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Introduction Motivating Examples

Motivating Example 1

Finding the lowest expected delay path through traffic using prior
observations.

A sample path from Google Maps.
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Introduction Motivating Examples

Motivating Example 2

Channel allocation for wireless links.

The TutorNet testbed at USC.

Bipartite link channel allocation graph.

Link qualities on channel 14.

Link qualities on channel 18.
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Introduction General Formulation: MAB with Linear Rewards

Online Learning for Stochastic Network Optimization

Common theme: find an optimal network structure (best path / matching),
assuming the underlying edge weights are unknown random variables.

Problem formulation: where Xi (τ) are unknown random variables; a(τ) is
action at time τ ; F is a finite set.

General goal

Develop online learning algorithms for combinatorial network optimization
with restless Markovian rewards.
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Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Multi-Armed Bandits (MAB)

Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem

Classic Multi-Armed Bandit Problem

K slot machines (arms).

Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Trade-off

Exploration vs Exploitation

Yi Gai (USC) Online Learning Algorithms June 19, 2012 6 / 26



Introduction Preliminaries

Evaluation: Regret

Evaluation of learning algorithm performance:

Regret

Definition: the difference between the total expected reward, summed over times
1 to t, that could be obtained by a genie that can pick an optimal arm at each
time, and that obtained by the given algorithm.

Two varieties of upper bounds on regret:

asymptotic: only achieved when t →∞
uniform: achieved for every t
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Introduction Problem Formulation

Problem Formulation

Problem Formulation: MAB with Markovian rewards

Markovian rewards: the rewards are associated with finite-state Markov
chains, with unknown transition matrices.

Restless Markovian rewards: MCs evolve every time slot.

weak regret: optimal policy plays a static arm
(the problem is difficult and proved to be PSPACE-hard even when the
transition matrices are known)

Time is slotted, indexed by t.

N edges.

Other notations:

i : index of edges (MCs)

a: index of an arm, an N-dimensional action vector
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Introduction Problem Formulation

Prior Work

Thompson ’33 (first work on MAB).

i.i.d. rewards:

Lai & Robbins’85:

lower bound of regret: K ln t
proposed a policy that achieves an asymptotical upper bound on regret
O(K ln t)

Anantharam et al.’87: extension from single play to multiple plays.
Auer et al.’02 (UCB1 algorithm): an optimal logarithmic regret is achievable
uniformly over time

regret(t) ≤ C1K ln t + C2 for all t

Restless Markovian rewards:

Tekin and Liu’10: RCA algorithm with logarithmic weak regret
Liu et al.’10: RUCB algorithm with logarithmic weak regret
Dai et al.’11: SPUDC algorithm for MCs with identical transition matrices
with near-logarithmic regret

These prior works do not consider dependencies across arms.

MAB with Linear rewards: dependencies!
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Introduction Applications

Application Examples

General Formulation

max E[
t∑

τ=1

N∑
i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

where {Xi (τ)} are unknown
random variables.

→

Stochastic Maximum Weighted Matching
(MWM)

max RMWM
a (t) = E[

t∑
τ=1

|E |∑
i=1

ai (τ)Wi (τ)]

s.t. a(τ) is a matching

where {Wi (τ)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction Applications

Application Examples

General Formulation

max E[
t∑

τ=1

N∑
i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

where {Xi (τ)} are unknown
random variables.

→

Stochastic Maximum Weighted Matching
(MWM)

max RMWM
a (t) = E[

t∑
τ=1

|E |∑
i=1

ai (τ)Wi (τ)]

s.t. a(τ) is a matching

where {Wi (τ)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction Applications

Application Examples

General Formulation

max E[
t∑

τ=1

N∑
i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

where {Xi (τ)} are unknown
random variables.

→

Stochastic Maximum Weighted Matching
(MWM)

max RMWM
a (t) = E[

t∑
τ=1

|E |∑
i=1

ai (τ)Wi (τ)]

s.t. a(τ) is a matching

where {Wi (τ)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

How to allocate channels to secondary users?

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction Applications

Application Examples

General Formulation

max E[
t∑

τ=1

N∑
i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

where {Xi (τ)} are unknown
random variables.

→

Stochastic Maximum Weighted Matching
(MWM)

max RMWM
a (t) = E[

t∑
τ=1

|E |∑
i=1

ai (τ)Wi (τ)]

s.t. a(τ) is a matching

where {Wi (τ)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

How to allocate channels to secondary users? arm 1?

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction Applications

Application Examples

General Formulation

max E[
t∑

τ=1

N∑
i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

where {Xi (τ)} are unknown
random variables.

→

Stochastic Maximum Weighted Matching
(MWM)

max RMWM
a (t) = E[

t∑
τ=1

|E |∑
i=1

ai (τ)Wi (τ)]

s.t. a(τ) is a matching

where {Wi (τ)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

How to allocate channels to secondary users? arm 2?

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction Applications

Application Examples

General Formulation

max E[
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Application: learning multiuser channel allocations in cognitive radio networks.

How to allocate channels to secondary users? arm 3?
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Application Examples

General Formulation

max E[
t∑
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Application: learning multiuser channel allocations in cognitive radio networks.

How to allocate channels to secondary users? arm 4?
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Application: learning multiuser channel allocations in cognitive radio networks.

How to allocate channels to secondary users? arm 6?
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max E[
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i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

where {Xi (τ)} are unknown
random variables.
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a (t) = E[

t∑
τ=1

|E |∑
i=1

ai (τ)Wi (τ)]

s.t. a(τ) is a matching

where {Wi (τ)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

Q channels, M coordinated secondary users.→ only Q ×M unknown variables!→ P(Q, M)
matchings (arms)! (e.g. 9× 5 = 45, however P(9, 5) = 15120)
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Introduction Challenges

Challenges (1)

A K -armed classic MAB with single play (K = |F|):

MAB with Linear Rewards

max E[
t∑

τ=1

N∑
i=1

ai (τ)Xi (τ)]

s.t. a(τ) ∈ F

a more efficient and better
algorithm is needed!

→

Classic MAB with single play

max E[
t∑

τ=1

Ya(τ)]

s.t. a(τ) ∈ F

where Ya(τ) =
N∑

i=1

ai (τ)Xi (τ), K = |F|

(e.g. K = P(N, M)).

arms #: exponentially in N

Exponential storage.
Exponential computation time.
The upper bound of regret
grows exponentially.
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Introduction Challenges

Challenges (2)

Challenges due to restless Markovian rewards:

transitions occur no matter played or not (every time slot)

the current state while starting to play a Markov chain depends not only on
the transition probabilities, but also on the policy

the policy design for the restless case is much more difficult
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Combinatorial Learning with Restless Markov Rewards (CLRMR)

Outline

1 Introduction
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Contribution

Our Contribution

A new algorithm for this more general problem (parameterized by F):

Combinatorial Learning with Restless Markov Rewards (CLRMR)

only O(N) storage

achieves regret of O(N4 ln t) (uniformly)

polynomial running time whenever the underlying problem (which
corresponds to F) is in P (or admits approximation algorithms)

It is the first to show how to efficiently implement online learning for stochastic
combinatorial network optimization when edge weights are dynamically evolving as
restless Markovian processes.
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Proposed Algorithms

Key ideas

1 only use info. from regenerative cycle (of the multidimensional Markov chain
{X a(n))

3 sub-blocks: SB1, SB2 and SB3

2 Utilize dependencies to improve efficiency

Storage

store and use the observations for each MC

for MC {X i (n)}, 3 N-dimensional vectors:

z̄ i
2: sample mean of observed values in SB2

mi
2: # of observed times in SB2

ζ i : a pre-specified state (to determine the regenerative cycle)
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Proposed Algorithms

How the CLRMR Algorithm Works

Initialization: play arms s.t. each MC is observed at least once.

↓

Main loop:
//SB1

decide which arm to play in this block:
pick a which solves the maximization problem

max
a∈F

∑
i∈Aa

ai

(
z̄ i
2 +

√
L ln t2

mi
2

)
;

keep playing a

//SB2
when ζa = (ζ i )i∈Aa occurs, keep playing a, update z̄ i

2, mi
2

after each play

//SB3
when ζa = (ζ i )i∈Aa occurs again, stop playing
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Analysis of Regret

Upper Bound of Regret

Traditional approach:
bound expected # times each non-optimal arm is played & sum over all arms → bound on
regret

Bound is linear in # arms

But: in CLRMR, we have exponentially many arms!

Can we do better?

Yes! We prove a tighter bound: O(N4 ln t) (or O(N3L ln t)).
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Analysis of Regret

Upper Bound of Regret

Theorem

When using any constant L ≥ 56(H + 1)S2
maxr

2
maxπ̂

2
max/εmin, the regret of CLRMR

is at most
RCLRMR(t) ≤ Z3 ln t + Z4

where

Z3 = Z1 + Z5
4NLH2a2max

∆2
min

, Z4 = Z2 + γ
∗(

1

πmin

+ Mmax + 1) + Z5(N +
πNHSmax

3πmin

)

and

Z1 = ∆max

(
1

Πmin

+ Mmax + 1

)
4NLH2a2max

∆2
min

, Z2 = ∆max

(
1

Πmin

+ Mmax + 1

)(
N +

πNHSmax

3πmin

)
,

Z5 = γ
4
max(

1

Πmin

+ Mmax + 1 −
1

πmax
) + γ

∗M∗max

Notations:
H : max

a
|Aa|. Note that H ≤ N

π̂i
x : max{πi

x , 1 − πi
x}

π̂max: max
i,x∈Si

π̂i
x

πmax: max
i,x∈Si

πi
x

εi : eigenvalue gap, defined as 1 − λ2,
where λ2 is the second largest eigenvalue

of the multiplicative symmetrization of Pi

εmin: min
i

εi

Smax: max
i
|Si |

rmax: max
i,x∈Si

r ix

amax: max
i∈Aa,a∈F

ai

∆a : γ∗ − γa

∆min: min
γa≤γ∗

∆a

∆max: max
γa≤γ∗

∆a

Πa
z : steady state distribution for state z of {Xa(n)}

Πa
min: min

z∈Sa
Πa

z

Πmin: min
a,z∈Sa

Πa
z

γ
4
max: max

γa≤γ∗
γa

Ma
z1,z2

: mean hitting time of state z2 starting from an

initial state z1 for {Xa(n)}
Ma

max: max
z1,z2∈Sa

Ma
z1,z2

Mmax: max
γa≤γ∗

Ma
max
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Combinatorial Learning with Restless Markov Rewards (CLRMR) An Extension

An extension of CLRMR

When (a bound of) Smax, rmax, π̂max or εmin is unknown, L cannot be determined.
What shall we do?

An extension of CLRMR: using any arbitrarily slowly diverging non-decreasing
sequence L(t) such that L(t) ≤ t for any t.
(replacing the maximization in CLRMR accordingly with

max
a∈F

ai

(
z̄ i
2 +

√
L(n(t2)) ln t2

mi
2

)

where n(t2) is the time when total number of time slots spent in SB2 is t2)
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An extension of CLRMR: using any arbitrarily slowly diverging non-decreasing
sequence L(t) such that L(t) ≤ t for any t.
(replacing the maximization in CLRMR accordingly with

max
a∈F

ai

(
z̄ i
2 +

√
L(n(t2)) ln t2

mi
2

)

where n(t2) is the time when total number of time slots spent in SB2 is t2)

Theorem

The expected regret under the CLRMR policy with using L(t) is at most

RCLRMR−LN(t) ≤ Z6L(t) ln t + Z7 (2)

where Z6 and Z7 are constants.
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where n(t2) is the time when total number of time slots spent in SB2 is t2)

Theorem

The expected regret under the CLRMR policy with using L(t) is at most

O(N3L(t) ln t)
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Simulations

Simulation Results (1)

Application: Stochastic Shortest Path

19 links, 260 acyclic paths
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Combinatorial Learning with Restless Markov Rewards (CLRMR) Simulations

Simulation Results (2)

Application: Channel Allocations in CRN

9 orthogonal channels, 5 secondary users
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More Works on MAB with Linear Rewards:
Problems Random Process Proposed Algorithms Regret Bound∗
MAB with Linear Rewards i.i.d. LLR O(N4 ln t)

LLR-K O(N4 ln t)

LLR with β-approximation O(N4 ln t)\

MAB with Linear Rewards Rested Markovian MLMR O(N4 ln t)]

Rested Markovian O(L(t)N3 ln t)†

MAB with Linear Rewards Restless Markovian CLRMR O(N4 ln t)]

Restless Markovian O(L(t)N3 ln t)†

Notes:
∗. Upper bounds on regret are achieved uniformly.
\. β-approximation regret.

]. weak regret; an upper bound on L is known.
†. L(t) is any arbitrarily slowly diverging non-decreasing sequence.

Papers and Collaborators:

SECON’12, DySPAN’10, IEEE/ACM Trans. Networking, Globecom’11, Machine Learning
(under submission), Infocom’12 (mini-conf), arXiv(under submission)

joint work with Bhaskar Krishnamachari, Mingyan Liu, Rahul Jain.
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Conclusion

Conclusion (2)

Broad applications:

Sensor Networks

Cognitive Radio Networks

Web Search

Internet Advertising

Energy Distribution Networks

Social Economical Networks

......
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Conclusion

Thanks!

ygai@usc.edu
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