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Abstract—We consider opportunistic spectrum access (OSA)
strategies for a transmitter in a multichannel wireless sys-
tem, where a channel may or may not be available and the
transmitter must sense/probe the channel to find out before
transmission. Applications for this work include joint pro bing
and transmission for a secondary user in a cognitive radio
network. Limited by resources, e.g., energy and time, the
transmitter must decide on a subset of a potentially very large
number of channels to probe and can only use for transmission
those that have been found to be available. In contrast to
previous works, we do not assume the user has a priori
knowledge regarding the statistics of channel states. The main
goal of this work is to design robust strategies that decide,based
only on knowledge of the channel bandwidths/data rates, which
channels to probe. We derive optimal strategies that maximize
the total expected bandwidth/data rate in the worst-case, via a
performance measure in the form of a competitive regret (ratio)
between the average performance of a strategy and a genie (or
omniscient observer). This formulation can also be viewed as a
two-player zero-sum game between the user and an adversary
which chooses the channel state that minimizes the user’s gain.
We show that our results correspond to a Nash equilibrium (in
the form of a mixed strategy) in this game. We examine the
performance of the optimal strategies under a wide range of
system parameters and practical channel models via numerical
studies.

Index Terms—software-defined radio, cognitive radio, chan-
nel probing, worst-case performance, competitive analysis, two-
player zero-sum game, Nash equilibrium, online algorithms,
randomized algorithms, mixed strategy

I. I NTRODUCTION

In this paper, we examine optimal channel sensing/probing
strategies for opportunistic spectrum access (OSA), where
a transmitter seeks to maximize its achievable data rate
by opportunistically transmitting over a select subset of a
potentially large number of channels. This is done by opti-
mally constructing a channel sensing/probing strategy to find
out which channels are available before transmitting. This
problem is motivated by wireless systems where a transmitter
is supplied with more channels than needed for transmission.
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For example, software defined radio [1] and cognitive ra-
dio systems [2] may provide users with multiple channels
(e.g. tunable frequency bands and modulation techniques)
by means of a programmable hardware which is controlled
by software. Channel quality is in general time-varying due
to factors such as fading, interference, and the presence of
other users (e.g. primary users in a cognitive radio network).
Therefore the ability to probe or sense channel quality before
transmission can help transmitters select the best one(s) to
use. One method of channel probing is through the exchange
of control packets between transmitter and receiver [3].
Another method is to use a spectrum sensor [2] at the physical
layer.

Due to constraints on time, energy, and other resources,
a transmitter may only be able to probe a limited number
of channels. Therefore, it is imperative that it judiciously
select the right channels to probe. If the transmitter hasa
priori knowledge on the probability distribution describing
the states of these channels, then it can design strategies
which maximize the expected transmission gain. Recent
works such as [4], [5], [6] have studied the tradeoff between
probing to gain more information about channel quality
and maximizing transmission gain. On the other hand, if
the transmitter cannot accurately estimate the distribution of
channel states, e.g., due to insufficient information or because
the underlying distribution is changing rapidly over time,then
it may be unreasonable to assume sucha priori knowledge. It
is therefore necessary in such cases to design channel probing
and transmission strategies which are morerobust and do not
requirea priori knowledge of the channel statistics.

Motivated by these practical considerations, in this paper
we use competitive analysis [7] methods to seek strategies
that perform well in the worst case (to be defined more pre-
cisely in Section II) for the following problem. A transmitter
has to decide which subset (up toK channels) ofN channels
to probe, whereby it can only transmit using those channels
that have been probed to be available, and its performance is
measured against a genie who knows exactly which channels
are available. To the best of our knowledge, this is the first
work which analyzes opportunistic spectrum access policies
using a competitive framework. This formulation can also
be viewed as a two-player strictly competitive (or zero-sum)
game between a user and an adversary that controls avail-
ability of channels. Given the user’s strategy, the adversary
turns on the subset of channels for which the user’s gain is
minimized. To offset this adversary, the user’s objective is
to design strategies which perform well with respect to all
of the adversary’s possible actions, i.e. in the worst-case. In
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subsequent sections, we develop the optimal strategy for the
above problem, which is also shown to be a Nash equilibrium
for this game. The corresponding worst-case performances
(or equilibrium payoff) of these optimal strategies are also
obtained.

The rest of this paper is organized as follows. Section II
formulates the problem and primary worst-case performance
metrics considered in this paper. Section III provides prelim-
inary results, while Section IV presents a class of optimal
strategies. Section V presents numerical results. In Section
VI, the problem formulation and results are extended to
analyze the case where probing may be imperfect. Section
VII concludes the paper.

Unless otherwise stated, all results are proven in the
Appendix. We have statedit can be shown for a few results
that are easy to verify and thus not included due to space
constraints.

II. PROBLEM FORMULATION

In this section we formulate the problem considered in
this paper. We then present various performance measures
and corresponding objectives.

A. Formulation and Strategies

We consider a wireless system consisting ofN channels,
indexed by the setΩ = {1, 2, · · · , N} and a transmitter
who has access to these channels. The system works in
discrete time, and at each time step the transmitter needs
to determine which channels to use for transmission. To do
so, the transmitter can probe up toK of the N channels,
where1 ≤ K ≤ N .

A channelj has a maximum data rate denoted byrj . The
actual data rate is given by a random variablexj that takes on
any value between0 andrj . When the rate is positive (zero)
then we say the channel is available/on (unavailable/off).If a
channelj is probed to be available and the transmitter decides
to transmit in that channel, then it receives the ratexj (also
referred to as the channel reward). If the channel is probed
to be unavailable, then the transmitter is not allowed to use
that channel for transmission. In addition, the transmitter is
not allowed to transmit using unprobed channels.

The channel state is given by the random vectorx =
[x1, x2, · · · , xN ] where P (0 ≤ xj ≤ rj) = 1. We denote
by X the set of all possible channel states. We assume
that the transmitter knows the vectorr = [r1, r2, · · · , rN ].
Without loss of generality, we will assume thatr1 ≥ r2 ≥
· · · ≥ rN ≥ 0. However, the transmitter doesnot have
a priori information regarding the channel statistics, i.e.,
the probability distribution ofx. Thus the only information
the transmitter has in making the probing decision is the
maximum data rates of a channel.

The above assumptions are motivated by the channel ac-
cess scenario in a cognitive radio network where a secondary
user seeks to utilize portions of the spectrum not being used
by a set of primary users. In doing so, it needs to find out
which part of the spectrum is available for transmission; such

availability is in general random depending on the primary
users’ traffic pattern. A secondary user may not be able
to model this availability probabilistically, but it may know
the maximum rate of a given channelwhen it is available
due to information such as bandwidth, its modulation/coding
schemes, propagation properties, etc.

In general, when the transmitter has no knowledge regard-
ing channel availability, thenx ∈ X . We will also consider
the case when somehow the transmitter knows the average
number of available channels. It will be seen that having such
knowledge can help the transmitter design better strategies.
For this case, we define the following set of channel states:

XL =







x ∈ X : Ex





N
∑

j=1

I{xj>0}



 ≤ L







, (1)

where Ex denotes the expectation with respect tox, and
I{·} is the indicator function.XL is the set of channel states
such that, on average, at mostL channels are on. Note that
XN = X . For generality, we will derive results in this paper
for generalL, noting that by usingL = N our results directly
apply to the case where the transmitter has no knowledge on
the average number of available channels.

The system proceeds as follows. The transmitter decides
which set ofK channels inΩ to probe. After probing, the
transmitter then determines whichK0 of theseK probed
channels to use for transmission. We describe a user’s strat-
egy as a (random) binary vectoru = [u1, u2, · · · , uN ], where
uj = 1 means the user probes channelj; otherwise,uj = 0.

We denote the probability mass function ofuj by puj
.

Thus,puj
(k) = P (uj = k) for k ∈ {0, 1}. Let U be the set

of strategies, fixed or randomized. We define the following
set of strategies:

UK =







u ∈ U : P





N
∑

j=1

uj ≤ K



 = 1







. (2)

That is, UK is the set of strategies that probe at mostK
channels. Note that any strategy inUK must also satisfy:
∑N

j=1 puj
(1) = Eu

[

∑N

j=1 I{uj=1}

]

≤ K .
We will first assume the probing process is perfect; if

probing indicates a channel is (not) available, then it is
indeed (not) available. In Section VI we generalize resultsto
imperfect probing, e.g. a channel could be unavailable (on)
even if probing indicates that it is on (unavailable).

B. Competitive Regret

Our first worst-case performance measure is in the form of
the difference with respect to a genie as we present below. We
will use the following notation throughout this paper. First,
we letgk(z) denote the sum of thek largest elements of any
vector z and for any integerk. In addition, we letz1 · z2

denote the dot product between any two vectorsz1 andz2.
Now consider any strategyu ∈ UK . Letting V u

x
de-

note its expected reward for anyx, we have V u

x
=

EuEx [gK0
(x · u)], because the transmitter will use theK0

channels with highest rate that are probed and available. Now
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consider an omniscient observer or genie who knows the
realization of channel states in advance and can use up to
K0 channels for transmission. For a given realization, the
genie can simply use theK0 available channels with highest
bandwidth. LettingV ∗

x
denote its expected reward, we have

V ∗
x

= Ex [gK0
(x)].

Taking the difference between the genie’s expected reward
and that of strategyu, we obtain a comparison between the
two. As the transmitter does not have anya priori information
regardingx, except possibly the average number of available
channels, we take a maximum of this difference over allx

to obtain the following worst-case performance measure of
u: δu = maxx∈XL

{V ∗
x
− V u

x
}.

This performance measureδu can be interpreted as the
regret [8], or minimax regret [7] of u. The quantityδu

provides an upperbound on the performance of strategyu

relative to the best possible. That is, for any arbitrary state
x ∈ XL, strategyu will obtain expected reward withinδu

of the genie. We will refer toδu as theworst-case reward
(difference) of strategy u.

δu is often known as the competitive regret ofu versus
an oblivious adversary [7] who knows the distribution (but
not realization) ofu in advance. Givenu, the adversary
chooses anx ∈ XL that maximizes the difference between
the reward ofu and itself. An advantage of considering
this competitive performance measure is thatδu provides a
bound for the worst-case performance of strategyu over all
x. Therefore, we can obtain a performance guarantee for a
given strategy even if there is noa priori knowledge onx.
On the other hand, this performance measure may be viewed
as somewhat conservative since it calculates the performance
over the worstx, which may or may not be likely to occur.
If more information is known aboutx then one can calculate
the worst-case performance over a smaller set ofx and
obtain a more accurate performance guarantee. For further
discussion of the advantages and disadvantages of the worst-
case performance measure, see [7].

The objective for the first problem, which we call(A), is
to find the strategy which minimizes the above worst-case
measure, i.e. obtain the following minimum:

δ∗ = min
u∈UK

max
x∈XL

{V ∗
x
− V u

x
} , (3)

where we refer toδ∗ as the minimum worst-case difference.
The mathematical abstraction and objective for (A) is

similar to problem formulations of [9], [10] which were
motivated by different applications. The paper [9] considers
an inspector (corresponding to the transmitter in our problem)
attempting to detect whether an inspectee has cheated by
searching among a subset of the inspectee’s bins or resources
(corresponding to channels in a wireless system). The paper
[10] also considers a related search problem where an in-
dividual must decide how to hide a fixed number of objects
within a set of containers (corresponding to channels in (A)),
each with equal capacity. It can be shown that both [9], [10]
correspond to our problem scenario when all channels have
an equal data rate, i.e.rj = rl for all channelsj, l, and

when the adversary is allowed to transmit in allN channels
(compared to our formulation, which allows someK ≤ N ).
Therefore the problem considered here is more general.

From the above description, we see that this problem can
also be viewed as a two-player zero-sum game where the
adversary’s payoff is the regret and the transmitter’s payoff
is the negative of this. In Section IV-C, we show that the
optimal strategy for (3) with a correspondingx form a Nash
equilibrium of the game.

C. Competitive Ratio

Our second worst-case performance measure, also com-
monly used, is in the form of theratio between the re-
ward of a strategy and the genie. Consider the following
worst-case performance measure of any strategyu: ρu =

minx∈XL

V u

x

V ∗

x

= minx∈XL

{

E[gK0
(x·u)]

E[gK0
(x)]

}

, which is also

known as the competitive ratio [7] of strategyu. It is implied
that the genie cannot choose all elements ofx to be zero in
order for the above ratio to be well defined. For any state
x, strategyu is guaranteed to obtain performance within a
factor ρu of the best possible. Note thatρu ≤ 1 for any
strategyu, as it is impossible to do better than the genie.
The corresponding objective for this problem, which we
call (B), is to determine the strategy achieving maximum
worst-case performance,maxu∈UK

ρu. Again this problem
may be considered a two-player zero-sum game where the
transmitter’s payoff is given by the ratio.

III. PRELIMINARIES

We will assume thatrK > 0. If this were not true, then it
means there are less thanK channels with positive rate, and
the optimal strategy is trivial: probe channelj if rj > 0.

Lemma 1: Let L̃ = min{L, K0}. For anyu ∈ UK , δu =
maxx∈XL̃

{V ∗
x
− V u

x
}.

The intuition behind this result is that the adversary who
knows the channel state in advance needs only useL̃ chan-
nels. On the other hand,V u

x
cannot decrease if more channels

become available. For the remainder of this paper, we will let
L̃ = min{L, K0}. An important consequence of this result
is that if x ∈ XL̃, thenV ∗

x
− V u

x
=

∑N
j=1 E[xj ]puj

(0). We
also have the following:

Lemma 2: For anyL̃ and any strategyu, we have:δu =
max

x∈X̄L̃
{V ∗

x
− V u

x
}, whereX̄L is the set ofx in XL such

that P (xj ∈ {0, rj}) = 1 for all j.
In other words, this lemma states that the worst-case re-
gret of any strategy can be calculated by only considering
channel states where each channel is either available with
the maximum raterj or unavailable. The set of all such
channel states inXL̃ is denoted byX̄L̃ throughout this paper.
Thus in calculatingδu for any strategy, we can replaceXL

with X̄L̃. Because allx ∈ X̄L̃ are discrete random vectors,
we will describe the marginal probabilities of anyx by
pxj

(rj) = P (xj = rj) = 1 − P (xj = 0).



4

These results simplify the calculation ofδu as follows:

δu = max
x∈X̄L̃

EuEx





N
∑

j=1

rjI{xj=rj ,uj=0}





= max
x∈X̄L̃







N
∑

j=1

rj · pxj
(rj)·puj

(0)







, (4)

where we have used the linearity of expectation and inde-
pendence betweenx andu. Note thatV u

x
, V ∗

x
, andδu only

depend onu andx through their marginal probabilities, and
not through their joint probabilities. Therefore throughout
this paper we will describe strategies and channel states in
terms of their marginal probabilities1. In Section IV, we
will demonstrate a method for constructing strategies based
on these marginal probabilities.

We define the following parameter for anyK:

M = max

{

n ∈ {K, · · · , N} : rn > 0, rn ≥
(n − K)
∑n

j=1
1
rj

}

(5)
Note that the above set is guaranteed to be nonempty, since
rK > 0 and thereforeK lies in the above set. Also note that
becauserj ≥ rk wheneverj < k, there is no division by0
in the above summation. It will be seen that parameterM
is crucial to describing the optimal strategy, and for some
special cases denotes the channels which should be probed.

We will assume without loss of generality thatN ≥
M + L̃. If this condition does not hold, one can add extra
channels with ratesrN+1 = · · · = rN+L̃ = 0. As a user
has no incentive to use these extra channels and they do not
contribute to the total reward, they do not affect the optimal
strategy or its expected reward. This assumption is made to
avoid boundary conditions in describing strategies and their
worst-case rewards, thus facilitating the description.

We introduce an additional notation as follows.
For M defined in (5), and any integer M̄
such that K ≤ M̄ ≤ M , define: η(M̄) =

max
{

m ∈ {0, · · · , L̃} : rM̄+m

∑M̄
j=1

1
rj

≥ M̄ − K
}

,

where η(M̄) = 0 if this set is empty. This termη(M̄) is
introduced simply for notational purposes in describing the
following class of algorithms and their worst-case rewards:

Definition 1: For any set of channels, defineM from
(5). Then for any integerK, strategyu[l, M̄ ] is defined by
configurable parameters (integers)l and M̄ , where K ≤
M̄ ≤ M and eitherl = 0 or η(M̄)+1 ≤ l ≤ η(M̄ − 1)− 1.
The marginal probabilities underu[l, M̄ ] depend onl andM̄
as follows:

If l = 0, the marginal probabilities underu[l, M̄ ] are
as follows. If 1 ≤ i ≤ M̄ , let pui

(1) = 1 − M̄−K

ri

P

M̄
j=1

1
rj

.

Otherwise,pui
(1) = 0 if M̄ + 1 ≤ i ≤ N .

If η(M̄)+1 ≤ l ≤ η(M̄ − 1)−1, the marginal probabilities

1In [9] (Section 4) it was shown that for every set of marginal probabilities
there corresponds a strategyu. Thus, if we can determine a set of optimal
marginal probabilities in 4, then there must be an optimal strategy inU with
these marginal probabilities.

underu[l, M̄ ] are defined as follows. If1 ≤ i ≤ M̄ − 1, then
pui

(1) = 1 −
rM̄+l

ri
. If i = M̄ , thenpui

(1) = 1 − M̄ + K +

rM̄+l

∑M̄−1
j=1

1
rj

. Otherwise,pui
(1) = 0 for M̄ +1 ≤ i ≤ N .

The parametersl and M̄ essentially determine a ran-
domized strategy. Note that from the definitions ofM and
η the strategyu[l, M̄ ] has valid marginal probabilities for
the range of l and M̄ specified in Definition 1. When
l = 0, then by definition ofM and K ≤ M̄ ≤ M ,
we have0 ≤ pui

(1) ≤ 1 for all i. For l 6= 0, we can
also show thatu[l, M̄ ] is a valid strategy as follows. Since
rM̄+l ≤ rM̄ for any l ≥ 1, then we only need to show that
0 ≤ puM̄

(1) ≤ 1. First, l ≤ η(M̄ − 1) − 1 implies from

the definition ofη that rM̄−1+l+1

∑M̄−1
j=1

1
rj

≥ M̄ − 1 − K.
Rearranging this yields0 ≤ puM̄

(1). Similarly, l ≥ η(M̄)+1

gives:rM̄+l

∑M̄

j=1
1
rj

< M̄ − K. Rearranging this and using
rM̄+l

rM
> 0 yieldspuM̄

(1) < 1, thus completing the proof that
u[l, M ] has valid marginal probabilities forl 6= 0.

We provide some intuition for considering the above class
of strategies via an example. SupposeM = N and consider
strategyu[0, N ]. We see that the termpuj

(0)rj is constant
for all 1 ≤ j ≤ N . From (4), this means that the worst-
case difference foru only depends on the sum of the
marginal probabilities ofx, but not the individual marginal
probabilities. Thus,u[0, M ] has constant performance for
different x. This type of constant performance with respect
to x is a common trait of robust worst-case strategies [7].
Similar reasoning can be applied tou[l, M̄ ] for other values
of l andM̄ . For these strategies, the termpuj

(0)rj is constant
for 1 ≤ j ≤ M̄ .

In the next section, we will show that the optimal strategy
for the competitive regret belongs to the class of strategies
given by Definition 1.

IV. OPTIMAL STRATEGIES

In this section, we present optimal strategies for(A) and
(B). To facilitate the description, we define the following for
any m ≥ K: γm = L̃−η(m)

P

m
j=1

1
rj

.

A. Optimal Strategies for (A)

For any fixedK, we let WK = ∪M̄ ∪l u[l, M̄ ] be the set
of all strategies given by Definition 1. We now describe the
optimal strategy for(A):

Theorem 1: Optimal Strategy for (A) For any set of chan-
nels, defineM from (5). Then the optimal strategyu∗ ∈ WK ,
i.e. minu∈UK

δu = minu∈WK
δu, and is determined as

follows.
1) If there existsK ≤ M∗ ≤ M satisfying rM∗ ≥

γM∗ ≥ rM∗+1I{M∗<M} , then u[0, M∗] is the
optimal strategy.

2) Otherwise, there must exist anM∗, where K +
1 ≤ M∗ ≤ M , satisfying the following
inequality: γM∗ > rM∗ ≥ γM∗−1. Then
the optimal strategy isu[l∗, M∗], where: l∗ =

min
{

m ∈ {0, · · · , L̃} : m ≥ L̃ − rM∗

∑M∗

j=1
1
rj

}

.
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Theorem 1 is proved in Section IV-C. Also, the cor-
responding worst-case rewards (which are the minimum
obtainable) are given in Lemma 4 in closed form. In Section
IV-C we provide a game-theoretic interpretation of Theorem
1.

Note that Theorem 1 provides a method to determine the
optimal strategy, and this procedure is a fairly simple one.
In particular, cases1 and2 each require checking whether a
condition holds, and there are onlyM − K + 1 possibilities
for the value ofM∗. The term η(·) is also not difficult
to determine. An alternative method for finding the optimal
strategy is as follows. First, note thatWK contains at most
(M−K+1)L̃ strategies. For eachu[l, M̄ ] ∈ WK , the worst-
case differenceδu[l,M̄ ] can be easily determined, as we will
show in Lemma 4 in Section IV-C. Thus combining this with
|WK | ≤ (M − K + 1)L̃, the best strategy inWK can be
determined with low computational complexity.

We provide some intuition for Theorem 1. In both cases
1 and 2 of the above theorem, there areM∗ channels with
rewards significantly greater than other channels, and only
these channels should be probed. The probability distribution
assigned to probing each channel depends on the relationship
betweenL̃, K and M . An interesting special case of the
above result is the following. WhenK + L̃ ≤ M , then
from the definition ofM , case1 of Theorem 1 holds with
M∗ = M . Thus we have the following corollary:

Corollary 1: For any set of channels, defineM from (5).
Then if K + L̃ ≤ M , the optimal strategyu∗ has the same
marginal probabilities as strategyu[0, M ] given by Definition
1.

Note that Corollary 1 and Theorem 1 describe the opti-
mal marginal probabilities, but they do not immediately or
uniquely determine an optimal strategy. By definition ofUK ,
at mostK channels can be probed for any realization ofu.
Thus, it cannot be possible that channel selection is done
independently for each channel. We could compute the joint
probabilities of these random vectors of lengthN by solving
a system of linear equations (withN equations and up to2N

unknowns). However, the number of lengthN binary vectors
with exactlyK ones grows very quickly asN increases.

Below we present a procedure (Algorithm1) that computes
u[0, M ] in a sequential manner without considering the entire
set of binary vectors of lengthN .

Algorithm 1: (Sequential Method to Construct u[0, M̄ ])
For any N and K, define M as in (5) and consider any
K ≤ M̄ ≤ M .

Initially: M̄ ,K are defined. Setj = 1 and ul = 0 for all
1 ≤ l ≤ N .

Step 1: Let p = 1− M̄−K

rj

P

M̄
l=1

1
rl

. UpdateK andu as follows:

• With probability p, setuj = 1 andK = K − 1.
• Otherwise (with probability1−p), do not changeu, K.

Step 2: If K = 0, stop and use strategyu. Otherwise,
repeat Step1 with j = j + 1, M̄ = M̄ − 1, and using the
updatedu andK.

This algorithm takes inputsN, K and sequentially gener-
atesu[0, M̄ ]. We note from Step2 of this description that

Algorithm 1 constructs a strategyu which, with probability
1, probes at mostK channels. Thus,u ∈ UK . We have the
following result on Algorithm1.

Lemma 3: Algorithm 1 constructs a strategy with
marginal probabilities which match the marginal probabilities
of u[0, M̄ ] given by Definition 1.
Therefore, by usingM̄ = M in Algorithm 1, we can
construct the optimal strategy given in Corollary 1. In Section
V, we will show thatu[0, M ] performs very well compared
to the optimal strategy given by Theorem 1. Thus, strategy
u[0, M ] is a practical alternative if the optimal strategy
of Theorem 1 is difficult to construct. Algorithm1 also
constructs strategyu[0, M̄ ] for any K ≤ M̄ ≤ M ; thus it
generates the optimal strategy whenever case1 of Theorem
1 holds. Forl > 0, it is not immediately clear whether there
exists a sequential algorithm to easily constructu[l, M̄ ]. This
is a subject of further study.

B. Optimal Strategies for (B)

For Problem(B) we have the following result:
Theorem 2: Consider any set of channels and integers

L, K. We have the following result for(B): maxu∈UK
ρu =

maxu∈UK
ρ̄u = K/N , where the optimal strategyu∗ achiev-

ing this maximum reward ratio has marginal probabilities
given by:pu∗

j
(1) = K/N for all 1 ≤ j ≤ N .

We see from Theorem 2 there exists an optimal strategy
which uniformly chooses from all length-N binary vectors
with exactly K elements equal to1. In Section V, we
compare the performance of this uniform strategy to the
optimal strategies of Theorem 1.

C. Deriving Optimal Strategies

To prove Theorem 1, we first derive results on the set of
strategies of Definition 1.

Lemma 4: For any set of channels, consider any strategy
u[l, M̄ ] given by Definition 1.

If l = 0, then δu[0,M̄ ] =
∑η(M̄)

j=1 rM̄+j + (M̄ − K)γM̄ .
Otherwise, forη(M̄) + 1 ≤ l ≤ η(M̄ − 1) − 1, we have:

δu[l,M̄ ] =
(

M̄ − K − rM̄+l

∑M̄−1
j=1

1
rj

)

rM̄ +
∑l−1

k=1 rM̄+k+
(

L̃ − l
)

rM̄+l .
Now we prove that these strategies are optimal. It can

be shown (see [11]) that by interchanging maximum and
minimum, the following is always true:

min
u∈UK

max
x∈XL

{V ∗
x
− V u

x
} ≥ max

x∈XL

min
u∈UK

{V ∗
x
− V u

x
} (6)

The inequality in (6) is useful for deriving lowerbounds
to δ∗ as follows. Note that for anyx, the righthand-side of
(6) is an optimization problem with objective to minimize
an average-reward criterion. By choosingx ∈ XL such that
the optimal average-reward is high, we can obtain a useful
lowerbound to the minimax regret. We then show that these
lower bounds match the quantities given in Lemma 4, thereby
proving the optimality ofu[0, M∗] for someM∗.

We first prove case 1 of Theorem 1. To derive a lower-
bound in (6), consider the following:
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Problem 1: For any given L̃, K and set of channels,
define M as in (5). Suppose case 1 of Theorem 1 holds
for someM∗, and let statex have the following marginal
probabilities. If 1 ≤ i ≤ M∗, then setpxi

(ri) = γM∗

ri
. If

M∗ +1 ≤ i ≤ M∗ + η(M∗), let pxi
(ri) = 1. Otherwise, for

all other values ofi, let pxi
(ri) = 0.

Solution: The optimal strategy for this problem will probe
any K of the channels in set{1, · · · , M∗} (either randomly
or deterministically), and satisfies:minu∈UK

{V ∗
x
− V u

x
} =

δu[0,M∗]

This result is proven in Appendix F. Combining the result
of Problem 1 with (6), we see thatu[0, M∗] must be the
optimal worst-case strategy.

Now we show that when case1 of Theorem 1 does not
hold, then case2 must be true. When case 1 of this theorem
is not true for allK ≤ M̄ ≤ M , then for eachM̄ one
of the following is true: eitherrM̄

∑M̄
j=1

1
rj

< L̃ − η(M̄) or

rM̄+1

∑M̄

j=1
1
rj

> L̃ − η(M̄). Combining this withη(K) = L̃
from the definition ofη, it can be shown that case 2 must be
satisfied for someM∗.

Now consider l∗ and M∗ as described by case 2 of
Theorem 1. To prove thatu[l∗, M∗] as described by case
2 is optimal, we consider the following problem.

Problem 2: For any given L̃, K and set of channels,
define M as in (5). Suppose case 2 of Theorem 1 holds
for someM∗ and l. Let statex have the following marginal
probabilities: For1 ≤ i ≤ M∗ − 1, let pxi

(ri) = rM∗

ri
. For

M∗ ≤ i ≤ M∗ + l − 1, let pxi
(ri) = 1. When i = M∗ + l,

then letpxi
(ri) = L̃ − l − rM∗

∑M∗−1
j=1

1
rj

. Otherwise, for
all other values ofi, let pxi

(ri) = 0.
Solution: As shown in Appendix G, the optimal strat-

egy for this problem probes anyK of the channels in
set {1, · · · , M∗} and satisfies:minu∈UK

{V ∗
x
− V u

x
} =

δu[l,M∗] .
Combining this with (6) proves thatu[l, M∗] must be

optimal for case 2 of Theorem 1.
We now provide a game theoretic interpretation to

the results for Theorem 1. Consider the equivalent
two-player zero-sum game mentioned earlier, with a
user who choosesu and an adversary that selectsx.
We have proven thatmaxx∈XL

minu∈UK
{V ∗

x
− V u

x
} =

minu∈UK
maxx∈XL

{V ∗
x
− V u

x
}. From [12] (Proposition

22.2), this means thatu∗ from Theorem 1 and thex∗ for
Problems 1 and 2 form a Nash equilibrium for this strictly
competitive game. A similar interpretation holds for the
competitive ratio and optimal worst-case strategy in Theorem
2.

V. NUMERICAL RESULTS

In this section, we examine the performance of the pro-
posed algorithms under a range of system parameters. We
first compare the performance between the optimal strategies
under the different metrics described in Section II. Then
we compare the worst-case strategies to other heuristics or
algorithms.
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Fig. 1. Average performance of the genie, algorithmsu
∗, u[0, M ], and

uniform as described in Section V, whenK = L = 3 and N varies from
5 to 10

A. Comparison of Metrics

For the numerical results, we chose parametersrj as
follows. For a givenN , therj were uniformly distributed in
[0, 1]. For each realization of the rates{rj}j∈S , we computed
the average reward obtained by the following four strategies:
(1) genie, or omniscient observer: knows in advance theL̃
available channels with highest bandwidth (2)u∗: optimal
strategy within the class given by Definition 1, and shown to
be optimal in Theorem 1 (3)u[0, M ]: the optimal strategy
under the conditions given by Corollary 1 and (4) uniform:
randomly probeK out of theN channels, optimal for (B) in
Theorem 2.

Figure 1 shows the performance of these two strategies
when we fix K = L = 3 and N varies from5 to 10. In
order to achieveL = 3, we setpxj

(rj) = 3/N = 1− pxj
(0)

for all 1 ≤ j ≤ N . We see thatu∗ outperformsu[0, M ] and
uniform for mostN . Note that for largeN , u[0, M ] slightly
outperformsu∗. This is because even thoughu∗ may have
a lower worst-case difference (bound over allx), it does not
necessarily outperformu[0, M ] for some givenx. In general,
the performance of these two strategies is similar for most
N , especially asN increases. The latter can be explained by
the fact that asN (andM ) increase whileK stays fixed, it
becomes more likely that the conditions of Corollary 1 are
satisfied. Hence, asN increases then it is more likely that
u∗ and u[0, M ] are the same strategy. The performance of
the genie varies for each realization of the{rj} andx, but
its average performance is relatively constant with respect to
N sinceL = 3 is fixed and the genie only uses theK = 3
available channels with highest rate.

Figure 2 shows the performance of these strategies when
N = 10, L = 5 and K increases from3 to 9. As
expected, the average rewards ofu∗, u[0, M ], and uniform
all approach the genie’s average reward asK increases,
because it becomes more likely these strategies will probe
the best channels asK increases. Meanwhile,u∗ strictly
outperforms uniform for allK.

These results indicate that the optimal strategies under
the worst-case difference performance measure appear to
outperform the optimal algorithm (uniform) arising from the
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Fig. 2. WhenN = 10 and L = 5, average performance of strategies as
K increases from3 to 9.

worst-case ratio performance measure. In addition, if the
procedure of determiningu∗ becomes impractical, then one
can instead useu[0, M ] which has comparable performance
for the scenario described in this section but is very easy to
construct using the proposed Algorithm1 of Section IV-A.

B. Sensitivity Analysis of Strategies

The optimal strategies in Section IV are derived under
worst-case performance measures. If the transmitter knows
the distribution ofx, i.e. channel states, then it can probe and
use theK channels with highest values ofpxi

(ri)ri in order
to maximizeV u

x
(we call this the optimal average-reward

strategy) and outperform the optimal worst-case strategies.
However, if this knowledge of the distribution is incorrect
then the optimal average-reward strategy may have a poor
performance. The optimal worst-case strategies, by contrast
are guaranteed to perform well over allx and could be more
robust to changes inx.

To illustrate this, we compare various strategies as follows,
whereN = 10 andL = K = 5. For any given set of rewards
{rj}, pxj

(rj) = jα/β = 1 − pxj
(0) for all 1 ≤ j ≤ N and

some−5 ≤ α ≤ 5. Here, β is a normalizing constant to
ensure thatx ∈ XL. Note that whenα = 0, thenx takes
on the uniform distribution. Negative (positive)α means the
channels with higher (lower) rate have a higher probabilityof
being available. We letv0 andv2 to be the optimal average-
reward strategies when the transmitterbelieves α = 0, 2,
respectively. Note that strategyv0 (or v2) probes theK
channels with the highest values ofrj (or rjj

2/β). Thus,
these strategies can be seen as simple heuristics that make
probing decisions based on weighted values of the channel
rates.

As shown in Figure 3, we examined the performance
of these strategies by varying the real value ofα. For a
given α, the {rj} were uniformly distributed in[0.8, 1.2]
and the average performance ofv0, v2, u∗, u[0, M ], and
uniform was determined for104 realizations. This process
was repeated for−5 ≤ α ≤ 5. Note that performance ofv0

andv2 under variousα indicates the effect of errors in the
transmitter’s belief of the trueα.
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Fig. 3. Comparison of optimal average-reward strategiesv0 andv2 to the
optimal worst-case strategiesu∗, u[0, M ] and uniform as the channel state
distribution is varied, as described in Section V-B.

We see that for negative (positive)α, v0 (v2) performs
very well. On the other hand, we see that asα increases
(decreases), the expected reward ofv0 (v2) approaches zero.
This is becausev0 probes the channels with theK highest
rewards, thus it performs better when the channels with
higher rate have a higher probability of being available.
Similar reasoning can be applied forv2. On the other hand,
u∗ and u[0, M ] are relatively robust to changes in the
value of α, as their total reward does not approach0 if
α varies. This example illustrates the robustness of worst-
case strategies compared to optimal average-reward strategies
under varying distributions.

VI. PROBING ERRORS

The problem formulated in Section II assumes that if the
probing results indicate a channel is (not) available, thenit is
indeed (not) available. In this section, we extend the results
of the previous sections to imperfect probing. For notational
convenience, we present results here forx ∈ X̄L, noting that
our results can be generalized toXL similar to Lemma 2.

We consider the following modified version of the problem
outlined in Section II. For each channeli, let yi = 1 if
channeli is probed to be available, andyj = 0 if probing
indicates the channel is off. Probing results are collectively
described byprobing result vector y = [y1, · · · , yN ]. Since
the transmitter can only probe up toK channels, it will only
learnK elements of vectory; the otherN−K values remain
unknown.

When a probe reveals that a channel is available, then with
probability p the channel is actually available. Equivalently,
definingx as in Section II,P (xj > 0|yj = 1) = p. We as-
sume the probing errors occur independently among different
channels, i.e.P (xk > 0|yj = 1) = P (xk > 0) if k 6= j.
Similarly, a channel probed to be unavailable is actually
available with probabilityq, i.e. P (xj > 0|yj = 0) = q.
These conditions implyq ≤ P (xj > 0) ≤ p. Note that
p = 1 andq = 0 describes the original problem formulation
considered in the previous sections. The values ofp and q
may depend on the physical sensor [2], and are assumed to
be known in advance to the transmitter. We assume without
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loss of generality thatp > q; if this assumption does not
hold, then one can easily reverse the definition of the probing
results to obtainp > q. We will assume thatp andq are the
same for all channels.

We note that from the marginal probabilities ofy, one
can determine the marginal probabilities of any channel
being available. Specifically,pxj

(rj) = P (xj = rj |yj =
1)·pyj

(1) + P (xj = rj |yj = 0)·pyj
(0) = (p − q)·pyj

(1) +
q . Similarly, one can uniquely determinepyj

(1) from
pxj

(rj). Thus, in this section we will describe the sys-
tem state in terms of vectory while noting that our
results hold for a unique corresponding random vector
x. For any y, strategy u has expected rewardV u

y
=

EuEy [gK0
(p · r · y · u + q · r · (1 − y) · u)], where(1−y)

denotes the vector[1 − y1, 1− y2, · · · , 1 − yN ], because the
transmitter will use for transmission theK0 probed channels
with highest value of eitherp · rj or q · rj , depending on the
probing results. Similarly, a genie who knows the probing
resultsy in advance (but notx) will attain expected reward
V ∗
y

= Ey[gK0
(p · r · y + q · r · (1 − y))].

The objective for this problem, which we call (A’), is to
determine the strategy minimizing the worst-case difference:
maxy∈YL

{

V ∗
y
− V u

y

}

, whereYL is defined analogously to
XL in Section II. Strategies minimizing this worst-case
difference will be described as optimal strategies for (A’).
Analogous to equation (5), we define the following constant:

M = max

{

n ∈ {K, · · · , N} : rn > 0, rn ≥ (n−K)p+Kq

p
P

n
k=1

1
rk

}

,

where M = K if this set is empty. Similarly, for
any K ≤ M̄ ≤ M , define functionη(·) as follows:

η(M̄) = max

{

m ∈ {0, · · · , L̃} : rM̄+m ≥ (M̄−K)p+qK

p
P

M̄
j=1

1
rj

}

,

where agaiñL = min{L, K0}

Then we have the following result on the optimal strategy
for (A’) under certain conditions:

Theorem 3: Consider any set of channels, integersL̃, K,
and defineM as above. If the following inequality holds:
rM∗ ≥ [L̃−η(M∗)]p+q(M∗−L̃+η(M∗))

p
P

M∗

k=1
1

rk

≥ rM∗+1I{M∗<M} for

someK ≤ M∗ ≤ M , and if r1 satisfies:q·r1

∑M∗

k=1
1
rk

≤
(M∗ − K)p + qK , then the optimal strategy for (A’)
has the following marginal probabilities:puj

(1) = 1 −
(M∗−K)p+Kq

(p−q)rj

P

M∗

k=1
1

rk

+ q
p−q

for 1 ≤ j ≤ M∗, and puj
(1) = 0

for j ≥ M∗ + 1.
Note that plugging inp = 1 and q = 0 into the

above theorem yields then we obtain Case1 of Theorem 1.
Generalizing the above result for Case2 of Theorem 1 is part
of the future work. In addition, Algorithm1 of Section IV-A
can be modified to construct the optimal strategy in Theorem
3, by replacing̃p in the algorithm withpuj

(1) of this theorem.
Thus, the above optimal strategy can be constructed in a
sequential manner, with low computational complexity.

VII. CONCLUSION

We examined optimal competitive algorithms for joint
channel probing and transmission. We formulated multiple

worst-case performance measures and derived a class of opti-
mal strategies. We presented an algorithm which sequentially
generates a subclass of these strategies with low computa-
tional complexity. The performances of these strategies were
also examined via numerical studies. These results and algo-
rithms are applicable to many practical scenarios, particularly
when the channel quality is changing unpredictably.
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APPENDIX

We note that the proofs in Appendices C,E,F,G have
appeared in [13] using different notation. Here we have
repeated the proofs for completeness.

A. Proof of Lemma 1

First note that L̃ ≤ L implies XL̃ ⊆ XL.
Thus, maxx∈XL

{δu

x
}≥maxx∈XL̃

{δu

x
}. To complete

the proof, we thus only need to show that
maxx∈XL

{δu

x
}≤maxx∈XL̃

{δu

x
}. To prove this, we

show that for anyx ∈ XL there exists corresponding
y ∈ XL̃ such that V ∗

y
− V u

y
≥ V ∗

x
− V u

x
. Consider

any x ∈ XL. Note from the equation forV ∗
x

that for
any realization x(ω), where x = [x1(ω), · · · , xN (ω)],
only the min {K0,

∑N

l=1 I{xl(ω)>0}} available channels
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with highest rate determine the expected reward of the
genie. We can define a new channel statey such that
yj(ω) = xj(ω) if and only if xj(ω) > 0 and j is one of
the min {K0,

∑N

l=1 I{xl(ω)>0}} available channels with the
highest rate. Otherwise,yj(ω) = 0. We see that because
∑N

l=1 I{yl(ω)>0} ≤ L̃ for all realizationsω, then y ∈ XL̃

andV ∗
x

= V ∗
y

. At the same time,V u

x
≥ V u

y
for any strategy

u. Thus,V ∗
x
− V u

x
≤ V ∗

y
− V u

y
.

B. Proof of Lemma 2

We use proof by contradiction. Suppose there exists
z ∈ XL̃ such thatP (0 < zj < rj) > 0 for some j
and δu = V ∗

z
− V u

z
. Then from Lemma 1 we have the

following: δu = maxx∈XL̃

{

EuEx

[

∑N
j=1 xjI{uj=0}

]}

=

maxx∈XL̃

{

∑N

l=1 E[xl]·pul
(0)

}

. Now consider a modified

channel statēz such that for alll, P (z̄l = rl) = P (0 < zl ≤
rl) and P (z̄l = 0) = P (zl = 0). SinceP (z̄l ≥ zl) = 1
for all l and P (z̄j > zj) = 1 due to the assumption on
j, we have:

∑N
l=1 E[z̄l]·pul

(0) >
∑N

l=1 E[zl]·pul
(0), which

contradicts the assumption that the worst-case regret foru

is achieved byz. Since this result holds for anyz such that
p(0 < zj < rj) > 0 for somej, and clearlyz̄ ∈ X̄L̃, we
have proven the result.

C. Proof of Lemma 3

Note that since Algorithm1 randomly chooses which
channels to use, then the value forK after each step is
a random variable. LetKi denote the value forK after i
iterations of Step1. The value ofM̄ also changes after each
iteration. We letK0 andM0 denote the initial (fixed) values
for K andM̄ , respectively. Thus we need to show that any
strategy generated by Algorithm1 has the same marginal
probabilities asu[0, M0] of Definition 1, with K0 replacing
K. We first show this holds for1 ≤ i ≤ M0 by induction.

Induction Basis: As described in Algorithm1, initially
p̃ = 1 − M0−K0

r1

PM0
j=1

1
rj

and we setu1 = 1 with probability

p̃. Therefore, the result holds fori = 1.
Induction Hypothesis: First consider any2 ≤ l ≤ M0.

Suppose the result holds fori = 1, · · · , l − 1. We will
show it also holds fori = l. The probability that we
use channell is a random variable given by:̃p = 1 −
[(M̄ − i + 1) − Ki−1]/(ri

∑M0

j=i
1
rj

). Taking the expectation
of p̃ gives the marginal probability that channeli is used:
pui

(1) = 1 − (M0−i+1)−E[Ki−1]

ri

PM0
j=i

1
rj

. We note thatE[Ki−1]

can be calculated as follows by considering Step2 of
Algorithm 1: E[Ki−1] = K0 −

∑i−1
j=1 puj

(1) = K0 −
∑i−1

j=1

[

1 − M0−K0

rj

PM0
l=1

1
rl

]

, where we have used the induction

hypothesis to derivepuj
(1) for all j ≤ i − 1. Plugging

this into the equation forpui
(1) and rearranging, we obtain:

pui
(1) = 1 − [M0 − K0]/[ri

∑M0

j=1
1
rj

], proving the result.
Now consider anyM0+1 ≤ l ≤ N . We need to prove that

pul
(1) = 0. By step3 of the algorithm, this will always be

true if P (KM0
= 0) = 1. We prove this as follows. Initially,

K0 ≤ M0, and wheneverKj−1 = M0 − j + 1 then from
Step1 we havep̃ = 1 which means that in Step2 we will
obtainKj = Kj−1 − 1 = M0 − (j + 1) + 1 = M0 − j. It is
thus impossible to haveKj > M0 − j for any j, implying
KM0

≤ M0 − M0 = 0 with probability 1.

D. Proof of Theorem 2

Consider any strategyu∗ with marginal probabilities de-
scribed in Theorem 2. It can be shown, similar to Lemma
1, that the worst-case ratio of any strategyu is achieved
by x ∈ XL̃ because the genie can only use theL̃ avail-
able channels with highest rates for transmission. Thus we
have: ρu

∗

= minx∈XL̃

{

K
N

∑N

j=1 E[xj ]/
∑N

j=1 E[xj ]
}

=

minx∈XL̃

{

K
N

}

= K/N . Now consider any other strategyu
which does not probe channels uniformly. This implies there
exists1 ≤ j ≤ N such thatpuj

(1) 6= K/N . On the other
hand, we know from definition ofUK that

∑N

j=1 puj
(1) ≤

K. Thus, there exists1 ≤ i ≤ N such thatpui
(1) < K

N
. Then

we obtain for thisi, by settingpxi
(ri) = 1 andpxj

(0) = 1 for

all j 6= i: ρu = min
x∈X̄L

{

P

N
j=1

E[xj ]puj
(1)

P

N
j=1

E[xj ]

}

≤
ripui

(1)

ri
<

K
N

. Thus we see thatρu
∗

≥ ρu for all u ∈ UK , and therefore
u∗ must be optimal.

E. Proof of Lemma 4

First consider any strategyu[0, M̄ ]. From (4), δu is
given by the maximum of the following term over all

x ∈ X̄L̃:

{

(M̄−K)
P

M̄
j=1

1
rj

∑M̄

i=1 pxi
(ri) +

∑N

i=M̄+1 ri · pxi
(ri)

}

.

Meanwhile, by definition ofη(M̄), we have for all1 ≤

i ≤ η(M̄) < k, where i, k are integers:rM̄+i

∑M̄

j=1
1
rj

≥

M̄ − K > rM̄+k

∑M̄

j=1
1
rj

. From these inequalities, there ex-
ists statex which achieves the maximum inδu by setting
pxM̄+j

(rM̄+j) = 0 for j ≥ η(M̄) + 1, andpxM̄+j
(rM̄+j) =

1 for 1 ≤ j ≤ η(M̄), and pxj
(rj) = 1 for any L̃ − η(M̄)

values ofj in 1 ≤ j ≤ M̄ . Note this is a validx asη(M̄ ) ≤ L̃
by definition ofη(M̄). Thusδu reduces to the equation given
in Lemma 4.

Consider u[l, M̄ ] when l > 0. In this caseδu can
be calculated by using the following equation:δu =

max
x∈X̄L̃

{

∑M̄−1
i=1 ripxi

(ri)
rM̄+l

ri
+

∑N
i=M̄+1 ripxi

(ri)

+rM̄pxM̄
(rM̄ )

(

M̄ − K − rM̄+l

∑M̄−1
j=1

1
rj

)}

. By the

definition of η(M̄ − 1), we have the following:
rM̄+η(M̄−1)+1

∑M̄−1
j=1

1
rj

< M̄ − 1 − K. Combining
this with l ≥ η(M̄ − 1) and using rj ≤ rk

for any j ≥ k, we obtain the inequality:
rM̄−1+l+1

(

∑M̄

j=1
1
rj

)

< (M̄ − K). Rearranging yields:

rM̄+l < rM̄

(

M̄ − K −
∑M̄−1

j=1 (rM̄+l/rj)
)

.
Thus we see thatδu can be maximized by setting

pxM̄+k
(rM̄+k) = 1 for 0 ≤ k ≤ l − 1, and pxj

(rj) = 1

for any L̃ − l values of j in 1 ≤ j ≤ M̄ − 1. Plugging
this maximization into the previously stated equation forδu

completes the proof.
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F. Optimal Strategy for Problem 1

We note from the definition ofM∗ from case 1 of Theorem
1 that 0 ≤ pxj

(rj) ≤ 1, i.e. these are valid probabilities.
Since minu∈UK

{V ∗
x
− V u

x
} = V ∗

x
− maxu∈UK

V u

x
, the

optimal strategy for this problem maximizesV u

x
. Plug-

ging the marginal probabilities forx, we obtain V u

x
=

∑M∗

j=1 puj
(1) L̃−η(M∗)

P

M
j=1

1
rj

+
∑η(M∗)

j=1 puj
(1)rM∗+j . We see from

the definition ofM∗ in case1 of Theorem 1 that there exists
a strategy which maximizesV u

x
by settingpuj

(1) = 0 for
all M + 1 ≤ j ≤ N and probes anyK of the channels
in {1, · · · , M∗}. Thus, the reward of optimal strategyu∗ is
given by: V u

∗

x
= [L̃ − η(M∗)]K/(

∑M∗

j=1
1
rj

) , which holds
regardless of whichK channels are probed. Meanwhile,
V ∗
x

=
∑N

l=1 rlpxl
(rl) = L̃−η(M∗)

P

M∗

j=1
1

rj

M∗ . Taking the difference

betweenV ∗
x

andV u
∗

x
, and comparing withδu[0,M∗] given by

Lemma 4, we obtain the result.

G. Optimal Strategy for Problem 2

We follow a similar technique used in Appendix
F for Problem 1. First, V u

x
can be written as:

V u

x
=

∑M∗

j=1
rM∗

rj
puj

(1)rj +
∑l−1

j=1 puM+j
(1)rM+j +

(

L̃ − l − rM∗

∑M∗−1
j=1

1
rj

)

puM∗+l
(1)rM∗+l, and the

optimal strategy maximizes this. We see that because
rj > rk for all j < k, then V u

x
is maximized

by probing any K of the channels in{0, · · · , M∗}.
Thus its reward is simplyrM∗K. Meanwhile, V ∗

x
=

rM∗M∗ +
∑l−1

j=1 rM+j +
[

L̃ − l − rM∗

∑M∗−1
j=1

1
rj

]

rM∗+l .
Taking the difference between this andrM∗K, then
comparing withδu[l,M∗] in Lemma 4, proves the result.

H. Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of
Theorem 1 provided in Section IV-C. Therefore, only a
sketch proof is provided in this section. It can be shown
similarly to Lemma 1 that

{

V ∗
y
− V u

y

}

is maximized for
somey ∈ YL̃. Additionally, it can be shown that because
r1 satisfies the inequality described by the theorem, and
from the definition of M and η(·), we have q · r1 ≤
p·rM∗+η(M∗). Thus for any strategy which only probes chan-
nels in {1, 2, · · · , M∗ + η(M∗)}, we havemaxy∈YL̃

{V ∗
y
−

V u

y
= maxy∈YL̃

{

∑N

j=1 pyj
(1)rj

[

puj
(0)(p − q) + q

]

}

−
∑N

j=1 puj
(1)rjq.

It can be shown, using steps similar to the proof of
Lemma 3, that for anyu in Theorem 3, we have the follow-
ing: maxy∈YL̃

{

V ∗
y
− V u

y

}

= [(L̃−η(M∗))(p−q)+M∗q]

(p−q)
P

M∗

k=1
1

rk

[(M∗ −

K)p + qK] +p
∑η(M∗)

j=1

[

rM∗+j −
q

p−q
rj

]

. Now consider
the following:

Problem 3: For any L̃, K, suppose the conditions of
Theorem 3 are satisfied for someM∗. For 1 ≤ j ≤ M∗, let
pyj

(1) = [L̃−η(M∗)]p+(M∗−L̃+η(M∗))q

rj(p−q)
P

M∗

k=1
1

rk

− q
p−q

. ForM∗+1 ≤

j ≤ M∗ + η(M∗), let pyj
(1) = 1. Finally, let pyj

(1) = 0
for j > M∗ + η(M∗).
It can be shown the optimal strategy probes anyK chan-
nels in {1, · · · , M∗}, and minu∈UK

{

V ∗
y
− V u

y

}

matches
maxy∈YL̃

{

V ∗
y
− V u

y

}

calculated earlier. Combining this
with (6) proves Theorem 3.
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