), and 1a′ is the number of 1’s in A′. If the idling action
(or node) I is chosen,

P I(W ′, A′|W,A) =

{

p1
a′
−1

w′ (1 − p)N−1
a′ , if W ′ = W

0, otherwise.
(2)

R : 2Ω → R is a reward function. To simplify notation, we will denote Ri = R({i}). Since
we are considering the unicast problem, in general rewards of all nodes except for the destination
node are zero.

π is a Markov policy such that π depends only on the current state (W,A). We write π(W,A) =
i to indicate that policy π select node i to transmit (as the relay) when in state (W,A), i ∈ W .
We write π(W,A) = I to indicate that policy π selects the idle/wait action. We write π(W,A) = r
to indicate that policy π retires and receives reward R(W) when in state (W,A). For convenience
we often write π(W,A) = ri to denote that policy π retires and receives the reward of node i,
Ri, i ∈ W .

5

V π(W,A) is the expected total reward (less cost) when starting in state (W,A) under policy
π.

2.3 Problem Formulation

Problem 1 We consider the transmission of a message or packet in a low duty-cycled wireless
network of N nodes, where each node is active with probability p, described above. At each time
instant the central controller chooses among three actions: (1) select a node among nodes that have
the packet to perform the next transmission; (2) wait for the next time step; and (3) terminate
the routing process. It acts at the beginning of each time slot with the knowledge of the set of
nodes which have received the message and the set of current active nodes in the network. The
transmission from a node i costs ci > 0 and is the local broadcast to its active neighbors. The
idle action, denoted by i = I, costs cI = α ≥ 0, a penalty on idle waiting. This transmission is
successfully received by a neighbor j with a time-invariant probability pij given node j is active
during that time slot. Each transmission event is assumed to be independent of another. The
objective is to choose the right action at each time step and the right time to terminate the process
so as to maximize the total expected reward less cost:

E{R(Wτ) −
τ−1
∑

t=1

ci(t)}, (3)

where τ is the stopping time when the transmission process is terminated, Wτ is the set of nodes
with the message at τ , and i(t) is the node (including idle action) chosen by the policy at time t.

3 Preliminaries

When nodes are always awake (i.e., p = 1), which is a special case of Problem 1, the authors of [9]
have shown that an optimal Markov policy is both a priority policy and an index policy; this will
be referred to as Lott’s algorithm throughout our discussion. The first few definitions below are
reproduced from [9] for this paper to be self-contained. These explain what a priority or an index
policy is. We then present an example to illustrate they are not able to capture the extra dynamics
introduced by node sleeping. This motivates us to define generalized versions of priority policies
and index policies, respectively.

Definition 1 [9] A Markov policy π is a priority policy if there is a strict priority ordering of
the nodes s.t. ∀i ∈ Ω we have π(S ∪ {i}) = π({i}) = i or r, ∀S ⊆ Ωi, where Ωi is the set of nodes
of priority lower than i.

Definition 2 [9] A function f : 2Ω → R is an index function on Ω if f satisfies

f(S) = max
i∈S

f({i}), ∀S ⊆ Ω. (4)

Definition 3 [9] A priority policy π is called an index policy if V π(S), which is the expected total
reward less cost under policy π given state S, is an index function on Ω.

Below we use a simple example to show that an optimal policy may not be found in the class
of priority policies for Problem 1.

6

n1

n2

n4

n5

n3

0.72

0.6

0.99

0.9

0.8

W

Figure 1: System for an Example 1.

Example 1 We consider a system depicted in Figure 1, where Ω = {1, 2, 3, 4, 5} and nonzero
transmission success probabilities between nodes. Assume that Ri = 0 except node 5 which has a
reward R5 > 0. For simplicity we also assume that ci = 1 for ∀i ∈ Ω. Let us consider first the case
where nodes are not duty cycled. An optimal policy can be found by applying Lott’s algorithm. For
instance, when W = Ω, it is trivial to see that the optimal action is to retire and receive R5. Any
W that includes node 5 results in the same decision as above; node 5 will thus be considered to
have the highest priority among all nodes. When W = {1, 2, 3, 4}, the optimal decision is for node
3 to transmit. Similarly, the optimal decision given any W that includes node 3 is always to select
node 3 for transmission. Node 3 thus has the highest priority among all nodes except for 5. If we
take nodes 5 and 3 away from the set W , then node 4 becomes the optimal decision, with the next
highest priority, regardless of the membership of the rest of the set. Eventually, by repeating this
process until W becomes empty, we obtain an ordered list of nodes, in descending order of their
priorities. For this particular example, the priorities are such that the ordered list is nodes 5, 3, 4,
1, 2 from the highest to the lowest. The result is called a priority policy because there exists such
a priority list that is independent of the actual state of the system, and that the optimal decision
is based on this priority list: choose the highest priority node among W for the next transmission,
and continue to transmit till a node of even higher priority receives the message.

Now, we consider the case where nodes are duty cycling with active probability p = 0.1. In
addition, we assume that the idling cost is 1, i.e., cI = 1. To facilitate the discussion, an active
node i is denoted by ia and a sleeping node i by is. As mentioned in the previous section, nodes
in W are assumed to be awake. Therefore, we only need to consider nodes in Ω − W for their
on/off states. Let W = {1, 2, 4} as shown in Figure 1. Let π∗ to be an optimal Markov policy.
We have π∗(W, {3a, 5a}) = 4, π∗(W, {3a, 5s}) = 1, π∗(W, {3s, 5a}) = 4, and π∗(W, {3s, 5s}) = I.
The detailed calculations can be found in Appendix A. Let us focus on A = {3a, 5s}. In this case,
node 1 seems to be the highest priority node among nodes 1, 2, and 4. Now, suppose W = {1, 2}.
We obtain π∗(W, {3a, 4a, 5s}) = 2 and π∗(W, {3a, 4s, 5s}) = 1 by the calculation similarly done in
Appendix A. When node 4 is in sleep mode, node 1 is the highest priority node as expected. On
the other hand, when node 4 is active, node 2 is the highest priority node between nodes 1 and 2.
In other words, node 1 is not always the highest priority node among nodes 1, 2, and 4; it depends
on the sleep states of other nodes.

Remark 1 As can be seen from the above example, removing a node like 4 from the set W =
{1, 2, 4} has a significant impact on the resulting optimal policy, even though it is not the highest
priority node given A = {3a, 5s}. This is because node 4 is the highest priority node in W given
other sleep/wake states such as {3a, 5a} and {3s, 5a}. To summarize, given W , if a node i is
the highest priority node in W for some feasible sleep/wake state, then the priority ordering in
W − {i} is in general not preserved under other sleep/wake states. Thus if we remove node i, we
will need to recalculate the priority ordering of nodes in W − {i}. By contrast, in the case when

7

p = 1, this priority ordering is preserved no matter which node we remove from the set W . This
is the primary difference between Problem 1 and that considered in [9] both from a conceptual and
a computational point of view.

The above example suggests that it is necessary to generalize the preceding definitions in the
context of our problem.

Definition 4 Consider a Markov policy π such that π(W,Ai) = ni ∈ W ∪ {I},∀i ∈ {1, · · · ,m}
for W ⊆ Ω and ∀Ai ∈ F (W) where m = 2N−|W |. Define NW =

⋃m
i=1 ni − {I}. This policy is a

Generalized(G)-priority policy if the following condition holds: for ∀S ⊆ W − NW , we have

π(W,Ai) = π(S ∪ NW , A) = ni, ∀A ∈ F (S ∪ NW |W,Ai), ∀i ∈ {1, · · · ,m},

where the condition on A is simply to ensure that the sleep state A is consistent with state Ai (it
is identical to Ai except for nodes in W −S−NW what are unspecified). What this definition says
is that a policy is a G-priority policy if there exists a set NW of priority nodes within W whose
priorities are strictly higher than the rest regardless of the sleep state, but whose priority ordering
among themselves can only be determined for a specific sleep state. This set consists of nodes that
would have been selected in at least one sleep state.

Definition 5 A function f : 2Ω×2N → R is an Generalized(G)-index function on 2Ω if f satisfies

f(W,A) = max
W

′⊆W,A
′∈F (W ′ |W,A)

f(W
′

, A
′

), ∀W ⊆ Ω,∀A ∈ F (W) . (5)

Definition 6 A priority policy π is called an Generalized(G)-index policy if V π(W,A) is an G-
index function on Ω.

We end this section by noting two special-case interpretations of Problem 1 depending on what
we use as costs.

3.0.1 The case of cI = 0

If the idle cost is zero, there is no penalty on waiting. In this case, there is no loss of optimality
to always wait till all nodes are awake (a positive probability event) and then make a decision on
who is to transmit. If we only consider the problem in this particular sleep state (all awake), i.e.,
we wait in other states, then the problem becomes identical to the one studied and solved in [9].

3.0.2 The case of ci = cI = c

If all costs are the same, the problem can be regarded as finding a policy which minimizes delay.
Assuming the transmission of a packet consumes a certain amount of time and so does waiting,
each cost can be translated into a time unit. Therefore, the problem is to find a policy that
minimizes the sum of the time slots taken.

4 Analysis of Problem 1

In this section, we analyze Problem 1 and derive structural properties of an optimal policy π∗. As
mentioned earlier, we will take a centralized point of view and assume that at each time instant,
a decision-maker has complete information on the time-invariant transition probabilities and the

8

current sleep/wake state. We will then use these properties to construct optimal and sub-optimal
routing policies. In a later section we will discuss distributed implementations of these.

Our system of Problem 1 can be modeled as a two-dimensional finite state Markov chain. That
is, each decision is made based on the current state (W,A). Without loss of optimality, we will
limit our attention to Markov policies. One may use stochastic dynamic programming to find an
optimal Markov policy. Suppose s and d are the source and destination nodes, respectively. We
can then use the following set of dynamic programming equations:

V (Ω, A) = Rd;

V (W,A) = max
i∈W∪{I}

−ci +
∑

W ′⊇W

∑

A′∈F (W ′)

P i(W ′, A′|W,Aj)V (W ′, A′), Ri

,

∀W ⊂ Ω, A ∈ F (W) , (6)

and the optimal reward is given by the expected value of V ({s}, A) over all possible states A ∈
F ({s}).

However, the computational complexity involved in this approach is very high. For instance,
suppose that the number of nodes in the network is N and |W | = n. Given W , there are
2N−n A’s in F (W) and n + 1 actions, one for each node in W plus I. For each pair (W,Ai),
Ai ∈ F (W), its optimal value function requires the optimal value functions for other sleep/wake
states (W,Aj),∀Aj ∈ F (W). All these optimal value functions are solved simultaneously by setting

the action for each (W,Aj). Thus, the number of such combinations is (n + 1)2
(N−n)

for given W .
And there are N !

n!(N−n)! W ’s for |W | = n. Therefore, the total number of calculations is

N
∑

n=1

N !

n!(N − n)!
(n + 1)2

(N−n)
. (7)

As N grows, the complexity grows rapidly. For this reason, instead of applying stochastic dynamic
programming directly, we will investigate the structural properties of an optimal Markov policy,
which are then used to construct algorithms with lower complexity.

We next show that there exists an optimal G-index policy for Problem 1 in Theorem 1. The idea
behind the proof of Theorem 1 is to show that an optimal Markov policy with certain properties is
a G-priority policy, which is in turn a G-index policy by proving that the expected reward function
is a G-index function. We then propose an algorithm to find an optimal G-index policy and discuss
its computational complexity. While this method follows closely the framework developed in [9],
there are intricate technical differences and additional difficulties due to the introduction of sleep
states.

Unless otherwise noted, all missing proofs may be found in the appendix.
The proof of Theorem 1 utilizes some useful lemmas presented next. Lemma 1 below shows

that an optimal Markov policy has the property that if all supersets that can be reached from
a state have optimal expected reward values and the actions at the state for all sleep states are
optimal, then the expected reward value at the state is optimal.

Lemma 1 Let π∗ be an optimal Markov policy for Problem 1. Suppose we are given W1 and
A1 ∈ F (W1), and let π be a Markov policy with the following properties:

V π(W,A) = V π∗

(W,A), ∀W ⊃ W1,∀A ∈ F (W), (8)

π(W1, A1) = π∗(W1, A1), ∀A1 ∈ F (W1). (9)

9

Then
V π(W1, A1) = V π∗

(W1, A1). (10)

The following lemma shows the monotonicity of an optimal Markov policy.

Lemma 2 In Problem 1, let π∗ be an optimal Markov policy. Let W1,W2 ⊆ Ω and W2 ⊆ W1.
Then, for A1 ∈ F (W1), V π∗

(W2, A2) ≤ V π∗

(W1, A1) where A2 ∈ F (W2|W1, A1).

The next lemma shows the properties of an optimal Markov policy, specifically the G-priority
structure.

Lemma 3 Let π∗ be an optimal Markov policy for Problem 1. Then, there exists a Markov policy
π which has the following properties.

1. For all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈ F (W) = {A1, · · · , Am}, m = 2N−|W |,

π(W,Ai) = ni ∈ W ∪ {I}

⇒ π(W − {j}, A) = ni, ∀j ∈ W − ∪m
i=1ni, ∀A ∈ F (W − {j}|W,Ai), (11)

π(W,Ai) = rni
, ni 6= I

⇒ π(W − {j}, A) = rni
, ∀j ∈ W − ∪m

i=1ni, ∀A ∈ F (W − {j}|W,Ai). (12)

2. For all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈ F (W), and π(W,Ai) = ni ∈ W ∪ {I} or
rni

, ni 6= I for i ∈ {1, · · · ,m},

V π(W−{j}, A) = V π(W,Ai) = V π∗

(W,Ai) = V π∗

(W − {j}, A),

∀j ∈ W − ∪m
i=1ni,∀A ∈ F (W − {j}|W,Ai). (13)

3. π is an optimal Markov policy.

The following lemma shows that an optimal markov policy has the expected reward that is a
G-index function.

Lemma 4 For any optimal Markov policy π∗, V π∗

(·) is a G-index function on Ω ∪ {I}.

Theorem 1 There is an optimal Markov policy π∗ for Problem 1 which is a G-index policy.

Proof: By Lemma 3, there exists a Markov policy π∗ which is an optimal Markov policy.
V π∗

(·) is a G-index function by Lemma 4. This says that the optimal decision on the resulting set
after removing some nodes that are not in

⋃

i ni from W remains the same. Thus the conditions
in Definition 4 are satisfied. Thus π∗ is a G-priority policy. Since π∗ is a G-priority policy and its
V π∗

(·) is a G-index function, π∗ is a G-index policy according to Definition 6.

5 Optimal and Sub-Optimal Routing Algorithms

5.1 An Optimal Centralized Algorithm for Problem 1

Compared to using brute-force dynamic programming, we can utilize the properties of G-index
policy stated in Lemma 3 to reduce the amount of computation. The key idea is that for a given
set W , once we identify the set of all highest-priority nodes NW =

⋃

ni − {I}, where ni is the

10

highest-priority node for sleep state Ai ∈ F (W), then removing non-highest-priority nodes from
the set W will not change the optimal action or the maximum reward, resulting in savings in
computation. By contrast, direct computation using (6) would require computing the rewards of
all supersets of W .

More specifically, the procedure starts with W = Ω and A = {1, · · · , 1}. Its optimal action
and maximum reward are straight-forward, which are

V (Ω, A) = Rd and π(Ω, A) = rd.

From Properties 1 and 2 in Lemma 3, we know

V (Ω − {j}, A) = Rd and π(Ω − {j}, A) = rd,

for ∀A ∈ F (Ω−{j}) if j 6= d. Thus, we only need to calculate V (Ω−{d}, A) for ∀A ∈ F (Ω−{d}).
By solving the associated set of linear equations, we obtain π(Ω − {d}, A) for ∀A ∈ F (Ω − {d}).
Suppose π(Ω−{d}, Ai) = ni for each Ai ∈ F (Ω−{d}). Again denote by NΩ−{d} = ∪ini −{I} the
set of highest priority nodes in Ω − {d}. Using properties of Lemma 3, we have

π(S ∪ NΩ−{d}, A) = ni,∀S ⊂ Ω − {d}, A ∈ F (S ∪ NΩ−{d}|Ω − {d}, Ai).

Therefore, the only reward functions that need to be calculated are V (Ω − {d} − {ni}, A), for
∀A ∈ F (Ω − {d} − {ni}). The procedure then continues similarly.

We now formally describe the above procedure in Algorithm 1. Note that this algorithm is
presented for a single destination, but can be easily extended to the case of multiple destinations.

Algorithm 1 Define sets W , F (W), NW and a queue Q, as follows. Each entry in queue Q
contains an ordered set of nodes S ∈ Ω. Each is interpreted as a possible set of nodes that have
not received the packet. We will denote by Qb the first entry in the queue (head of the queue).
W is the complement of Qb with respect to Ω, i.e., W = Ω − {Qb}, the set of nodes which have
received packet. F (W) is the set of all feasible active(1)/sleep(0) states of the nodes in Qb (with
all ones for the nodes in W): F (W) = {A1, A2, ..., Am} where m = 2|Qb|. NW is the set of highest
priority nodes in W , each for a given Aj ∈ F (W).

The initial case W = Ω is trivial and already known: V (W,A) = Rd and π(W,A) = rd.
We now start with W = Ω−{d}. Q contains only one entry {d}, the destination node. F (W)

contains two sets: 1’s for all nodes except for d, which is 0 in one set and 1 in the other. The
algorithm proceeds as follows.

1. Take the set Qb, find W = Ω − Qb. If W is empty, go to step 5.

2. For each state (W,Aj), 1 ≤ j ≤ m, define the reward of taking action i (either a node for
transmission or idle), i ∈ W ∪ {I} and each Aj ∈ F (W), as follows:

Vi(W,Aj) = max{−ci +
∑

W ′⊇W

∑

A′∈F (W ′)

P i(W ′, A′|W,Aj)V (W ′, A′), Ri} , (14)

where cI = α. This results in |W |+1 linear equations for |W |+1 unknowns for each (W,Aj)
(note that the quantities V (W ′, A′) will have been computed in previous iterations). Solve
these to obtain Vi(W,Aj), i ∈ W ∪ {I}, Aj ∈ F (W).

11

3. Update the optimal reward and action as follows:

V (W,Aj) = max
i∈W∪{I}

Vi(W,Aj) , (15)

π(W,Aj) = arg max
i∈W∪{I}

Vi(W,Aj) = nj . (16)

In obtaining the optimal action nj in (16), ties are broken randomly between nodes, and the
idle action is chosen if ties occur between a node and the idle action. Note that retiring is
not considered here because W starts from Ω − {d} and decreases (goes backward) over the
iterations.

4. Compute NW = ∪1≤j≤m{nj} − {I}. NW now contains a set of distinct nodes of the highest
priority among all nodes in W . Note that NW can be empty. For each node nj ∈ NW , add
a new entry Qb ∪ {nj} to the queue Q.

5. Use Eqns (11)-(13) to obtain the action and reward for state (W − {j}, A),∀j ∈ W −
∪m

i=1ni, ∀A ∈ F (W − {j}|W,Ai).

6. Remove the current Qb entry from the queue, and point Qb to the next entry. If the queue
becomes empty, terminate the algorithm. Otherwise go to step 1.

7. Upon termination, compute the reward

V ({s}) =
∑

Aj⊂F ({s})

V ({s}, Aj)P (Aj). (17)

It should be fairly easy to see that the above procedure generates an optimal G-index policy π
for Problem 1, and the reward functions V (W,A) are solutions to the set of dynamic programming
equations (6). This is because the procedure essentially computes (6) backward while exploiting
the property of a G-index policy in steps 4-6. For this reason we simply state the following theorem.

Theorem 2 Algorithm 1 produces an optimal G-index policy for Problem 1.

5.2 A Sub-Optimal Algorithm

While Algorithm 1 can provide a useful benchmark, its computational complexity remains very
high and can only be used in small-size problems. In this section we present an approximation
that significantly simplifies the computation. Consider the following modification to the system:
suppose we will use W rather than (W,A) to represent the state. Equivalently, suppose that the
decision-maker has the knowledge of the nodes that have received the message but no information
on the sleep/wake status of any node. Our approximation combines the optimal solution to this
problem, which is known and easy to compute, with a greedy use of the extra knowledge A.

We first redefine some notations for use in this new setting.
P i(W ′|W,A) indicates the probability of state W ′ reached from state W by choosing i ∈ W

for transmission, when nodes’ sleep/wake state is current A.
If a node i is chosen for transmission, the transition probability is defined as

P i(W ′|W,A)

=

∏

∀j:wj=0,aj=1,w′

j
=1

qij

·

∏

∀j:wj=0,aj=1,w′

j
=0

1 − qij

·

∏

∀j:wj=0,aj=0,w′

j
=1

0

, for ∀i ∈ W .

(18)

12

π̃ is a Markov policy that depends only on the current state W .
Ṽ π̃(W) is the expected reward when starting in state W under policy π̃.
Without nodes’ active/sleep information, the problem is reduced to the one studied in [9] with

a modification to the state transition probability. This is because under the above assumptions the
decision-maker cannot differentiate transmission failures caused by channel errors from the ones
by duty cycling. Hence, the sleep/wake activity of nodes is reflected in transition probabilities
measured on average, i.e., P i(W ′|W) =

∑

A∈F (W) P i(W ′|W,A)P (A).
With these transition probabilities, one can use the algorithm developed in [9] (Lott’s algo-

rithm) to generate an optimal index policy for this modified problem. Specifically, under this
model the optimal expected reward given state W is

Ṽ (W) = max
i∈W

{−ci +
∑

W ′⊇W

∑

A∈F (W)

P i(W ′|W,A)P (A)

 Ṽ (W ′), Ri} , (19)

and the optimal policy is given by a deterministic priority ordering of nodes that can be computed
offline as mentioned earlier. Note that under this model the idle action is never chosen.

Below we present an algorithm that both utilizes and outperforms Lott’s algorithm for Problem
1. Specifically, the decision maker uses the simple state W to calculate the expected reward, but it
makes the routing decision by taking into account the current sleep/wake state A. This significantly
simplifies the computation compared to Algorithm1, and at the same time allows it to outperform
Lott’s algorithm.

Algorithm 2 The sets W , F (W) = {A1, A2, ..., Am}, NW , and the queue Q are defined similarly
as in Algorithm 1. This algorithm consists of two parts: an off-line part and an on-line part. The
off-line part obtains the expected reward values Ṽ (W) for all W ⊆ Ω by Lott’s algorithm as shown
in (19). The on-line part of the algorithm proceeds similarly as in Algorithm 1 as follows. Again
we will start from Q containing a single entry {d}.

1. Take the set Qb, find W = Ω − Qb. If W is empty, go to step 5.

2. For each (W,Aj), 1 ≤ j ≤ m, compute the reward of taking action i (either a node for
transmission or idle), i ∈ W ∪ {I} and each Aj ∈ F (W), as follows:

V
′

i (W,Aj) = max{−ci +
∑

W ′⊇W

P i(W ′|W,Aj)Ṽ (W ′), Ri}. (20)

3. Update the reward and action as follows:

V
′

(W,Aj) = max
i∈W∪{I}

V ′
i (W,Aj) , (21)

π
′

(W,Aj) = arg max
i∈W∪{I}

V ′
i (W,Aj) = nj . (22)

In obtaining the optimal action nj in (22), ties are broken randomly between nodes, and the
idle action is chosen if ties occur between a node and the idle action.

4. Compute NW = ∪1≤j≤m{nj} − {I}. For each node nj ∈ NW , add a new entry Qb ∪ {nj} to
the queue Q.

5. Remove the current Qb entry from the queue, and point Qb to the next entry. If the queue
becomes empty, terminate the algorithm. Otherwise go to step 1.

13

Unlike Lott’s algorithm, Algorithm 2 takes an action dependent on A. It recomputes the
priorities of nodes in W with consideration of sleep/wake status at the time of transmission and
selects a node with the highest modified priority for the next transmission. This algorithm cannot
perform better than Algorithm 1 as the latter is optimal. However, below we show that it is at
least as good as Lott’s Algorithm.

Theorem 3 Algorithm 2 performs at least as good as Lott’s algorithm for Problem 1.

Proof: As before, F (W) = {A1, A2, · · · , Am}. Using (19), we have

Ṽ (W) = max
i∈W

{−ci +
∑

W ′⊇W

m
∑

j=1

P i(W ′|W,Aj)P (Aj)

 Ṽ (W ′), Ri}

= max
i∈W

{
m

∑

j=1

−ci +
∑

W ′⊇W

P i(W ′|W,Aj)Ṽ (W ′)

 P (Aj), Ri}

≤ max
i∈W

{
m

∑

j=1

−cnj
+

∑

W ′⊇W

Pnj (W ′|W,Aj)Ṽ (W ′)

 P (Aj), Ri}

=
m

∑

j=1

−cnj
+

∑

W ′⊇W

Pnj(W ′|W,Aj)Ṽ (W ′)

 P (Aj)

=
m

∑

j=1

V ′(W,Aj)P (Aj) , (23)

where the inequality is due to the fact that action nj maximizes the term within the summation
per (22), and the third equality is due to the fact that retiring is not optimal.

This shows that when averaged over all possible sleep states, Algorithm 2 performs at least as
good as Lott’s Algorithm.

6 Distributed Implementation

In this section we present a practical routing protocol that implements Algorithm 2 in a distributed
way. We will adopt opportunistic-like forwarding used in [10] in our algorithm where nodes are
not assumed to have perfect information on W and A. Specifically, nodes periodically exchange
a HELLO (also referred to as a beacon packet in the sequel) packet when they are awake. From
these exchanges nodes infer their neighbors’ sleep status when making a decision on whether they
should forward a received packet.

Our stochastic routing protocol, referred to as SRP below, consists of two elements: priority
update and forwarder selection. Nodes are initialized with the priorities computed using Lott’s
algorithm; these will be referred to as the offline priorities for clarity but it is not necessarily an
offline process. [9] proposed an efficient Dijkstra-like distributed algorithm for a node to compute
its priority. As nodes obtain their neighbors’ sleep state they can choose to recalculate and update
these priorities during the priority update stage. In the forwarder selection step a node decides for
itself whether it should become a forward and retransmit the packet it received based on current
priorities. Below we present these two elements in more detail.

14

6.1 Priority Update Procedure

An active node i transmits a short HELLO packet periodically4. This HELLO packet contains
explicit information on measured channel quality and implicitly conveys the fact that the sender
of the HELLO packet is active. In addition, it contains the current value of node i’s priority,
denoted by V l(i) for the l-th updating period, calculated as follows.

The initial value V 0(i) for all i is obtained using Lott’s Algorithm. Recall that the optimal
policy obtained by Lott’s Algorithm is an index policy (i.e., Ṽ π̃(W) = Ṽ π̃({i}) if i is the highest
priority node under π̃ in W). As part of initialization, we assign V 0(i) = Ṽ π̃({i}) to node i at the
start of the algorithm; without ambiguity Ṽ π̃({i}) is also written as Ṽ (i) below for simplicity of
notation.

This quantity is then updated before node i sends out each beacon within a single wake period,
and is reset to V 0(i) = Ṽ (i) upon waking up from a sleep period. Specifically, right before the l-th
beacon transmission at time til, node i updates V l(i) and includes this value in the beacon packet.
Note that the transmission times of the beacon packets are unsynchronized among nodes in the
network; a node’s beacon transmission times are only relevant to its latest wake-up time. Thus,
til for node i might be different from tjl for node j. Node i recalculates V l(i) based on updates
received from active neighbors during the time interval [til−1, t

i
l]. In addition, node i maintains a

candidate set denoted by Ci; this is a subset of all i’s neighbors whose current priorities are higher
than i’s. In other words, Ci contains all possible forwarders. Initially, Ci contains the nodes with
higher initial priorities (determined by V 0(·)) than i’s. This set then gets updated with priority
updates.

The more precise details are given in the following description of the priority update procedure
followed by a given node i. We have assumed that the computation of {Ṽ (i)} by Lott’s Algorithm
is completed prior to running SRP, such that each nodes has its own Ṽ (i) as well as Ṽ (j) for all
neighboring nodes j.

1. When node i goes to sleep, it turns off the radio and does nothing.

2. Upon waking up, node i sets the beacon counter l to zero, the beacon transmission time ti0
to current time, and immediately transmits a beacon packet containing value V 0(i) which
is set to Ṽ (i). It initializes V 0

i (j) to Ṽ (j) for all j in its neighboring set. The set Ai that
contains all active neighbors is initialized to be empty. The set Ci of forwarder candidates
contains a neighbors j if Ṽ (j) > Ṽ (i).

3. Node i then increments l by one, and sets the next beacon transmission time til to til−1 + T ,
where T is the (constant) beacon interval.

4. Between til−1 and til, if node i receives a beacon packet from some neighbor j, it updates

V l−1
i (j) with the new value contained in the packet and records its update time. Also, node

j is added to Ai if it is not already in the set.

5. Right before the l-th beacon transmission at time til, node i recalculates the priorities as
follows. If a beacon packet from node j was last received at a time earlier than til − βT ,
where β is a constant multiplier and βT sets a threshold on how long a neighbor has not been
heard from before assuming it is asleep, then node j is assumed to be in sleep mode and is
removed from Ai. For those nodes in Ai, set V l

i (j) = V l−1
i (j). Otherwise, set V l

i (j) = Ṽ (j)

4HELLO packets are commonly used for neighborhood discovery, a mechanism employed by virtually all routing
protocols to maintain fresh information on which nodes are one’s neighbors. In this sense our protocol simply utilizes
an existing mechanism and the exchanged state information gets a free ride.

15

for a sleep node j. Include in Ci all neighbors that qualify as possible forwarders and their
current priorities.

Denote by q∗
ij|Ci,Ai

the probability that node j receives successfully from node i while nodes
with higher priorities in Ai

⋂

Ci fail. Denote the set of nodes with higher priorities than
node j by {Ai

⋂

Ci}
+
j ⊂ Ai

⋂

Ci. Then,

q∗ij|Ci,Ai
= qij

∏

k∈{Ai

⋂

Ci}
+
j

(1 − qik).

Using this probability, node i updates V l(i) as follows.

V l(i) =
−ci +

∑

j∈Ai

⋂

Ci
q∗ij|Ci,Ai

V l
i (j)

1 −
∑

j∈Ai

⋂

Ci
(1 − qij)

.

Node i then transmits a beacon packet with V l(i) to its neighbors.

6. While node i continues to be awake, repeat steps 3-5.

Remark 2 The relationship between T and an “on” duration: We assume that an on duration is
larger than a beacon interval T . The length of an on duration obviously affects the accuracy of the
recalculation of V l(i).

6.2 Forwarder Selection Procedure

When a forwarder, say node i, sends out the message, it contains a list of potential forwarders Ci.
When node j receives the message within its l-th beacon interval, [tjl−1, t

j
l], it first checks to see if

it is included in the set Ci. If it is, it waits for a certain time period to see if it hears any ACKs
from higher priority nodes. This time period is randomly chosen but inversely related to its own
priority position in Ci. If it does, then node j will not transmit the message. If it fails to receive
any ACK from higher priority nodes during the period, it transmits the message containing its list
of forwarder candidates in the message. Details of this forwarder selection procedure are provided
in the following algorithm. This algorithm is performed whenever node generates a message or
receives it from one of its neighbors.

1. A node j while awake stays in the listening mode. When it receives a message, say from node
i, it obtains the list of candidate forwarders Ci. If it is on the list, go to step 2. Otherwise,
it does not forward the message and remains in the listening mode.

2. If node j is the first on the list Ci, it becomes the forwarder, sends out an ACK and transmits
the message right away, with its updated candidate list Cj. Otherwise, node j sets a timer
D1 proportional to its position on the list Ci.

3. Within this timer D1, if node j receives an ACK from a higher priority node, say node k,
on Ci, it transmits a duplicate of this ACK with the identity of node k. If node j does not
receive any ACK from a higher priority node before timer D1 expires, upon timer expiration
node j it becomes the forwarder, sends an ACK and transmits the message with its updated
candidate list Cj .

4. A forwarder j sets a timer D2 upon transmitting the message. If it does not receive any
ACK before the timer expires, it times out and retransmits the message with an updated
list Cj , up to a certain maximum number. (This rule applies to the source node as well.)

16

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
m

=0.3

Distance b.w. nodes (in feet)

S
uc

ce
ss

fu
l r

ec
ep

tio
n

pr
ob

ab
ili

ty

Figure 2: Delivery success probability w.r.t. distance.

7 Performance Evaluation

We performed extensive MATLAB simulation to evaluate the performance of the proposed algo-
rithm. The simulated system closely follows most of the assumptions listed earlier in this paper,
but is not restricted to single-message routing. Here we reiterate some of the more relevant ones.
The lossy channel model we adopted in the simulation is based on pair-wise distance. Specifically,
we assume that the success probability that a node receives a message from any node is given by a
linear function of the distance between the nodes as shown in Figure 2. This distribution is based
on measurements on Rene Motes using medium transmission power reported by Ganesan et al
in [12]. In general, a node with non zero reception probability is regarded as a neighbor. However,
we also eliminate nodes with poor reception probability (those lower than a threshold pm) from a
neighboring set. Each sensor node is duty-cycled with a sleep probability ps, and the discrete time
unit is chosen large enough for a transmission and ACKs to occur. A source and a destination are
randomly selected among nodes in the network. A node that has received a message does not go
back to sleep again till the simulation ends.

Throughout this section, we consider three different scenarios depending on how the transmis-
sion cost and idle penalty are determined.

1. Unit cost for both transmission and idle action: Under this scenario the problem reduces to
finding a delay-optimal path from a source to a destination. Note that the term delay used in
this paper accounts for the number of time units taken to reach the destination considering
both hop counts and retransmissions caused by channel errors. With this cost scenario we
may also find a path that minimizes energy consumption, given that the normalized energy
consumption in transmission is roughly the same as that in idle waiting.

2. Random cost for transmission and nonzero cost for idle action: With this cost scenario the
problem finds a path that minimizes the total cost. Because both transmissions and waiting
are costly, there may be a tradeoff between minimizing the number of transmissions and
minimizing delay. For instance, a path may incur the smallest number of transmissions (e.g.,
a shortest path when all transmission success probabilities are equal) but may involve a large
amount of waiting. The combined cost may render this path less desirable. The tradeoff
between transmission energy consumption and delay can be adjusted through setting the
respective costs. The intention of using a random transmission cost is so that this cost

17

6 8 10 12 14 16 18 20 22 24 26

5

10

15

20

25

1

2

3

4

5
6

0.48696

0.5247

0.73101

0.506

0.48696 0.82682

0.73311

0.52685
0.6426

0.5247

0.826820.69581

0.40494
0.46974

0.73101

0.73311

0.69581

0.66729
0.51934

0.506

0.52685

0.40494

0.66729

0.59341

0.6426

0.46974

0.51934

0.59341

X (in feet)

Y
 (

in
 fe

et
)

sensors
src
dest

Figure 3: Topology 1: 6 nodes. Source node: 7, destination node: 18.

may represent the fact that some transmissions are more costly if the transmitting node has
relatively low residual energy, or if all its neighbors are located far away thereby physically
requiring more energy.

3. Random cost for transmission and zero cost for idle action: In this case the problem looks
for a cost-efficient path without worrying about penalty on waiting. Since there is no penalty
on waiting, it is optimal to wait till all nodes are awake and the apply Lott’s algorithm. The
third scenario is meant for applications that are extremely delay-tolerant.

7.1 The effect of sleep information on optimality

In the previous sections, it was shown that Algorithm 1, referred to as the Optimal Algorithm in
the remainder of this section, generates an optimal G-index policy for Problem 1. Unfortunately,
its computational complexity is high and is thus not scalable. We therefore use a small network
to compare its performance with The network consists of 6 sensor nodes with average node
degree 4.6 and pm = 0.3 as shown in Figure 3, referred to as Topology 1. Using this topology,
we first examine how much performance degradation will result if we ignore sleep information. In
Figure 4 we compare Algorithm 1, Lott’s algorithm which requires and uses no sleep information,
and Algorithm 2 (also referred to as the sub-optimal algorithm in the remainder of this section)
that greedily utilizes the current sleep state in making forwarding decisions.

Figure 4 depicts the average costs of paths taken by these algorithms when different cost
distributions are applied. When all costs are the same and normalized to unit as in cost scenario
1, average path cost is identical to average delay. When p is relatively small up to 0.8, average
delays of all three algorithms are virtually indistinguishable as shown in Figure 4(a). As p becomes
very high (0.9), the optimal algorithm shows a slight advantage. This suggests that if we are only
interested in delay, then all three algorithms perform very closely. This is because the optimal
and sub-optimal algorithms are discouraged from waiting too long and will try to transmit sooner,
which results in similar behavior as under Lott’s algorithm which does not wait at all.

In cost scenario 2, transmission costs are uniformly generated over [1, 7] while idle cost is fixed
at 4. As shown in Figure 4(b), it is quite remarkable that the sub-optimal algorithm performs
nearly as good as the optimal one. Since the transmission costs can be significant in this case,
the optimal and suboptimal algorithms make more judicious decisions on waiting to saving exces-
sive transmission. Lott’s algorithm, being oblivious to sleep state, results in more wasteful (less
efficient) transmissions.

18

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
4

6

8

10

12

14

16

18

20

22

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Optimal algo.
Sub−optimal Algo.
Lott’s Algo.

(a) Scenario 1 with unit costs.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
20

30

40

50

60

70

80

90

100

110

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Optimal algo.
Sub−optimal Algo.
Lott’s Algo.

(b) Scenario 2 with random cost and nonzero idle
action penalty.

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

5

10

15

20

25

30

35

40

45

50

55

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Optimal algo.
Sub−optimal Algo.
Lott’s Algo.

(c) Scenario 3 with random cost and zero idle action
penalty.

Figure 4: Performance comparison of the centralized algorithms on Topology 1

19

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

1

2

3

4

5

6

7

8

9

10

11
12

13

1415

1617

18

19

20
21

22

23

24

25

26

27

28

29 30

X (in feet)

Y
 (

in
 fe

et
)

sensors
src
dest

(a) Topology 2 with average node degree = 12.33
when pm = 0.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

1

2

3

4

5

6

7

8

9

10

11
12

13

1415

1617

18

19

20
21

22

23

24

25

26

27

28

29 30

X (in feet)

Y
 (

in
 fe

et
)

sensors
src
dest

(b) Topology 3 with average node degree = 7.13 when
pm = 0.3.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

1

2

3

4

5

6

7

8

9

10

11
12

13

1415

1617

18

19

20
21

22

23

24

25

26

27

28

29 30

X (in feet)

Y
 (

in
 fe

et
)

sensors
src
dest

(c) Topology 4 with average node degree = 4.13 when
pm = 0.5.

Figure 5: Topologies with 30 sensor nodes. In all cases the source node is 7, destination node 18.

In cost scenario 3, transmission costs are generated by the same distribution as above but
no costs are imposed on the idle action. Figure 4(c) shows that the average costs of the optimal
algorithm and sub-optimal algorithm are almost unaffected by the increase in sleep probability by
taking a large number of idle actions and waiting for the right moment to transmit. In particular,
the average cost of the optimal algorithm is exactly the same while waiting delay increases expo-
nentially as p increases. On the other hand, the cost of Lott’s algorithm rises quickly since it does
not take sleep state into account which results in many wasted transmissions.

7.2 The effect of node degree

If a node has more neighbors, given the same sleep probability it is more likely to have wake
neighbors. However, even in a highly connected network, a best neighbor is not always on. Thus,
whether to transmit now or wait for better neighbors to be on is not a straight-forward question
to answer depending on which neighbors are awake at the time of transmission. We focus on the
performance comparison of Lott’s algorithm and the sub-optimal algorithm when increasing the
average node degree in the next set of results. We consider a network where N = 30 sensor nodes

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

100

200

300

400

500

600

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Lott’ Algo., Topology 2
Sub−optimal Algo., Topology 2
Lott’ Algo., Topology 3
Sub−optimal Algo., Topology 3
Lott’ Algo., Topology 4
Sub−optimal Algo., Topology 4

(a) Average cost.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

20

40

60

80

100

120

140

Sleep probabilty p

A
ve

ra
ge

 d
el

ay

Lott’ Algo., Topology 2
Sub−optimal Algo., Topology 2
Lott’ Algo., Topology 3
Sub−optimal Algo., Topology 3
Lott’ Algo., Topology 4
Sub−optimal Algo., Topology 4

(b) Average delay.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

2

4

6

8

10

12

14

Sleep probabilty p

A
ve

ra
ge

 n
um

be
r

of
 id

le
 a

ct
io

n

Lott’ Algo., Topology 2
Sub−optimal Algo., Topology 2
Lott’ Algo., Topology 3
Sub−optimal Algo., Topology 3
Lott’ Algo., Topology 4
Sub−optimal Algo., Topology 4

(c) Average number of idle actions.

Figure 6: The effect of average degree of nodes on the performance of sub-optimal and Lott’s
algorithms (cost scenario 3).

are deployed with different pm = {0, 0.3, 0.5} as shown in Figure 5. pm determines the set of
neighbors and so does node degree. In all topologies the source node is 7 and the destination node
18.

Using the third cost scenario, both algorithms improve as the degree increases, much to be
expected. Figure 6(a) shows that the sub-optimal algorithm improves more quickly compared to
Lott’s algorithm, and the improvement is more pronounced with larger p. This suggests that the
sub-optimal algorithm is more effective when duty-cycling is heavy. This is because there are
sufficient number of wake neighbors around, which makes idle action unnecessary.

Figure 6(b) shows that the delay performance of the two algorithms are quite close, with
the sub-optimal algorithm slightly better. This is a somewhat surprising result, because there is
no penalty on idling so one would expect the sub-optimal algorithm to fully trade off delay for
less transmission, while under Lott’s algorithm transmission occurs every time step. What this
suggests is that as the sleep probability increases, even though Lott’s algorithm keeps busy, a
lot of its transmissions either fall on deaf ears (neighbors are asleep) which does not help reduce
delay, or they result in longer routes (wake neighbors happen to lead to bad/long routes) which

21

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

Sleep probabilty p

A
ve

ra
ge

 c
os

t

Lott’ Algo.
Sub−optimal Algo., c

I
=0

Sub−optimal Algo., c
I
=1

Sub−optimal Algo., c
I
=2

Sub−optimal Algo., c
I
=4

Sub−optimal Algo., c
I
=8

(a) Average cost.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
10

20

30

40

50

60

70

80

Sleep probabilty p

A
ve

ra
ge

 d
el

ay

Lott’ Algo.
Sub−optimal Algo., c

I
=0

Sub−optimal Algo., c
I
=1

Sub−optimal Algo., c
I
=2

Sub−optimal Algo., c
I
=4

Sub−optimal Algo., c
I
=8

(b) Average delay.

Figure 7: The effect of idle cost on the performance of the sub-optimal algorithm on Topology 3.

in turn can increase delay. Figure 6(c) shows the amount of idle action taken by the sub-optimal
algorithm (Lott’s algorithm takes no idle actions).

7.3 The role of idle costs

As described above, Lott’s Algorithm is invariant to changes in idle cost. In this subsection, we
examine more closely the sub-optimal algorithm on Topology 3 while varying the idle cost by
selecting it from the set cI = {0, 1, 2, 4, 8}.

As shown in Figure 7, as cI grows the average cost tends to increase but the average delay
decreases. cI is therefore a design parameter that can be used to tune this tradeoff. Specifically,
one may try to find a certain c∗I to satisfy some cost efficiency and delay constraint.

7.4 The performance of the distributed protocol SRP

We next evaluate the performance of SRP on Topology 3 with 30 nodes and pm = 0.3 as illustrated
in Figure 5(b). As described in Section 6, the distributed algorithm’s access to sleep state is limited
to a node’s 1-hop neighbors, which is obtained from the beacons broadcasted by neighbors every T
time units. In our simulation, T is set to 2. Each node’s sleep schedule is generated by a geometric
distribution with mean length of on periods of 4 (the average off period is then determined from
the sleep probability).

Given the scenarios of cost distributions introduced earlier, we examine the performance of
SRP described in Section 6 with respect to three variations of ExOR with different forwarder
selection metrics: 1) the number of hops to best-path and loss rate [13], 2) ETX [10], and 3)
EAX [11]. In each simulation 300 packets are randomly generated during 3000 time units of
simulated time. Each node has a finite queue so that the total delay takes into account queueing
in addition to hop counts and the amount of waiting.

Figure 8(a) depicts the average cost of these algorithms when transmission costs are distributed
uniformly with a mean 4 and idle cost is 4. ExOR (labeled as opportunistic routing in the figures),
which is known to outperform traditional routing where packets are sent to the pre-computed path
with the smallest costs, performs the worst among the set in the figure. Using ETX and EAX
metrics performs better than the original ExOR. Figures 8(b) and 8(c) compare the cost and delay

22

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
20

40

60

80

100

120

140

160

180

200

220

Sleep probabilty

A
ve

ra
ge

 c
os

t

SRP
Opportunistic Rouring
ExOR:ETX−based
ExOR:EAX−based

(a) Average cost (scenario 2).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
20

40

60

80

100

120

140

160

180

200

220

Sleep probabilty

A
ve

ra
ge

 c
os

t

SRP
Opportunistic Rouring
ExOR:ETX−based
ExOR:EAX−based

(b) Average cost (scenario 3).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
5

10

15

20

25

30

35

40

45

Sleep probabilty

A
ve

ra
ge

 d
el

ay

SRP
Opportunistic Rouring
ExOR:ETX−based
ExOR:EAX−based

(c) Average delay (scenario 3).

Figure 8: Performance comparison between SRP and three variants of ExOR.

23

of these protocols under scenario 3 with the same distribution for transmission costs and zero idle
cost. We see that the average cost of SRP is the smallest, while its delay performance is virtually
the same as ETX and EAX. This shows that, through judicious waiting, SRP attains the same
delay performance but manages to significantly lower the transmission cost, thereby saving energy.

8 Conclusion

In this paper we studied a routing problem in wireless sensor networks where sensors are randomly
duty-cycled. We developed an optimal stochastic routing framework in the presence of duty-
cycling as well as unreliable wireless channels. Using this framework, we presented and analyzed
an optimal centralized stochastic routing algorithm, and then simplified the algorithm when only
local sleep/wake states of neighbors are available. We further developed a distributed algorithm
utilizing local sleep/wake states of neighbors which performs better than some existing distributed
algorithms such as ExOR.

References

[1] S. Murthy and J. J. Garcia-Luna-Aceves, “An efficient routing protocol for wireless networks,”
ACM Mobile Networks and Applications Journal, Oct. 1996.

[2] Charles E. Perkins and Pravin Bhagwat, “Highly dynamic destination sequenced distance
vector routing (dsdv) for mobile cmputers,” in Conference of the Special Interest Group on
Data Communication (SIGCOMM), Oct. 1994.

[3] David B. Johnson and David A. Maltz, Dynamic source routing in ad hoc wireless networks,
Mobile computing, Kluwer Academic Publishers, 1996.

[4] N. Zhou, H. Wu, and A. A. Abouzeid, “Reactive routing overhead in networks with unreli-
able nodes,” in ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCOM), Aug. 2003.

[5] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and Fabio
Silva, “Directed diffusion for wireless sensor networking,” IEEE Transactions on Networking,
vol. 11, no. 1, 2003.

[6] Tommaso Melodia, Dario Pompili, and Ian F. Akyildiz, “Optimal local topology knowledge
for energy efficient geographical routing in sensor networks,” in Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), Mar. 2004.

[7] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari, “Energy-efficient
forwarding strategies for geographic routing in lossy wireless sensor networks,” in ACM
Conference on Embedded Networked Sensor Systems (SenSys), Nov. 2004.

[8] Dario Ferrara, Laura Galluccio, Alessandro Leonardi, Giacomo Morabito, and Sergio Palazzo,
“Macro: An integrated mac/routing protocol for geographic forwarding in wireless sensor
networks,” in Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), Mar. 2005.

[9] Christopher Lott and Demosthenis Teneketzis, “Stochastic routing in ad-hoc networks,” IEEE
Transactions on Automatic Control, vol. 51, no. 1, 2006.

24

[10] Sanjit Biswas and Robert Morris, “ExOR: Opportunistic multi-hop routing for wireless net-
works,” in Conference of the Special Interest Group on Data Communication (SIGCOMM),
Aug. 2005.

[11] Zifei Zhong and Srihari Nelakuditi, “On the efficacy of opportunistic routing,” in IEEE Com-
munications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), June 2007.

[12] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker, “Complex
behavior at scale: An experimental study of low-power wireless sensor networks,” Technical
report ucla/csd-tr 02-0013, Feb. 2002.

[13] Sanjit Biswas and Robert Morris, “Opportunistic routing in multi-hop wireless networks,” in
Workshop on Hot Topics in Networks (HotNets-II), Nov. 2003.

A Detailed Calculation for the Optimal Policy in Example 1

In Example 1, we show the optimal policy π∗(W,A) for the network illustrated in Figure 1, given
W = {1, 2, 4} and A ∈ F (W). Note that F (W) = {{3a, 5a}, {3a, 5s}, {3s, 5a}, {3s, 5s}}. When
all nodes are awake, i.e., A = {3a, 5a},

V π∗

({1, 2, 4}, {3a, 5a})

= max
i∈{1,4,I}

{−ci +
∑

W ′⊇{1,2,4}

∑

A′∈F (W ′)

P i(W ′, A′|{1, 2, 4}, {3a, 5a})V π∗

(W ′, A′)}

= −1 + max
i∈{1,4,I}

{
∑

W ′⊇{1,2,4}

∑

A′∈F (W ′)

P i(W ′, A′|{1, 2, 4}, {3a, 5a})V π∗

(W ′, A′)},

where the second equality is based on the assumption of unit cost.
When node 1 is transmitting, possible W ′ is {1, 2, 4} with probability 0.2 or {1, 2, 3, 4} with

probability 0.8. Then, the term in max function with i = 1 is calculated as follows.

∑

A′∈F ({1,2,4})

0.2P (A′)V π∗

({1, 2, 4}, A′) +
∑

A′∈F ({1,2,3,4})

0.8P (A′)V π∗

({1, 2, 3, 4}, A′)

=
∑

A′∈F ({1,2,4})

0.2P (A′)V π∗

({1, 2, 4}, A′) + 0.08V π∗

({1, 2, 3, 4}, {5a})

+ 0.72V π∗

({1, 2, 3, 4}, {5s}), (24)

where V π∗

({1, 2, 3, 4}, {5a}) and V π∗

({1, 2, 3, 4}, {5s}) are calculated similarly.
Since π∗({1, 2, 3, 4}, {5a}) = 3 and π∗({1, 2, 3, 4}, {5s}) = I,

V π∗

({1, 2, 3, 4}, {5a}) = −1 + 0.028V π∗

({1, 2, 3, 4}, {5a})

+ 0.252V π∗

({1, 2, 3, 4}, {5s}) + 0.72R5

V π∗

({1, 2, 3, 4}, {5s}) = −1 + 0.1V π∗

({1, 2, 3, 4}, {5a}) + 0.9V π∗

({1, 2, 3, 4}, {5s}).

From the above simultaneous equations, we obtain V π∗

({1, 2, 3, 4}, {5a}) = −4.8889 + R5 and
V π∗

({1, 2, 3, 4}, {5s}) = −14.8889 + R5. Thus, Eqn. (24) becomes

∑

A′∈F ({1,2,4})

0.2P (A′)V π∗

({1, 2, 4}, A′) − 11.1111 + 0.8R5.

25

If node 4 is transmitting, i.e., i = 4, possible W ′ is {1, 2, 4} with probability 0.4 or {1, 2, 4, 5}
with probability 0.6 and the term in max function is

∑

A′∈F ({1,2,4})

0.4P (A′)V π∗

({1, 2, 4}, A′) +
∑

A′∈F ({1,2,4,5})

0.6P (A′)V π∗

({1, 2, 4, 5}, A′)

=
∑

A′∈F ({1,2,4})

0.4P (A′)V π∗

({1, 2, 4}, A′) + 0.06V π∗

({1, 2, 4, 5}, {3a})

+ 0.54V π∗

({1, 2, 4, 5}, {3s})

=
∑

A′∈F ({1,2,4})

0.4P (A′)V π∗

({1, 2, 4}, A′) + 0.6R5.

If I is chosen, it is just
∑

A′∈F ({1,2,4}) P (A′)V π∗

({1, 2, 4}, A′).

Let S ,
∑

A′∈F ({1,2,4}) P (A′)V π∗

({1, 2, 4}, A′). Then, combining these together, we have

V π∗

({1, 2, 4}, {3a, 5a}) = max{0.2S + 0.8R5 − 12.1111, 0.4S + 0.6R5 − 1, S − 1} (25)

Similarly, V π∗

({1, 2, 4}, A) is calculated for the remaining A ∈ F ({1, 2, 4}). Then, we have
V π∗

({1, 2, 4}, {3a, 5s}) = max{0.2S+0.8R5−12.1111, S−1}, V π∗

({1, 2, 4}, {3s, 5a}) = max{0.4S+
0.6R5 − 1, S − 1} and V π∗

({1, 2, 4}, {3s, 5s}) = S − 1. Intuitively, the optimal choices are
straight-forward for some A so that π∗({1, 2, 4}, {3a, 5s}) = 1, π∗({1, 2, 4}, {3s, 5a}) = 4 and
π∗({1, 2, 4}, {3s, 5s}) = I. Thus,

S = 0.01V π∗

({1, 2, 4}, {3a, 5a}) + 0.09(0.2S + 0.8R5 − 12.1111)

+ 0.09(0.4S + 0.6R5 − 1) + 0.81(S − 1).

For A = {3a, 5a}, S = R5−15.7546 when node 1 is chosen whereas S = R5−98.6447 when node 4
is chosen. Thus, the maximum of V π∗

({1, 2, 4}, {3a, 5a}) is achieved when node 4 is transmitting.
Hence, π∗({1, 2, 4}, {3a, 5a}) = 4.

B The proof of Lemma 1

If π(W1, A1) = π∗(W1, A1) = ri for some i ∈ W1 and some A1, Eqn. (10) holds.
Next, we consider the case where both policies π and π∗ do not retire but transmit or wait.

Suppose π(W1, A1) = π∗(W1, A1) = I for some A1. Let (W2, A2) and (W ∗
2 , A∗

2) be the state after
the idle action when in (W1, A1) for π and π∗. Obviously, W2 and W ∗

2 are the same as W1 while
A2 is the same as A∗

2 for any given sample path, but not necessarily the same as A1. Both π and
π∗ pay the idle costs until they reach the state for transmission.

Suppose π(W1, A1) = π∗(W1, A1) = i ∈ W1 for some A1. Let (W2, A2) and (W ∗
2 , A∗

2) be the
state after i’s transmission when in (W1, A1) for π and π∗. Since node i is transmitting for both
policies, W2 = W ∗

2 ⊇ W1. Again A2 is the same as A∗
2 for any given sample path. By Eqn. (8),

we have V π(W2, A2) = V π∗

(W ∗
2 , A∗

2) for W2 = W ∗
2 ⊃ W1 if at least one node receives the packet

successfully. Otherwise, we have W2 = W ∗
2 = W1 and A2 = A∗

2, which may or may not be different
from A1. Similar to the case of choosing the idle action, by Eqn. (9), π chooses the same action
(the idle action or transmission but fail) as π∗ until it reaches the state where W2 ⊃ W1 and any
A2. Hence, Eqn. (10) holds.

26

C The proof of Lemma 2

We define a new policy π on state (W1, A1) as follows. Suppose (W4, A4) is the state after
transmission or idle action by π∗ when in (W2, A2), where W4 ⊇ W2. Let π make the same
decision as π∗ did, which is possible because the node in W2 ∪{I} chosen by π∗ is also available in
the set W1∪{I} ⊆ W2∪{I}. Let (W3, A3) be the state after transmission or idle action by π when
in (W1, A1). The nodes which are not in W1 and receive the packet are included in W3 as well as
W4. However, the nodes which are not in W2 but in W1 and receive the packet are included in W4

whereas W3 contains all nodes in W1. Hence, W3 ⊇ W4. Accordingly, the sleep/wake states of the
nodes in Ω − W3 are the same as A3 while the nodes in W3 − W4 may be in different sleep/wake
states. Therefore, A4 ∈ F (W4|W3, A3).

At the next step, π acts on (W3, A3) by choosing the same node as π∗ acts on (W4, A4). The
process repeats in the same way until π retires when π∗ does. Let (Wf1, Af1) and (Wf2, Af2) be the
states at retirement for π and π∗, respectively. We have Wf2 ⊆ Wf1 and Af2 ∈ F (Wf2|Wf1, Af1).
Total cost incurred by π is the same as π∗ because both policies chose the same nodes at every
step before retirement. At retirement, π and π∗ receive rewards R(Wf1) and R(Wf2), respectively.
R(·) is a G-index function because it satisfies Eqn. (5). Thus, Wf1 ⊇ Wf2 results in R(Wf1) ≥
R(Wf2) which proves V π(W1, A1) ≥ V π∗

(W2, A2). Finally, because π∗ is optimal, V π∗

(W1, A1) ≥
V π(W1, A1) holds. This completes the proof.

D The proof of Lemma 3

The proof is constructive. Let us define π recursively using the following rules:

π(Ω, A) = π∗(Ω, A), A = {1, 1, · · · , 1}, (26)

π(W − {j}, A) = π(W,Ai), ∀W ⊆ Ω,∀Ai ∈ F (W),∀A ∈ F (W − {j}|W,Ai),

∀j ∈ W : π(W,Ai) 6= j, rj for ∀Ai, (27)

π(W − {j}, A) = π∗(W − {j}, A), ∀W ⊆ Ω,∀A ∈ F (W − {j}|W,Ai),

∀j ∈ W : π(W,Ai) = j, rj for some Ai. (28)

If N = 1, the lemma is true directly by Eqn. (26). Hence, we assume that N ≥ 2.
Eqn. (27) shows that π satisfies Eqn. (11) and Eqn. (12) in the first property of this lemma. We

now focus on its second property. We prove Eqn. (13) by backward induction on the cardinality
of W . As the induction basis, we show Eqn. (13) is true for W = Ω and A = {1, 1, · · · , 1}. We
know that π∗(Ω, A) = ri for some i such that i = arg maxk∈Ω Rk because π∗ is optimal. Thus,
V π∗

(Ω, A) = Ri. According to Eqn. (26), π(Ω, A) = ri and V π(Ω, A) = Ri which proves the
second equality in Eqn. (13). In order to show the first and third equalities, let A1 be all ones but
zero for node j ∈ Ω − {i}. By Eqn. (27), we have π(Ω − {j}, A) = π(Ω − {j}, A1) = π(Ω, A) = ri

which means that π retires and receives Ri. Thus, V π(Ω − {j}, A) = V π(Ω − {j}, A1) = Ri.
This proves its first equality of Eqn. (13). For ∀j ∈ Ω − {i}, we have π∗(Ω − {j}, A) = ri and
V π∗

(Ω − {j}, A) = Ri because the optimal policy π∗ chose node i in Ω which is still in the set
Ω − {j} and has the highest reward among nodes in Ω− {j}. Similarly, π∗(Ω − {j}, A1) = ri and
V π∗

(Ω − {j}, A1) = Ri. This proves the last equality of Eqn. (13) for W = Ω.
As the induction hypothesis, assume that Eqn. (13) holds for any state (W,A) where |W | =

L + 1 and any possible A ∈ F (W). If N = 2, the basis completes the proof of Eqn. (13).
Thus, we assume N > 2 and 2 ≤ L < N . Consider a state (W1, Ai) where |W1| = L and
Ai ∈ F (W1). If there is j ∈ Ω − W1 such that π(W1 ∪ {j}, F (W1 ∪ {j}|W1, Ai)) 6= j, rj , then we
have π(W1, Ai) = π(W1 ∪ {j}, F (W1 ∪ {j}|W1, Ai)) by Eqn. (27). By the induction hypothesis,

27

Eqn. (13) is true for W = W1∪{j}. Thus, we have V π(W1∪{j}−{j}, Ai) = V π∗

(W1∪{j}−{j}, Ai)
which proves the second equality of Eqn. (13). That is,

V π(W1, Ai) = V π∗

(W1, Ai). (29)

On the other hand, if there is j ∈ Ω − W1 such that π(W1 ∪ {j}, F (W1 ∪ {j}|W1, Ai)) = j or rj,
then by Eqn. (28) π(W1, Ai) = π∗(W1, Ai). By the induction hypothesis, we have V π(W,Ai) =
V π∗

(W,Ai) for ∀W ⊃ W1. By Lemma 1 we proved that Eqn. (29) holds for this case. We have
shown that the second equality of Eqn. (13) holds for any W1 where |W1| = L and any Ai ∈ F (W1).

In order to show the first and third equalities of Eqn. (13) below, we note that there are
two cases: either π(W1, Ai) = ni ∈ W1 ∪ {I} or π(W1, Ai) = rni

for all Ai ∈ F (W1). Let
j ∈ W1, j /∈ NW1 where NW1 =

⋃m1
i=1 ni − {I} and m1 = 2N−|W1|. Consider the case where

π(W1, Ai) = rni
. By Eqn. (27) π(W1 − {j}, A′) = rni

, ∀A′ ∈ F (W1 − {j}|W1, Ai). This implies
that V π(W1, Ai) = V π(W1 −{j}, A′) = Rni

, ∀A′ ∈ F (W1 −{j}|W1, Ai). For an optimal policy π∗,
since W1 − {j} ⊂ W1 and j /∈ NW1, by Lemma 2 we get V π∗

(W1 − {j}, A′) ≤ V π∗

(W1, Ai), ∀A′ ∈
F (W1 −{j}|W1, Ai). By Eqn. (29) we have V π∗

(W1 − {j}, A′) ≤ Rni
, ∀A′ ∈ F (W1 − {j}|W1, Ai).

On the other hand, because i ∈ W1 − {j} and π∗ is an optimal policy, V π∗

(W1 − {j}, A′) ≥ Rni
,

∀A′ ∈ F (W1 − {j}|W1, Ai). Hence,

V π∗

(W1 − {j}, A′) = Rni
,∀A′ ∈ F (W1 − {j}|W1, Ai).

This completes the proof of the Eqn. (13) for π(W1, Ai) = rni
.

We now prove the first and the third equalities of Eqn. (13) in the case of π(W1, Ai) = ni ∈
W1 ∪ {I}. Let us prove the first equality as follow. Let W ⊇ W1 − {j}, j /∈ NW . We first show
the following.

π(W,A) 6= j, rj , ∀A. (30)

We prove this in two cases: j ∈ W and j 6∈ W . If j /∈ W , π(W,A) 6= j, rj for any A. If j ∈ W ,
W1 ⊆ W and |W | ≥ L. If |W | = L, W = W1 and π(W,A) 6= j, rj for any A because of j /∈ NW

as given. Assume |W | > L. If π(W,A) = j for some A, removing all nodes from W − W1 one
by one results in π(W1, Ai) = j by Eqn. (27), for some Ai which has the same values for nodes
in Ω − W and arbitrary values for nodes in W − W1. This contradicts the hypothesis which is
π(W1, Ai) = ni 6= j. Similarly if π(W,A) = rj, we have π(W1, Ai) = rj for some Ai. We have
shown that Eqn. (30) is true in all cases when π(W1, Ai) = ni. Then, the following is true for any
W ′ ⊇ W1, any A′ ∈ F (W ′), and any Ã ∈ F (W1 − {j}|W1, Ai):

Pni(W ′, A′|W1, Ai) = Pni(W ′, A′|W1−{j}, Ã)+
∑

A′′∈F (W ′−{j}|W ′,A′)

Pni(W ′−{j}, A′′|W1−{j}, Ã).

(31)
By Eqn. (30) and Eqn.(31), we have V π(W1−{j}, Ã) = V π(W1, Ai) for ∀Ã ∈ F (W1−{j}|W1, Ai).
Next, we prove the third equality of Eqn. (13) in case of π(W1, Ai) = ni. By Lemma 2 we have
V π∗

(W1, Ai) ≥ V π∗

(W1 −{j}, Ã) for ∀Ã ∈ F (W1 −{j}|W1, Ai). In addition, π∗ is optimal so that
V π∗

(W1 − {j}, Ã) ≥ V π(W1 − {j}, Ã). Since V π(W1, Ai) = V π∗

(W1, Ai) by Eqn. (29),

V π(W1 − {j}, Ã) = V π(W1, Ai) = V π∗

(W1, Ai) ≥ V π∗

(W1 − {j}, Ã) ≥ V π(W1 − {j}, Ã). (32)

This proves Eqn. (13) for π(W1, Ai) = ni. We have shown that Eqn. (13) is true for all W ⊆ Ω
where |W | ≥ 2 and all possible Ai ∈ F (W).

We prove now that π is an optimal Markov policy. As we showed in the second property,
V π(W,A) = V π∗

(W,A) for any W where |W | ≥ 2 and any A. From this relationship Eqn. (13),
we also have V π({i}, A) = V π∗

({i}, A) for ∀i ∈ Ω such that π({i}∪{j}, A) = i or I for all A where
j ∈ Ω. If there is no such i left, we still have V π({j}, A) = V π∗

({j}, A) for ∀j ∈ Ω by Eqn. (28)
when π({i} ∪ {j}, A) = i ∈ Ω for all A.

28

E The proof of Lemma 4

By Eqn. (32), we know V π∗

(·) satisfies

V π∗

(W ∪ {i}, F (W ∪ {i}|W,A)) ≥ V π∗

(W,A), ∀W ⊆ Ω,∀A ∈ F (W), i ∈ W. (E-1)

Consider a Markov policy π which satisfies Eqn. (11) and Eqn. (12). Suppose V π(W,A) =
V π(W1, A1) for some W1 ⊂ W and A1 ∈ F (W1) s.t. i /∈ W1. This implies π(W,A) 6= i for all
A ∈ F (W). Then, by Eqn. (13) we have V π∗

(W,A) = V π∗

(W − {i}, Ã), ∀Ã ∈ F (W − {i}|W,A).
From the above properties of V π∗

(·), we conclude that V π∗

(W,A) ≥ V π∗

(W1, A1), ∀W1 ⊆ W and
∀A1 ∈ F (W1). There exists W1 ⊆ W such that V π∗

(W,A) = V π∗

(W1, A1) for each A ∈ F (W).
This satisfies Eqn. (5).

29

