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Abstract

In this paper we study the problem of searching for a node or a piece of data in an ad hoc network using random

packet forwarding. In particular, we examine three different methods. The first is a random direction forwarding

scheme where the query packet is forwarded along a randomly chosen direction (following an approximate straight

line) till it either hits the destination node (the target) or the boundary. It bounces off the boundary in the latter case

and the process continues till the target is found. In the second approach, in addition to query packet traversing

the network, the target releases an advertisement packet that propagates along a randomly chosen direction so that

all nodes visited by the advertisement packet obtain and store the target location information. In the third method

the query packet is assumed to follow a random walk type of forwarding. Our primary interest is in comparing

the average hitting time under these methods and the memory required to store location information. In particular,

we show that under the random direction forwarding the target hitting time is Θ( a
2

b
), where a and b denote the

size/radii of the network and the target area, assumed to be circular in shape, respectively. The hitting time is Θ(a)

with target advertisement, and Θ(a2 log a

b
) under the random walk type of forwarding. We further show that the

target advertisement method achieves mean hitting time on the same order as greedy forwarding schemes with less

memory requirement. We discuss practical implementation issues of these methods and provide simulation results

on their performance under more realistic settings.
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I. INTRODUCTION

In this paper we consider the problem of searching for a node or a desired piece of data in a wireless

ad hoc or sensor network. Specifically, a querier or source node sends out a query packet in search of a

target or destination node located somewhere in the network. The query packet has to traverse the network

in some way till it reaches the target, which then responds/replies to the source node. This problem arises

in and is motivated by a variety of scenarios, including content location [1], service discovery [6], and

data query in a sensor network [2], [4], [8].

The primary goal of this paper is to examine a class of query search methods based on random

forwarding and attempt to gain a quantitative understanding of their performance in terms of the time

it takes to locate the target, as well as the amount of location information required by the network. In

particular we are interested in how the hitting time and information storage scale as the network becomes

large (both in terms of the size and in terms the number of nodes in it).

The applicability of random forwarding based methods primarily lies with cases where there is no

established query or routing infrastructure, e.g., those provided by data caches/replicas, central directory

service, or an information gradient field [2], [3], and where the queries are simple and one-shot [4]. They

are suited for situations where the data content in the network changes rapidly, thus making it difficult

and costly to keep such infrastructure (routing table or gradient field) afresh, and when queries occur

relatively infrequently.

These random forwarding schemes can also be applied to navigating a moving vehicle (or robot) in

search of a certain target. In this case there will be no packet forwarding, but the vehicle follows successive

random directions in its movement. Therefore the results obtained here apply to these problem as well.

There has been extensive study on data query and service discovery in ad hoc networks, and numerous

approaches have been investigated. The methods studied here are representative abstractions of a subset

of those proposed and studied in the literature. Below we describe these methods within the context of

prior work, while noting that our focus in this paper is on the scaling property of hitting time and hitting

distance, which is very different from most of the work cited below. Literature on hitting time studies is

provided in Section VI.

We start with a scenario where no nodes in the network have the target location information except for

the target itself and its neighbors within a certain range. Assuming that nodes have relative geographical

location information about themselves and their immediate neighbors, the query packet is forwarded
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along a sequence of approximate straight lines of randomly chosen directions, bouncing off the network

boundary, till it reaches the target or its neighbors. This model may be viewed as a special case of the

trajectory based forwarding proposed in [5]. We will refer to this as the random direction forwarding,

more precisely defined in the next section.

We then consider a second scenario similar to the previous one but with the addition that the target sends

out an advertisement packet that is propagated along an approximate straight line of a randomly chosen

direction. Nodes visited by the advertisement packet store the target location information, and when the

query packet reaches one of these nodes, the target is considered found. This model may be viewed as a

simplified version of those considered in [1], [6], where the target essentially sends out four advertisement

packets traveling in four different directions. We shall see that this simplification does not affect our

analysis. In [6], a pseudo quorum method was proposed in the context of providing matching service

between data producer and subscriber where each procuder/subscriber sends out advertisement/subscription

messages along four directions (e.g., north, south, east and west) so that a match can be found at

intersecting nodes. Similar idea was used in [1] in the context of content location where both content

discovery packets and content advertisement packets are sent along these four directions. In [7] a quorum

based location service was proposed where nodes send out position information update along north/south

directions with a certain thickness while packets searching for a destination travel along the east/west

directions. The same idea of combining query and advertisement, and exploiting the fact that with high

probability the two forwarding paths will intersect was proposed in [8] within the context of rumor routing.

We will refer to the above method as the enhanced random direction forwarding, also defined in the next

section.

We compare these two methods with random walk type of forwarding, where the query packet is

randomly forwarded to a neighbor. Examples include [9], [10], that studied random walk forwarding on a

grid, and [11]–[13], that applied swarm intelligence by sending out multiple query packets each following

an independent random walk. This is a method where no location information is stored in the nodes,

and no intelligent processing is required of nodes to maintain a consistent direction, as is required in the

previous methods.

As a baseline, we will also compare random direction and enhanced random direction forwarding

methods with greedy geographic forwarding method, which assumes that nodes already know the target

location (thus this is more of a routing problem than searching). Using this method, each intermediate
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node selects the neighbor closest to the target as the next hop. Examples include greedy forwarding

using precise target location information [14]–[16], as well as approximate or probabilistic geographical

forwarding based on partial target location information [17].

Our principal results are derived under the following assumptions. We consider n nodes uniformly

deployed in a disk of radius a, n may increase with a, and the node density is sufficiently high to ensure

connectivity. The target node and nodes surrounding it form a target area modeled by a circle of radius

b, located at the center of the disk 1. These nodes do not have to be the target’s immediate neighbors;

they represent the area within which the target information is known. We will assume that b� a. Under

these conditions, our main results are summarized as follows 2.

• Random direction forwarding achieves a mean target hitting time of Θ( a
2

b
) for an arbitrarily located

querier/source. Random walk forwarding achieves a mean target hitting time Θ(a2 log a
b
) when the

querier/source is located away (at a distance Θ(a)) from the center of the target area, and Θ(a2)

when it is located close (at a distance Θ(b)) to the center of target area.

• Enhanced random direction forwarding achieves a mean target hitting time Θ(a) for arbitrarily located

querier/source. This comes at the expense of extra information dissemination and storage of the target

location along the advertisement route. The memory requirement (defined as the mean number of

nodes required to store target information) is O(
√
n).

• Under the greedy forwarding method, the mean target hitting time is Θ(a) when the querier/source is

located at a distance Θ(a) from the center of target area, and it has a memory requirement of Θ(n).

In addition, we note that random direction and random walk forwardings can be viewed as two special

cases of the family of methods characterized by the Lévy walk, which has been studied by physicists

and biologists. Using Lévy walk we show via simulation that longer query propagation distance between

changes of direction is preferred in terms of target hitting time. We also discuss practical implementation

issues of using the forwarding methods studied here and examine the validity of our analytical results

under different target locations, different network field shapes, as well as in the presence of error in

location information.

The rest of the paper is organized as follows. We define the network model, the packet forwarding

methods, and performance metrics in Section II. The forwarding delay (target hitting time) under different

1In Section V-A we consider other target locations.
2Notation: f(n) = O (g(n)) means lim supn→∞

f(n)
g(n)

< ∞. f(n) = Θ(g(n)) means f(n) = O (g(n)) and g(n) = O (f(n)).

f(a, b) = Θ (g(a, b)) means 0 < f(a,b)
g(a,b)

< ∞ as a
b
→ ∞.
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methods are derived in Section III. These results are compared and discussed in Section IV. Practical

implementation issues are presented in Section V. Section VI summarizes related work on hitting time

studies, and Section VII concludes the paper.

II. NETWORK MODEL AND ASSUMPTIONS

A. Network Model

We consider n nodes deployed within a disk of radius a. This circular field is denoted by G, its

boundary ∂G. We assume that the destination node, or the target, is located at the center of the disk. This

assumption is relaxed in Section V-A. The target area is a circle of radius b centered at the target, denoted

by H , with boundary ∂H , as shown in Figure 1(a). We assume that b � a. The target area represents

the neighborhood surrounding the target node within which nodes have the location information on the

target. Thus once a query packet has reached a node within this area, including the boundary, the target

is considered found. A source node s, or the querier, resides between the two concentric circles at a

distance r from the center, where b < r ≤ a. It initiates a query packet to be forwarded in a certain way

with the goal of reaching H .

Our objective is to study a number of query forwarding strategies and to evaluate their effectiveness

and timeliness in locating the target within the context of data search. The analysis conducted and results

obtained here primarily apply to a static or quasi-static network where nodes’ mobility is low with respect

to the speed of packet forwarding. As we have mentioned in the previous section, they also apply to the

scenario of a moving robot searching for a (static) target or data in a network.

We assume a high node density scenario, under which straight line forwarding is feasible (more precisely

defined below), and that the network is connected given the density and a certain transmission range/radius

R(n). As the node density increases, the path that the query packet follows becomes increasingly well

approximated by a sequence of straight lines. When we say that a path from node A to node B can be

approximated by a straight line, we mean that the number of packet forwardings incurred between A and

B is Θ( L
R(n)

), where L is the Euclidean distance between A and B. Subsequently, forwarding methods

that satisfy this requirement will be referred to as quasi-straight line forwarding/routing methods.

In this sense, results in [18] showed that quasi-straight line routes can be constructed (which also implies

connectivity) if R(n) scales as Θ(
√

logn
n

), where n nodes are uniformly distributed in a unit disk. This

was done in [18] by first partitioning the network into cells each containing a disk of area Θ( log n
n

), and
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then showing (1) that the sequence of cells crossed by the line segment connecting a source-destination

pair each contains at least one (forwarding) node with high probability, and (2) that a node in a given

cell can reach any node in a neighboring cell using a transmission range of Θ(
√

log n
n

). For an expanding

network, this result suggests that R(n) has to be such that each node can reach Θ(logn) neighbors in

order for the network to be connected and for quasi-straight line routing to be feasible. Quantitative scaling

relationship between n and R(n) for a network to be asymptotically connected can also be found in [19],

[20]. In addition, results in [17] showed that greedy geographic forwarding results in quasi-straight line

routes, and [21] studied how to adjust R(n) such that greedy forwarding always successfully finds such

a route.

It should be noted that the random forwarding schemes considered here as well as our results do not

rely on disk/circular transmission models, so long as quasi-straight line forwarding can be established.

However, the connectivity condition we cited above is derived under a disk model.

Using these results, as long as the network density or the transmission range is sufficiently large, it may

be assumed that a packet could follow a quasi-straight line route through the network. In our analysis, we

will first assume that the query packet follows a perfect straight line. Then in Section V, we examine in

more practical and realistic scenarios where the forwarding path is characterized by quasi-straight lines,

and show that our results continue to hold.

Note that underlying this class of routing methods is the assumption that a node has relative location

information regarding its neighbors. This is to ensure that a packet is forwarded in a consistent direction.

This assumption is justified when nodes are equipped with GPS devices through which location information

is directed obtained. It is also justified when a node has the ability to measure angle/direction of arrival

of an incoming packet as well as the distance between itself and a neighboring node, from which relative

location information may be extracted. The effect of error in such information on the forwarding scheme

is examined in Section V-C. With such location information a node can also decide whether it is on the

network boundary ∂G, by detecting the lack of neighbors in the half plane opposite of the network.

We consider a number of packet forwarding schemes described below.

B. Forwarding Methods

1) Random Direction Forwarding: Under this forwarding method, the querier/source node s randomly

(uniformly) selects a direction from [0, 2π), and sends the query packet to a neighboring node along

that direction (as closely as possible). The same direction is followed by subsequent relaying nodes till
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Fig. 1. (a) Random direction forwarding. (b) Enhanced random direction forwarding: target information is stored/advertised along DE. (c)
Boundary reflection under the random walk forwarding.

the packet either reaches the target area boundary ∂H or the network boundary ∂G. This results in an

approximate straight line emanating from the source at a randomly chosen angle, illustrated in Figure

1(a). If the packet hits ∂G at node w before it hits ∂H , then node w randomly (uniformly) selects a

direction within a half circle ([0, π]) toward G. This process continues till the packet hits ∂H .

It has been known (for example see [22]) that under the above boundary-reflection model, the query

packet is more likely to be near the center of the field than the boundary. This results in a non-uniform

search (or sweep) of the field. Uniform sweeping can be achieved by adopting an alternative reflection

model. One such method was proposed in [23] that works as follows. Denote by Γ the angle between

the random direction of the reflected straight line and the tangent to the boundary at the bouncing point.

If, instead of a uniform distribution, Γ has a probability density function of fΓ(γ) = 1
2
sin γ, 0 ≤ γ ≤ π,

then the resulting search covers the field uniformly. In subsequent sections we will primarily analyze the

first model where the reflection angle is uniformly distributed. Then in Section V-A, we will show that

this alternative boundary-reflection model gives us the same order results.

2) Enhanced Random Direction Forwarding: Under this scheme the query packet is forwarded in

exactly the same way as in the previous method. The difference is that in addition to query forwarding, the

destination/target node a priori sends out an advertisement packet along a quasi-straight line in a randomly

selected direction, as shown by the line DE in Figure 1 (b). The advertisement packet propagates the

target location/data information to the nodes it visits. Such information is stored by nodes along this line,

referred to as the target line. This effectively extends the target area, such that as soon as the query packet

hits the target line, it obtains the target information and can simply follow the target line to reach the

target area. Note that the two line segments emanating from the target do not have to be aligned; as we

will show in Section III-B, this will not affect our analysis and results. In subsequent sections, we will

first assume that the advertisement forwarding follows a perfect straight line in our analysis, and then
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discuss practical scenarios.

3) Random Walk Forwarding: Under this forwarding method, the query packet initiated by source s

is relayed by a randomly chosen neighboring node and the same process repeats till the packet reaches

the target area ∂H . This forwarding results in a random walk type of motion. It has been shown in [24]

(Chapter II) that a discrete-time random walk on a grid network approaches a standard continuous-time

Brownian motion if the distance traveled between two neighboring nodes is sufficiently small. That is, the

random walk on a grid of n nodes in a fixed area can be modeled well by a standard Brownian motion

for sufficiently large n. Subsequently in our analysis of this forwarding method, we will assume that the

query packet follows a standard Brownian motion. Under this assumption, when the packet moves out

of G, it is “pushed back” into G, the pushing normal to ∂G, i.e., when the packet moves out of G, the

tangent line at the boundary-crossing point reflects the packet back to G, as illustrated in Figure 1 (c).

C. Performance Metric

The performance metric of interest is the forwarding delay, or hitting time, defined as the number of

forwardings (or hops) the query packet takes between leaving the source and hitting the target area. With

this definition, the delay due to congestion or collision/retransmission is ignored.

For the random direction forwarding and the enhanced random direction forwarding, we will assume

that the transmission range R(n) stays constant as a and n increases, and will subsequently also use the

notation R. This allows us to directly relate hitting time to hitting distance 3. It follows that

Hitting time = Θ(hitting distance), (1)

where hitting distance is the distance that the query packet traveled from the source to the target area.

If R(n) also increases with n (e.g., if the node density stays constant then R(n) needs to increase as

Θ(
√

logn) so satisfy the connectivity condition), then the above needs to be adjusted by dividing the right

hand side by R(n). More discussion on this is given in Section III-D.

Under the random walk forwarding scheme, the Brownian motion assumption is a continuous time

approximation. In order to make results comparable under different schemes, we need to relate the

continuous hitting time to the number of packet forwardings. The number of packet forwardings in a

3Note that to satisfy the connectivity and quasi-straight line routing condition mentioned earlier, we need nR2/a2, i.e., the number of
nodes a transmitter can reach, to be Θ(log n). For R to stay constant means that as a increases, n has to increase at a rate such that
a = Θ(

q

n
log n

).
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Fig. 2. (a) Illustration of different events. (b) Derivation of P1.

random walk on a square grid, m, was shown to be 2t
δ2

in approaching Brownian motion [24] (Chapter

II), where δ is the grid cell length and t is the continuous time in Brownian motion. Assuming that δ is

fixed, the hitting time (t) derived under Brownian motion has the same order as the number of packet

forwardings (m). We will subsequently take the order of t to be equivalent of that of m in analyzing the

random walk forwarding scheme.

When evaluating the enhanced random direction forwarding scheme, we will also consider a memory

requirement metric, which quantifies the amount of location information that needs to be stored by nodes

outside the target area. This requirement is measured by the mean number of nodes required to store such

information.

III. HITTING TIME UNDER DIFFERENT FORWARDING METHODS

A. Random Direction Forwarding

We first present a detailed analysis to precisely compute the mean hitting distance. This is followed by

an order analysis to show how the mean hitting distance and time scale with the size of the network and

the target area.

Below is a list of notations used; they are also illustrated in Figure 2 (a).

F1: the event that the query packet reaches H without hitting ∂G given that the initial starting point is

at a distance r from the center of H (also the center of the network as the two circles are concentric).

F2: the event that the query packet reaches H eventually given that the initial starting point is at a

distance r from the center of H .

F3: the event that the query packet reaches ∂G without hitting H given that the initial starting point is

at a distance r from the center of H .

F4: the event that the query packet reaches H without hitting ∂G given that the initial starting point is

on ∂G. (Due to symmetry, the exact position on ∂G is irrelevant.)
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F5: the event that the query packet reaches H eventually given that the initial starting point is on ∂G.

F6: the event that the query packet reaches ∂G without hitting H given that the initial starting point is

on ∂G.

Li: the distance traveled by the query packet under event Fi, i = 1, · · · , 6, respectively. This is a random

variable with probability density fLi
.

Pi: the probability of event Fi, i = 1, · · · , 6, respectively. Note that P3 = 1 − P1 and P6 = 1 − P4.

Our goal is to derive the mean hitting distance E[L2]. It is straight forward to verify that the following

equalities hold:

E[L5] = E[L4]P4 + (E[L6] + E[L5])(1 − P4), (2)

E[L2] = E[L1]P1 + (E[L3] + E[L5])(1 − P1), (3)

where E[Li] denotes the mean value of Li. Therefore,

E[L2] = P1E[L1] + (1 − P1)(E[L3] + E[L4]) +
(1 − P4)(1 − P1)E[L6]

P4
. (4)

The above equation breaks down the calculation of the mean hitting distance into the mean distance of

events F1, F3, F4, and F6.

Proposition 1:

P1 =
arcsin( b

r
)

π
and P4 =

2 arcsin( b
a
)

π
. (5)

Proof: Given that the starting point is r away from the center of H , the packet can reach H if the

direction of the straight line is chosen in the range of 6 DsC illustrated in Figure 2 (b). Thus we can

derive this probability as follows:

P1 =
6 DsC

2π
=

2 arcsin( b
r
)

2π
=

arcsin( b
r
)

π
. (6)

The derivation of P4 is similar. The differences are that the starting point is at a distance a from the

center and the direction can be chosen from a half circle [0, π).

Proposition 2: For l ∈ [r − b,
√
r2 − b2],

fL1(l) =

∣

∣

∣

∣

r2
−b2−l2

l√
2b2r2−b4−r4+(2r2+2b2)l2−l4

∣

∣

∣

∣

arcsin( b
r
)

, (7)
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Fig. 3. (a) Illustration of F1 and F4 (when r = a). The circle is H . (b) Illustration of F3 and F6 (when r = a).

and for l ∈ [a− b,
√
a2 − b2],

fL4(l) =

∣

∣

∣

∣

a2
−b2−l2

l√
2a2b2−b4−a4+(2a2+2b2)l2−l4

∣

∣

∣

∣

arcsin( b
a
)

. (8)

Proof: The source is at a distance r away from the center of H . Figure 3 (a) illustrates F1 and F4

(when r = a). Without loss of generality, we consider only the upper half circle. Given F1, the angle Q

is uniformly distributed in [0, arcsin( b
r
)]. We have that L2

1 + r2 −2L1r cos(Q) = b2. Thus Q, as a function

of L1, can be written as Q(L1) = arccos(
L2

1+r2−b2
2L1r

). Therefore, for l ∈ [r − b,
√
r2 − b2]

fL1(l) =
1

arcsin( b
r
)

∣

∣

∣

∣

∂Q(l)

∂l

∣

∣

∣

∣

=
1

arcsin( b
r
)

∣

∣

∣

∣

∣

r2−b2−l2
l

√

2b2r2 − b4 − r4 + (2r2 + 2b2)l2 − l4

∣

∣

∣

∣

∣

. (9)

Finally, fL4(l) = fL1(l) when r = a.

Proposition 3: For l ∈ [a− r,
√
a2 − b2 +

√
r2 − b2),

fL3(l) =

∣

∣

∣

∣

r2
−a2

−l2

l√
2a2r2−a4−r4+(2r2+2a2)l2−l4

∣

∣

∣

∣

π − arcsin(b)
, (10)

and for l ∈ [0, 2
√
a2 − b2),

fL6(l) =
1

π
2
− arcsin( b

a
)

∣

∣

∣

∣

l√
4a2l2 − l4

∣

∣

∣

∣

. (11)

Proof: The source is at a distance r away from the center of H . Figure 3(b) illustrates F3 and F6

(when r = a). Again, without loss of generality we consider only the upper half circle. Given F3, the

angle of Q is uniformly distributed in (arcsin( b
r
), π]. Given F6, the angle Q is uniformly distributed in

(arcsin( b
r
), π

2
]. We have that L2

3 + r2 − 2L3r cos(Q) = a2. Thus Q, as a function of L3, can be written as

Q(L3) = arccos(
L2

3+r
2−a2

2L3r
), where L3 ∈ [a− r,

√
a2 − b2 +

√
r2 − b2). Therefore,

∂Q(l)

∂l
=

r2−a2−l2
l

√

2a2r2 − a4 − r4 + (2r2 + 2a2)l2 − l4
. (12)
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 2.55
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Fig. 4. Comparison between simulation and numerical results with initial position r = 1.

Thus fL3(l) = 1
π−arcsin( b

r
)

∣

∣

∣

∂g(l)
∂l

∣

∣

∣
and similarly fL6(l) = 1

π
2
−arcsin( b

a
)

∣

∣

∣

∂g(l)
∂l

∣

∣

∣

r=a
.

With Propositions 1, 2, and 3, we can obtain the individual terms in Equation (4) and numerically

evalutate E[L2]. Figure 4 compares the simulation and the numerical results under different pairs of (a, b)

values and the initial position r = 1. In the simulation results, each point is the average of 40000 random

runs. In each run an object, starting from s as shown in Figure 2 (b), moves along a straight line with

uniformly-selected direction and tries to reach H . We see that the numerical means of L1, L3, and L4

match well with the simulation means. Small difference exists between the numerical and the simulation

means for L6 and L2. This is partially attributed to the numerical integration approximation in Matlab.

The previous analysis provides us with a numerical method to compute the hitting distance. We next

derive the scaling behavior of the hitting distance and time with respect to the size of the network.

Proposition 4: Suppose that the initial source position is at a distance r (b < r ≤ a) from the center

of the field and b� a. Under random direction forwarding, the mean hitting time is Θ( a
2

b
).

Proof: From the previous propositions we know that L1 ∈ [r− b,
√
r2 − b2], L3 ∈ [a−r,

√
a2 − b2 +

√
r2 − b2], L4 ∈ [a−b,

√
a2 − b2], and b < r ≤ a. Thus we have E[L1] = E[L3] = O(a) and E[L4] = Θ(a).

In addition, for l < 2
√
a2 − b2,

E[L6] =
1

π
2
− arcsin( b

a
)

∫ 2
√
a2−b2

0

l ·
∣

∣

∣

∣

l√
4a2l2 − l4

∣

∣

∣

∣

dl =
1

π
2
− arcsin( b

a
)

∫ 2
√
a2−b2

0

l√
4a2 − l2

dl

=
2a− 2b

π
2
− arcsin( b

a
)

= Θ(a). (13)

From Proposition 1 we have P1 = Θ(arcsin( b
r
)) = Θ( b

r
) and P4 = Θ(arcsin( b

a
)) = Θ( b

a
). Thus from

Equation (4), we have that

E[L2] = Θ(
b

r
)O(a) + (1 − Θ(

b

r
))(O(a) + Θ(a)) +

(1 − Θ( b
a
))(1 − Θ( b

r
))Θ(a)

Θ( b
a
)

.

Since b < r, there are two possible cases, either b and r are on the same order, i.e., b
r

= Θ(1), or b
r
→ 0

as a
b
→ ∞. In either case we see that the last term of the above equation dominates and has an order of
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Fig. 6. Mean hitting distance of random direction forwarding: comparison between the order result and simulation (illustrated by curves
with markers). Small vertical line segments are 95.4% confidence intervals.

Θ(a
2

b
). That is, we have

E[L2] = Θ(
a2

b
). (14)

The proposition is proven by noting that the mean hitting time has the same order as the mean hitting

distance.

Interestingly, this result is the same as that can be achieved when the query packet is forwarded in a

completely controlled regular sweep, as illustrated in Figure 5. However, in this regular sweep, the query

packet needs to be much more precisely controlled, compared to the random direction forwarding.

Figure 6 compares the simulated mean hitting distance with function Θ( a
2

b
). Each point is the average of

10000 random runs. In each run an object, starting from position (a, 0) (center of the disk has coordinates

(0, 0)), moves along a straight line with uniformly-selected direction and tries to reach H . In the left plot,

we fix b and vary a. We see that the mean varies closely to 1.6a2

b
. In the right plot, we fix a and vary b.

We see that the mean varies closely to 1.4a2

b
except for b > 0.3. This is because our order result is derived

under the assumption a� b.
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Fig. 7. (a) A possible sample path. (b) BH1 = Θ(a), BH2 + H2H3 = Θ(a), and BB2 = O(a). (c) General enhanced random direction
forwarding. DO and OE are the target lines. θ1, θ2 ∈ (0, 2π).

B. Enhanced Random Direction Forwarding

In this section we analyze the performance of the enhanced random direction forwarding, as described

in Section II. Figure 7 (a) illustrates a possible sample path. Suppose that the query packet hits the

boundary at the bouncing point B, and that the random direction is chosen such that the next straight

line can hit the target area or the target line. The length of this hitting straight line and the probability

of such an event depend on the position of B on the boundary. Thus results similar to Equations (2) and

(3) are much harder to obtain. However, the derivation can be greatly simplified if we are only interested

in the scaling behavior.

Proposition 5: Suppose that the initial source position is at a distance r (b < r ≤ a) from the center

of the field and a� b. Under the enhanced random direction forwarding, the mean hitting time is Θ(a).

Proof: As illustrated in Figure 7 (b), regardless of the bouncing point B, the straight-line distance

to the target area, BH1, is Θ(a). Similarly, the summation of the straight-line distance to the target line

BH2 and line H2H3 is between a and 3a, thus on the order Θ(a). Since the distances under these two

hitting events (the target area hit and the target line hit) are on the same order, we can combine them and

regard them as a single event, denoted by F4. This is analogous to the F4 in the derivation of Equation

(4). Thus, E[L4] = Θ(a) and P4 = π
2

= Θ(1).

Therefore, we can reuse Equation (4) with the difference that the target now is the combination of H

and the target line. Following the same notation we can easily obtain E[L1] = E[L3] = E[L6] = O(a)

and P1 ∈ (0, 1). The result then follows from Equation (4) and noting that the mean hitting time has the

same order as the mean hitting distance.

A more general enhanced random direction forwarding is illustrated in Figure 7 (c), where DO and

OE are the target lines, but may not be aligned. We have the following corollary. The proof is essentially

the same as that of Proposition 5 and is therefore omitted.
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Corollary 1: Suppose that the initial source position is at a distance r (b < r ≤ a) from the center of

the field, a � b, and θ1, θ2 ∈ (0, 2π). For the general enhanced random direction forwarding illustrated

in Figure 7(c), the mean hitting time is Θ(a).

Figure 8 shows the simulated mean hitting distance. Each point is the average of 20000 random runs.

In each run an object, starting from position (a, 0) (center of the disk has coordinates (0, 0)), moves along

a straight line with uniformly-selected direction and tries to reach H or DE. In the left plot b remains

constant, and we see the mean hitting length increases linearly with a. In the right plot a remains constant,

and the mean hitting length stays relatively constant over small values of b.

C. Random Walk Forwarding

In this subsection we study random walk forwarding modeled by a standard Brownian motion.

Proposition 6: The mean hitting time under the random walk forwarding with initial distance r (b <

r ≤ a) from the center is given by

m(r) = a2 log(
r

b
) +

b2 − r2

2
. (15)

Therefore, when a� b and r = Θ(a), the mean hitting time is Θ(a2 log(a
b
)). When a� b and r = Θ(b)

(e.g., r = 2b), the mean hitting time is Θ(a2).

Proof: The mean hitting time is a function of the initial position, denoted by m(r, θ), where (r, θ)

is the 2-dimensional polar coordinate. The Brownian motion moves in a ring of outer radius a and inner

radius b. From [24], for such a bounded domain, the mean hitting time satisfies the Poisson equation:

∇2m =
1

r

∂

∂r

(

r
∂m

∂r

)

+
1

r2

(

∂2m

∂θ2

)

= −2. (16)
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Note that the mean hitting time does not depend on θ due to symmetry. Therefore,

1

r

∂

∂r

(

r
∂m

∂r

)

= −2. (17)

To solve this differential equation, we need certain boundary conditions. We know that our Brownian

motion stops at the inner circle of radius b. Thus m(r = b) = 0. It reflects at the outer circle of radius a.

Thus we have the Neumann condition
[

∂m(r)
∂r

]

r=a
= 0. The solution to m(r) then follows.

D. Discussion

The preceding results essentially show how the hitting time/distance scales as a
b
→ ∞. This limiting

regime can potentially describe a number of scenarios, e.g., when a and b both increase, with a increasing

faster. A particularly relevant case is when b remains constant while a increases. In this case the target

location information is limited to a constant sized region, and our results reveal how the hitting time

scales when the network expands.

These results directly apply to hitting distance, provided that quasi-straight line routing is feasible.

Applying them to hitting time relies on the assumption that the transmission range R(n), or the advance

made by the query packet in each hop, is constant. As discussed earlier, as the network increases in size,

in order for the transmission range to remain constant while satisfying the connectivity and quasi-straight

line routing conditions, the node density also needs to increase, i.e., the total number of nodes, n, needs

to increase faster than a2. If we wish to maintain constant node density, then the transmission range

R(n) will need to increase as well. In this case the scaling results derived in this section will need to be

modified as follows. Note that R(n) is on the order of
√

log n assuming constant node density. Since n

scales as a2, we have that R scales as
√

log a. In the case of random direction forwarding, this means

that the target hitting time is on the order of a2

b
√

log a
.

IV. HITTING TIME AND STORAGE COMPARISON

With the preceding analysis, in this section we compare the hitting time of these schemes under different

target location information assumptions. By doing so we also show the tradeoff between hitting time and

location information storage required by these schemes. We will consider three cases discussed in the

following.
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A. Zero Target Location Information

We first examine the random direction forwarding and the random walk forwarding methods, both of

which do not require nodes to have any target location information. From Propositions 4 and 6, we see that

in terms of mean target hitting time, random direction forwarding is superior to random walk forwarding

when the source is far away (with initial distance Θ(a)) from the center of the target area. Nevertheless,

when the source is very close (with distance Θ(b)) to the center, random walk forwarding results in less

mean hitting time (Θ(a2)) than random direction forwarding (Θ( a
2

b
)). This can be intuitively explained

by the fact that the query packet in random walk forwarding tends to move within a local neighborhood

for a long time, while in the random direction forwarding it quickly leaves the neighborhood.

It is worth noting that these two forwarding methods may be viewed as two special cases of the

same family characterized by the Lévy distribution. Specifically, suppose that we can perfectly control

the query packet’s trajectory, and select for the j-th stage/trip a uniformly distributed random direction

and a random trip distance lj . The packet subsequently moves along the chosen direction for distance lj ,

and the same process is repeated for the next, (j + 1)-th stage/trip. This process specifies a family of

forwarding/movement patterns determined by the distribution of lj . This process is known as the Lévy

walk [25] if lj has a Lévy distribution given by

P (lj) ∼ l−µj , (18)

where 1 < µ ≤ 3.

Lévy walk has been used by physicists and biologists in studying the movement of particles or animals,

see for example [26]. It is known [25] that Lévy walk approaches straight-line motion with random

direction (i.e., random direction forwarding in our case) when µ approaches 1, and it becomes Brownian

motion when µ is greater than or equal to 3 and the number of trips is large enough. Figure 9 shows

the simulated mean hitting distance under Lévy walk with different µ. Each point is the average of

1000 random runs. In each run, an object, starting from position (a, 0), moves along a straight line with

uniformly-selected direction until it reaches a trip distance drawn from the distribution P (lj) with the

corresponding µ, or hits the boundary. It then re-selects a random direction and a random trip distance.

The simulation ends when the object reaches H .

The functions 1.6a2

b
and 1.4a2

b
are provided in the figure as references of the mean hitting distance under

random direction forwarding as shown earlier in Section III-A. We see that the mean hitting distance
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Fig. 9. Simulation results of the mean hitting distance of Lévy walk. Vertical line segments denote the the 95.4% confidence intervals.

decreases as µ decreases. Note that smaller µ means higher probability of longer trip lengths. Therefore,

under our network model and performance metric, longer trip lengths are preferred. Note that the random

direction forwarding and enhanced random direction forwarding schemes studied in this paper maximize

the trip lengths in that they follow a straight line till the boundary is hit. By contrast, it was shown in [25]

that, if there are multiple targets randomly distributed in the network and each can be multiply visited,

then in order to hit the most number of targets per unit of time, the optimal value for µ is 2.

B. Partial Target Location Information

Under enhanced random direction forwarding, the target sends out a controlled advertisement to a small

set of nodes, and the query packet only needs to reach this small set of nodes or the target itself. This

can be regarded as a scenario where the network has partial target information. From Propositions 4 and

5, we see that enhanced random direction forwarding (with mean forwarding delay Θ(a)) has less mean

target hitting time than random direction forwarding (with mean forwarding delay Θ( a
2

b
)). However, this

comes at the expense of dissemination and storage of target location information along the target line.

Specifically, an advertisement packet needs to be forwarded by nodes along a certain direction, and thus

the number of nodes storing the target location is O(
√
n).

C. Complete Target Location Information

When every node in the network knows the target location, one can use geographical/greedy forwarding

to get to the target, where each node chooses the next hop to be the neighbor closest to the target. If

this path is a straight line and all forwarding step distances are R, then the hitting time is simply r
R

,

where r is the initial distance between the source and the target. When the forwarding path cannot be

modeled as a perfect straight line, results of the same order may be obtained if the forwarding satisfies
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certain conditions. For example, imperfect greedy forwarding was studied in [17] where an intermediate

node randomly selects as next hop a neighbor within a sector of its communication area toward the target,

and the results showed that the mean hitting time is Θ( r
R
) where r is the initial distance (normalized to

1 and R scales as Θ(
√

log n
n

). The same order result is also obtained in [17] when a randomly selected

fraction of nodes have the target location information. Specifically, a node knows the target’s quadrant

with probability p ∈ (0, 1), and with probability (1 − p) it randomly forwards the packet. Subsequently,

this model will be called greedy forwarding with partial information.

From Proposition 5, we know that the mean hitting time under enhanced random direction forwarding

is Θ(a). Therefore, when the query source is at distance Θ(a) from the target, enhanced random direction

forwarding achieves comparable mean hitting time (in terms of order) as greedy forwarding and greedy

forwarding with partial information.

On the other hand, the enhanced random direction forwarding method has less memory requirement.

In particular, the number of nodes along the target line is at most on the order of
√
n, n being the

total number of nodes in the network. This results in a memory requirement of O(
√
n), while greedy

forwarding has a memory requirement of n, and greedy forwarding with partial information has memory

requirement np = Θ(n) since p ∈ (0, 1). This comparison points to the fact that a controlled scheme (i.e.,

nodes storing the location information are selected along a line) is more effective in this context.

V. DISCUSSION

A. Different Boundary Reflection Models, Target Locations, and Field Shapes

Our discussion so far has centered on the specific scenario of a circular field and target area, with the

target at the center of the field. It would be desirable to obtain more general results for arbitrary convex

shaped network fields and arbitrary target locations. This appears to be a difficult problem at least in the

random walk forwarding case, for which most if not all of the existing results are limited to symmetric

field shapes. When the forwarding paths are assumed to be perfect straight lines, it is possible to obtain

more general results, see for example [23] where the field is assumed to be a general convex shape. On

the other hand, the method used in [23] does not immediately apply to the enhanced random direction

forwarding. More discussion on this is given in Section VI.

The following proposition generalizes our results of random direction forwarding and enhanced random

direction forwarding when the target is centered at an arbitrary location while the field remains circular.
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This result applies to both the non-uniform search method (boundary reflection according to a uniformly

selected angle) and the uniform search method (boundary reflection according to fΓ(γ) = 1
2
sin γ, 0 ≤

γ ≤ π). The proof is given in the appendix.

Proposition 7: Consider the same scenario defined in Section II, except that now the source is on the

boundary and the target is centered at an arbitrary location (with the target area completely within the

disk field) subject to the condition that its distance from the nearest boundary is Θ(a) 4. Then under the

two boundary-reflection models outlined earlier, the random direction forwarding has mean hitting time

Θ(a
2

b
), and the enhanced random direction forwarding has mean hitting time Θ(a).

B. Random Direction Forwarding in a More Realistic Scenario

In our analysis so far, we have assumed that the query packet can follow a perfect straight line.

Results obtained are compared with that of simulation which also assumes perfect straight line forwarding

paths. Below we consider more realistic scenarios when packets follow quasi-straight line paths, and use

simulation to examine the applicability of the results obtained under ideal assumptions.

We employ the following simple algorithm to realize the random direction forwarding in the simulation;

the algorithm is similar to those found in [1], [6]. We assume that the initial position of a forwarding path

(either the location of the querier or the location of the hitting point on the boundary) and the randomly

chosen direction α with respect to a known reference zero degree are carried in the header of the query

packet. An intermediate node first selects a set of neighbors within the same quadrant as the direction

α 5, and then among these neighbors selects a relay that is the closest to direction α and provides the

largest advance in terms of distance made forward along α.

In the simulation, 4000 nodes are uniformly deployed in a [−a, a] × [−a, a] square. Each node has

transmission radius R = 0.3. The field G and the target area H are two concentric circles centered at

(0, 0), with radius a and b, respectively. The querier/source is chosen to be the node closest to (a, 0). When

the query packet reaches the node outside G or inside H , a boundary hit or a target hit occurs, respectively.

Time is measured in terms of number of hops. Each data point is the average over 10 instances of random

deployment, each with 20 runs, resulting in a total of 200 runs. The left plot of Figure 10 verifies that

the mathematical result in Section III-A matches the simulation results well, i.e., the mean hitting time

4This means that while the target center can be very close to the boundary, e.g., with distance 0.001a, it scales with a.
5Under the assumption of sufficiently high node density, this set is non-empty with high probability. Otherwise, this scheme or in general

greedy forwarding schemes will not work without additional enhancement.
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Fig. 10. (a) Mean hitting time (number of hops) of the practical packet forwarding scenario under random direction forwarding. Vertical
line segments denote the 95.4% confidence intervals. (b) A sample path of random direction forwarding. Here b = 0.5 and a = 2.5. The
source is located at approximately (2.5, 0). The dotted line is the forwarding path, and the dots are the forwarding nodes.

scales as Θ(a
2

b
). The right plot of Figure 10 shows a sample path of random direction forwarding when

a = 2.5 and b = 0.5.

The above result can be compared with that shown in Figure 6 under an idealized scenario. From Figure

6, we see that the mean hitting distance equals 1.6 a
2

b
when the packet follows a perfect straight line. If

the maximum forwarding distance can be achieved in each hop, the mean hitting time under this idealized

scenario is 1.6
R
a2

b
= 5.33a

2

b
for R = 0.3. On the other hand, Figure 10(a) gives a larger mean hitting time

of 7.33a
2

b
. The difference is essentially due to the fact that the latter is obtained using quasi-straight line

forwarding and less-than-maximum (but more realistic) forwarding distance per hop.

C. Effect of Location Errors

For the (enhanced) random direction forwarding, we have assumed that each node knows the relative

location of its neighbors, and that the location information is error-free. In practice, such location infor-

mation may contain error. Figure 11(a) illustrates an example of such, where we are trying to establish a

quasi-straight line forwarding path from node A to C, and B is an intermediate node. Suppose that node B’s

knowledge about its neighbors’ locations is erroneous, and B thinks that its neighbor N is located at where

the white node is, while in reality N’s true location is represented by the grey node. Subsequently node

B selects N to be the next hop relay node and forwards the packet to N. As a result, the forwarding path

goes backward instead of forward. If this situation occurs frequently, the quasi-straight line forwarding

may not be possible.

Figure 11(b) illustrates how we can prevent this from happening when the location error is upper

bounded. Suppose that the maximum location error (defined as the maximum displacement between the
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Fig. 11. Illustration of the effect of location errors on quasi-straight line route. Node B is an intermediate node along the route from A to
C. (a) The gray node is the real position of neighbor N . The white node is the fake position of neighbor N due to location error. (b) A
simple method to solve the problem caused by location error.

erroneous location and the actual location 6) is xe, and xe < R. From Figure 11 (b), we can see that if

node B selects any neighbor (based on its possibly erroneous location information) in the shaded area

Ae, the true location of that selected neighbor will still lie within the right half of the circle, resulting in

positive advance toward the target. This observation is formalized in the following proposition.

Proposition 8: Consider the scenario shown in Figure 11 (a) where a packet originating from node A

needs to be forwarded to node C (or location C) which is assumed to be perfectly known. If all nodes

along the forwarding path select the next hop from their corresponding shaded area Ae shown in Figure

11 (b) and xe > 0, then the hitting time for the packet to go from A to C is Θ( L
R
), where L is the distance

between A and C, and R is the transmission range. Thus quasi-straight line forwarding can be achieved.

Proof: If an intermediate node selects the next hop in the shaded area Ae, then the progress made

toward the end position C is positive; denoted this by ξi where i indexes the i-th intermediate forwarding

node. Thus there exist α, β > 0 such that maxi {ξi} = α ·R and mini {ξi} = β ·R. Then we have

L

αR
≤ hitting time ≤ L

βR
. (19)

Since α, β ∈ (0, 1], the hitting time = Θ(L
R
).

This proposition essentially shows that, if the location error is upper bounded, then restricting the

selection of the next hop to the area Ae can ensure (sufficient but not necessary) quasi-straight line

forwarding.

Next we examine the effect of xe on the probability of finding a next hop node in the area Ae. Basic

geometric calculation gives the following:

Ae = R2
[π

2
− arcsin(

xe
R

)
]

− xe
√

R2 − x2
e. (20)

6This displacement can either be the Euclidean distance between the true and erroneous positions, or the projection of this distance onto
the direction AC. If we take the latter then the sufficient condition given by Proposition 8 is tighter.
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Thus the larger the location error xe, the smaller the area Ae from which the next hop can be selected.

Assume that the n nodes are uniformly deployed in a field of area A. Further assume that the noisy version

of the locations are also uniformly distributed. Then the probability of finding at least one neighbor in

Ae, denoted by Ps, is given by

Ps = 1 −
(

1 − Ae
A

)n−1

. (21)

With Equations (20) and (21), Ps is given as a function of xe.

From Proposition 8, we know that, to enable quasi-straight line forwarding, it would be desirable to have

Ps close to 1. Using Equations (20) and (21), we can find the condition under which Ps approaches 1. For

example, Figure 12 shows the maximum location error in terms of percentage of R (i.e. max xe

R
) to achieve

Ps ≈ 1 when A = 1 and R = c
√

log n
n

, where c equals 1.5 and 2, respectively. When R = 1.5
√

log n
n

and n is large enough, this maximum location error xe is around 70% of the transmission radius. When

R = 2
√

log n
n

, it is around 80% of the transmission radius.

This analysis shows that the maximum location error allowed to achieve quasi-straight line forwarding

depends on the parameter R. It is worth pointing out that if an intermediate node selects neighbors in

its entire communication region instead of only in the shaded area Ae, then [27] has shown that the

quasi-straight line routing is not significantly affected when the location errors are less than 40% of the

transmission radius.

VI. RELATED WORKS

Search problems and movement patterns have been studied by physicists and biologists, within the

context of food scavenging and foraging, particle movement, etc. For example, [25] studied how to

efficiently search for multiple uniformly-deployed targets. The searcher follows the Lévy walk described
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in Section IV-A, and the performance metric studied is the search efficiency, defined as the number of

targets visited per unit distance traveled (or unit time). It was shown that, if a target can only be visited

once, then the optimal µ in the Lévy walk approaches 1, while if a target can be visited multiple times,

then the optimal µ equals 2. It was also mentioned in [25] that the Lévy walk with µ = 2 has been used

by bumble bees, deer, and wandering albatross in searching for food. It remains an open problem to relate

search efficiency to the mean hitting time.

Stochastic search problems have also been studied by mathematicians. As mentioned earlier, [23] studied

the mean hitting time under a model similar to the random direction model (the selection of the direction

is different in [23]) in a general convex field with a circular target. The order result obtained in [23] is

similar and comparable to the one derived in this paper, but the method used in [23] is very different

from ours in this paper. In particular it does not immediately apply to methods like the enhanced random

direction forwarding scheme. In this sense the method employed in the current paper lends itself to the

analysis of enhanced random direction forwarding, but is otherwise not as general as that used in [23].

The idea of using a randomly-moving searcher to model the random forwarding/routing of packets has

also been explored in wireless networks, including those cited earlier in Section I. In [10] search failure

probability as a function of a preset timeout value was studied by modeling the query packet’s movement

as a standard Brownian motion. In [28] the minimum mean hitting time of a query packet searching

for a target located at the center of a field was studied, where the packet’s random route is modeled by

Brownian motion in a constrained drift field.

VII. CONCLUSION

In this paper we studied the problem of searching for a node in a network using random packet

forwarding. We derived scaling properties of target hitting times as funtions of the network and target

dimensions for a number of commonly used random forwarding methods. We showed that when no node

has target location information, random direction forwarding achieves smaller (order wise) mean hitting

time than random walk forwarding, the additional requirement being slightly more intelligent forwarding

in maintaining a consistent direction. With extra memory storing target information, enhanced random

direction forwarding further reduces the mean hitting time. It also achieves comparable hitting time and

less storage than the commonly used greedy forwarding scheme.
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Fig. 13. (a) The illustration of the field G and the target area. (b) (x, y) is an arbitrary bouncing point, and the circle is the target area. The
distance between the point and the target center is b + m. The random direction chosen by the bouncing point is Γ. (c)A possible sample
path under enhanced random direction forwarding.

APPENDIX

PROOF OF PROPOSITION 7

Recall that the field G is a circle of radius a, and the target area is a circle of radius b, where a� b.

The target center is located at an arbitrary location (xT , yT ). The source is located at an arbitrary boundary

point.

We first prove the mean hitting time under random direction forwarding. Figure 13(a) shows the field

and the target area. In (a), the distance between the target center and an arbitrary boundary is b+m, and

the distance between the target center and field center is L. Since the target area has to be inside the field,

we know L < a− b. From the equation L2 = a2 + (b+m)2 − 2a(b+m) cosω, we can obtain

cosω =
a2 + (b+m)2 − L2

2a(b+m)
>
m2 + 2ab+ 2mb

2ab + 2ma
. (22)

Consider the two boundary-reflection models. In the first model, the random direction Γ chosen by

the bouncing node is uniformly distributed in the range of [0, π]. In the second model, Γ has probability

density function fΓ(γ) = 1
2
sin γ, 0 ≤ γ ≤ π. Suppose that the bouncing point is at (x, y), as shown in

Figure 13(b), and the distance between the point and the target center is b+m. As we can see in Figure

13(b), if the packet is to hit the target area, Γ has to be in the range of [ψ, ψ + 2φ]. Consider now the

first boundary-reflection model. The probability P of hitting the target area from this arbitrary bouncing

point is

P =
2φ

π
=

2

π
arcsin(

b

b +m
) = Θ(

b

a
), (23)

since we assume that b +m = Θ(a). It is easy to see that 1 − P = Θ(1).
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Now consider the second boundary-reflection model. Under this model, the hitting probability P is

P =

∫ ψ+2φ

ψ

1

2
sin γdγ =

1

2
[cosψ − cos(ψ + 2φ)]. (24)

It is easy to check that P ≤ sinφ = b
b+m

= Θ( b
a
), where the equality holds when ψ = π

2
−φ. Furthermore,

from Figure 13, ψ = π
2
− ω − φ. Therefore, P = 1

2
[cos(π

2
− ω − φ) − cos(π

2
− ω + φ)] = cosω · sinφ

> m2b+2ab2+2mb2

2m2a+2ab2+4mab
, where the inequality is from Equation (22). Since b+m = Θ(a), we know P ≥ Θ( b

a
).

Thus, under the second boundary-reflection model, P = Θ( b
a
).

Using the notation defined in Section III, since the source is on the field boundary, events E1 = E4,

E3 = E6, and E2 = E5. Thus Equation (4) becomes

E[L5] = E[L4] +
1 − P4

P4

E[L6]. (25)

It is easy to see that L4 ∈ (0, 2a). Therefore, E[L4] = O(a). We also know that P4 = P = Θ( b
a
) and

1 − P4 = 1 − P = Θ(1).

Consider E[L6] under the first boundary-reflection model.

E[L6] =

(
∫ ψ

0

+

∫ π

ψ+2φ

)

2a sin γ · 1/π

1 − P
dγ, denote 1 − P by a constant c

=
2a

cπ

(
∫ ψ

0

+

∫ π

ψ+2φ

)

sin γdγ =
a

cπ
[2 + cos(ψ + 2φ) − cosψ]

≥ a

cπ
(2 − 2 sinφ), since cosψ − cos(ψ + 2φ) ≤ 2 sinφ. (26)

We know that sin φ = b
b+m

= Θ( b
a
); thus, E[L6] = Θ(a).

Consider E[L6] under the second boundary-reflection model.

E[L6] =

(
∫ ψ

0

+

∫ π

ψ+2φ

)

2a sin γ · sin γ/2

1 − P
dγ, denote 1 − P by a constant c

=
a

c

[

π − 2φ

2
− sin(2ψ) − sin(2ψ + 4φ)

4

]

. (27)

We can find that a
c

[

π−2φ
2

− 1
2

]

≤ Equation (27) ≤ a
c

[

π−2φ
2

+ 1
2

]

. Since φ = arcsin( b
b+m

) = Θ( b
a
), E[L6] =

Θ(a).

Therefore, under both boundary-reflection models, the mean hitting distance E[L5] = Θ(a
2

b
). The

proposition is proven by noting that the mean hitting time has the same order as the mean hitting distance.

The proof of the mean hitting time under enhanced random forwarding is similar to Proposition 5,
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but we need to use Equation (25) instead of Equation (4). In Figure 13(c), the straight-line length to the

target area, BH1, is Θ(a) since the shortest distance between the target center and the boundary is Θ(a).

Similarly, the summation of the straight-line length to the target line, BH2, and line H2H3 is Θ(a). Again,

we will combine the target area hit and the target line hit as a single event, and denote it by E4. Thus,

E[L4] = Θ(a).

For P4, under the first reflection model, P4 =
6 DBE
π

= φ

π
. Since the shortest distance between the target

center and the field boundary is Θ(a), we know DE = Θ(a). Furthermore, at least one of DB and EB

is Θ(a). Thus, we can find 0 � φ < π regardless of the value of a, which means φ = Θ(1). As a result,

P4 = Θ(1). On the other hand, under the second reflection model, P4 = 1
2
[cosψ − cos(ψ + φ)]. Since we

know that φ = Θ(1) and φ� 0, P4 = Θ(1).

It is easy to see that E[L6] = O(a). From Equation (25), the mean hitting distance E[L5] = Θ(a).

The proposition is proven by noting that the mean hitting time has the same order as the mean hitting

distance.
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