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ABSTRACT

In this paper we consider the problem of searching for a
node or an object (i.e., piece of data, file, etc.) in a large
network. Applications of this problem include searching for
a destination node in a mobile ad hoc network, querying
for a piece of desired data in a wireless sensor network, and
searching for a shared file in an unstructured peer-to-peer
network. We limit our attention in this study to the class
of controlled flooding search strategies where query/search
packets are broadcast and propagated in the network until a
preset TTL (time-to-live) value carried in the packet expires.
Every unsuccessful search attempt results in an increased
TTL value (i.e., larger search area) and the same process is
repeated. The primary goal of this study is to derive search
strategies (i.e., sequences of TTL values) that will minimize
the cost of such searches associated with packet transmis-
sions. The main results of this paper are as follows. When
the probability distribution of the location of the object is
known a priori, we present a dynamic programming formu-
lation with which optimal search strategies can be derived
that minimize the expected search cost. We also derive the
necessary and sufficient conditions for two very commonly
used search strategies to be optimal. When the probability
distribution of the location of the object is not known a pri-
ori and the object is to minimize the worst-case search cost,
we show that the best strategies are randomized strategies,
i.e., successive TTL values are chosen from certain prob-
ability distributions rather than deterministic values. We
show that given any deterministic TTL sequence, there ex-
ists a randomized version that has a lower worst-case ex-
pected search cost. We also derive an asymptotically (as
the network size increases) optimal strategy within a class
of randomized strategies.
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1. INTRODUCTION

In this paper we consider the problem of searching for
a node or an object (e.g., piece of data, file, etc.) in a
large network. The ability to conduct cost effective and
fast searches has become an increasingly critical component
required by many emerging networks and their applications.

A prime example is data query in a large wireless sensor
network, where different data is distributed among a large
number of sensor nodes based on different sensor readings. A
query may be initiated by any node in search of certain data
of interest (e.g., the position coordinates where temperature
has exceeded a certain level) [1]. As it is not known a priori
where the data might be located, or which node has the
data, the query has to be somehow advertised to nodes in the
network. As the query propagates, a node that has the data
that matches the interest will respond to the querying node
with the desired data [2]. There may be more than one node
in the network (or sometimes none) that has the queried
data. Depending on the underlying application, we may
need to locate one, some, or all of these nodes. Search has
also been extensively used in mobile ad hoc networks. This
includes searching for a destination node by a source node
in the route establishment procedures of an ad hoc routing
protocol (e.g., [3]), searching for a multicast group by a node
looking to join the group (e.g., [4]), and locating one or
multiple servers by a node requesting distributed services
(e.g., [5]). Search is also widely used in peer-to-peer (P2P)
networks, marked by the need to locate desired objects/files
that are shared among nodes in the network.

A good search mechanism should have a short response
time, i.e. the time it takes to find the object/data of in-
terest, and should do so with minimal cost. In ad hoc and



sensor networks cost refers to the energy consumption in-
curred by the search, and will be measured by the amount
of packet transmissions involved. For these networks low
cost is crucial if due to the stringent energy constraint.

There are a variety of mechanisms one may use to search
or locate a node/object in a large network. The first is to
maintain a centralized directory service, where nodes issue
queries to the central directory to obtain the location of the
search target. The central directory needs to be constantly
updated as the network topology and data content change.
Such systems tend to have very short response time, if the
directory information is kept afresh. On the other hand, cen-
tralized systems often scale poorly as the network increases
in size, and as location information changes more frequently
(either due to topology change as a result of mobility or due
to the information content change in the network). The
latter necessitates a large amount of information update
which can cause significant energy consumption overhead,
especially when the queries occur less frequent compared to
changes in the network.

A second class of methods, which is decentralized, is the
random walk based search, where the querier sends out a
query packet which is forwarded in a random walk fashion,
until it hits the search target. These can be pure random
walks or controlled walks such that the propagation of the
packet is maintained in an approximately consistent direc-
tion. In particular, [2] proposed random walks initiated by
both the querier and the node that has data of potential in-
terest (called advertisement). There have been many results
on estimating the search cost and response time using such
approaches, see for example [6].

In this paper we will take a fresh look at another very
widely used search mechanism that uses TTL-based con-
trolled flooding of query packets. This method is widely
used in ad hoc routing protocols [7], as well as wired net-
works [8]. This is also a decentralized approach in that no
central directory of information is maintained. Under this
scheme the query/search packet is broadcast and propagated
in the network. A preset TTL (time-to-live) value is carried
in the packet and every time the packet is relayed the TTL
value is decremented. This continues until TTL reaches zero
when the propagation stops. Therefore the extent/area of
the search is controlled by the TTL value. If the target is
located within this area, the corresponding node will reply
with the queried information. Otherwise, the origin of the
search will eventually time out and initiate another round
of search covering a bigger area using a larger TTL value.
This continues until either the object is found or the querier
gives up. Consequently the performance of a search strategy
is determined by the sequence of TTL values used. Com-
pared to random walk based approaches, controlled flooding
search is much easier to implement, and is likely to result in
shorter response times on average.

In this study we will limit our attention to the class of
TTL based approaches and will not attempt to make quanti-
tative comparison between this and other mechanisms. Our
primary goal is to derive, within this class, search strate-
gies (i.e., sequences of TTL values) that will minimize the
cost of such searches, with the intention that they can be
applied to wired and wireless networks alike, static or mo-
bile, although decentralized and unstructured searches are
more relevant in a wireless scenario, particularly in a wire-
less sensor network. We will not consider the response time

of a search strategy in this paper. One reason is that within
the class of controlled flooding search, the fastest search is
to flood the entire network. In addition, since the search
cost is a function of the number of packet transmissions and
receptions, the goal of minimizing cost is generally aligned
with the objective of locating the object quickly.

For the rest of our discussion we will use the term object
to indicate the target of a search, be it a node, a piece of
data or a file. We will measure the position of an object
by its distance to the source originating the searching. We
will use the term location of an object to indicate both the
actual position of the search target within the network and
the minimum TTL value required to locate this object. The
terms search strategy or simply strategy will take on a more
limited meaning within the context of controlled flooding
search and refer to a TTL sequence.

Main results of this paper are summarized as follows.

1. When the probability distribution of the location of
the object is known a priori, we present a dynamic
programming formulation with which optimal search
strategies, i.e., the optimal sequence of TTL values
that minimize the expected search cost, can be derived.

2. We derive the necessary and sufficient conditions on
the location distribution under which two of the very
common search strategies are optimal. The first is the
complete flooding of the network (i.e., the use of a
single TTL value that covers the entire network); the
second is a special case of the expanding ring search
where TTL values are incremented by one every time
a new search is initiated.

3. When the probability distribution of the location of the
object is not known a priori and adopting the objec-
tive of minimizing the worst-case search cost, we show
that the best strategies are randomized strategies that
consist of sequence of random variables, i.e., successive
TTL values are drawn from certain probability distri-
butions rather than being deterministic values. To the
best of our knowledge randomized strategies have not
been proposed or studied in this context before. We
show that given any deterministic TTL sequence, there
exists a randomized version that has a lower worst-case
expected search cost. The construction of the random-
ization is presented.

4. For the best worst-case performance measure, we also
derive an asymptotically (as the network size increases)
optimal strategy from a class of randomized strategies
under a linear cost assumption.

The rest of the paper is organized as follows. In Section
2 we present the network model, assumptions on the search
cost function, and the two performance objectives. In Sec-
tion 3 we present the dynamic programming formulation and
derive optimal search strategies for the case when distribu-
tion of the location is known a priori. Section 4 introduces
the class of randomized strategies and examines their per-
formance when the distribution of the object is not known a
priori. Section 5 provides a discussion and some simulation
results on a number of search strategies. Section 6 concludes
the paper.



2. PROBLEM FORMULATION

In this section, we present the network model and intro-
duce the cost measures and performance objectives of search
strategies.

2.1 Network Model and Search Strategy

Within the context of the TTL-based controlled flooding
search, the distance between two nodes is measured in num-
ber of hops, assuming that the network is connected. Two
nodes being one hop away means they can reach each other
in one transmission. In particular, in a wireless scenario
each transmission covers a specific region given the limita-
tion on the transmission power, channel fading, etc. All
nodes within that region will be considered one-hop neigh-
bors of the transmitting node.

As described in the previous section, the node originating
the search begins by determining an initial positive integer
TTL value, and passes this number along with its search
query to its neighboring nodes. If the underlying network is
wired, this query will be transmitted once along each out-
going link of the originating node. For a wireless network,
the originating node can reach all its neighbors in a single
broadcast transmission. If the object is found at a neigh-
boring node, then the corresponding node will reply to the
originating node. If a neighboring node does not have the
desired object, it will decrement the TTL value by one and
pass the query to its neighbors in the same fashion. In this
way the query packets are duplicated and propagated in the
network.

The above process repeats until either the object has been
located or the T'TL value reaches 0, at which point the query
packet is dropped. The originating node starts a timer when
the first query packet is sent. If it does not get a response
back before the timer expires, it will begin a new round
of search by selecting a strictly larger TTL value, and the
above procedure is repeated. The TTL value is increased in
subsequent rounds until the object is located.

In a practical system, a variety of techniques may be used
to reduce the number of query packets flowing in the net-
work and to alleviate the broadcast storm problem [9]. For
example, a node should suppress multiple copies of the same
query it receives. In our analysis we will ignore these tech-
nical details, and simply assume that a search with a TTL
value of k will reach all neighbors that are k hops away from
the originating node, and that the cost associated with this
search is a function of k, denoted by Ck. This cost may
include the total number of transmissions, receptions, etc.
Thus C}, is the ultimate abstraction of the nature of the un-
derlying network and the specific broadcast schemes used.
For the rest of our discussion we will no longer regard net-
work as wired or wireless, but only discuss in terms of the
search cost Cl, since in essence it abstracts the relevant fea-
tures of lower layers.

We summarize the assumptions underlying our network
model as follows.

1. We assume that a single target object exists in the
network. Therefore flooding the entire network will
for sure locate the object. The approach used and
the results derived for this problem can be extended
to searching for multiple targets (all or some of them,
as is the case with service replication or distributed
caching) by considering the joint distribution of these
objects.

2. We do not explicitly model the channel interference
and packet collision in the network, and simply assume
that a TTL value of k will reach all nodes within k
hops of the originating node. This essentially assumes
that the redundancy inherent in the query broadcast
process ensures that a node receives correctly at least
one copy of the same query.

3. A search with TTL value of k incurs a cost Cx. The
functional form of this cost depends on the proper-
ties of the network as well as the underlying broadcast
techniques mentioned earlier.

4. We will assume that the timeout values are perfectly
set such that when the timer expires for a query with
TTL value k, that query has reached all nodes k£ hops
away. Put in another way, we are assuming that there
is no excessive delay in the network, thus a timeout
event is equivalent to not finding the object in the k-
hop neighborhood.

Assumptions (2) and (4) are obvious simplifications, which
nevertheless allow us to reveal fundamental features of the
problem and obtain insights. We will discuss relaxing these
assumptions in Section 5.

We denote by L the minimum TTL value required to
search every node within the network, and will also refer
to L as the dimension or size of the network. Since we have
assumed that the object exists, using a TTL value of L will
locate the object with probability 1.

We will use X to denote the minimum TTL value re-
quired to locate the object. We will also loosely refer to X
as the object “location”. Note that X is an integer-valued
random variable taking values between 1 and L such that
Pr(X € {1,2,---,L—1,L}) = 1. We denote the cumulative
distribution of X by F'(k). By definition F'(k) = Pr(X < k).
Similarly, the tail distribution of X is denoted by F'(k), so
that F'(k) = 1 — F(k) = Pr(X > k). Note that F(L) = 1
and F(L) =0 for any X.

Note that we are not making any explicit assumptions on
the distribution of the node deployed in the network (e.g.,
uniformly distributed). This is because such information is
implied in F(k).

For a given search strategy, we will denote by u; the TTL
value used during the i-th round, and let u = [u1,uz, -+ , un]
be a vector denoting the increasing sequence of N TTL (in-
teger) values. The N-tuple u represents a specific search
strategy. For any sensible strategy, we must have u; < wiy1,
for all 1 <i< N — 1. Note that in a specific search experi-
ment we may not need to use the entire sequence. However,
in order to guarantee that the strategy u will locate the ob-
ject with probability 1, it must be true that uy = L. Also
note that the value of N can vary between different policies.

2.2 Search Costs

As discussed earlier we will associate a round of search
with TTL value k with a search cost C. It is important to
note that in general, a node receiving the search query on
the same round that the object is found in another node will
be unaware that the desired object has just been located.
(The only exception is perhaps a linear network where each
transmission reaches only one neighboring node.) Conse-
quently, this node will continue decrementing its TTL value
and passing the search query to more neighbors. We can



therefore assume that search costs are paid in advance; that
is, the search cost for each round is determined by the TTL
value and not by whether the object is located in that round.

We will adopt the natural assumption that C; > C; if j >
l, i.e., the cost increases as the search covers a bigger region.
For the analysis in Section 3 this is the only assumption we
need.

In Section 4 we will further investigate two specific types
of cost functions, a linear cost and a quadratic cost. The
first refers to a cost of the type

Ck:(X'k‘,

for some constant o > 0, i.e., the cost is proportional to the
TTL values used. This is a good model in a network where
the number of transmissions incurred by the search query is
proportional to the TTL value used, e.g., in a linear network
with constant node density.

The quadratic cost refers to the type

Ck:a~k2

for some constant « > 0. This is a more reasonable assump-
tion for a two dimensional network, as the number of nodes
reached in k hops is on the order of k?. In particular, in
a wireless network with uniformly distributed nodes (thus
the number of nodes in an area is proportional to the size
of the area), one can show the number of transmissions in-
curred by the search is on the same order. Changing the
retransmission/rebroadcast scheme may result in a different
constant, but with the same order. In Section 5 we present
simulated cost as a function of k. It was mentioned in [8]
that the number of transmissions incurred with a TTL value
of k is roughly k+Bk?, where 3 is some constant depending
on the network parameters. Here we ignore the linear term
and concentrate only on the quadratic part.

In Section 4.6 we will establish a mapping between the
simple linear cost and more general cost functions.

2.3 Performance Measures

We will adopt two performance measures in this study.
When the distribution of the object location X is known a
priori, our goal is to find search strategies that will minimize
the expected search cost, given that distribution. We will
refer to this as the average cost measure or performance
objective, and the corresponding strategies optimal average
cost strategies. These will be precisely defined in Section 3.

When the distribution of the object location X is not
known a priori, our goal is to find search strategies that
will minimize the search cost in the worst case scenario,
i.e., min-max strategies. We will refer to this as the best
worst-case measure, and the corresponding strategies best
worst-case strategies. This measure as well as the definition
of a worst-case scenario will be precisely defined in Section
4.

All proofs are provided either in the text or in the ap-
pendix.

3. OPTIMAL AVERAGE COST
STRATEGIES

In this section we consider strategies that minimize the
expected search cost when the probability distribution of
the object location X is known a priori. We first present
a dynamic programming formulation with which optimal

strategies may be obtained. We then derive conditions on
the distribution of X under which two very commonly used
TTL sequences are optimal.

3.1 A Dynamic Programming Formulation

Consider object location X with a tail distribution F(k),
where 1 < k < L, and a search strategy with TTL values
u = [u1,us2, - ,un]. The total expected search cost using
strategy u is given by

Ny Ny
J¥ = CuPr(X >ui1) = Cu;F(ui), (1)
=1

i=1

where N, is the number of elements in the vector u, Cy,; is
the cost of searching with TTL value u;, and uo = 0 is as-
sumed. The search policy that minimizes this cost, denoted
by u*, is thus

Ny,
* . u _ . = .
u’ = argmin Jx = argmin E 1 Cu, F(ui-1) , (2)
i=

where U denotes the set of all admissible search strategies
(TTL sequences), i.e., all vectors u such that u; < w41 for
all 1 <i< N —1 and uny = L as explained in Section 2.

This minimization can be solved backward in time us-
ing standard dynamic programming techniques [10]. Specif-
ically, we use the most recently used TTL value, denoted by
n, as the information state. For convenience we will denote
by F'(j|n) the conditional tail distribution of the object given
that the most recently used TTL value n did not locate the
object, i.e.,

F(jln)

Pr(X > j|X >n) (3)
_ [ 1<j<n
- {FUVFM)n+1§j§L

We then obtain the following dynamic programming equa-
tions that can be solved recursively for 0 < n < L — 1:

V(L) = 0 (4)

Vi) = min {CHFUnVO} . )
where the value function V(n) is the minimum expected
cost-to-go (over all choices of TTL values), given that the
most recently used TTL value n did not locate the object.

The initial condition (4) reflects the fact that using a TTL
value of L ensures finding the object and thus there would
be no more remaining cost. Equation (5) follows from the
fact that after unsuccessfully searching with a TTL value
of n, the remaining choices for TTL values are the integers
from n + 1 to L. Any such choice ! incurs an immediate
search cost C) plus an expected future cost if the object is
not located using I. Note that because F(L|n) = 0 for any
value of n, V(L — 1) = C, for any search strategy from (5).
This agrees with the fact that if searching with a TTL value
of L — 1 is unsuccessful, then the only remaining option is
to search with a TTL value of L.

Solving this set of equations backward we can obtain V' (n)
for all n and determine the optimal TTL sequence u*. Fi-
nally V(0) is the optimal (minimum) total expected search
cost minyey JY%.

As an example, consider the special case where X is uni-
formly (discrete) distributed between 1 and L on a linear
network. Therefore, F(I) = £ for 1 < 1 < L—1, and



F(lln) = £=L for n <1 < L — 1. Further assume that the
search cost is linear, i.e., Cx = ak for TTL value k£ and
some constant a. We can then calculate V(L — 2) as follows
(noting L > 2):

V(L-2) =  min {Ci+FUL-2)V()}
= min{C’L,1 + %701,}

. L—-1 1
= CL'ITIIH{T 571}:CL (6)

Repeating the above calculation, we can easily show that
V(n) = Cp for 1 < n < L—1, meaning that if using a
TTL value of n fails to locate the object, then it is optimal
to next use a TTL value of L. Consequently the minimum
total expected cost is

V) = min {Ci+ FOVD)}

= min {OI—FL—ZCL}

1<I<L L

. l L—1
= CL.121§HL{E+—L }_CL (7)

Therefore, the optimal search cost when X is uniformly dis-
tributed with linear search cost is C. From Eqn. (7) we see
that this minimum can be obtained by either using an ini-
tial TTL value of L so that u = [L], or by using u = [u1, L]
where w1 is any integer such that 1 < w1 < L — 1 (they are
equally optimal).

This set of equations can be similarly solved for general
cost functions and location distributions to obtain the op-
timal search strategy as well as the optimal total expected
search cost. Unfortunately, optimal strategies cannot in gen-
eral be qualitatively described without referring to specific
numerical computation and therefore will not be discussed
further in this paper (the above linear network with uni-
formly distributed location example is a nice exception).

Instead we will examine two very commonly used search
strategies and consider the reverse problem, i.e., under what
conditions are these strategies optimal.

3.2 Preliminaries

We derive some basic properties of the value function V' (n)
that will be useful in later sections.

Proposition 1. For any object location X with tail dis-
tribution F', the value function V (n) is a nondecreasing func-
tion of the information state n, i.e.,

V) <V(k) if I<k. (8)

Proof. From (3) we have that | < k implies F(j|1) < F(jlk)
for all j. Thus

V) = min {C+FGIDVG)}

min_{C; + F(j|k)V(5))}

I+1<j<L

min_ {C; + FGIKV(G)} =V(k)  (9)

k+1<j<L

IN

IN

proving the proposition. [

This result implies that after each unsuccessful round of
search, the expected cost-to-go increases. The increase is
due to the fact that after each unsuccessful search, it is more

likely that the object is located far away, thus requiring a
larger search cost. Using Proposition 1 we can obtain the
following result.

Proposition 2. If V(I) = Cr for some value of I, where
1<I<L-2thenV(k)=Cr foralll+1<k<L-1.

Proof: 1f V(1) = Cr, then from Proposition 1 we have that
V(k) > V(l) = Cr for k > l. However, from equation (5)
we also have

V) = min {C+F(KV(G)}

k+1<j<L

= min min
k+1<j<L—1

{a+FMMWﬁL&}
< Cp. (10)

Thus V (k) > Cr and V (k) < Cr, implying V (k) = Cr. O

This result implies that if it is optimal to use a TTL value
of L after having searched unsuccessfully with a TTL value
of j, then it is also optimal to use a TTL value of L after an
unsuccessful search with a TTL value of k, for any k > j.

In the next subsection we consider two specific search
strategies, namely the broadcast flooding and the expanding
ring search.

3.3 Broadcast Flooding and Expanding Ring
Search

Under the broadcast flooding search scheme, all nodes are
searched on the first round, i.e., u; = L. Broadcast flooding
always locates the object on the first search and thus incurs
a fixed search cost of Cf..

Note that if broadcast flooding is the optimal average-
cost strategy, then V(0) = Cr. In Section 3.1, we showed
that broadcast flooding is the optimal strategy to employ
when the object location is uniformly distributed on a linear
network. A more general result is as follows, by defining the
normalized cost C’k as

Go=C2% 1<k<L. (11)
Cr
Theorem 1. For any value of n where 0 < n < L —2,
V(n) = Cp iff F(kln) > 1 — Cy = “.=C% for all k such that
1<k<L-1.

Theorem 1 implies the following corollary.

Corollary 1. Broadcast flooding is the optimal strategy
iff F(k) > 1—Cy for all1l < k < L—1. FEquivalently,
broadcast flooding is optimal iff F(k) < Cy for all 1 < k <
L-1.

Corollary 1 is a special case of Theorem 1 with n = 0.
These results reflect the following intuition: broadcast flood-
ing search is optimal if and only if the “return” (chances of
finding the object) is at least the “cost” (the normalized
additional cost incurred by flooding).

If we construct a random variable Y with tail distribution
given by the function 1 — C%, then we can see from Corol-
lary 1 that broadcast flooding is optimal if and only if X
is stochastically larger than Y. Figure 1 depicts an exam-
ple of a tail distribution under which broadcast flooding is
the optimal search strategy, where L = 100 and the cost is
linear. In fact, broadcast flooding is optimal for any object
location X with tail distribution that lies “above” or at the
dashed line in the figure.
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Figure 1: Example of a tail distribution F(k) (val-
ues given by asterisks) for X under which broadcast
flooding is optimal, when cost is linear and L = 100.
Normalized cost function Cj given by dashed lines.
Note that for this example, broadcast flooding is op-
timal for any object location X with tail distribution
that lies “above” or at the dashed line in the figure.

The second commonly used search strategy is the expand-
ing ring search scheme. Here we consider a special case of
this scheme, where u; =i for 1 <i < L, i.e., the TTL value
is incremented by 1 after each unsuccessful round of search.
Note that the expected search cost for expanding ring search
is given by S5 CiF(1 — 1).

Theorem 2. Given that a TTL value n on the m-th search
failed to locate the object, it is optimal to use TTL values of
Um+t = n+1 foralll, 1 <1< L-—n (ie., increment the
TTL by 1 after each additional unsuccessful search) iff

= Cm+2 - C’m+1

F(m+1m) < Cmir

=1-

Cm+2 Cm+2

for n<m<L-2

This condition is equivalent to

Pr(X:m|X2m)>CC—m ntl<m<L—1.(12)

- m—+1

The proof of Theorem 2 is similar to the proof of Theorem
1 and therefore omitted from the text; for a complete proof,
see [11]. Setting n = 0, we obtain the following sufficient
and necessary condition on the object tail distribution in
order for an expanding ring search scheme to be the optimal
strategy.

Corollary 2. Ezpanding ring search (i.e., setting u; = 1)
is the optimal average cost search strategy iff

Fim+1)
F(m) —

This condition is equivalent to

Cm+1

o, 0<m<L-2.
m—+2

Pr(X:m|X2m)2i7 1<m<L-1. (13)
Cm+1

The intuition behind these results is that in order for in-
cremental TTL values to be optimal, the conditional prob-
ability of finding the object on the next search needs to be
sufficiently large compared to the relative costs of searching
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Figure 2: Logarithmic plot of tail distribution for
two objects when L = 100; cost is a linear function
of TTL value. For object 1 (denoted by asterisks),
expanding ring search is optimal strategy. However,
expanding ring search is not optimal for tail distri-
bution of object 2 (dashed line) even though its tail
distribution is stochastically smaller.

at the incremental value and searching further, as clearly
indicated by (12) and (13).

Figure 2 depicts an example of a tail distribution that
satisfies the condition of Corollary 2, where the object lo-
cation is exponentially distributed with F(k) = e ** for
0 < k < L -1, the cost is linear, and A > In(L). Note that
the tail distribution decreases rapidly. This decrease is a
necessary consequence of Corollary 2, and can be described
quantitatively as follows:

Corollary 3. If expanding ring search is the optimal strat-
egy then the following is true for all1 < m < L — 1:

_ m ¢\ I (G =Ci-0)
Fom <11 (-a5)- o, (4

where Coy = 0.

As an example, in a network where CY, is a linear function
of k, (14) then becomes the following inequality for all m
such that 1 <m < L —1:

_ is ] 1
F(m)§g<1_ji1>:(m+1)! (15)

Jj=1
Equation (15) implies that the tail distribution must have
1

a very sharp decrease. For example, F(5) < & = 0.0014
must be true in order for expanding ring search to be op-
timal; in other words, the probability that the object can
be located with a TTL value of 5 must be at least .9986.
This requirement holds regardless of the network dimension
L. This result essentially reveals the observation that the
expanding ring search may only be used when the object is
expected to be in a very close neighborhood.

Earlier, we saw that when broadcast flooding is the op-
timal strategy for an object location with tail distribution
X, then it is the optimal strategy for object with tail dis-
tribution Y if Y is stochastically larger than X. However,
an analogous result does not hold for the expanding ring
search, as shown in the Figure 2.




4. BEST WORST-CASE PERFORMANCE
STRATEGIES

In the previous section we examined search strategies that
minimize the expected search cost for a given object location
distribution. We now turn to the problem of finding good
search strategies when this probability distribution is not
known a priori. In this case, a natural performance criterion
is the worst-case performance. That is, we would like to find
a search strategy that has the lowest worst-case cost.

It has been shown in [8] that under a linear cost, the
California Split rule achieves asymptotically (as the network
size increases) the minimum worst-case cost. However, we
will show in Sections 4.2 and 4.3 that this is true when only
fixed or deterministic search strategies are considered. It is
in fact always possible to find a random TTL sequence for
any given nonrandom sequence that performs better in the
worst case. Therefore, under this criterion the best search
strategies are randomized strategies.

4.1 Randomized Strategies and Worst-Case
Performance Measure

With a slight abuse of notation, we introduce randomized
search strategies as follows:

Definition 1. A randomized search strategy u is a TTL
sequence that consists of random variables of certain proba-
bility distributions (discrete), i.e., u = [u1,uz2,- - , un] where
u; 18 a random wvariable, 1 < ¢ < L, and their distribution
can be independently or jointly defined.

This is a generalization of the previous definition of a
(nonrandom) search strategy that consists of deterministic
TTL values. Accordingly, we will now expand the set of all
possible search strategies U to include both nonrandom and
random search strategies. Note that with this inclusion, we
are now faced with a much bigger set of strategies.

We will use the same notation J% to denote the expected
search cost of using strategy u for object location X, noting
that when u is a deterministic vector J% is the average over
all realizations of X as defined in (1), while u being a random
vector means J% is the average over all realizations of X as
well as all realizations of u. We only consider the case where
the random vector u and X are mutually independent since
the distribution of X is not known a priori.

On the other hand, the expected search cost using an
ideal (omniscient) observer who knows precisely the location
(realization of X) is F[Cx], where Cx = C(X) is the cost
of searching with TTL value X (linear or quadratic as given
earlier). This is also the best (minimum cost) obtainable.
We will use the ratio between these two costs %7 also
referred to as the cost ratio, to evaluate the performance of
strategy u. This is a slight generalization of the criterion
used in [8] where only linear search cost for deterministic
TTL sequences is considered.

The worst-case performance (cost ratio) for any strategy

u is therefore
u

Y= sup —=X | 16
77 foxioy BICK] 1)
where the supremum is taken over all possible probability
distributions {px(x)} for the object location. The quantity
p" is also known as the competitive ratio with respect to an
oblivious adversary [12] who knows the search strategy u in

advance.

The best worst-case strategy, denoted by u*, is one that
achieves the minimum over all admissible search strategies,
denoted by p*:

u
X

A T e o e R
We require that any probability distribution within the set
{px (z)} must satisfy E[Cx] < oo, so that the object can be
located with finite average cost.
The following lemma will be critical in our subsequent
analysis.

Lemma 1. For any search strategy u € U (random and
nonrandom,),
Jx Jy
u X T
p= sup =2 = sup L2 (18)
x @) BlCx]  sez+ Co
where Jy denotes the expected search cost using TTL se-
quence u when Pr(X = z) =1, C; is the search cost using
TTL value x, and Z* denotes the set of natural numbers
and represents all possible singleton object locations.

In words, this lemma says that for any TTL sequence, the
worst case scenario is when the object location is a constant,
i.e., with a singleton probability distribution. We will also
subsequently refer to such a single-valued location as a point.
Note that this constant (i.e., worst case) may not be unique.
This result allows us to limit our attention to singleton-
valued X and equivalently redefine the minimum cost ratio
p* in equation (17) as:

u

J,
s u _ - T
PER R T (19)

4.2 Constructing a Randomized Strategy

In this section we show that for any nonrandom finite
TTL sequence, there exists a random search strategy that
achieves a lower worst-case cost.

We begin by defining a class of search cost functions de-
noted by C as follows:

Definition 2. An increasing cost function Cj of using a
TTL value of k is said to belong to the class C if for all
3<k<L,

Cia
Py
Note that the linear and quadratic costs, given by Cy = ak
and Cy = ak? for some a > 0 respectively, both satisfy (20).
This constraint limits the amount of increase C — Cr_1 in
the cost function, and is introduced for technical reasons (in
proving Theorem 3). The randomization scheme presented
next can be modified accordingly for different cost functions.

Consider any nonrandom TTL sequence given by the finite
length vector g = [g1, 92, - ,gn], where gy = L and g1 <
g2 < ... < gn—1 < gn. Also define go = 0. We have the
following result.

Cr < Cr-1+ (20)

Lemma 2. Let an integer ¥, 1 < 2™ < L, be such that

JE, JE
g _ “r* __ Zx
T e (21)

p

If the cost Cy € C, then either x* = gn + 1 < gn41 for some
0<n<N-1lorz*=gn=0L.



What this lemma says is that under C, € C, the worst-
case location is either immediately following one of the TTL
values in the sequence g, or at the boundary L for any given
deterministic TTL sequence g = [g1, g2, -+ , gn]. This result
is intuitively clear in that the worst location is the closest
point that is outside some searched area g,.

Define a set S as follows:

S JE JE
= <gt<L[:Z= = = 5.

{1 <z*<L oo = max, C’z} (22)
This is essentially the set of all the worst-case location val-
ues. It follows from Lemma 2 that the number of elements
in S is between 1 and N.

We now construct a randomized strategy g from the fixed
sequence g = [g1,92, - ,gn] as follows. Note that the
length of & will vary depending on the values within the
set S.

(C.1) For all g, such that gm +1 ¢ Sand 1 <m < N —1,
define g = gm. That is, we will keep the same TTL
values when they are not next to a worst case point.
In addition, set gn = gnv = L regardless of whether it
belongs to set S.

(C.2) For any gm such that g +1€ Sand 1 <m < N —1,
define gm = gm + 1.

(C.3) Define the following quantities:

JE\ C
. : g_ T x
0<p<m1n{171;ﬂ€1§1{(p _C’z> ML}} ,  (23)

and

Mj= Y (Ci—Ci), 1<j<1L,
i€8,i<j

where Cp = 0. Note that M; is a positive nondecreas-
ing function of j because C; is an increasing function,
and that p is strictly positive. The quantity M; will
be used in our analysis of the cost ratio for the new
TTL sequence g.

(C.4) For the search strategy, we employ the following con-
struction. With probability 1 — p, use the original un-
modified TTL sequence g. With probability p, use
a modified sequence whose elements will depend on
whether the worst-case point occurs at object location
of 1 or L = gn. All four possible cases for this modified
sequence are described in (C.5) through (C.8).

(C.5) Ifgn ¢ Sand 1 ¢ S, use the TTL sequence [§1, g2, ---GN]
with probability p.

(C.6) When gnv ¢ S and 1 € S, it follows from Lemma 2
that g1 > g1 > 1. So we can use the increasing TTL
sequence [1, g1, g2, ...gn] with probability p. Note that
this step only differs from (C.5) due to the insertion of
a ”1” before gi.

(C.7) When gy € S and 1 € S, note that gnv € S im-
plies that gn-1 = L — 1 = gy — 1. This is be-
cause if we assume otherwise, then J gngl = JggN and

JE Jg

gN—1 9N

Con—1 Con

that gy belongs to the set S and achieves the max-

imum cost ratio. Therefore, use the TTL sequence

therefore

, which contradicts the fact

[1, g1, 32, ..-gn—2,gn] with probability p. Note that
this step only differs from (C.6) due to the removal
of ngl-

(C.8) Finally, when gy € S and 1 ¢ S then with probability
p use the TTL sequence [§1, §2, ...GN—2, gn]. Note that
this step only differs from (C.7) due to the removal of
the “1” because 1 &€ S.

The random TTL sequence g = [J1, J2, - - - | generated by
the above steps can be viewed as taking one of two possible
realizations: with probability 1 —p, we will employ the orig-
inal TTL sequence g. With probability p, we will employ a
sequence of modified TTL values {Ji}, where the modified
values will depend on the elements of the set S. This modi-
fied sequence could be shorter or longer than g depending on
whether 1 or gy = L are members of the set S. The advan-
tage of using such a construction is that the expected search
cost will decrease at points which obtain the maximum cost
ratio, as described by the following theorem.

Theorem 3. Consider any nonrandom TTL seq. given
by the integer-valued finite length vector g = [g1, g2, ---gN],
where gy = L and g1 < g2 < ... < gn—1 < gn. Construct
a new random TTL sequence & using the method outlined
above in (C.1) through (C.8). If the cost function belongs to
the class C, then:

g—maxJ—’%< max']—g—g (24)
= 1<z<L Oy  1<z<L Cy pe

Therefore there exists at least one random TTL sequence
given by g that achieves a lower worst-case cost than that
using the nonrandom sequence g.

The key result here is thus that given any fixed nonrandom
TTL sequence, one can always construct a random TTL
sequence that performs better in the worst case. There is a
very nice intuition behind this construction/randomization,
which is to “spread” the cost at the worst-case point to its
neighboring points, and therefore bring down the worst-case
cost. This will be elaborated further via examples at the end
of this section.

Given this result, it is thus clear that under this perfor-
mance criterion, the optimal search strategy must be a ran-
domized strategy. This particular construction obviously
does not guarantee optimality. We next derive a random-
ized search strategy that is asymptotically optimal within a
class of randomized strategies.

4.3 Uniform Randomization

In this subsection we introduce a class of uniformly ran-
domized strategies and derive the asymptotically optimal
strategy within this class in the next subsection. In par-
ticular, we will be interested in the performance of a search
strategy when the network increases in size, and thus will
consider an infinitely large network and infinitely long TTL
sequences. We will also limit our attention to linear search
cost for simplicity and discuss the case of quadratic cost at
the end.

Definition 3. For any infinite, increasing sequence g =
[91, 92, ...] in which the elements gi are positive integers and
gj > gk for all 5 > k, a uniformly randomized TTL se-
quence § = [§1, 32, ...] is created by assigning the following



probability distribution to each TTL random variable gy :

(25)

—— if g <I<gpy1—1
Pr(o. =1) = 9k+1—9k - -
r(ge =10 { 0 otherwise

where | is any positive integer.

Essentially the elements in the nonrandom sequence g =
[91,92,...] serve as the boundaries of a sequence of non-
overlapping ranges over which each random variable g is
uniformly distributed. These ranges collectively cover all
positive integers. Following this definition, for each nonran-
dom TTL sequence, there exists a corresponding uniformly
randomized version.

As the constant « in the linear cost C, = ak gets cancelled
out in the computation of the cost ratio, we will simply
assume that the cost is C = k which does not affect our
discussion. Then the worst-case performance measure given
by (16) reduces to for any o > 0

P = sup L2 (26)
We then have the following result.

Lemma 3. Under a uniformly randomized search strat-
egy & with boundaries defined by the fired sequence g, the
worst-case cost ratio is given by:

g g
g _ JIC _ J{hn
p? = sup == = sup
zezt T mez+ 9m
m 9m+1—91 m
Dopy G+ T —
= sup 2 2 (27)
mez+ gm

Lemma 3 reveals two things. Most important is that the
worst-case object location for a uniformly randomized strat-
egy must be on a boundary g, for some m (this is the lower
boundary of one of the uniform distributions), rather than
an arbitrary positive integer. This greatly simplifies the pro-
cess of finding the worst-case cost ratio. It also gives the
expression of this cost ratio in terms of the boundary se-
quence.

It was shown in [8] that the California Split algorithm,
which uses fixed TTL values of u; = 21'717 achieves a worst-
case cost ratio of p% = 4. It was also shown that this is
asymptotically the best (lowest) over all nonrandom TTL
sequences, and thus the California Split algorithm is asymp-
totically optimal (best worst-case performance) of all non-
random strategies and p = 4 is asymptotically the best
worst-case cost ratio.

In the next section we will show that by including random-
ized search strategies we can do much better (a lower p). In
particular, we will derive the asymptotically optimal search
strategy within the class of uniformly randomized strategies.

4.4 Optimal Uniform Randomization

Consider the following sequence g = {gi}, gr = [7* 7]
for some positive real number r, k = 1,2,---. Define as
in (25) a uniformly randomized search strategy g using the
boundary sequence g. Note that each g = r*~! — §,_; for
some 0 < §x—1 < 1. Taking this boundary value into (27),
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Figure 3: Cost ratio as a function of object location
for a nonrandom TTL sequence (dotted line) with
gk = erilj, r = v/2 + 1 and the cost ratio for its
uniformly randomized version (solid line). Cost is
assumed to be a linear function of TTL values.

we obtain the cost ratio for the randomized sequence:

N 0
D B (R B

dm rm—l — 6m71

_ pm—l r 4 r 1
Coormel g, g \r—1 2 2rm-l

Pl (zzzl Gy + Smfbo 4 %)

Tmfl — 6m71 Tmfl

It can be seen from this result that for m large enough,
JE . . . . .
—2m is an increasing function of m, and that we can obtain
thle supremum by taking the asymptotic limit:

: JE JE
p® = sup 2 = lim 2= = LA (28)
mez+ gm M=% gm T —1 2

Differentiating (28) and noting convexity, we find that the
value of r that minimizes p& is r = v/2 + 1 &~ 2.4142, which
achieves a worst-case cost ratio of % + /2 ~ 2.9142. This
ratio represents a 27% improvement over the worst-case cost
ratio of 4 for the nonrandom California Split algorithm. The
resulting uniformly randomized TTL sequence is defined by
the boundary sequence [1, 2,5, 14,33, -- -] by taking the op-
timal value 7 into the power series.

The next theorem establishes the optimality of this uni-
formly randomized search strategy.

Theorem 4. Let U’ denote the set of all nonrandom and
uniformly randomized TTL sequences. Then:

Jy 3
inf p" = inf sup “= =2 + V2~ 29142 . (29)
uev’ uel’ ;cz+ T 2
That is, the uniformly randomized sequence given by the
boundary sequence g, = |r*7'| with r = /2 + 1 is asymp-
totically optimal within the set U

Figure 3 depicts the cost ratio of using this random TTL
sequence, along with the cost ratio of using its nonrandom
boundary sequence gr as TTL values. Most notably, us-
ing the nonrandom TTL sequence results in oscillation of
the cost ratio, while the uniformly randomized search se-
quence results in a smooth cost ratio curve and approaches



the maximum value 2.9142 asymptotically from below as the
network dimension grows to infinity. This figure reveals the
fundamental difference between a fixed TTL sequence and a
random TTL sequence and why the latter performs better.
This is elaborated in the next subsection.

45 How Randomization Works

We have shown in the previous two subsections that the
minimum worst-case cost ratio p is obtained by a random
TTL sequence regardless of whether the network is finite or
approaches infinity. It remains to explain why a random-
ized sequence performs better in the worst-case than any
nonrandom TTL strategy.

The randomized strategy g constructed in Section 4.2
shows that randomizing some of the TTL values of g in-
creases the cost ratio at points ¢ S (but not sufficient to
exceed the worst-case cost ratio p®), and at the same time
lowering the cost ratio at = € S.

The same effect is exhibited in Figure 3, where the uniform
randomization effectively balances the oscillating high and
low cost ratios under the nonrandom TTL sequence and
achieves a much lower maximum cost ratio. This is the
fundamental reason why random TTL sequences result in
lower worst-case cost ratio, and it possibly generalizes to
other types of randomizations.

In hindsight this reason is intuitively clear: For fixed
nonrandom TTL sequences the worst-case cost ratio is de-
termined by certain singleton-valued locations and moving
away from these locations may cause significant changes in
the cost ratio. Randomization essentially has the averaging
effect that “smoothes out” the cost ratio across neighboring
locations/points. In fact the optimal uniformly randomized
TTL sequence (under the linear cost assumption) has a cost
ratio curve that does not have local minima or maxima as
depicted in Figure 3. One may also view this as the built-in
robustness of a randomized policy for the underlying crite-
rion of worst-case performance.

Note that for a fixed object location, a fixed TTL sequence
results in a fixed deterministic search cost, whereas a ran-
domized TTL sequence results in different realizations of
the search strategy and hence different search cost. Shown
in Figure 3 (solid line) is the average over all realizations.
For a detailed disussion on the variance and best/worst case
realizations of the search cost, see [11].

4.6 General Cost Functions

The uniformly randomized search strategy derived in Sec-
tion 4.4 is shown to be optimal using a linear cost func-
tion. What if the cost is quadratic or more generally any
increasing function? Then the uniform probability distribu-
tion used in Definition 3 must be adjusted to account for
the new cost function if we would like to obtain the same
averaging effect discussed in Section 4.5.

In fact, it can be shown that if we allow TTL values to
be any real value in [1,00), then we have the following re-
sult: for any (random or nonrandom) TTL sequence under a
continuous and increasing cost function, there exists a TTL
sequence that attains the same expected search cost under
the linear cost function. This equivalence relationship allows
us to limit our attention to finding optimal search strategies
for a linear cost function. The real-valued TTL sequences
can be discretized to obtain an approximate mapping. Due
to space limitations, the reader is referred to [11] for the
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Figure 4: Under a quadratic cost function, the cost
ratio as a function of object location for a nonran-

dom TTL sequence (dashed line) with g, = Lr%j,
r = /241, its uniformly randomized version (dotted
line) corresponding to distribution given in (25), and
its randomized version (solid line) corresponding to
the distribution given in (30). Note the distribu-
tion given by (30) produces cost ratio curve that is
similar to Figure 3.

complete derivation of such a mapping between sequences
under different cost functions. As an example, suppose the
cost is quadratic, i.e. Cp = k®. Then from any nonran-
dom TTL sequence g, we can create a TTL sequence g by
assigning the following distribution to each TTL value gx:

2041

Pr(gk:l):{ 0971#127%2 if g <l<gry1—1

. (30)
otherwise

Figure 4 depicts the cost ratio for the sequence g (dashed
line) defined by gx = LT%J, r = /2 4+ 1, its uniformly
randomized version (dotted line) corresponding to distribu-
tion given in (25), and its randomized version (solid line)
corresponding to the distribution given in (30). Note that
under the quadratic cost, the uniform randomization results
in oscillation of the cost ratio, although much less signifi-
cant than its nonrandom counterpart, and achieves a max-
imum cost ratio of approximately 3.06. This phenomenon
originates from a mismatch between the TTL random vari-
ables being uniformly distributed over each interval, and the
search cost being quadratic. However, by using the distri-
bution given in (30) and the modified boundary sequence g,
we obtain a cost ratio curve similar to the optimal uniformly
randomized sequence under a linear cost function (Figure 3).
In both of these similar curves, the randomized sequences
obtain an asymptotic maximum worst-case cost of approxi-
mately 2.9142.

Hence, the randomization of (30) has the effect of smooth-
ing out the cost ratio curve. Similarly, the distribution can
be adjusted for other cost functions in order to obtain a
smooth cost ratio curve with worst-case value of 2.9142.

5. DISCUSSION AND PRACTICAL
IMPLICATIONS

Most of the ideas and results derived in this paper are di-
rectly applicable to the design of practical networking mech-
anisms. In particular, given known object location distri-



butions and search costs, the optimization framework pre-
sented in Section 3 can be used to derive optimal search
strategies, which can be further incorporated into network-
ing protocols that require a search functionality, e.g., an ad
hoc routing protocol. Similarly, strategies introduced in Sec-
tion 4 can also be incorporated into a variety of networking
mechanisms.

In this section we discuss how some of the assumptions
made earlier may be relaxed. We then compare the perfor-
mance of a number of search strategies in a wireless network
scenario via numerical simulation.

5.1 Weaker Assumptions

We have adopted two fairly strong assumptions (Assump-
tions 2 and 4 in Section 2.1 on collision-free communica-
tion and perfect timeout value). If using a TTL value of
k does not reach all nodes within k£ hops, either due to in-
teference, packet collision or imperfect timeout values, the
problem formulation changes significantly and perhaps a dif-
ferent approach is needed. In this case, there is essentially
a probability that a TTL value k£ misses the object even if
the object location is within k& hops.

One potential approach to tackling this problem could be
the following: let 7 denote the conditional probability that
a TTL value of k successfully locates the object, given that
the object is within k£ hops. Note that if v, = 1, the problem
reduces to the one presented in this paper. The value of vy
will depend on the broadcast techniques used, as well as the
likelihood that the timeout value is imperfectly set. Various
broadcast techniques have been proposed and studied in the
literature, such as in [9], [13], and [14]. Selecting an appro-
priate timeout value is dependent on the system properties;
this factor can be incorporated into the study by consid-
ering the probability that using a TTL value of k reaches
a particular node that is j hops away from the source, for
7 < k. Hence, it can be seen that the broadcast and timeout
factors can be incorporated into the conditional probability
k. Developing a new performance measure with these mod-
ified assumptions and determining the corresponding opti-
mal strategies for general «; is part of our future work.

5.2 Simulation Results

We present simulation results that compare the average
search cost of a number of search strategies in the following
problem scenario. All results are obtained using Matlab.
The network consists of 4,000 static nodes uniformly dis-
tributed in a circle of unit radius, with the source node lo-
cated at the center. Each node retransmits a received query
exactly once, and the query reaches every other node within
a transmission radius. Nodes disregard multiple copies of
the same query. Packet transmission times are jittered to
avoid simultaneous transmission. We subsequently assume
all transmissions are correctly received. Thus using a TTL
value k will reach every node within k£ hops of the source.
In addition, we assume that the single target exists in the
network and is equally likely to be located in one of the non-
source nodes. Search cost is measured by the total number
of transmissions.

As an example of the type of cost function generated un-
der these assumptions, consider when each node has trans-
mission radius of 0.115. In this case, the average network
dimension is 10. The cost, averaged over 20 randomly gen-
erated networks, of using a TTL value of k, for 1 < k < 10
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Figure 5: Average search cost as a function of TTL
value under conditions described in Section 5.2, and
function 45(k — 1)2.

is depicted in Figure 5. Note that the cost is very well ap-
proximated by the function 45(k — 1)27 a quadratic function
of the TTL value, as was mentioned earlier in Section 2.2 *.

We examined the average-cost performance of the fol-
lowing strategies: broadcast flooding (BF), expanding ring
(ER), california split (CS), and the optimal strategy com-
puted using the dynamic programming formulation presented
in Section 3.1. The value function is computed by using the
cost function obtained in Figure 5, and the fact that the ob-
ject is equally likely to be located in any of the non-source
nodes. The results are depicted in Figure 6.

The horizontal axis is labeled with increasing network di-
mension L. Since we are fixing the area and controlling the
transmission radius to obtain different values of L, the hori-
zontal axis can also be viewed as the transmission radius in
decreasing values. Specifically, the performance of the afor-
mentioned 4 strategies are evaluated with L ranging from
5 to 17, and equivalently with transmission radius ranging
from .075 to .225 by increments of .01. Each point on a
curve represents the average search cost of the correspond-
ing search strategy over 10° randomly chosen object loca-
tions in each of 20 different randomly generated networks,
under a particular transmission radius value.

We see that using the optimal strategy can significantly
decrease the search cost compared to some of the commonly
used strategies. Expanding ring search is far from being
optimal in most instances while flooding and the Califor-
nia split search give reasonable performance in most of the
instances in this particular example. Note that in this exam-
ple nodes are randomly placed and the object is uniformly
distributed among all nodes. In addition, only the number
of transmissions factors into the search cost. If any of these
parameters change, the relative performance of BF, ER and
CS is expected to change as well. However, one should al-
ways be able to compute the optimal search strategy using
the method presented here.

Simulation results on randomized strategies are not in-
cluded due to space limitations. We note however, that the
normalized average search costs of two randomized strate-
gies are essentially given in Figure 4 for every possibile lo-
cation of the object (using a quadratic cost function).

In addition, note that the cost function also belongs to the
class C as given by Definition 2.
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Figure 6: Under the conditions outlined in Section
5.2, the average-cost performance as a function of
network dimension, of broadcast flooding (BF), ex-
panding ring (ER), California split (CS), and the
optimal strategy computed using the dynamic pro-
gramming formulation presented in Section 3.1.

6. CONCLUSION AND FUTURE WORK

In this paper we studied the class of TTL-based controlled
flooding search methods used to locate an object/node in a
large network. The objective is to derive search strategies
that minimize the expected search cost. We presented a
dynamic programming approach with which optimal search
strategies can be derived when the probability distribution
of the object location is known a priori. More interestingly,
when the object location distribution is not known we dis-
covered that randomized search strategies outperform fixed
nonrandom strategies. We provided a randomization con-
struction and also derived the asymptotically optimal strat-
egy within the class of uniformly randomized strategies for
linear search cost. These results are directly applicable in
designing practical algorithms.
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APPENDIX
A. PROOEFS

As mentioned earlier, included in this appendix are proofs
of all theorems and lemmas except for Theorem 2. See [11]
for this proof.

A.1 Proof of Theorem 1

We begin by proving the necessary condition of Theorem
1, i.e. that the following holds for all n where 0 < n < L — 2:

If V(n) =Cp, then F(kln) >1—Cy (31)
forVksuchthatl < k<L -1

Note that (31) is true for 1 < k < n, because F(k|n) =
1> 1— C for these values of k. Next, from Proposition 2
we have that if V(n) = Cr, then V(j) = CL for all n + 1 <
j < L—1. From the definition of V(n) and the fact that
V(j)=Cpr for alln < j < L —1, we have:

Vi) = min {Ci+FUmVO}

n+11ﬂ§i?§L {Ci+F(n)CL} =CL (32)
Equation (32) means that C; + F(l|n)CL > Cy, for all I
such that n + 1 <1 < L. Rearranging gives us: F(l|n) >

Qc—zq =1 — C;. Therefore, we have proven (31).



Now, we prove the sufficient condition of Theorem 1, i.e.
that the following holds for some n such that 0 <n < L — 2,

If F(kln) >1—CyforVk, 1<k<L-1
then V(n) = Cr. (33)

From the given information that F(k|n) > 1 — Cy for all k
in1 <k < L-—1, we will prove by backward induction on
m that V(m) =Cp foraln <m < L —2.

Induction Basis: This step requires proof that V(L —
2) = Cp. We are given that F(kln) > 1— Cy, for all
1 <k < L-—1 and for some n < L —2. From the fact
that n < L — 2, it must be true that F(L — 1|L — 2) >
F(L —1Jn) > 1 —Cpr_1. This fact can be rearranged as
Cr-1+CLF(L —1|L—2) > Cr. By definition, V(L —2) =
min{Cr_1 + CLF(L — 1|L — 2),CL}, which is clearly Cy,
from the above inequality. Therefore, V(L — 2) = C and
we have established the induction basis.

Induction Step: From the given information F(k|n) >
1-Cr forall 1 < k < L-— 1, we need to prove that if
V(m+1) =Cp for some n <m < L —2 then V(m) =CL.
Note that by Proposition 2, because V(m + 1) = Cr, then
V() =Cp forall m+1 <1 < L—1. As before, let g; =
C) + F(Ilm)Cy for m +1 <1 < L. Because n < m, then
F(llm) > F(lln) > 1-Cy = <= forall 0 <1 < L— 1.
Rearranging this fact gives us: ¢ = C; + F(l|m)C’L > (Cp.
Hence, from the definition of V(m), we obtain:

V(im) = m+r{1ir£1<L {Ci+ Fm)V(1)}
- 77L+I{1%ILISL {gl} - CL (34)

Equation (34) proves the induction step and thus we have
proven the sufficient condition of Theorem 1 by induction.
Equations (31) and (33) collectively prove Theorem 1. [

A.2 Proof of Lemma 1l

We begin by noting that for every x € ZT, there corre-
sponds a singleton probability distribution px (z) with Pr(X
x) = 1. We thus have the following inequality

u u

sup > sup (35)
{px ()} E[Cx] acEZ+C

since the left-hand side is a supremum over a larger set.
On the other hand, setting A = sup,cz+ C’” we have
Jl.l

& < A for all x € ZT. Thus J* < AC,. Then for any

random variable X denoting object location, we can use this
inequality along with the independence between u and X to
obtain:

JX  _ Yeewr A Pr(X =x)
ElCx] erz+ CPr(X =1x)
Ywez+ ACLPr(X = x)
- Eer+C$PT(X =)

Equation (36) tell us that [ < A=sup,z+ é—zz Since
this inequality holds for all p0551ble random variables X de-
noting object location, we obtain:

=4 (36)

u u

u 37
xezp+0 (37)

sup
rx (0} BICx]

Equations (35) and (37) collectively imply the equality in
equation (18), and we have proven Lemma 1. []

A.3 Proof of Lemma 2

We prove Lemma 2 by contradiction. Suppose for some
x* satisfying equation (21) that the claim is not true, which
means that either 2™ = g, or 2% = g, + a < gn+1 for some
a > 2 and for some 0 < n < N —1. We will prove the
contradiction for both cases.

Case 1: Suppose z* = gn for 1 <n < N-1. Then
the corresponding search cost J5. = 2" | Cg,. This can be
rearranged as:

x

n Cynt1 n—1
JLi — El:l Cgl — égn ( =1 Cgl +C n) (38)
Cyn Cy., Cyp+1

However, using m = g, + 1 in the constraint of equation
(20), along with the fact that 37~,' Cy, < S7' C;, and
then rearranging gives us:

";“Zczl <cgn+chz S Co (39
"= =1

In addition, because g, + 1 < gnt1, then it follows that
JE 1= St Gy > S8, Cy, 4+ Cg,41. Combining equa-
tions (38) and (39) and using this inequality gives us:

n+1 g
Jgn < =1 Ogl < Jgn +1 (40)
an an +1 an +1

However, this contradicts the assumption that z* = g, sat-
g

isfies Tor = max
o 1<e<L c

. Therefore it cannot be true that
¥ = gn for some 1 <n < N — 1.

Case 2: Now we can consider the second case of z* =
97L+a < gn+1 for 1 <n < N -1 and some a > 2. Then

JE = Zz . Cy,. However, we also have J% | = 37! Cy,.
This gives us:
JE. ntl o ntl o JE
x* El—l g1 < Zl—l g1 — gn+1 (41)

Ca~ Conta Cgn+1 Cyg, 41

. . . . * . JE,
Again, this contradlcts the assumption that =™ satisfies &%~ =
Maxi<z<rL C . Therefore, it cannot be true that z* = g, +

a<gn+1for0<n§N—1anda22 O

A.4 Proof of Theorem 3

To begin, we will use the notation that m is in the set R
if gm+1€ .5, for any 0 < m < N — 1. Hence R has at most
N members, and each member is less than N. Now we will
prove Theorem 3 for two separate cases.

Case 1: gn & S.

This case corresponds to the sequence generated by (C.5)

r (C.6). We will prove that 2= < p& for all z. First, let’s
consider all x ¢ S. Note that for any 1 <z < L, there must
exist a corresponding positive integer m such that Gm—-1 <
z < gm (because the TTL sequence is strictly increasing
and gy = L). Then for z ¢ S, the corresponding cost of
the randomized sequence is given by J& = J& + pMy,,+1,
where we define Mr4+1 = M| for notational reasons. This



statement is true because for such x:

JE =p >

Cg1+ Z Cq,

keR, 0<k<m kZR, 1<k<m
m
+(1-p) Z Cy,
k=1
chk +ngm+1 = Jf +pM97n+1 (42)
k=1

We then have from inequality (23) defining our chosen p:

J_§ _JE +PMg+1 Jg + pMp,
C. Cx C Cy
JE JEB .
e 4
< oo +pE=p (43)

Therefore, % <pEforalz¢gs.

If1e€8, thep it must be true from Lemma 2 that g1 > 1.
In addition, J& = pCy + (1 — p)Cy, < Cy, = JE, where the
strict inequality holds because the cost function is strictly in-
creasing and g; > 1. Therefore the cost ratio has decreased
at location 1.

Next consider the case © = g, +1 € S for some positive
integer m. This means that the expected search cost is given
by:

J2 =p >

kER, 0<k<m

Cgk +1+ Z Cgk

kR, 1<k<m

m—+1
—p) Z Cy,
k=1
m+1 m—+1
> Co +PMy,, —pCy, < Y Cop = JE (44)
k=1 k=1

where the last inequality in (44) follows from the fact that
My,, < Cy,, < Cy,,.,, which follows from the definition of
Jg

M;. Equation (44) implies that é—i < &= = p® because

x € S and achieves the maximum cost ratlo for g.
Combining the above, we have that - C_z < p8forall 1<
x < L when gn € S.
Case 2: gn € S.
This case corresponds to (C.7) and (C.8). We first consider

1 <x < gn-2+ 1. For these values of x, we have that é—;g; <
p& by following similar steps to those used in the first part
(case 1) of this proof. As discussed earlier, if gy € S then
this means that gy—1 = gn — 1. In addition, from Lemma 2
we know that gn—1 &€ S. Therefore, for all gn_2+2 <z <
gN—1, we have:

2

—1
Ji = (1=p) ) _Cq,
1

ES
Il

+p > Cypt1+ M Cyp + Cn
kER, 0<k<N—2 kgR, 1<k<N-2
= Jf + pMy,
which gives:
J&  JE+4+pMp JE JE
L Lt P e ey s s 0 (ap)

c. O C. C,

where the last inequality follows from inequality (23) defin-
ing our chosen p. Since gy = gn—1+ 1 is the only value of x

JE
such that z > gn 1, it only remains to prove that Z2- < pS.
IN

When z = gn, we have the following expected search cost:

N-—-2
Jr = Z Cg, +PML—2+ (1 —p)Cqy_, + Cyy
k=1
N N
= Cgr +p(Mp—2 — Cyp-1) < ZC’gk =Jg,
k=1 k=1
(46)

where the last inequality follows from the fact that Cy,_, >
M7, > using the definition of M; and fact that gN-1 = L—1.

Combining these two cases, we have that é—i < p® for all
1 < x < L and have proven this theorem. []

A.5 Proof of Lemma 3

Consider any uniformly randomized TTL sequence §. In
order to prove Lemma 3, we will first determine the possible

values of = such that ? = pB.
From (25), each expected TTL value can be calculated as:

Now we can calculate p&. Because g is an increasing se-
quence of positive integers, any positive integer x must lie
between two consecutive elements of g such that g, < x <
gn+1. Let’s rewrite x as x = gn + A, where 0 < A <
gn+1 — gn. Then the expected cost ng of using a TTL se-
quence g when the object location is x is given by:

JE =" B[]+ P(gn < 2)E [gnt1]

N A N
=Y E[g]+ ———F[gnt1] (48)
gn+1 — gn

We will show that the ratio J—f is either nonincreasing or
nondecreasing for all values of x within g, < z < gn+1, and
therefore the maximum value of this cost ratio within this
range occurs at either x = g, or * = gn+1.

We have for all g, <z < gng1 — 1

(x41)J8 — $J§+1

— (gn +4) (ZE

1—gn

AEDmﬂ)

A + 1)E [9n+1]
gn+1 — gn

n A—(gn+4)

:me E [ns1]
— gn+1 — gn
= ZE [9k] = ————FE[gn+1] (49)
+1— gn
Therefore, the sign of the difference between two consecu-
& Jé Jg7 Jg
tive cost ratio terms, J—f — ;Jr*ll = % does not

change for z in g, < x < gn+1 — 1 because the numerator of
this difference is constant (does not depend on A) as given
by equation (49) and the denominator is always positive.



Therefore, the cost ratio is either nonincreasing or nonde-
creasing for x in g, < x < gn+1, so the maximum cost ratio
in this region occurs at either x = g, or * = gn41. There-

g
fore, the maximum value of the ratio JTZ must be obtained
at © = g, for some positive integer m. In other words,

p@ = Sup J—zg = sup @ = sup M
zcz+ T mez+ 9m mez+ gm
m_ + Im+1—-91 _ m
= sup L1 9k 2 2 (50)
mezZ+ gm

Therefore, we have proven Lemma 3 for any uniformly ran-
domized strategy. [

A.6 Proof of Theorem 4

It has been shown in [8] that the maximum cost ratio for
any nonrandom TTL strategy is bounded below by 4, and
therefore to calculate the infimum given in (29), we need
to only consider uniformly randomized strategies. We will
prove Theorem 4 by showing that % + /2 is both a lower
bound and an upper bound on inf ¢y p".

We begin by showing that inf, ¢y p* > % + /2. We will
proceed using proof by contradiction via a similar method
to the one presented in [8] to establish the lower bound
on the maximum cost ratio for any nonrandom TTL strat-
egy. Assume that the maximum cost ratio for a uniformly
randomized sequence g, defined by the boundary values
g = [91,92,...], is some constant C' < £ + /2. We have
already shown that the worst-case ratio for g takes the form
given in (50). Therefore, by this equation and the assump-
tion that the maximum ratio is C, then the following must
be true for all m € Z™:

m
gm+1 — g1 m
2 AT = <Cgm
k:1gk—|— 2 5 = g

k=1

where B, = 4~ + F. Now define §, = 22:1 gk, so the
above equation becomes:

- 1, . - - .
Ym + §(ym+l - ym) < C(ym - ymfl) + Bm

= Gmi1+ (1= 2C)Gm +2CGm-1 < 2B

Now, because g is an increasing sequence of positive integers,

Um 1is increasing faster than B,,. This fact means that for

some N > 0, we have: yny1 > By41 + % — i. Let y, =

UN+k — BNtk — % + %, so that the y, are increasing and
positive on Z*. Our above equation then becomes under
this new variable with m = N + k:

+B +¢-1
Yk+1 N+k+1 B 1
c 1
+(1-20) (yk+BN+k+E— Z)

c 1
+2C (ykq + BNtk—1 + 5 = Z) < 2BN+k

Rearranging, we obtain:

Yr+1 + (1 —2C)yr + 2Cyr—1
1

< (2C—|— 1)BN+k — (1 — QC)BN+k+1 —C+ 3

Using the definition of B,, = 971 + %, we obtain:

Ye+1 + (1-2C)yr + 2Cyr—1

N+ k N+Ek+1
< + (20 +1) — N+r+l
2 2

N+k—-1 1

-——20-C+ =

2 + 2

Cancelling out terms, we obtain:
Yr+1 + (1 =2C)yr +2Cyr—1 <0 (51)

Now, we will prove that (51) cannot hold for all k if C' <
% + /2. Form a sequence ...£_1,& = 0,&1 = 1, &2, .... which
satisfies the equation &—1 + (1 — 2C)& + 2C¢;+1 = 0. Note
that this sequence is uniquely defined by its values & = 0
and & = 1. Then the corresponding characteristic equation
for this sequence is:

14+ (1—2C)A+2CX* =0 (52)

The nature of the roots of this characteristic equation can be
determined by calculating (1—2C)?—4(2C) = 4C*—12C +1.
Notice that for C = % + \/5, then 4C? —12C +1 = 0
and that for 1 < C < %—&—\/5, then 4C% — 12C + 1 < 0.
In the latter case, the characteristic equation has complex
conjugate roots which means that the solution to &—1 + (1 —
2C)& 4 2CE& 41 = 0 has a sinusoidal form. Therefore, there
exists some M > 1 such that & > 0 for 0 < i < M +1
and that £ax41 < 0. Also we know that £€-1 < 0 from the
recursion defining our sequence. So from equation (51), we
have:

M

D (Wire + (1= 20)yis1 +2Cy;) & <0 (53)

i=1
This equation can be arranged into the following:

M+1
S i (€2 + (1 - 2061 +2C€:) (54)
=1
+ [_209m+1§7n+1 -(1- 20)91] (55)
+ [ym+2€m — y280 —y1§-1] <0 (56)

However, the term in line (54) is zero by the recursion equa-
tion for our &;, and the terms in line (55) and on the left-
hand side of (56) are both positive due to the fact that
€1<0,60=0,61=1,Em > 0,&m+1 <0andy; > 0foralli.
Therefore, we have arrived at a contradiction and it cannot
be possible that C' < % + /2. Hence, infycyr p* > % +2.

However, we have already shown that for the uniformly
randomized sequence g defined by the boundary values gx =
L(v2+ 1)¥7"], the worst-case cost ratio p® is £++/2. It thus
follows that inf,cr p" < % +2.

Combining these two results, we see that inf,cy/ p" =

3+v2. O



