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Abstract—We consider opportunistic spectrum access (OSA) For example, software defined radio [1] and cognitive ra-
strategies for a transmitter in a multichannel wireless sys dio systems [2] may provide users with multiple channels
tem, where a channel may or may not be available and the (o ¢ “tynable frequency bands and modulation techniques)

transmitter must sense/probe the channel to find out before b f ble hard hich i trolled
transmission. Applications for this work include joint pro bing y means of a programmablé haraware which IS controlie

and transmission for a secondary user in a cognitive radio Py software. Channel quality is in general time-varying due
network. Limited by resources, e.g., energy and time, the to factors such as fading, interference, and the presence of
transmitter must decide on a subset of a potentially very lage other users (e.g. primary users in a cognitive radio netyvork
number of channels to probe and can only use for transmission Therefore the ability to probe or sense channel quality teefo

those that have been found to be available. In contrast to ¢ .. helo t itt lect the best t
previous works, we do not assume the user has a priori ransmission can help transmitters select the best one(s)

knowledge regarding the statistics of channel states. Thean US€. One method of channel probing is through the exchange
goal of this work is to design robust strategies that decidebased of control packets between transmitter and receiver [3].
only on knowledge of the channel bandwidths/data rates, wish  Another method is to use a spectrum sensor [2] at the physical
channels to probe. We derive optimal strategies that maxinzie layer.

the total expected bandwidth/data rate in the worst-case, ia a Due t traint i d oth
performance measure in the form of a competitive regret (raio) ue to constrainis on ime, energy, and other resources,

between the average performance of a strategy and a genie (or@ transmitter may only be able to probe a limited number
omniscient observer). This formulation can also be viewedsaa of channels. Therefore, it is imperative that it judicigusl
two-player zero-sum game between the user and an adversary select the right channels to probe. If the transmitter aas
which chooses the channel state that minimizes the usersiga o knowledge on the probability distribution describing
We show that our results correspond to a Nash equilibrium (in the stat f th h Is. th it desi tratedi
the form of a mixed strategy) in this game. We examine the '€ Stales ol these channels, then 1t can design strategies
performance of the optimal strategies under a wide range of Which maximize the expected transmission gain. Recent
system parameters and practical channel models via numerid  works such as [4], [5], [6] have studied the tradeoff between
studies. probing to gain more information about channel quality

Index Terms—software-defined radio, cognitive radio, chan- and maximizing transmission gain. On the other hand, if
nel probing, worst-case performance, competitive analysj two- e transmitter cannot accurately estimate the distidoud

| probing perf petiti lysi the t tt t tely estimate the distoiputif
player zero-sum game, Nash equilibrium, online algorithms channel states, e.g., due to insufficient information oaliee
randomized algorithms, mixed strategy the underlying distribution is changing rapidly over tintieen
it may be unreasonable to assume saghiori knowledge. It
is therefore necessary in such cases to design channehpgrobi
and transmission strategies which are mmtgust and do not

In this paper, we examine optimal channel sensing/probingquirea priori knowledge of the channel statistics.
strategies for opportunistic spectrum access (OSA), whereMotivated by these practical considerations, in this paper
a transmitter seeks to maximize its achievable data rat@ use competitive analysis [7] methods to seek strategies
by opportunistically transmitting over a select subset of taat perform well in the worst case (to be defined more pre-
potentially large number of channels. This is done by optgisely in Section ) for the following problem. A transntt
mally constructing a channel sensing/probing strategyno fi has to decide which subset (upAbchannels) ofV channels
out which channels are available before transmitting. This probe, whereby it can only transmit using those channels
problem is motivated by wireless systems where a transmitteat have been probed to be available, and its performance is
is supplied with more channels than needed for transmissigneasured against a genie who knows exactly which channels

‘ _ _ ~ are available. To the best of our knowledge, this is the first
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subsequent sections, we develop the optimal strategy éor tivailability is in general random depending on the primary
above problem, which is also shown to be a Nash equilibriuasers’ traffic pattern. A secondary user may not be able
for this game. The corresponding worst-case performandesmodel this availability probabilistically, but it may kw
(or equilibrium payoff) of these optimal strategies areoalsthe maximum rate of a given channehen it is available
obtained. due to information such as bandwidth, its modulation/cgdin
The rest of this paper is organized as follows. Section sichemes, propagation properties, etc.
formulates the problem and primary worst-case performanceln general, when the transmitter has no knowledge regard-
metrics considered in this paper. Section Il providesiprel ing channel availability, thex € X. We will also consider
inary results, while Section IV presents a class of optim#he case when somehow the transmitter knows the average
strategies. Section V presents numerical results. In &@ectinumber of available channels. It will be seen that havindisuc
VI, the problem formulation and results are extended tnowledge can help the transmitter design better stregegie
analyze the case where probing may be imperfect. Sectibar this case, we define the following set of channel states:
VIl concludes the paper. N
Unless otherwise stated, all results are proven in the . ]
Appendix. We have stateitl can be shown for a few results Xp = xeX Ex ZI{””J’>O} sLe. @

that are easy to verify and thus not included due to space
constraints. where E, denotes the expectation with respectxp and

I is the indicator functionX, is the set of channel states
such that, on average, at madstchannels are on. Note that

] ) ) Xn = X. For generality, we will derive results in this paper
In this section we formulate the problem considered IBr generalL, noting that by using, = N our results directly

this paper. We then present various performance measuigs)y to the case where the transmitter has no knowledge on
and corresponding objectives. the average number of available channels.

The system proceeds as follows. The transmitter decides
A. Formulation and Strategies which set of K channels in{) to probe. After probing, the
transmitter then determines whick, of these X' probed
channels to use for transmission. We describe a user’s strat

indexed by the sef? = {1,2,---,N} and a transmitter .
who has access to these channels. The system worksS@ @s @ (random) binary vectar= [u1,uz, - -, un], where
= 1 means the user probes changgbtherwise,u; = 0.

discrete time, and at each time step the transmitter neéts q h babili ¢ . b
to determine which channels to use for transmission. To do'V& denote the probability mass function of by p.,.

so, the transmitter can probe up 16 of the N channels, Thus, p, (_k) :_P(uﬂ' = k) for k € {0,1}. LEt_ U be the set_
wherel < K < N. of strategies, fixed or randomized. We define the following

A channelj has a maximum data rate denotedsy The set of strategies:

Jj=1

Il. PROBLEM FORMULATION

We consider a wireless system consistingMdfchannels,

actual data rate is given by a random variab)ehat takes on N
any value betweef andr;. When the rate is positive (zero) Ug={uelU : P Z”j <K|=1%. ()
then we say the channel is available/on (unavailable/6f§). j=1

channelj is probed to be available and the transmitter decid(ﬁat is, Uy is the set of strategies that probe at mast
L K

to transmit in that channel, then it receives the rajg(also e
referred to as the channel reward). If the channel is probgg%nnels. Note that any strateglvfy;(must also satisfy:

N

to be unavailable, then the transmitter is not allowed to ugej=1 Pu; (1). = Eu | 2o L= ) . .
that channel for transmission. In addition, the transmige ~ We will first assume the probing process is perfect; if
not allowed to transmit using unprobed channels. problng |nd|cate_s a channel_ls (not) avallable_z, then it is

The channel state is given by the random vector= !ndeed (not) av_allable. In Section VI we generallze_resmits
(21,22, ,an] Wwhere P(0 < z; < r;) = 1. We denote |mperfect prpblqg, eg.a charjngl could be l_mavallable (on)
by X the set of all possible channel states. We assurf¥en if probing indicates that it is on (unavailable).
that the transmitter knows the vector= [ri,r2,- - ,rN].
Without loss of generality, we will assume that > r, > B. Competitive Regret

- > ry > 0. However, the transmitter doemt have Our first worst-case performance measure is in the form of
a priori information regarding the channel statistics,.,i.ethe difference with respect to a genie as we present below. We
the probability distribution ofx. Thus the only information will use the following notation throughout this paper. Eirs
the transmitter has in making the probing decision is thee letgy(z) denote the sum of the largest elements of any
maximum data rates of a channel. vector z and for any integek. In addition, we letz; - z,

The above assumptions are motivated by the channel denote the dot product between any two vectarand z..
cess scenario in a cognitive radio network where a secondarNow consider any strategyn € Ug. Letting V' de-
user seeks to utilize portions of the spectrum not being usedte its expected reward for any, we have V! =
by a set of primary users. In doing so, it needs to find oW, Fx [gk, (x - u)], because the transmitter will use tti&
which part of the spectrum is available for transmissiomhsu channels with highest rate that are probed and available. No



consider an omniscient observer or genie who knows théen the adversary is allowed to transmit in Allchannels

realization of channel states in advance and can use up(¢compared to our formulation, which allows some< N).

Ky channels for transmission. For a given realization, thHEherefore the problem considered here is more general.

genie can simply use th&, available channels with highest From the above description, we see that this problem can

bandwidth. LettingVy denote its expected reward, we havelso be viewed as a two-player zero-sum game where the

Ve = Ex |9k, (X)]. adversary’s payoff is the regret and the transmitter's fffayo
Taking the difference between the genie’s expected rewdsdthe negative of this. In Section IV-C, we show that the

and that of strategy, we obtain a comparison between th@ptimal strategy for (3) with a correspondimgform a Nash

two. As the transmitter does not have angriori information equilibrium of the game.

regardingx, except possibly the average number of available

channels, we take a maximum of this difference overxall

to obtain the following worst-case performance measure 6f Competitive Ratio

.osu * _ J/u
0% = maxsex, {Vi — Vit _ Our second worst-case performance measure, also com-
This performance measu@' can be interpreted as themonly used, is in the form of theatio between the re-
regret [8], or minimax regret [7] of u. The quantityd™ \yard of a strategy and the genie. Consider the following
provides an upperbound on the performance of strat@gy,,orst-case performance measure of any strategy" =

relative to the best possible. That is, for any arbitrarytesta vo ) B[, (x-w)] o

x € Xy, strategyu will obtain expected reward withig —MxexXy v = MixexXy | Hl o7 (0 which is also
of the genie. We will refer tof" as theworst-case reward known as the competitive ratio [7] of strategy It is implied
(difference) of strategy u. that the genie cannot choose all elementsab be zero in

&" is often known as the competitive regret afversus order for the above ratio to be well defined. For any state
an oblivious adversary [7] who knows the distribution (buk, strategyu is guaranteed to obtain performance within a
not realization) ofu in advance. Giveru, the adversary factor p* of the best possible. Note that' < 1 for any
chooses arx € X, that maximizes the difference betweerstrategyu, as it is impossible to do better than the genie.
the reward ofu and itself. An advantage of consideringThe corresponding objective for this problem, which we
this competitive performance measure is thatprovides a call (B), is to determine the strategy achieving maximum
bound for the worst-case performance of strateggver all Wworst-case performancepaxucu, p". Again this problem
x. Therefore, we can obtain a performance guarantee foimgy be considered a two-player zero-sum game where the
given strategy even if there is repriori knowledge onx. transmitter’s payoff is given by the ratio.

On the other hand, this performance measure may be viewed
as somewhat conservative since it calculates the perfarenan
over the worstx, which may or may not be likely to occur.

If more information is known about then one can calculate  \\x \will assume thatx > 0. If this were not true, then it

the worst-case performance over a smaller setxoand means there are less thah channels with positive rate, and

obtain a more accurate performance guarantee. For furﬂPﬁé optimal strategy is trivial: probe channelf ; > 0
discussion of the advantages and disadvantages of the—wors}_emma 1 Let] — min{L-K }. For anyu ¢ [g] 5;1 _
. — AN K —

case performance measure, see [7]. maxeex, {V7 — VU1
xXeXf x VxS

The objective for the first problem, which we calll), is  tpe jnuition behind this result is that the adversary who
to find the_ strateg_y which minimizes _the above worst-cagg o\vs the channel state in advance needs onlyluséan-
measure, i.e. obtain the following minimum: nels. On the other han®;}' cannot decrease if more channels

§* = min max {V -V} | (3) become available. For the remainder of this paper, we wtill le
uelUk xeXr L = min{L, Ko}. An important consequence of this result
where we refer to* as the minimum worst-case differenceis that if x € X;, thenV}; — V2 = Z;V:l Elz;]py, (0). We

The mathematical abstraction and objective for (A) iglso have the following:
similar to problem formulations of [9], [10] which were Lemma 2: For anyL and any strategy, we haves" =
motivated by different applications. The paper [9] considemax, . {Vi — Vi'}, whereX is the set ofx in X such
an inspector (corresponding to the transmitter in our grof)l that P(z; € {0,7;}) = 1 for all j.
attempting to detect whether an inspectee has cheatedlbyother words, this lemma states that the worst-case re-
searching among a subset of the inspectee’s bins or resouget of any strategy can be calculated by only considering
(corresponding to channels in a wireless system). The papbannel states where each channel is either available with
[10] also considers a related search problem where an the maximum rater; or unavailable. The set of all such
dividual must decide how to hide a fixed number of objectshannel states iiX ; is denoted byX; throughout this paper.
within a set of containers (corresponding to channels in,(A)Thus in calculatingy" for any strategy, we can replacé,
each with equal capacity. It can be shown that both [9], [10lith X;. Because alk € X; are discrete random vectors,
correspond to our problem scenario when all channels have will describe the marginal probabilities of any by
an equal data rate, i.e;; = n; for all channelsj,l, and p,,(r;) = P(z; =r;) =1 — P(z; = 0).

I1l. PRELIMINARIES



These results simplify the calculation 6 as follows: underull, M| are defined as follows. If < i < M — 1, then

N pu, (1) =1— 2L 1f 4= M, thenp,, (1) =1 - M + K +

6% = max BuBy |3 riT(a =0, u—0) F T Zj‘i}l = Otherwisep,, (1) = 0 for M +1 <i < N.
xeXg j=1 The parameterd and M essentially determine a ran-

N domized strategy. Note that from the definitions df and
— max Zrﬂ' D, (7})u, (0) 5, @) " the strategyul[l, M] has va_Ii_d mgrginal_prpbabilities for
xeXp | ! ! the range ofl and M specified in Definition 1. When

_ _ _ 1 = 0, then by definiton ofM and K < M < M,
where we have used the linearity of expectation and indgz haveo < pu,(1) < 1 for all i. Forl # 0, we can
pendence betweex andu. Note thatV', Vi, andd™ only 150 show thaull, M] is a valid strategy as follows. Since
depend omu andx through their marginal probabilities, andTMH < 7y for anyl > 1, then we only need to show that
not through their joint probabilities. Therefore througio ( < Puy, (1) < 1. First, I < n(M —1) — 1 implies from
this paper we will describe strategies and channel states, " B M-1 1 v
terms of their marginal probabilities. In Section IV, we te definition of thatry; ... ij.l ;= M—1-K.
will demonstrate a method for constructing strategies dbasléearrangmg t]r\ys ylelde_g Puy (1)- Slmllarly,l Z "(M)Jrl_
on these marginal probabilities. gives:ry 3 ;-, 7 < M — K. Rearranging this and using
We define the following parameter for ardy: ~LiL > ) yieldsp,,, (1) < 1, thus completing the proof that

ull, M| has valid marginal probabilities fdr£ 0.
(n — K) } We provide some intuition for considering the above class
S L

®)

of strategies via an example. Suppdde= N and consider
strategyu[0, N]. We see that the term,, (0)r; is constant
Note that the above set is guaranteed to be nonempty, sifieeall 1 < j < N. From (4), this means that the worst-
rx > 0 and thereforek’ lies in the above set. Also note thatcase difference foru only depends on the sum of the
because-; > r, wheneverj < k, there is no division by) marginal probabilities of, but not the individual marginal
in the above summation. It will be seen that paraméter probabilities. Thus,u[0, M] has constant performance for
is crucial to describing the optimal strategy, and for somdifferent x. This type of constant performance with respect
special cases denotes the channels which should be proliedx is a common trait of robust worst-case strategies [7].
We will assume without loss of generality thal >  Similar reasoning can be applied tdl, M] for other values
M + L. If this condition does not hold, one can add extraf i and M. For these strategies, the tepm, (0)r; is constant
channels with ratesy1 = --- = ry, 7 = 0. As a user for 1 <j < M.
has no incentive to use these extra channels and they do ndh the next section, we will show that the optimal strategy
contribute to the total reward, they do not affect the optim#or the competitive regret belongs to the class of strategie
strategy or its expected reward. This assumption is madediven by Definition 1.
avoid boundary conditions in describing strategies andt the
worst-case rewards, thus facilitating the description. IV. OPTIMAL STRATEGIES

We introduce an additional notation as follows. | this section, we present optimal strategies fd) and
For M defined in (5, and any integerM (p) To facilitate the description, we define the following for

]V[:max{nE{K7---,N}:rn>0,rn2

such that K < M < ]1\\4’4 deflnfz: n(M) = anym > K: v, — L;ln(mi) _
max {m € {07 ce 7L} : TMerijl % >M—-K ) J=1r;

wheren(M) = 0 if this set is empty. This termy(M) is _ _

introduced simply for notational purposes in describing thf Optimal Strategies for (A) )

following class of algorithms and their worst-case rewards For any fixedK, we let Wx = Uy; U u[l, M] be the set
Definition 1: For any set of channels, defink/ from of all strategies given by Definition 1. We now describe the

(5). Then for any integeis, strategyu[l, M] is defined by optimal strategy for(A):

configurable parameters (integersjand M, where K <  Theorem 1: Optimal Strategy for (A) For any set of chan-

M < M and eitherl =0 orp(M)+1<1<n(M —1)—1. nels, definé// from (5). Then the optimal strategy” € Wi,

The marginal probabilities underl, /] depend o andM  i.€. minyey, 6% = minuew, 6", and is determined as
as follows: follows.
If I = 0, the marginal probabilities undeu[l, M] are 1) If there existsK < M* < M satisfying ras» >
as follows. If 1 < i < M, let p,,(1) = 1 — —5F+ . Ve = raeilae<ny , thenuf0, M*] is the
tea=t optimal strategy.

Otherwisep,, (1) =0 if M +1<i<N. 2) Otherwise, there must exist af/*, where K +

If n(M)+1 <1 < n(M — 1)—1, the marginal probabilities 1 < M* < M, satisfying the following

i ity: [ * [ * > *_ 7.
1In [9] (Section 4) it was shown that for every set of marginalbmbilities Inequa“ty ™ > ™ - VM —1 Then

there corresponds a strategy Thus, if we can determine a set of optimal the optimal strategy isu[l*, M*], Whefe: r =
marginal probabilities in 4, then there must be an optim@tsgy inU with min {m c {0 - E} S > [~/ e ZM 1 }
these marginal probabilities. ’ ! = j=1r;



Theorem 1 is proved in Section IV-C. Also, the corAlgorithm 1 constructs a strategy which, with probability
responding worst-case rewards (which are the minimum probes at mosK channels. Thusu € Ugk. We have the
obtainable) are given in Lemma 4 in closed form. In Sectidiollowing result on Algorithm1.

IV-C we provide a game-theoretic interpretation of Theorem Lemma 3: Algorithm 1 constructs a strategy with
1. marginal probabilities which match the marginal probaiei

Note that Theorem 1 provides a method to determine tloé u[0, M/] given by Definition 1.
optimal strategy, and this procedure is a fairly simple on&herefore, by using/ = M in Algorithm 1, we can
In particular, cases and2 each require checking whether aconstruct the optimal strategy given in Corollary 1. In $@Tt
condition holds, and there are only — K + 1 possibilities V, we will show thatu[0, M] performs very well compared
for the value of M*. The termn(-) is also not difficult to the optimal strategy given by Theorem 1. Thus, strategy
to determine. An alternative method for finding the optimak[0, ] is a practical alternative if the optimal strategy
strategy is as follows. First, note th#tyx contains at most of Theorem 1 is difficult to construct. Algorithm also
(M — K +1)L strategies. For eaoh[/, M] € W, the worst- constructs strategw[0, M] for any K < M < M; thus it
case differencé“[M] can be easily determined, as we willgenerates the optimal strategy whenever casé Theorem
show in Lemma 4 in Section IV-C. Thus combining this witlL holds. Forl > 0, it is not immediately clear whether there
[Wx| < (M — K + 1)L, the best strategy ifiVx can be exists a sequential algorithm to easily constrafét M/]. This
determined with low computational complexity. is a subject of further study.

We provide some intuition for Theorem 1. In both cases
1 and 2 of the above theorem, there aE channels with B. Optimal Strategies for (B)

rewards significantly greater than other channels, and OnIyFor Problem(3) we have the following result:
these channels should be probed. The probability distabut Theorem 2: Consider any set of channels ;';md integers

assigned to probing each channel depends on the relatiDns})JK_ We have the following result fofB): maxacy,, p* =

betweenl, K _and M. An _mterestlng special case of themaXuEUK 5" = K/N , where the optimal strategy* achiev-
above result is the following. Whekl' + L. < M, then

Y ' ing this maximum reward ratio has marginal probabilities
from the definition of M, casel of Theorem 1 holds with

. X _ given by:pu;(l) =K/N forall1 <j<N.
M* = M. Thus we have the following coroI.Iary. We see from Theorem 2 there exists an optimal strategy
Corollary 1: For any set of channels, defidd from (5).

, - g which uniformly chooses from all length* binary vectors
Then if K + L < M, the optimal strategm* has the same

. ) - ¢ with exactly K elements equal tal. In Section V, we
marginal probabilities as strategy0, M| given by Definition compare the performance of this uniform strategy to the
1

: ) optimal strategies of Theorem 1.
Note that Corollary 1 and Theorem 1 describe the opti-

mal marginal probabilities, but they do not immediately ok
uniguely determine an optimal strategy. By definition gf, ' ] )
at mostK channels can be probed for any realizationuof ~ 10 Prove Theorem 1, we first derive results on the set of
Thus, it cannot be possible that channel selection is dopiategies of Definition 1. _

independently for each channel. We could compute the joint-€mma 4: For any set of channels, consider any strategy
probabilities of these random vectors of lengéhby solving ull, M] given by Definition 1. _

a system of linear equations (witi equations and up 2 If { = 0, theng®OM) = S™7U0 30 (M — K )y

Deriving Optimal Strategies

unknowns). However, the number of lengthbinary vectors Otherwise, forn(M) +1 < I < n(M —1) —1, we have:
with exactly K ones grows very quickly a8’ increases. sulbM] — (]\7[ - K -1y ij\gl %) i e Tarent
Below we present a procedure (Algorithimthat computes g

u[0, M] in a sequential manner without considering the entir L=1) o - _ _
set of binary vectors of length. ow we prove that these strategies are optimal. It can

Algorithm 1: (Sequential Method to Construct u[0, M]) be. _shown tﬁ]se:ca IEll]') th_at ll)y intetrch:?mging maximum and
For any N and K, define M as in (5) and consider anymmlmum, € foflowing IS always true:

K <M< M. min max {V — V'} > max min {VS -V} (6)
Initially: M,K are defined. Sef = 1 andw; = 0 for all ueln xeXr x€ Xz uelx
1<I<N. The inequality in (6) is useful for deriving lowerbounds

Sep 1: Letp = 1_%_ UpdateK andu as follows: to ¢* as follows. Note that for any, the righthand-side of
_ n Xiziy (6) is an optimization problem with objective to minimize

« With probability p, setu; =1 and K = K —1. an average-reward criterion. By choosirge X;, such that

« Otherwise (with probabilityl —p), do not change, K. he optimal average-reward is high, we can obtain a useful

Sep 2. If K = 0, stop and use strategy. Otherwise, lowerbound to the minimax regret. We then show that these
repeat Step with j = j+ 1, M = M — 1, and using the lower bounds match the quantities given in Lemma 4, thereby
updatedu and K. proving the optimality ofu[0, M *] for some M *.

This algorithm takes input&/, K and sequentially gener- We first prove case 1 of Theorem 1. To derive a lower-
atesu[0, M]. We note from Steg2 of this description that bound in (6), consider the following:



Problem 1: For any givenL, K and set of channels, 2
define M as in (5). Suppose case 1 of Theorem 1 holds
for some M*, and let statex have the following marginal
probabilities. If1 < i < M*, then setp,, (r;) = 1 . If
M*+1<i<M*+n(M*), letp,,(r;) = 1. Otherwise, for L "
all other values of, let p,,(r;) = 0. z\\\ ufo.M]

Solution: The optimal strategy for this problem will probe :‘“T’i
any K of the channels in seftl,--- , M*} (either randomly osl :

or deterministically), and satisfiesainger, {V — Vi) =

- - - genie
%=

Average Reward
-

ulo.A]
This result is proven in Appendix F. Combining the result O 6 7 8 9 10
of Problem 1 with (6), we see that[0, M*] must be the Number of Channels (N)

optlmal worst-case strategy. Fig. 1. Average performance of the genie, algorithais [0, M], and
Now we show that when cask of Theorem 1 does not uniform as described in Section V, wheii = L = 3 and N varies from

hold, then cas@ must be true. When case 1 of this theorerh 10
is not true for all K < M < M , then f0r~eachM_ one
of the following is true: eitheFﬂszj\i1 L < L—n(M)or

TMHZ;.\L% > L — n(M). Combining this withy(K) = L

from the definition ofn, it can be shown that case 2 must b . . L .
satisfied for some\/*. ?ollows. For a givenN, ther; were uniformly distributed in

Now consideri* and M* as described by case 2 of[O’ 1. For each realization of the ratésj}jes,we computed.
R . the average reward obtained by the following four strategie
Theorem 1. To prove that[l*, M*] as described by case . C . . =
2 is optimal, we consider the following problem. (1) genie, or omnlsm_ent qbserver. knov_vs n a(?lvanc_:eﬂ;he
) . ~ available channels with highest bandwidth 2): optimal

Rroblem 2._For any givenr, K and set of channels, trategy within the class given by Definition 1, and shown to
define M/ af in (5). Suppose case 2 of Thgorem 1.h0| e optimal in Theorem 1 (3n[0, M]: the optimal strategy
for SO”?‘?M .andl. LeF Statef have the foIIOW|ng]TATarg|nal under the conditions given by Corollary 1 and (4) uniform:
probabilities: Forl < i < M~ —1, let py, (r;) = == For randomly probek out of the N channels, optimal for (B) in
M*<i< M* +lj 1, let p,, (r;) A:1*1.1Wher‘lz = M*+1, Theorem 2.
then letp, (r;) = L —1—ru-35-," ;. Otherwise, for Figure 1 shows the performance of these two strategies
all other values of, let p,, (r;) = 0. when we fix K = L = 3 and N varies from5 to 10. In

Solution: As shown in Appendix G, the optimal strat-grqer to achieve, = 3, we setp, (r;) =3/N =1—p, (0)
egy for this problem prqbgs anyx’ of the channels in ¢or 51 1 < j < N.We see thatr* outperformSu[O,M]Jand
set {1,---,M*} and satisfiesiminuer, {Vi¥ = V't = uniform for mostN. Note that for largeV, u[0, M] slightly
gt outperformsu*. This is because even thougti may have

Combining this with (6) proves thati[l, M*] must be gz jower worst-case difference (bound overs] it does not
optimal for case 2 of Theorem 1. necessarily outperform[0, M/] for some giverx. In general,

We now provide a game theoretic interpretation tehe performance of these two strategies is similar for most
the results for Theorem 1. Consider the equivaleny, especially asV increases. The latter can be explained by
two-player zero-sum game mentioned earlier, with ghe fact that asV (and M) increase whileK stays fixed, it
user who chooses: and an adversary that selects becomes more likely that the conditions of Corollary 1 are
We have proven thaimaxxex, minuev, {V¥ — V't = satisfied. Hence, a8 increases then it is more likely that
mingey, Maxxex, {Vi — Vi'}. From [12] (Proposition u* andul0, M] are the same strategy. The performance of
22.2), this means that* from Theorem 1 and th&* for the genie varies for each realization of thie;} andx, but
Problems 1 and 2 form a Nash equilibrium for this strictlyts average performance is relatively constant with respec
competitive game. A similar interpretation holds for they since L = 3 is fixed and the genie only uses tfé = 3
competitive ratio and optimal worst-case strategy in Teeor available channels with highest rate.

2. Figure 2 shows the performance of these strategies when
N = 10, L = 5 and K increases from3 to 9. As
expected, the average rewardswf, u[0, M], and uniform

all approach the genie’s average reward /dsincreases,

In this section, we examine the performance of the prdecause it becomes more likely these strategies will probe
posed algorithms under a range of system parameters. We best channels a& increases. Meanwhiley* strictly
first compare the performance between the optimal stragegmtperforms uniform for alli’.
under the different metrics described in Section Il. Then These results indicate that the optimal strategies under
we compare the worst-case strategies to other heuristicstioe worst-case difference performance measure appear to
algorithms. outperform the optimal algorithm (uniform) arising frometh

A. Comparison of Metrics
For the numerical results, we chose parametersas

V. NUMERICAL RESULTS
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Fig. 2. WhenN = 10 and L = 5, average performance of strategies asig. 3. Comparison of optimal average-reward strategigsand v to the
K increases fron8 to 9. optimal worst-case strategies, u[0, M| and uniform as the channel state
distribution is varied, as described in Section V-B.

worst-case ratio performance measure. In addition, if the ) o
procedure of determining* becomes impractical, then one e See that for negative (positive), vo (v2) performs
can instead use[0, M] which has comparable performanc&®y Well. On the other hand, we see that @sncreases

for the scenario described in this section but is very easy {€creases), the expected rewardpf(vz) approaches zero.
construct using the proposed Algorithinof Section IV-A, 1 NiS is becausa probes the channels with th highest

rewards, thus it performs better when the channels with
higher rate have a higher probability of being available.
B. Sensitivity Analysis of Strategies Similar reasoning can be applied feg. On the other hand,
. o . . u* and ul0, M] are relatively robust to changes in the
o et i alle o0, 9 et (tal revard does ot appoau
the distribution ofx, i.e. channel statés then it can probe an vares. Th_|s example |Ilustrat_e s the robustness Of. WOrst-
R ’ , ase strategies compared to optimal average-rewardgigate
use theK channels with highest values pf, (r;)r; in order ] o
o ) . nder varying distributions.
to maximize V.* (we call this the optimal average—rewardu
strategy) and outperform the optimal worst-case strasegie
However, if this knowledge of the distribution is incorrect
then the optimal average-reward strategy may have a poofhe problem formulated in Section Il assumes that if the
performance. The optimal worst-case strategies, by csitr@robing results indicate a channel is (not) available, thén
are guaranteed to perform well over alland could be more indeed (not) available. In this section, we extend the tssul
robust to changes is. of the previous sections to imperfect probing. For notalon
To illustrate this, we compare various strategies as falowconvenience, we present results heresfar X, noting that
whereN = 10 andL = K = 5. For any given set of rewards our results can be generalized Xy, similar to Lemma 2.
{rj} pe,; (1) = j%/B=1—pg,(0) forall 1 <j < N and We consider the following modified version of the problem
some -5 < a < 5. Here, 8 is a normalizing constant to outlined in Section Il. For each channgl let y; = 1 if
ensure thatk € X. Note that whemy = 0, thenx takes channeli is probed to be available, ang = 0 if probing
on the uniform distribution. Negative (positive)means the indicates the channel is off. Probing results are colletyiv
channels with higher (lower) rate have a higher probabiiity described byprobing result vector y = [y1,--- ,yn]. Since
being available. We let, andv, to be the optimal average-the transmitter can only probe up £ channels, it will only
reward strategies when the transmittmlieves « = 0, 2, learnK elements of vectoy; the otherlV — K values remain
respectively. Note that strategy, (or vo) probes theK unknown.
channels with the highest values of (or r;j2?/3). Thus, When a probe reveals that a channel is available, then with
these strategies can be seen as simple heuristics that makbability p the channel is actually available. Equivalently,
probing decisions based on weighted values of the chandefiningx as in Section II,P(z; > Oly; = 1) = p. We as-
rates. sume the probing errors occur independently among differen
As shown in Figure 3, we examined the performancghannels, i.eP(z, > Oly; = 1) = Pz, > 0) if k # j.
of these strategies by varying the real valuecof For a Similarly, a channel probed to be unavailable is actually
given «, the {r;} were uniformly distributed in[0.8,1.2] available with probabilityg, i.e. P(z; > Oly; = 0) = g¢.
and the average performance of, vo, u*, u[0, ], and These conditions implyy < P(z; >0) < p. Note that
uniform was determined fot0? realizations. This processp = 1 andq = 0 describes the original problem formulation
was repeated for-5 < o < 5. Note that performance of, considered in the previous sections. The value® aind ¢
and vy under variousy indicates the effect of errors in themay depend on the physical sensor [2], and are assumed to
transmitter’s belief of the true. be known in advance to the transmitter. We assume without

VI. PROBING ERRORS



loss of generality thap > ¢; if this assumption does notworst-case performance measures and derived a class of opti
hold, then one can easily reverse the definition of the pgpbimal strategies. We presented an algorithm which sequbntial
results to obtairp > ¢. We will assume thap andq are the generates a subclass of these strategies with low computa-
same for all channels. tional complexity. The performances of these strategiegwe

We note that from the marginal probabilities ¢f one also examined via numerical studies. These results and algo
can determine the marginal probabilities of any channgthms are applicable to many practical scenarios, pdeitu

being available. Specificallyy,,(r;) = P(z; = r;ly; = when the channel quality is changing unpredictably.
1)py,(1) + P(x; = rjly; = 0)py,(0) = (p — q)py, (1) +

q . Similarly, one can uniquely determing,, (1) from REFERENCES
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(M* — K)p+qK , then the optimal strategy for (A) A%

has the following margmal probabilitieg,; (1) = 1 —

—(qu); Wt Ke 4 _a_ for 1<j<M* andp, (1) =0 APPENDIX

—4)" k=1 71}, I 1
for j > M* oy We note that the proofs in Appendices C,E,F,G have

appeared in [13] using different notation. Here we have

Note that plugging inp = 1 and g = 0 into the repeated the proofs for completeness.

above theorem yields then we obtain Cdsef Theorem 1.
Generalizing the above result for Ceksef Theorem 1 is part
of the future work. In addition, Algorithm of Section IvV-A A. Proof of Lemma 1

can be modified to construct the optimal strategy in TheoremFirst note that L < L implies X; <€ X
3, by replacing in the algorithm withp,,; (1) of this theorem. Thus, maxyex, {03} > maxxex, {0x}. To complete
Thus, the above optimal strategy can be constructed inttee proof, we thus only need to show that
sequential manner, with low computational complexity.  maxxex, {0y} <maxxex, {6y}. To prove this, we
show that for anyx € X there exists corresponding
y € Xjg such thatVy — Vi > Vg -V Consider
any x € Xj. Note from the equation fol; that for

We examined optimal competitive algorithms for joinany realizationx(w), where x = [z1(w), - ,zn(w)],

channel probing and transmission. We formulated multiptnly the mm{Ko,Zl 1 I{z,(w)>01} available channels

VII. CONCLUSION



with highest rate determine the expected reward of th€, < M,, and whenevelk;_; = My — j + 1 then from
genie. We can define a new channel stgtesuch that Stepl we havep = 1 which means that in Step we will
yj(w) = zj(w) if and only if z;(w) > 0 andj is one of obtainK; =K; 1 —1=My—(j+1)+1=DMy—j.ltis
the min {Ko,zfil Itz ()0} available channels with the thus |mpOSS|bIe to havé’; > M, — j for any j, implying
highest rate. Other\leng( ) = 0. We see that becauseKn;, < Mo — My =0 with probability 1. B

Zz 1 ywyso0y < L for all realizationsw, theny e X;

and V* Vy. At the same time} ' > V! for any strategy D. Proof of Theorem 2

u. ThUS’V; -y - i Consider any strategu* with marginal probabilities de-

scribed in Theorem 2. It can be shown, similar to Lemma

B. Proof of Lemma 2 1, that the worst-case ratio of any strategyis achieved
We use proof by contradiction. Suppose there exis®y X € X} because the genie can only use theavail-

z € X; such thatP(0 < z; < r;) > 0 for some able channels with highest rates for transmission. Thus we
and 6" = — V2. Then from Lemma 1 we have thehave: p" = minyex, {% Z?ZIE[xj]/Z?:lE[xj]} =
following: 5“ = maXxeXx,; {E Ey {ZJ 1a:JI{u]_0}]} = minkex; {N} = K/N. Now consider any other strategy
which does not probe channels uniformly. This implies there
exists1 < j < N such thatp,; (1) # K/N. On the other
hand, we know from definition of/x that Z;V:lpuj(l) <
K. Thus, there exists < i < N such thap,,, (1) < £. Then
we obtain for thig, by settingp, (r;) = 1 andp,,(0) = 1 for
S Elajlpa, (1) < ripu; (1)

maXxex; {Zf\il E[z1]-py, (0) ¢. Now consider a modified
channel state such that for all, P(z; =) = P(0 < 7z <
Tl) and P(El e O) e P(Zl = O) SinceP(El > Zl) =1
for all { and P(Z; > z;) = 1 due to the assumption on
4, we have:S" Y | E[z]-pu, (0) > 32, Elz]-pu, (0), which
contradicts the assumption that the worst-case regretiforall j # i: p" = min, ¢, {

YL Eley) -
is achieved byz. Since this result holds for any such that . L "
p(0 < z; < ;) > 0 for somej, and clearlyz ¢ XL' we N . Thus we see that" > p" for all u € Uk, and therefore

have proven the result.ll u* must be optimal. §

<

E. Proof of Lemma 4

First consider any strategy[0, M]. From (4), 6% is
given by the maximum of the following term over all

C. Proof of Lemma 3

Note that since Algorithml randomly chooses which
channels to use, then the value f&f after each step is B
a random variable. Lef; denote the value foi after; X € Xj: gz@ L Zl 1 P, (1) +Zl §re1Ti Py (Ti) ¢
iterations of Stefd. The value of)M also changes after eaChMeanWhHe bj); dTéflmtlon ofy(11), we have for alll <
iteration. We letK, and M, denote the initial (fixed) values M1
for K and M, respectively. Thus we need to show that any j=lry =
strategy generated by Algorithrh has the same marginalM — K > TM-H@ZJ 1 7 From these inequalities, there ex-
probabilities asu[0, M| of Definition 1, with K replacing ists statex which achieves the maximum ifi* by setting
K. We first show this holds fot < i < M, by induction.  Pay,,("iz4;) = 0 for j > n(M) +1, andp,,, | (raryy) =

Induction Basis: As described in Algorithmi, initially 1 for 1 < j < (M), andp,,(r;) = 1 for any L — n(M)

< n(M) < k, wherez k are integersry; ;>

p=1- TZ‘% and we setu; = 1 with probability valuesofjin1 < j < M. Note this is a valick asn(M) < L
LSl by definition ofy(M). Thusé™ reduces to the equation given

p. Therefore, the result holds far= 1

Induction Hypothesis. First con3|der any2 < I < M,.
Suppose the result holds far = 1,---,1 — 1. We will
show it also holds fori = [. The probability that we N1 - N
use channel is a random variable given byp = 1 — ™MaXxeX; {Zi—l TiPa; (1i) =5 + 2 i— iy TiPai (T)
[(M =i+ 1) = Ki-a]/(r: 3277, &). Taking the expectation gD (r )(M K~ i ZM "U)1 By the
of p gives the marginal probab|I|ty that channgeis used: definition of nﬁM — 1), we have the following:

_ (M() Z+1) E[K»L ]] "
pu (1) =1 - P SR S We note thatF[K ] PN n(T-1+10e = < M -—1-K. Combining

can be calculated as follows by‘c?nsidering Stepof  this with 1 > 77(;\7[ — 1) and usingr; < 7%
Algorithm 1 E[K; 1] = Ko — >5_ pu;(1) = Ko — for any 5 > k we obtain the inequality:

Yoy |1 — Megke- |, where we have used the inductior i7—1-+i+1 (Z?il %) < (M - K). Rearranging yields:

hypothesis to aelnrvqh (1) for all j < i—1. Plugging Tar+i < T (M K- ZM 1(TM+Z/TJ')>-

this into the equation fopul( ) and rearranging, we obtain: Thus we see that" can be maximized by setting

pu, (1) =1 —[My — Ko]/[r: j”l J] proving the result. pmMM(rMM) =1for0 <k <i-1 andp,,(r;) =1
Now consider anyM,+1 < [ < N. We need to prove that for any L — [ values ofj in 1 < j < M — 1. Plugging

Py, (1) = 0. By step3 of the algorithm, this will always be this maximization into the previously stated equation fbr

true if P (K, = 0) = 1. We prove this as follows. Initially, completes the proof. I

inLemma 4.
Consider u[l, M] when{ > 0. In this cased" can
be calculated by using the following equation® =
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F. Optimal Srategy for Problem 1 It can be shown, using steps similar to the proof of

We note from the definition ai/* from case 1 of Theorem L€mma 3, that for any: in Tf}(eLOI’e(T{%)(We )thaA‘f }he follow-
1 that0 < p,,(r;) < 1, i.e. these are valid probabilities.ing: maxyey; {Vy — Vy'} = z]p ) ZE{*?L Ll(M* —
Since minyey, {VF — V2 = VF — maxyep, Vi, the n(M*) q ok .
optimal strategy for this problem maximizeg". Plug- K)p + K] +p3 52, [TM“” ~p-q"s) - Now consider

ging the marginal probabilities fox, we obtain V* = the following: . o
ZM*lp (1) E=n) n(M* )+Zn(M ) p (1)rase+;. We see from Problem 3: For any L, K, suppose the conditions of
J Uj uj

Yt v Theorem 3 are satisfied for sonid*. For 1< < M* let
the definition ofAM*’in casel of Theorem 1 that there exists 1) = [L—n(M~ )}p+(M* L+n(M Na For M*41 <
pyj( ) r. ( )Z ,q . + =
a strategy which maximizeg}' by settingp,; (1) = 0 for 5 (p—a) il oo

al M +1< j < N and probes any< of the channels J < M* +n(M"), letp,,(1) = 1. Finally, letp,,(1) = 0

in {1,- M*} Thus, the reward of opt|mal strategy’ is for j > M* +5(M"). i
given by yu [L ﬁ(M*)]K/(Z 1, which holds It can be shown the optimal strategy probes dtiychan-

j=1r; * : * _ {/u
regardless of whichK channels are probed. Meanwhrlene'S in {1, -+, M*}, and minucy, {Vy Vy} _m_atches_
aXyey; {V —V;2} calculated earlier. Combining this

_ L=n(M*) 3 rs
= lelmpml (1) = == M* . Taking the difference wrth (6) proves Theorem 3. B

. j=1 T
betweenV* andV*", and comparing witts[>-*"] given by
Lemma 4, we obtain the result.

G. Optimal Strategy for Problem 2

We follow a similar technique used in Appendix
F for Problem 1. First, V* can be written as:
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