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ABSTRACT
We consider a sensor scheduling problem for esti-

mating Gaussian random variables under an energy
constraint. The sensors are described by a linear ob-
servation model, and the observation noise is Gaussian.
We formulate this problem as a stochastic sequential
decision problem. Due to the Gaussian assumption and
the linear observation model, the stochastic sequential
decision problem is equivalent to a deterministic one.
We present a greedy algorithm for this problem, and
discover conditions sufficient to guarantee the optimality
of the greedy algorithm. Furthermore, we present two
special cases of the original scheduling problem where
the greedy algorithm is optimal under weaker conditions.
We illustrate our result through numerical examples.

I. I NTRODUCTION

Advances in integrated sensing and wireless technolo-
gies have enabled a wide range of emerging applications,
from environmental monitoring to intrusion detection, to
robotic exploration, etc. In particular, unattended ground
sensors (UGS) have been increasingly used to enhance
situational awareness for surveillance and monitoring
type of applications.

In this paper we focus on the use of sensors for the
purpose of parameter estimation. Specifically, we con-
sider the following scheduling problem. Multiple sensors
are sequentially activated by a central controller to take
a measurement of one of many parameters, and then
transmit the observation data back to the the controller.
The latter combines successive measurement data to form
an estimate for each parameter. A single parameter may
be measured multiple times over time. Each activation
incurs a cost (e.g., sensing and communication costs)
which may be both sensor and parameter-dependent. This
process continues until a certain criterion is satisfied, e.g.,
when the total estimation error is sufficiently small, when
the time period of interest has elapsed, etc. Assuming
that sensors may be of different quality (i.e. they may
have different signal to noise ratios) and the activation
of different sensors may incur different costs, our sensor-
scheduling problem is to determine the sequence of

sensors to be activated and the corresponding sequence
of parameters to be measured so as to minimize the sum
of the total terminal parameter estimation errors and the
total sensor activation cost.

In this paper we restrict attention to the case ofN
stationary scalar parameters, modelled by Gaussian ran-
dom variables with known mean and variance, measured
by M sensors, each described by a linear Gaussian
observation model. Without loss of generality, we assume
that each sensor can only be used once. This is because
multiple uses of the same sensor can be effectively
replaced by multiple identical sensors, each with a single
use. We formulate the above sensor scheduling problem
as a stochastic sequential decision problem. Because
of the Gaussian assumption and the linearity of obser-
vations, this stochastic sequential decision problem is
equivalent to a deterministic one.

Sequential allocation problems have been extensively
studied in the literature (see [1]). In general, it is dif-
ficult to explicitly determine optimal strategies or even
qualitative properties of optimal strategies for sequential
allocation problems. The multi-armed bandit problem
and its variants (see e.g., [6] and [5]) are one class of
sequential allocation problems where the optimal solu-
tion has been explicitly determined. In [?](refer technical
report) we compare our problem with the multi-armed
bandit problem and some of its variants. We show that
our problem does not conceptually belong to the class of
multi-armed bandits. It appears difficult to determine the
nature of an optimal solution for the general problem
under consideration. Therefore, to obtain some insight
into the nature of the problem, we consider a greedy
algorithm, and derive conditions sufficient to guarantee
the optimality of this algorithm. We then present two spe-
cial cases of the general problem under consideration for
which the greedy algorithm results in an optimal strategy
under conditions weaker than the sufficient conditions
mentioned above. Finally we illustrate the nature of our
results through a number of numerical examples.

Sensor scheduling problems associated with stationary
parameter estimation were also investigated in [3] and
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[2]. Our results are different from those of [3] and [2] pri-
marily because the observation model and performance
criteria in [3] and [2] are different from ours.

The rest of the paper is organized as follows. In
Section II we state the optimization problem and in-
troduce several preliminaries. In Section III we provide
the sufficient conditions for the greedy algorithm to be
optimal. Special cases are presented in Section IV, and
numerical examples are analyzed in Section V. Section
VI concludes this paper. Due to the space limitation, all
proofs are omitted; they can be founded in [?].

II. PROBLEM FORMULATION

In this section, we formulate the problem of estimat-
ing multiple stationary parameters with multiple sensors
described in the previous section, and present a number
of preliminaries.

A. The Measurement Model and Problem Formulation

Consider a setΩp of stationary scalar parameters,
indexed by {1, 2, · · · , N} that have to be estimated.
Parameteri is modeled by a Gaussian random variable,
denoted byXi, with meanµi(0) and varianceσi(0).
There is a setΩs of sensors, indexed by{1, 2, · · · ,M},
which we use to measure the parameters. The measure-
ment of parameteri taken by sensorj is given by

Zi,j = Hi,jXi + Vi,j , (1)

whereZi,j is the observation of parameteri by sensor
j, Hi,j is a known gain, andVi,j is a Gaussian random
variable with E(Vi,j) = 0, V ar(Vi,j) = Ri,j . A non-
negative measurement costci,j is incurred by activating
and using sensorj to measure parameteri.

The available sensors are activated one at a time to
take a measurement of a specific parameter, upon request
from a control center. The measurement data is then
transmitted back to the control center, where the estimate
of that parameter and the total accumulated cost are
updated. The control center then decides whether to ac-
tivate another sensor from the set of remaining available
sensors, or to terminate the process. This continues until
either allM sensors are used, or until the time period of
interestT has elapsed, or until the control center decides
to terminate the process. For simplicity and without loss
of generality, we redefineT = min{M, T}, implying
that at mostT sensors/parameters can be scheduled.

Consequently, the decision/control action at each time
instant t is a random vectorUt := (U1,t, U2,t), taking
values in Ωp × St ∪ {∅, ∅}, where St is the set of
sensors available att, and Ut = (∅, ∅) means that no
measurement is taken att. A measurement policy is

defined by
γ := (γ1, γ2, · · · , γT ),

whereγt is such that
Uγ

t = (Uγ
1,t, U

γ
2,t)

= γt(σ1(0), σ2(0), · · · , σN (0), Ωp, Z
γ,t−1, Uγ,t−1),

where
Zγ,t−1 := (Zγ

1 , Zγ
2 , · · · , Zγ

t−1),

Uγ,t−1 := (Uγ
1 , Uγ

2 , · · · , Uγ
t−1),

and the variableZγ
t denotes the measurement taken at

time t. Since parameters are stationary, not taking a
measurement at some time instant will leave the param-
eters and their estimates unchanged. Thus, without loss
of optimality, we can restrict attention to measurement
strategies with the following property.

Property 1: For ∀t, t = 1, · · · , T −1, if Uγ
t = (∅, ∅),

then for t′ > t, Uγ
t′ = (∅, ∅).

Let Γ be the set of all admissible measurement policies
that satisfy this property. The optimization problem is
Problem 1 (P1):

min
γ∈Γ

J(γ) =
N∑

i=1

E

{[
Xi − X̂γ

i (T )
]2

}
+ E

{
T∑

t=1

cUγ
t

}

s.t.

{
X̂γ

i (T ) = E[Xi|ZUγ
t
· 1({Uγ

1,t = i}), t = 1, · · · , T ]

Uγ
2,t 6= Uγ

2,t′ if t 6= t′, t, t′ = 1, · · · , τγ ,

whereJ(γ) is the cost of policyγ ∈ Γ, X̂γ
i (T ) is the

terminal estimate of parameteri under strategyγ, and
1(A) is the indication function such that1(A) = 1 if A
is true and0 otherwise.

Denote byZγ,t
i the observation data set for parameter

i until time t under strategyγ, t = 1, 2 · · · , T . SinceXi

is a Gaussian random variable,

E{[Xi − X̂γ
i (T )]2} = E

{
E

{
[Xi − E(Xi|Zγ,T

i )2|Zγ,T
i

}}

= E
{

[Xi − E(Xi|Zγ,T
i )]2

}
,

i.e. the error variance is independent of the observation
data. Denote the variance of parameteri under strategy
γ at time t as

σγ
i (t) := E

{[
Xi −E(Xi|Zγ,t

i )
]2

}
, i = 1, · · · , N.

Then at any time instantt, the variance of parameteri
evolves as follows.

If at t + 1, parameteri and sensorj are selected by
γ, then

σγ
i (t + 1) = σγ

i (t)− (σγ
i (t))2 H2

i,j

σγ
i (t)H2

i,j + Ri,j
; (2)

if at time t + 1, parameteri is not selected byγ, then
σγ

i (t + 1) = σγ
i (t) . (3)

(see [4])
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Therefore problemP1 can be reformulated as a deter-
ministic problem in the following way.

Denote a scheduling strategy byg := (P g, Sg), with

P g = {ag
1 , · · · , ag

T }, andSg = {bg1 , · · · , bgT },
which indicates that under strategyg, parameterag

t is
measured by sensorbgt at time t, whereag

t ∈ Ωp, bgt ∈
Ωs∪{∅}. If bgt = ∅, no measurement takes place at time
t andcag

t ,bgt = 0. Similarly to property 1, we can restrict
attention to measurement strategies with the following
property.

Property 2: For ∀t, t = 1, · · · , T −1, if bgt = ∅, then
bgt′ = ∅, for ∀t′ > t.

Let G be the set of all admissible measurement
policies with the property 2. The optimization problem
is
Problem 2 (P2):

min
g∈G

J(g) =
N∑

i=1

σg
i (τg) +

τg∑

t=1

cag
t ,bgt

s.t.

{
ag

t ∈ Ωp , andbgt ∈ Ωs ∪ {∅},
bgt 6= bgt′ if t 6= t′,

where τg denotes the number of measurements taken
under policyg.

B. Preliminaries

The following definitions characterize the “goodness”
of a sensor in terms of its quality of measurement.

Definition 1: The indexof sensorj for parameteri is
given byIi,j = H2

i,j

Ri,j
.

An index can be viewed as the signal-to-noise ratio
(SNR) of sensorj when measuring parameteri. This
quantity reflects the accuracy of the measurement; the
higher the index/SNR, the more accurate the measure-
ment.

Lemma 1: Assume sensor setA is used to measure
parameteri with initial varianceσi(0) and parameteri’s
post-measurement variance isσi(A). Then we have

σi(A) =
σi(0)

σi(0)Îi,A + 1
(4)

where Îi,A =
∑

j∈A Ii,j . Furthermore,σi(A) is an
increasing function ofσi(0) and a decreasing function
of A, i.e. if A1 ⊂ A2, thenσi(A1) > σi(A2).

The variance reductionof parameteri with initial
variance σi(0) by using sensor setA, denoted by
Ri(σi(0), A), and given by

Ri(σi(0), A) := σi(0)− σi(A) =
σ2

i (0)Îi,A

σi(0)Îi,A + 1
. (5)

.

Under any policyg, we can re-write the objective
function J(g) as follows.

J(g) =
τg∑

t=1

{
cag

t ,bt
−

[
σg

ag
t
(t− 1)− σg

ag
t
(t)

]}
+

N∑

i=1

σi(0)

=
τg∑

t=1

Pag
t
(σg

ag
t
(t− 1), bgt ) +

N∑

i=1

σi(0), (6)

wherePi(σ, j) is given by:

Pi(σ, j) = ci,j −Ri(σ, j) = ci,j − σ2Ii,j

σIi,j + 1
. (7)

The quantityPi(σ, j) is referred to as thestep costof
using sensorj to measure parameteri, when the variance
of parameteri before the measurement isσ. Thus the
total cost to be minimized is the sum of initial variance
of each parameter and the step costs.

Definition 2: The thresholdof a sensorj for parame-
ter i is given byTHi,j = 1

2 · (ci,j +
√

c2
i,j + 4 · ci,j/Ii,j).

With this definition, we have that

whenσ = THi,j , Pi(σ, j) = ci,j − σ2Ii,j

σIi,j + 1
= 0 ; (8)

whenσ > THi,j , Pi(σ, j) = ci,j − σ2Ii,j

σIi,j + 1
< 0 . (9)

Therefore sensorj’s threshold for parameteri can be
viewed as the break-even point in parameteri’s variance.
That is, using sensorj to take a measurement of parame-
ter i, whose varianceσ is equal toTHi,j , results in zero
step cost. If the current variance of parameteri exceeds
the thresholdTHi,j , then using sensorj will result in a
negative step cost (i.e. benefit), and vice versa.

For sensors with the same index, lower threshold is
equivalent to smaller measurement cost; for sensors with
the same measurement cost, lower threshold is equivalent
to higher index. Therefore, the threshold combines mea-
surement quality and measurement cost and reflects the
overall “goodness” of a sensor: the lower the threshold
of a sensor, the better the sensor’s quality.

III. SUFFICIENT CONDITIONS FOR THE

OPTIMALITY OF A GREEDY POLICY

We decompose the sensor-selection parameter-
estimation sequential decision problem into two
subproblems. The first one is to determine the order
in which sensors should be used regardless of which
parameter is measured. The second problem is to
determine which parameter should be measured at
each time instant given the order in which sensors are
used. Such a decomposition is not always optimal.
We present conditions that guarantee the optimality
of the aforementioned decomposition. Specifically, we
determine two conditions under which it is optimal
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to use the sensors in non-increasing order of their
indices (regardless of which parameter is measured).
Having guaranteed the optimality of the proposed
decomposition, we propose a greedy algorithm for
the selection of parameters. We determine a condition
sufficient to guarantee the optimality of the greedy
algorithm.

A. The Optimal Sensor Sequence

Condition 1: The sensors can be ordered into a se-
quences1, s2, · · · , sM such that

Ij,s1 ≥ Ij,s2 ≥ · · · ≥ Ij,sM
, ∀j = 1, 2, · · ·N . (10)

This condition says that if we order the sensors in
non-increasing order of their quality for a particular
parameter, then this order remains the same for all other
parameters. For the rest of our discussion we will denote
sj as thej-th sensor in this ordered set.

Condition 2: For each parameteri, THi,s1 ≤
THi,s2 ≤ · · · ≤ THi,sM

, where si, i = 1, · · · , N is
defined in Condition 1.

If Conditions 1 and 2 both hold, then they imply that
the ordering of sensors with respect to their sensing qual-
ity is the same as their ordering when cost is also taken
into account. Furthermore, both orderings are parameter
invariant.

The next theorem shows that the optimal sequencing
of sensors is according to non-increasing order of their
indices.

Theorem 1: Under Conditions 1 and 2, assume that
an optimal selection strategy isg = (P g, Sg), where
P g = {p1, p2, · · · , pτg},Sg = {b1, b2, · · · , bτg}. Then
for each parameteri, ∀bk ∈ Sg, ∀a ∈ Ωs − Sg, we have
Ii,bk

≥ Ii,a.
The intuition behind this theorem is that although

using different sensors may incur different costs, so long
as the costs are such that they do not change the relative
quality of the sensors (represented by their indices), the
best way to use the sensors is by non-increasing order
of their indices.

The performance of an allocation strategy is com-
pletely determined by the set of sensors allocated to each
parameter; the order in which the sensors are used for a
parameter is irrelevant. Thus, strategies that result in the
same association between sensors and parameters may
be viewed asequivalent strategies. From Theorem 1, we
conclude that for any optimal strategy, there exists one
equivalent strategy, under which sensors are used in non-
increasing order of their indices. Therefore, without loss
of optimality, we will only consider strategies that use
sensors in non-increasing order of their indices.

Parameter Selection AlgorithmL:

1: t := 0
2: while t < T do
3: k := arg mini=1,··· ,N Pi(σi(t), st+1)
4: if Pk(σk(t), st+1) < 0 then
5: pt+1 := k

6: σk(t + 1) := σk(t)
σk(t)Ik,st+1+1

7: for i := 1 to M do
8: if i 6= k then
9: σi(t + 1) := σi(t)

10: end if
11: end for
12: else
13: BREAK
14: end if
15: t := t + 1
16: end while
17: return τ := t andP := {p1, · · · , pτ}

Fig. 1. A greedy algorithm to determine the parameter sequence.

Consequently, problemP2 is reduced to determining
the stopping timeτ and the parameter sequence corre-
sponding to the sensor sequenceS = {s1, s2, · · · , sτ}.
B. A Greedy Algorithm

We consider the parameter selection algorithm, given
in Figure 1.

Under Conditions 1 and 2, this algorithm computes a
sequence of parameters,P , by sequentially selecting a
parameter that provides the minimum step cost (i.e. the
maximum benefit) among all parameters. The algorithm
terminates when the minimum step cost becomes non-
negative, or the time horizonT is reached. The termina-
tion time is the stopping timeτ . The parameter selection
strategy resulting from this algorithm, combined with the
given sensor sequence, is denoted byg := (P, S), where

P = {p1, · · · , pτg}, andS = {s1, · · · , sτg}.
This algorithm is greedy in nature in that it always

uses the best available sensor (in terms of its index),
and for that sensor it always selects the parameter whose
measurement provides the maximum gain (minimum step
cost). In the next subsection, we investigate conditions
under which this greedy scheduling algorithm is optimal
for problemP2.

C. Optimality of AlgorithmL

In this section, our objective is to determine condi-
tions sufficient to guarantee the optimality of the greedy
algorithm given in Figure 1.

Below is a list of notations used.
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σi(t): The variance of parameteri at time t. This
variance depends on the initial varianceσi(0) and the
set of sensors used for parameteri up until time t.

σi(t, A): The variance of parameteri after sensor set
A is used to measure parameteri after timet.

Ri(σi(t), A): The variance reduction of parameteri
resulting from the use of sensor setA with initial
varianceσi(t), s.t. Ri(σi(t), A) = σi(t)− σi(t, A) .

Ri(σi(t, A), B): The variance reduction of parameter
i resulting from the use of sensor setB with initial
varianceσi(t, A), s.t.
Ri(σi(t, A), B) = Ri(σi(t), A ∪B)−Ri(σi(t), A)

= σi(t, A)− σi(t, A ∪B). (11)

Assume at some time instanti, the available sensor
set is{si+1, · · · , sM}. Then for any sensor subsetE ⊆
{si+1, · · · , sM}, we define theadvantageof using sensor
si to measurepi at time i followed by E, denoted by
Bi(pi, E), as follows:

Bi(pi, E) :=Rpi
(σpi

(i− 1), {si} ∪ E)

−Rpi
(σpi

(i− 1), E)− cpi,si
. (12)

The advantage is essentially the additional variance
reduction resulting from sensorsi measuring parameter
pi, after it has been measured by sensor setE, minus the
observation cost.

Because of (11),Bi(pi, E) can be rewritten as
Bi(pi, E) = Rpi

(σpi
(i−1), {si})−cpi,si

+∆pi
(E) , (13)

where
∆pi

(E) := Rpi
(σpi

(i− 1, {si}), E)−Ri(σpi
(i− 1), E) .

We have the following property for∆pi
(E).

Lemma 2: Consider the available sensor setA =
{si+1, · · · , sM} after stagei of the sequential alloca-
tion process. LetE1 = {si+1, si+2, · · · , sk} , E2 =
{si+1, si+2, · · · , sj}, wherej < k ≤ M . Then

∆pi
(A) ≤ ∆pi

(E1) < ∆pi
(E2) ≤ 0 . (14)

(?)Based on Lemma 2 and (13), we can define upper
boundBu,i(pi) and lower boundBl,i(pi) on the afore-
mentioned advantage as follows:
Bu,i(pi) := Rpi

(σpi
(i− 1), {si})− cpi,si

(15)

= Rpi
(σpi

(i− 1), {si})− cpi,si
+ max

E⊆A
∆pi

(E)

≥ Rpi
(σpi

(i− 1), {si})− cpi,si
+ ∆pi

(E)

= Bi(pi, E) ,

where the equality holds whenE = ∅, Bu,i(pi) is the
upper bound ofBi(pi, E), and
Bl,i(pi) := Rpi

(σpi
(i− 1), {si})− cpi,si

+ ∆pi
(A)

(16)

= Rpi
(σpi

(i− 1), {si})− cpi,si
+ min

E⊆A
∆pi

(E)

≤ Rpi
(σpi

(i− 1), {si})− cpi,si
+ ∆pi

(E)

= Bi(pi, E)

where the equality holds whenE = A and Bu,i(pi) is
the lower bound ofBi(pi, E).

Therefore,Bl,i(pi) ≤ Bi(pi, E) ≤ Bu,i(pi).
Note that −Bu,i(pi) is the same as the step cost

Ppi
(σpi

(i− 1), si).
The use of the above upper and lower bounds allows

us to obtain the following result.
Lemma 3: Consider any two strategiesg1 = (S1, P1)

andg2 = (S2, P2), with

S1 = S2 = {s1, s2, · · · , st} ,

P1 = {p1, · · · , pi−1, pi, pi+1, · · · , pt} ,

P2 = {p1, · · · , pi−1, p
′
i, pi+1, · · · , pt} .

If Bl,i(pi) > Bu,i(p′i), thenJ(g1) < J(g2).
The intuition behind this lemma is that regardless of

which allocation strategy will follow after timei, using
sensorsi to measure parameterpi at time i will result
in better performance than using sensorsi to measure
parameterp′i.

The result of Lemma 3 allows us to obtain the follow-
ing condition (?) which, together with Conditions 1 and
2, are sufficient to guarantee the optimality of the greedy
algorithm described in Figure 1.

Condition 3: At some time instantt, there exists
some parameterp∗t , such that for any parameterp′t not
equal to p∗t , Bl,t(p∗t ) ≥ Bu,t(p′t), where Bl,t(p∗t ) and
Bu,t(p′t) are defined in a manner similar to (16) and (15)
respectively.

Note that if Condition 3 holds at time instantt, p∗t is
unique. Furthemore, since

Bu,t(p∗t ) ≥ Bl,t(p∗t ) ≥ Bu,t(p′t) ,

and −Bu,t(p∗t ) is equal to the step cost,p∗t is the
parameter, which will result in the smallest step cost,
measured by sensorst.

Theorem 2: If Conditions 1 and 2 hold and Condition
3 is satisfied at each time instant1 ≤ t ≤ τ , then
Algorithm L results in an optimal strategy for Problem
(P2).

IV. SPECIAL CASES

We present two special cases of the general formula-
tion given in Section II. In the first case, there is only
one parameter to be estimated, which means the second
subproblem in the decomposition ofP2 does not exist.
In the second case,M sensors are identical, which means
the first subproblem in the decomposition ofP2 does not
exist. For both cases, we show that the greedy strategy
is optimal under conditions weaker than those in Section
III.
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A. 1 Parameter and M Different Sensors

Consider problemP2, when only one static parameter
has to be estimated. Then the observation model for
sensorj is

Zj = HjX + Vj (17)

The cost of using sensorj is cj .
In this case we only need to determine which sensors

should be used to measure the parameter. Thus, the
second subproblem of the decomposition in Section III
does not exist. Furthermore, Condition 1 is satisfied
automatically. Then under Conditions 1 and 2, it is
optimal to use the sensors according to non-increasing
order of their indices by Theorem 1. Note that if the
observation cost for every sensor is equal, i.e.cj = c,
∀j = 1, · · · ,M , Condition 2 is equivalent to Condition
1. In this situation, it is optimal to use the sensors
according to non-increasing order of their indices without
any constraint.

B. N Parameters and M Identical Sensors with Sensor-
Independent Observation Model

Consider problemP2 in the case where theM sensors
are identical. Then the observation model for parameter
i is sensor-independent, that is,

Zi = HXi + V, for all sensors. (18)

The cost of measuring parameteri by any sensorj is
ci.

Since the sensors are identical, Conditions 1 and 2 are
satisfied automatically. Therefore, in this case we only
concern the second subproblem of the decomposition
in Section III. Thus, we can view theM identical
sensors as one processor which can be used at mostM
times, and theN different parameters asN independent
machines. The state of every machine/parameter is its
variance. At every time instantt, we must select one
machine/parameterat to process/ estimate. The variance
of machine/parameterat is updated and all the other
machines’/parameters’ state/variance is frozen. The re-
ward at each time instantt is the variance reduction of
parameterat minus the observation costcat

. Viewed this
way, problemP2 is a finite horizon multi-armed bandit
problem with discount factor equal to one.

For finite horizon multi-armed bandit problems, the
Gittins Index rule(see [1]) is not generally optimal.
However, in the problem under consideration, the re-
ward sequence for each machine/parameter is deter-
ministic and non-decreasing with time. Thus, for each
machine/parameter, the Gittins Index is always achieved
at τ = 1, which coincides with the one-step look-ahead
policy resulting from AlgorithmL described in Section
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Fig. 2. Performance of Greedy Algorithm.

III. Consequently, the Gittins Index rule is optimal for
this special case.

V. NUMERICAL EXAMPLES

We illustrate the performance of AlgorithmL with
numerical experiments(examples).

We denote bygL the “greedy strategy” corresponding
to AlgorithmL, and bygo the optimal strategy. We define
the performance deviation (PD)of strategyg as

PD(g) :=
J(g)− J(go)

J(go)
. (19)

The setup of the numerical experiment is as follows.
There are 7 sensors and 3 parameters. The observation
cost is a constant for all the sensors and parameters; 51
observation costs are incremented from 0 to 0.5 with
incremental size 0.01. For each cost selection, we run
the experiment 1000 times with 7 indices, each chosen
according to a uniform distribution on(1, 5) and 3
initial variances, each chosen according to a uniform
distribution on (1, 10). We adopt the following three
performance criteria.

1) Matching Rate:the number thatgL=go

1000 ;
2) Average Deviation:

∑
PD(gL)
1000 ;

3) Maximum Deviation:maxPD(gL).
The results are shown in Figure 2. When the observation
cost is sufficient large, strategygL is always optimal.
This is consistent with the intuition. When the observa-
tion cost is large, each parameter can be measured at
most once. In this case one can show that using sensor
with the largest index to measure the parameter with the
largest variance at present is an optimal strategy. When
strategygL is not optimal, the average deviation and the
maximum deviation are always below5%. We observe
very similar results when the experiment is repeated
with different values of sensors’ indices and parameters’
initial variance.

From the numerical experiments, we can conclude that
Algorithm L is a very good approximating algorithm,
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which can be optimal when the observation cost is
sufficient large.

VI. CONCLUSION

We considered a sensor scheduling problem for mul-
tiple parameter estimation under an energy constraint.
We decompose the sequential decision problem into two
subproblems. The first one is to determine the sequence
of the sensors to be used, which is independent of the
parameter selection, and the second one is to determine
the sequence of parameters to be measured for a given
sensor sequence. We identified conditions sufficient to
guarantee that a greedy policy, defined by Algorithm
L, is optimal for the problem under consideration. The
numerical examples we considered indicate that for large
values of the measurement cost, the greedy policy per-
forms well. We presented an explanation as to why such
behavior of the greedy policy should be expected for
large measurement cost.
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