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ABSTRACT sensors to be activated and the corresponding sequence
We consider a sensor scheduling problem for estiof parameters to be measured so as to minimize the sum

mating Gaussian random variables under an energyf the total terminal parameter estimation errors and the

constraint. The sensors are described by a linear obtotal sensor activation cost.

servation model, and the observation noise is Gaussian. In this paper we restrict attention to the caseNf

We formulate this problem as a stochastic sequentiadtationary scalar parameters, modelled by Gaussian ran-
decision problem. Due to the Gaussian assumption angom variables with known mean and variance, measured

the linear observation model, the stochastic sequentidby A/ sensors, each described by a linear Gaussian

decision problem is equivalent to a deterministic oneobservation model. Without loss of generality, we assume

We present a greedy algorithm for this problem, andthat each sensor can only be used once. This is because
discover conditions sufficient to guarantee the optimalitymultiple uses of the same sensor can be effectively

of the greedy algorithm. Furthermore, we present tworeplaced by multiple identical sensors, each with a single

special cases of the original scheduling problem whergise. We formulate the above sensor scheduling problem
the greedy algorithm is optimal under weaker conditionsas a stochastic sequential decision problem. Because
We illustrate our result through numerical examples.  of the Gaussian assumption and the linearity of obser-

vations, this stochastic sequential decision problem is

o . . equivalent to a deterministic one.
Advances in integrated sensing and wireless technolo-

gies have enabled a wide range of emerging applications, Seduential allocation problems have been extensively
from environmental monitoring to intrusion detection, toStudied in the literature (see [1]). In general, it is dif-
robotic exploration, etc. In particular, unattended groundicult to explicitly determine optimal strategies or even
sensors (UGS) have been increasingly used to enhangb@litative properties of optimal strategies for sequential

situational awareness for surveillance and monitoringllocation problems. The multi-armed bandit problem
type of applications. and its variants (see e.g., [6] and [5]) are one class of

In this paper we focus on the use of sensors for théeduential allocation problems where the optimal solu-
purpose of parameter estimation. Specifically, we contion has been explicitly determined. Iﬁ](refer tech.nlcal
sider the following scheduling problem. Multiple sensors'€Port) we compare our problem with the multi-armed
are sequentially activated by a central controller to tak&andit problem and some of its variants. We show that
a measurement of one of many parameters, and théir problem does not conceptually belong to the class of
transmit the observation data back to the the controllefnulti-armed bandits. It appears difficult to determine the
The latter combines successive measurement data to foff@ture of an optimal solution for the general problem
an estimate for each parameter. A single parameter médpder consideration. Therefore, to obtain some insight
be measured multiple times over time. Each activatiofto the nature of the problem, we consider a greedy
incurs a cost (e.g., sensing and communication cost§gorithm, and derive conditions sufficient to guarantee
which may be both sensor and parameter-dependent. THf3¢ optimality of this algorithm. We then present two spe-
process continues until a certain criterion is satisfied, e.g?,'a! cases of the genergl problem u_nder con_S|derat|on for
when the total estimation error is sufficiently small, whenWhich the greedy algorithm results in an optimal strategy
the time period of interest has elapsed, etc. Assumingnder conditions weaker than the sufficient conditions
that sensors may be of different quality (i.e. they mm;’nentloned above. Finally we illustrate the nature of our
have different signal to noise ratios) and the activatiorfésults through a number of numerical examples.
of different sensors may incur different costs, our sensor- Sensor scheduling problems associated with stationary
scheduling problem is to determine the sequence gfarameter estimation were also investigated in [3] and

|. INTRODUCTION

1of7



[2]. Our results are different from those of [3] and [2] pri- defined by
marily because the observation model and performance vi= (1,72, > T),
criteria in [3] and [2] are different from ours. where~, is such that
The rest of the paper is organized as follows. In, .y W, U3,)
) L . t — V1Y
Section Il we state the optimization problem and in-

troduce several preliminaries. In Section Ill we provide = 1t(01(0),02(0), -+ ,on(0), €, 2771 U,
the sufficient conditions for the greedy algorithm to bewhere
optimal. Special cases are presented in Section IV, and Znt=1 . (27,23, ,Z] ),
numerical examples are analyzed in Section V. Section vt=1 . (717 717V v
U = (Ul’Uzv"WUt—l)a

VI concludes this paper. Due to the space limitation, all dth iableZ” denotes th t tak ¢
proofs are omitted; they can be founded in [?]. an € varlablez, denotes the measurement taken 4

time ¢. Since parameters are stationary, not taking a

measurement at some time instant will leave the param-

eters and their estimates unchanged. Thus, without loss
In this section, we formulate the problem of estimat-of optimality, we can restrict attention to measurement

ing multiple stationary parameters with multiple sensorsstrategies with the following property.

described in the previous section, and present a number property 1: Forvt, ¢t =1,--- ,T—1, if Uy = (0,0),

of preliminaries. then for¢’ > ¢, U = (0,0).

~ Let T be the set of all admissible measurement policies
A. The Measurement Model and Problem Formulation ¢ satisfy this property. The optimization problem is

[I. PROBLEM FORMULATION

Consider a set?, of stationary scalar parameters, Problem 1 (P1):
indexed by{1,2,---,N} that have to be estimated. N 12 T
Parametel is modeled by a Gaussian random variable,gng{«1 J(v) = ZE { [Xi - X (T)} } +E ZCU?
denoted byX;, with mean y;(0) and varianceo;(0). o=t t=1
There is a sef), of sensors, indexed by, 2,---, M}, X/(T) = E[Xi|Zy; - 1{U], = i}),t =1,--- | T]
which we use to measure the parameters. The measuré- Ul, 205, ift#t, t,t/ =1,--- .77,

ment of parametef taken by sensof is given by where J(4) is the cost of policyy € T, X](T) is the

Zij=HijXi+Vij, (1) terminal estimate of parametérunder strategyy, and
where Z; ; is the observation of parametéry sensor 1(A) is the indication function such tha{A4) =1 if A
J, H;; is a known gain, and/ ; is a Gaussian random is true and0 otherwise.

variable with E(V; ;) = 0, Var(V;;) = R;;. A non- Denote byZ]"' the observation data set for parameter
negative measurement cast; is incurred by activating i until time ¢ under strategyy, t = 1,2--- ,T. SinceX;
and using sensagf to measure parameter is a Gaussian random variable,

The available sensors are activated one at a time e{x; — X;(T)P} = E{E{[Xi — E(Xi\zgvT)2yzgvT}}
take a measurement of a specific parameter, upon request .
from a control center. The measurement data is then = E{[Xz — E(X;|Z) )]2},

transmitted back to the control center, where the estimaige. the error variance is independent of the observation

of that parameter and the total accumulated cost arGata. Denote the variance of parame:t&rnder Strategy
updated. The control center then decides whether to ac; at timet as

tivate another sensor from the set of remaining available ot _

sensors, or to terminate the process. This continues untfli (t):=E { [Xi - B(Xi|Z" )} } ’ i=1--,N.

either all M sensors are used, or until the time period ofrhen at any time instant, the variance of parameter

interestT” has elapsed, or until the control center decidegyglves as follows.

to terminate the process. For simplicity and without l0Ss |f gt + + 1, parameter and sensorj are selected by

of generality, we redefind’ = min{M,T}, implying  , then

that at mostl" sensors/parameters can be scheduled. (o7 (t))? H2,
Consequently, the decision/control action at each time olt+1)=0](t) - = —5—2—; (2)

instantt¢ is a random vectol); := (Uy 4, Usy), taking _ i () H; + Rij

values inQ, x S U {0,0}, where St is the set of if at time ¢ + 1, parametet is not selected by, then

sensors available at and U, = (0,) means that no ol (t+1)=0](t) . 3)

measurement is taken at A measurement policy is (see [4])
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Therefore problen1 can be reformulated as a deter- Under any policyg, we can re-write the objective

ministic problem in the following way. function J(g) as follows.
Denote a scheduling strategy ky:= (P8, S8), with T N
e . e J(g) = > {eass, — 0% = 1) = 0% (1)] } + D 0ul0)
Pg:{alv"'aaT}a anng:{bl’...,bT}, p— t t ]
which indicates that under strategy parameteraf is T8 N
measured by sensof at timet, wherea? € Q,, b¥ € = Pus(o%(t—1),5) + > 0i(0), (6)
Q,U{0}. If b¥ = 0, no measurement takes place at time t=1 ’ i=1

t andc,z = = 0. Similarly to property 1, we can restrict Where P;(o, ) is given by:
toVt 2
o°1i;

attention to measurement strategies with the followin } .
g 9 Poj)=cy—Rioj)=cij— ——2- . (1)
property. UIi,j +1
Property 2: Forvt, t=1,---,T—1,if b% = (), then The quantityP;(c, j) is referred to as thetep costof
b =0, for V¢’ > t. using sensoy to measure parametgrwhen the variance

Let G be the set of all admissible measuremen®of parameter; before the measurement és Thus the
policies with the property 2. The optimization problem total cost to be minimized is the sum of initial variance

is of each parameter and the step costs.
Problem 2 (P2): Definition 2: Thethresholdof a sensoyj for parame-
N T8 teriis given byTHl’] = % : (Ci,j + \/C%,j +4- Ci,j/Ii,j)-
min J(8) =D of(T8) + > casss With this definition, we have that .
i=1 t=1 o2
t { GE e, andif €0, U {0}, wheno = TH;;, Pi(o,j)=cij— Py j 7=0; (8)
§ : / 2
btg#btg,lft#t’ WhenU>THij, B(U,j)zcij—aili’j<0.(9)
where 78 denotes the number of measurements taken ’ Yool +1
under policyg. Therefore sensoy’s threshold for parameter can be
viewed as the break-even point in paramé®rariance.
B. Preliminaries That is, using sensgrto take a measurement of parame-

) o ] ter ¢, whose variance is equal toT'H; ;, results in zero
The following definitions characterize the “goodness”step cost. If the current variance of parametexceeds
of a sensor in terms of its quality of measurement. the thresholdl'H; ;, then using sensar will result in a
Definition 1: HT2heindexof sensorj for parameter is  npegative step cost (i.e. benefit), and vice versa.
given by I; ; = 7. For sensors with the same index, lower threshold is
An index can be viewed as the signal-to-noise raticequivalent to smaller measurement cost; for sensors with
(SNR) of sensorj when measuring parametér This  the same measurement cost, lower threshold is equivalent
quantity reflects the accuracy of the measurement; the higher index. Therefore, the threshold combines mea-
higher the index/SNR, the more accurate the measurgurement quality and measurement cost and reflects the
ment. overall “goodness” of a sensor: the lower the threshold
Lemma 1: Assume sensor sef is used to measure of a sensor, the better the sensor’s quality.
parametet with initial variances;(0) and parametei's
post-measurement variancedg A). Then we have

I1l. SUFFICIENT CONDITIONS FOR THE
OPTIMALITY OF A GREEDY PoLicy

o;(0
oi(A) = — o0 4) We decompose the sensor-selection parameter-
O’Z‘(O)Ii A+1 . . . . . .

. ' _ estimation sequential decision problem into two
where ;4 = ) e, lij. Furthermore,o;(A) is an  sypproblems. The first one is to determine the order
increasing function of;(0) and a decreasing function jn which sensors should be used regardless of which
of 4, i.e. if Ay C Ay, theno;(A1) > 0i(Az). parameter is measured. The second problem is to

The variance reductionof parameteri with initial determine which parameter should be measured at
variance 0;(0) by using sensor setd, denoted by each time instant given the order in which sensors are

Ri(0:(0), 4), and given by used. Such a decomposition is not always optimal.
af(O)fiA We present conditions that guarantee the optimality
Ri(0(0), A) :=0i(0) — 0i(A) = ——=——— (5)  of the aforementioned decomposition. Specifically, we

(V4 +1 . - L .
7i(0)fia + determine two conditions under which it is optimal
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to use the sensors in non-increasing order of thejr Parameter Selection Algorithix
indices (regardless of which parameter is measured). 1: ¢t :=0
Having guaranteed the optimality of the proposed 2: while ¢ < T do

decomposition, we propose a greedy algorithm for k= argmin;—; ... vy P;(0i(t), St+1)
the selection of parameters. We determine a condition if Pr(og(t),st+1) < 0 then
sufficient to guarantee the optimality of the greedy Pl =k
algorithm. op(t+1):= #@H

(O Tk sy s

for ::=1to M do
if i # k then

Condition 1: The sensors can be ordered into a sef it +1) := 0i(t)
quences, sa, - - - , s); such that 10: end if

A. The Optimal Sensor Sequence

‘ 11 end for
Lis, > Ijs, =2 -+ 2 Ijs,, Vi=1,2,---N . (10) 12:  else
This condition says that if we order the sensors in 3. BREAK

non-increasing order of their quality for a particular| 14. end if

parameter, then this order remains the same for all otherys.  ;.— ;4 1

parameters. For the rest of our discussion we will denote 5. end while

s; as thej-th sensor in this ordered set. 17: return 7:=¢t and P := {p1,--- ,p,}
Condition 2: For each parameter, TH;, <

TH;s, < --- < TH;s,,, Wheres;, ¢ = 1,--- /N is

defined in Condition 1. Consequently, problen#2 is reduced to determining

If Conditions 1 and 2 both hold, then they imply that he stopping timer and the parameter sequence corre-
the ordering of sensors with respect to their sensing quaL—

ity is the same as their ordering when cost is also takenrO1ding to the sensor sequertee- {sy, sz, -+, sr}.
into account. Furthermore, both orderings are paramet&. A Greedy Algorithm
invariant.

The next theorem shows that the optimal sequencin%
of sensors is according to non-increasing order of their
indices.

Theorem 1: Under Conditions 1 and 2, assume that
an optimal selection strategy i = (P8, S8), where
Pg = {p1,p2,- -+ ,pr=},5% = {b1,ba, -+ ,br=}. Then
for each parameter, Vb, € S8,Va € Q, — S8, we have
Ii,b;v > Ii,a-

Fig. 1. A greedy algorithm to determine the parameter sequence.

We consider the parameter selection algorithm, given
Figure 1.

Under Conditions 1 and 2, this algorithm computes a
sequence of parameterB, by sequentially selecting a
parameter that provides the minimum step cost (i.e. the
maximum benefit) among all parameters. The algorithm
terminates when the minimum step cost becomes non-
negative, or the time horizdf is reached. The termina-
e ) _ _ tion time is the stopping time. The parameter selection
The intuition behind this theorem s that althoughgateqy resulting from this algorithm, combined with the

using different sensors may incur different costs, so Ion%iven sensor sequence, is denotedzhy- (P, S), where
as the costs are such that they do not change the relative ’ T

quality of the sensors (represented by their indices), the P={p1, - ,pre}, @ndS = {s1,- -+, 5rc}.

best way to use the sensors is by non-increasing order This algorithm is greedy in nature in that it always

of their indices. uses the best available sensor (in terms of its index),
The performance of an allocation strategy is com-and for that sensor it always selects the parameter whose

pletely determined by the set of sensors allocated to eadR€asurement provides the maximum gain (minimum step

parameter; the order in which the sensors are used for@st). In the next subsection, we investigate conditions

parameter is irrelevant. Thus, strategies that result in thénder which this greedy scheduling algorithm is optimal

same association between sensors and parameters ni@ly problem P2.

be viewed agquivalent strategied=rom Theorem 1, we . .

conclude thatqfor any optima? strategy, there exists ong - Optimality of AlgorithmL

equivalent strategy, under which sensors are used in non-In this section, our objective is to determine condi-

increasing order of their indices. Therefore, without losdions sufficient to guarantee the optimality of the greedy

of optimality, we will only consider strategies that usealgorithm given in Figure 1.

sensors in non-increasing order of their indices. Below is a list of notations used.
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o;(t): The variance of parameter at time ¢. This
variance depends on the initial varianeg0) and the
set of sensors used for parametamp until timet.

o;i(t, A): The variance of parametérafter sensor set
A is used to measure parameieafter timet.

R;i(oi(t), A): The variance reduction of parameter
resulting from the use of sensor sdt with initial
varianceo;(t), s.t. R;j(04(t), A) = 04(t) — oi(t, A) .

where the equality holds wheA' = A and B, ;(p;) is
the lower bound ofB;(p;, E).

Therefore,B; ;(p;) < Bi(pi, ) < By i(pi).

Note that —B, ;(p;) is the same as the step cost
Ppi (U;Di (Z - 1)7 Si)'

The use of the above upper and lower bounds allows
us to obtain the following result.

Lemma 3: Consider any two strategies = (51, P1)

R;(o0i(t, A), B): The variance reduction of parameter g2 = (S2, P»), with

1 resulting from the use of sensor sBt with initial
varianceo;(t, A), S.t.

Ri(O'i(t, A), B) = Ri<0i(t), AU B) — Ri(ai(t), A)

=o;(t,A) — oi(t, AU B). (12)

Assume at some time instait the available sensor
set is{s;t+1, -+ ,sa}. Then for any sensor subsgt C
{si+1,- -, sm}, we define thedvantageof using sensor
s; to measurep; at time i followed by E, denoted by
Bi(p;, E), as follows:

Bi(piv E) ::RIH(UIH (Z - 1)7 {51} U E)

- Rpi (Upi (Z - 1)7 E) — Cp;,s;+ (12)

S1 =Sz = {51,852, , 5t} ,

Pr={p1, - ,pi-1,Pi,Dit1," " Pt}

P2 - {pla e )pi—lvpfivpi+17 e )pt} .
It Byi(pi) > Bui(p;), thenJ(g1) < J(gz).

The intuition behind this lemma is that regardless of
which allocation strategy will follow after time, using
sensors; to measure parameter at time ¢ will result
in better performance than using sensgrto measure
parametep’.

The result of Lemma 3 allows us to obtain the follow-

The advantage is essentially the additional varianceng condition ) which, together with Conditions 1 and
reduction resulting from sensef measuring parameter 2, are sufficient to guarantee the optimality of the greedy

p;, after it has been measured by sensorisaminus the
observation cost.

Because of (11)B;(p;, E) can be rewritten as
Bi(pi7E) = Rpi(o-pi (i_l)v {Si})_cpi,si—i—Api(E) )
where
Ap, (E) := Ry, (0p, (i — L {si}), E) — Ri(op, (i — 1), E) .

We have the following property fof,, (E).

Lemma 2: Consider the available sensor sdt =

(13)

{si+1, - ,sn} after stagei of the sequential alloca-
tion process. LetE; = {sit1,8i+2, - ,Sk} ,FE2 =
{Sz’—i-l, Si12, - ,Sj}, Wherej < k<M. Then

Ap(A) S A, (B < A, (B)<0.  (14)

algorithm described in Figure 1.

Condition 3: At some time instantt, there exists
some parametep;, such that for any parametgf not
equal top}, Biu(p;) = Bu:(pi), where By (p;) and
B,..(p;) are defined in a manner similar to (16) and (15)
respectively.

Note that if Condition 3 holds at time instafitp; is
unique. Furthemore, since

But(p}) = Bii(p;) = But(pt)
and —B,:(p;) is equal to the step cosp; is the
parameter, which will result in the smallest step cost,

(?)Based on Lemma 2 and (13), we can define uppemeasured by sensef.

bound B, ;(p;) and lower boundB; ;(p;) on the afore-

mentioned advantage as follows:

Bu,i(pi) = Rpi (in(i - 1)7 {Sl}) — Cpy,s; (15)
- Rpi(api (Z - 1)7 {Sl}) - Cpias'i + Iéléii‘( Ap?(E)

= Rpi(gpi (Z - 1)7 {52}) — Cpy,s; + A;Di (E)
= Bi(pi, E) ,
where the equality holds whefi = ), B, i(p;) is the
upper bound ofB;(p;, E), and
Byi(pi) Ry, (0p, (i — 1), {si}) — cp, s + Ap,(A)
(16)
= Rpi (quz ('L - 1)7 {52}) — Cpy,s; + IEnglg AI%(E)

< Rpi(api (Z - 1)7 {SZ}) — Cpis; t Apz<E)
= Bi(pi, E)

Theorem 2: If Conditions 1 and 2 hold and Condition
3 is satisfied at each time instafit < ¢ < 7, then
Algorithm L results in an optimal strategy for Problem
(P2).

IV. SPECIAL CASES

We present two special cases of the general formula-
tion given in Section Il. In the first case, there is only
one parameter to be estimated, which means the second
subproblem in the decomposition &2 does not exist.

In the second cas@/ sensors are identical, which means
the first subproblem in the decompositionfo? does not
exist. For both cases, we show that the greedy strategy
is optimal under conditions weaker than those in Section
1"l
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o 0 (1,10), | 0 (1,5), loop=1000 o 0 (1,10), | O (1,5), loop=1000
5

A. 1 Parameter and M Different Sensors

average
— - upperbound [

»
0

Consider problen2, when only one static parameter
has to be estimated. Then the observation model for
sensorj is

IN

w
0

w

n
0

Zj=H; X +V a7)

matching percentage(%)
N

performance percentage(%)

i
o

The cost of using sensgris c;.

In this case we only need to determine which sensors
should be used to measure the parameter. Thus, the .
second subproblem of the decomposition in Section Il o o1 o2 03 oa o o1 02 03 o4
does not exist. Furthermore, Condition 1 is satisfied opservaton cost opservaton cost
automatically. Then under Conditions 1 and 2, it is
optimal to use the sensors according to non-increasing
order of their indices by Theorem 1. Note that if the|ll. Consequently, the Gittins Index rule is optimal for
observation cost for every sensor is equal, i.e= ¢, this special case.

Vj=1,---,M, Condition 2 is equivalent to Condition

[

°
0

=]

Fig. 2. Performance of Greedy Algorithm.

1. In this situation, it is optimal to use the sensors V. NUMERICAL EXAMPLES
according to non-increasing order of their indices without We illustrate the performance of Algorithm with
any constraint. numerical experiments(examples).

. _ We denote byg; the “greedy strategy” corresponding
B. N Parameters and .M Identical Sensors with Sensorg, Algorithm L, and byg, the optimal strategy. We define
Independent Observation Model the performance deviation (PD)of strategyg as
Consider problenP2 in the case where th& sensors PD(g) = J(g) — J(go)‘

are identical. Then the observation model for parameter J(go)
1 is sensor-independent, that is, The setup of the numerical experiment is as follows.

Z; = HX; +V, for all sensors (18) There are 7 sensors and 3 parameters. The observation
cost is a constant for all the sensors and parameters; 51
observation costs are incremented from 0 to 0.5 with
cremental size 0.01. For each cost selection, we run
e experiment 1000 times with 7 indices, each chosen
ccording to a uniform distribution orfl,5) and 3
Initial variances, each chosen according to a uniform
distribution on (1,10). We adopt the following three

(19)

The cost of measuring parameteby any sensoy is
Ci. .
Since the sensors are identical, Conditions 1 and 2 an‘%
satisfied automatically. Therefore, in this case we onl)’
concern the second subproblem of the decompositio
in Section Ill. Thus, we can view thé/ identical
sensors as one processor which can be used at hiost N
times, and theV different parameters a& independent performance criteria. _
machines. The state of every machine/parameter is its 1) Matching Rate:Me Mg (o —Eo.
variance. At every time instant, we must select one  2) Average DeViatiOﬂiz%oggL);
machine/parameter; to process/ estimate. The variance 3) Maximum Deviation:max PD(gr,).
of machine/parameteti; is updated and all the other The results are shown in Figure 2. When the observation
machines’/parameters’ state/variance is frozen. The resost is sufficient large, strategy; is always optimal.
ward at each time instaritis the variance reduction of This is consistent with the intuition. When the observa-
parameter,; minus the observation cosf,. Viewed this  tion cost is large, each parameter can be measured at
way, problemP2 is a finite horizon multi-armed bandit most once. In this case one can show that using sensor
problem with discount factor equal to one. with the largest index to measure the parameter with the
For finite horizon multi-armed bandit problems, thelargest variance at present is an optimal strategy. When
Gittins Index rule(see [1]) is not generally optimal. strategyg;, is not optimal, the average deviation and the
However, in the problem under consideration, the remaximum deviation are always belo¥,. We observe
ward sequence for each machine/parameter is deterery similar results when the experiment is repeated
ministic and non-decreasing with time. Thus, for eachwith different values of sensors’ indices and parameters’
machine/parameter, the Gittins Index is always achieverhitial variance.
at 7 = 1, which coincides with the one-step look-ahead From the numerical experiments, we can conclude that
policy resulting from AlgorithmL described in Section Algorithm L is a very good approximating algorithm,
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which can be optimal when the observation cost is
sufficient large.

VI. CONCLUSION

We considered a sensor scheduling problem for mul-
tiple parameter estimation under an energy constraint.
We decompose the sequential decision problem into two
subproblems. The first one is to determine the sequence
of the sensors to be used, which is independent of the
parameter selection, and the second one is to determine
the sequence of parameters to be measured for a given
sensor sequence. We identified conditions sufficient to
guarantee that a greedy policy, defined by Algorithm
L, is optimal for the problem under consideration. The
numerical examples we considered indicate that for large
values of the measurement cost, the greedy policy per-
forms well. We presented an explanation as to why such
behavior of the greedy policy should be expected for
large measurement cost.
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