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Abstract— This paper derives a lower bound of the form
nγ−1 to the per-node throughput achievable by a wireless net-
work when n source-destination pairs are randomly distributed
throughout a disk of radius nγ , 0 < γ < 1/2 and propagation is
modeled by an attenuation of the form 1/(1 + d)α, α > 2.

I. INTRODUCTION

The pioneering work of Gupta and Kumar [1] has led to
many studies of scaling laws for the asymptotically achievable
throughput in wireless networks under a variety of network
models and assumptions. Such scaling laws help us understand
the fundamental performance limits of these networks and
how efficiency changes as network conditions change. Some
examples include [2] where the nodes are allowed to move; [3],
[4], [5], where many-to-one type of communications is con-
sidered; [6], [5], where cooperative communication schemes
are employed to improve network throughput; and [7], where
scaling laws are derived using directional antenna assumptions.

All of these scaling results are highly dependent on the
various assumptions made, such as on the network topology
(e.g., planar, linear, ring, sphere, etc.), the purpose of the net-
work (e.g., many-to-many vs. many-to-one communications),
the physical layer models (e.g., different signal propagation
and interference models), and the asymptotic density of nodes
(e.g. increasing to infinity or remaining constant).

This paper focuses on two such aspects – the underlying
model for signal propagation, and the asymptotic density of
nodes. We focus on the many-to-many communications task.
Specifically, a set of n nodes are randomly distributed over
some region A, and each node randomly chooses another
node to whom to transmit data. For this task, [1] found
the maximum throughput per node to be1 Θ

(

1/
√

n log n
)

,
assuming a 1/dα propagation law with α > 2. This result
is essentially independent of the density of the nodes. For
example, it applies when the region A is fixed and the density
of nodes increases linearly with n, and when the density of
nodes is fixed and area of A increases linearly with n. On the
other hand, Arpacioglu and Haas [8] showed that when the
propagation model has the form 1/(1 + d)α, α > 2, and the
region A remains fixed (so node density increases linearly with
n), the maximum attainable throughput decreases dramatically
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1We use the notation O(fn), Ω(fn) and Θ(fn), in the conventional way,

i.e., to characterize a quantity xn depending on n for which there are finite
constants c1 > 0 and c2 > 0 such that, respectively, xn < c2fn, xn > c1fn,
and c1fn < xn < c2fn, for all n.

to Θ(1/n). At the same time, it is relatively easy to see
that if the A increases linearly with n (so that node density
remains constant), then even with their propagation model, the
maximum throughput is, Θ

(

1/
√

n logn
)

, i.e. the same as for
the 1/dα propagation model. These results are summarized in
the following table. One concludes that throughput is greatly
dependent on the assumptions about propagation model and
node density.

Propagation Models
1/dα 1/(1 + d)α

fixed area 1
√

n log n
[1] 1

n
[8]

fixed density 1
√

n log n
[1] 1

√

n log n

TABLE I
THROUGHPUT SCALING RESULTS UNDER DIFFERENT PROPAGATION

MODELS AND NETWORK DENSITY ASSUMPTIONS

In this paper, we consider the maximum achievable through-
put for the 1/(1 + d)α propagation model when the region A
grows at intermediate rates. Specifically, A is chosen to be
a disk of radius nγ , 0 < γ < 1/2, and it is shown that
throughput Ω

(

1/n1−γ
)

is attainable. Though we have not
shown this to be the largest possible throughput, we suspect
this to be the case. When γ ≈ 0, the throughput Ω

(

1/n1−γ
)

approaches the Θ(1/n) result found in [8]. For γ ≈ 1/2,
the throughput Ω

(

1/n1−γ
)

appears to be larger than the
Θ
(

1/
√

n log n
)

shown in the table for γ = 1/2. To see what
is happening, consider γ = 1/2 − ε, where ε > 0 is very
small. Our result says that when n is large, the attainable
throughput is at least n−1/2−ε, which is less than (not larger
than) the n−1/2(log n)−1/2 shown to be attainable in [1]. The
appearance of a paradox is due to an implicit, but improper,
interchange of the order of taking limits over n and γ.

In the remainder of the paper, Section II introduces the
many-to-many communication task and outlines the approach
to the main result. Section III introduces propagation models
and criteria for judging the success of a transmission. Section
IV formalizes and outlines the proof of the main result. Due to
space limitations, key lemmas are stated without proof. Section
V summarizes.

II. THE MANY-TO-MANY COMMUNICATION TASK

A set of n nodes, Σn = {s1, . . . , sn}, is distributed over
a disk An ⊂ R2 with radius nγ , called the network region,
where si ∈ An denotes the ith node as well as its location,
and where γ, 0 < γ < 1/2, is a fixed parameter that
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characterizes how the area of the disk and the density of
nodes scale with n. Each node serves as a source of bits
that it wishes to communicate to some destination. We use
the terms source and node interchangeably. For each source
si, another of the n nodes, denoted di, is designated as the
destination for its bits. As a result, there is a source-destination
set Pn = {(s1, d1), . . . , (sn, dn)} consisting of n source-
destination pairs, each representing a desired conversation.
Note that a node may serve as the destination for more than
one source.

Each of the n sources has an infinite number of bits it wishes
to communicate to its destination node, as quickly as possible.
Communication uses simple multihop relaying with a time
slotted system. We make the usual assumption that the source-
destination set is random.

A. System Definition

We now describe the kind of system to be used for the
many-to-many task. This is basically an explicit formalization
of the kind of system that appears implicitly in prior work
of others. There is a transmitter and receiver at each of the
n nodes. The antennas at each node are omnidirectional. All
transmitters use the same power P , which we get to choose and
which may depend on n and the specific source-destination set
Pn. (However, we will see that when our system is optimized,
the power can remain constant.) As mentioned earlier, trans-
missions occur in slots. We assume there is a fixed W > 0
such that each transmitter can transmit at most one packet,
consisting of W bits, in one slot, regardless of P , n or any
other factors. Such transmissions are received throughout the
network region An in the presence of background noise with
power No and interference from other transmitters transmitting
at the same time. As a result, the packets might or might not
be successfully received by an intended receiver. Criteria for
determining success will be introduced later.

To communicate bits from the sources to their destinations,
each source-destination pair needs a route and a schedule. A
route for source-destination pair (si, di) is a finite sequence
of hops, hi = (hi,1, . . . , hi,Ji), from si to di with the jth hop
of the route being a pair hi,j = (ti,j , ri,j) indicating that node
ti,j ∈ Σn is to transmit bits originating at si with the intention
that they be receivedby node ri,j ∈ Σn. The first hop has the
form hi,1 = (si, ti,1), subsequent hops have ri,j = ti,j+1,
and the last hop has the form hi,J+i = (ti,Ji , di). Paths for
different source-destination pairs may have different numbers
of hops. The length of a hop h = (t, r) is the Euclidean
distance ‖t − r‖.

A schedule for route hi = (hi,1, . . . , hi,Ji) is a sequence of
positive integers σi = (σi,1, . . . , σi,Ji) assigning a time slot to
each hop of the route. Specifically, node ti,j makes its trans-
mission of hop hi,j in time slot σi,j . Combining the notions of
route and schedule, each source-destination pair (si, di) is as-
signed a scheduled route Hi = ((hi,1, σi,1), . . . , (hi,Ji , σi,Ji)).

We now define a system Sn for source-destination set Pn

to be a set of n scheduled routes {H1, . . . , Hn}. Such a
system is assumed to operate periodically with period p =
maxi,j σi,j , which is the largest slot assignment of any hop of

any route. That is, the jth hop of route hi = (hi,1, . . . , hi,Ji)
is transmitted in slot σj of each epoch of p slots. The reason
for restarting each route synchronously at the beginning of
each epoch will be explained shortly.

We also require scheduled routes of a system to be com-
patible in the sense that no two hops, either from the same
or different routes, can be scheduled to require transmission
from the same node in the same slot. This requirement stems
from our assumption that a node can transmit at most once
within a slot. The previously stated assumption that all routes
are transmitted again in every epoch of length p (instead of,
say, each route cycling asynchronously) is designed to permit
compatibility to be checked straightforwardly.

In summary a system Sn = {H1, . . . , Hn} for a set of
source-destination pairs Pn consists of a compatible set of
n scheduled routes, one for each source-destination pair in
Pn, and with the latest time slot assigned to any hop being
defined as the period p of the system. For future use, for
j ∈ {1, . . . , p}, let us define the hop set Hj to be the set of
hops (t, r) that the system specifies as transmitting in the jth
slot. That is, Hj contains a hop h = (t, r) if h is a hop in
some scheduled route that is scheduled for the jth time slot.
Let us also define the transmission set Tj to be the set of
nodes that the system specifies as scheduled for the jth slot.

We now describe concretely how a system Sn =
{H1, . . . , Hn} with period p for source-destination set Pn =
{(s1, d1), . . . , (sn, dn)} transmits data from the sources to the
destinations. For each i ∈ {1, . . . , n}, the first packet from si

is transmitted via hop hi,1 in slot σi,1 of the first epoch. Then,
if σi,2 > σi,1, this packet is relayed via the second hop hi,2,
also in the first epoch. If not, it is transmitted in the second
epoch. Subsequently, for each j > 2, the packet is relayed via
hop hi,j = (ti,j , ri,j) in slot σi,j of the first epoch in which the
packet is received at ti,j prior to σi,j . Moreover, transmission
of subsequent packets from si to di are pipelined so that in
steady-state one packet from si is sent over each hop hi,j in
each epoch.

B. Success Criteria

We assume the existence of a transmission success criterion
that determines whether or not a given transmission will be
successful. Specifically, when a transmitter at t1 transmits to
location r, and the transmission is received at r with power
Pr,1 in the presence of background noise No as well as
interfering powers Pr,2, . . . , Pr,M from other transmitters, the
criteria determines whether this set of received powers permits
the transmission from t1 to be successfully received at r.
Such a criterion can be characterized by a success indicator
function φ(Pr,1, . . . , Pr,M , No) that takes value one to indicate
that the received powers Pr,1, . . . , Pr,M , No are suitable for a
successful transmission, and takes value zero to indicate the
opposite. Our specific choice of φ will be given in the next
section.

When a propagation model is available, i.e. a function
η(d) : [0,∞) → [0,∞) that determines the fraction of transmit
power that is received at distance d from the transmitter, then
given a set of M locations T = {t1, . . . , tM} at which there
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are transmitters transmitting with power P , the success of a
transmission from t1 to r becomes a function of r, t1, . . . , tM ,
as well as P and No. That is, one obtains a success indicator
function of the form

φ(r, T, P, No)

= φ(Pη(|t1 − r|), P η(|t2 − r|), . . . , P η(|tM − r|), No) .

With a transmission success criterion in hand, one may now
define a hop set H to be successful if every hop (t, r) ∈
H, transmission from t to r is successful in the presence of
transmissions from all other transmitters in the transmission
set T corresponding to H. Next, one may define a system to
be successful if all of its hop sets are successful. Note that in
the situation described above in which a propagation model η
is available, the success of a hop set or a system will depend
on P , No and the propagation model η(d), as well as the
locations of the transmitters and receivers of the hops in the
hop set.

C. Throughput

If a system Sn with period p for source-destination set Pn

is successful, i.e. if all hop transmissions are received suc-
cessfully, then in steady-state the system delivers one packet,
consisting of W bits, from each source si to its destination di

in each epoch of p slots. Accordingly, we define the throughput
for a successful system to be λ = W

p . Clearly, to attain large
throughput, one needs to design a set of compatible scheduled
routes with p as small as possible.

Note that the order in which hops in a route are scheduled
has no effect on throughput, though it will effect the delay until
the first packets from each source appear at their destinations.

D. Propagation Models

Central to throughput scaling studies is the choice of a
propagation model, which is a function η : [0,∞) → [0,∞).
As mentioned in the introduction, in most of the prior work,
e.g. [1], the following signal propagation model (referred to
as Propagation Model A) is adopted:

η(d) =
1

dα
,

where α > 0 is a constant whose value depends on the
conditions of the channel. Notice that under Model A, when
nodes become very close as n becomes large, as happens for
example when γ = 0 and the network region An remains
fixed, the received power will be larger than the transmitted,
which is not reasonable. In other words, Model A makes sense
only as a far field assumption.

This was noted by Arpacioglu and Haas in [8] and by
Dousse and Thiran in [9]. In particular, [8] considered the
following alternative model (referred to as Propagation Model
B):

η(d) =
1

(1 + d)α
.

With this model, no matter how close two nodes become, the
received power is upper bounded by the transmit power. Sim-
ilarly, [9] considered a broad class of decreasing propagation
models that are upper bounded as d approaches 0.

III. SINR AND DISTANCE-BASED SUCCESS CRITERIA

Also central to throughput scaling studies is the question
of what constitutes a successful transmission. In particular,
we need a criterion to determine when a transmission from t
to r will be successful in the presence of other transmitters
and background noise. Accordingly, we will adopt the SINR
(signal to interference and noise ratio) criterion [1], which
is commonly used for this purpose. To introduce it, consider
the situation that a set T = {t1, . . . , tM} of nodes transmit
simultaneously in a given slot, that the transmission from t1 is
intended to be received at r, that the received powers at r from
the transmitters in T are Pr,1, Pr,2, . . . , Pr,M , respectively, and
that background noise with power No is also received. Then
the signal to interference noise ratio (SINR) at r is

Definition 1: - SINR

SINR(Pr,1, Pr,2, . . . , Pr,M , No) =
Pr,1

No +
∑M

i=2 Pr,i

Note that with this definition, all other transmissions are
considered noise.

Definition 2: - SINR Success Criterion
Given β > 0, a transmission from t to r is SINRβ-successful
if (and only if)

SINR(Pr,1, Pr,2, . . . , Pr,M , No) ≥ β,

This criterion is called the physical model in [1].
If a propagation model η(d) is available, then SINR be-

comes a function of the locations of r and the transmitters in
T , and the powers P and No. Specifically, with a small abuse
of notation, let

SINR(r, T, P, No, η)

= SINR(Pη(|t1 − r|), P η(|t2 − r|), P η(|tM − r|), No) .

To put this success criterion in the context of the success
indicator function introduced earlier, the indicator function is
now given by

φ(r, T, P, No) = I(SINR(t, r, T, P, No, η) ≥ β) ,

where I(A) = 1 if A is true and 0 otherwise.

A. Distance-Based Partial Success Criteria

To design a successful system Sn, one must design a set
of compatible scheduled routes such that all induced hop sets
H1, . . . ,Hp are successful. While it is straightforward to check
if any candidate hop set is successful, it is not at all clear
how one goes about designing a hop set to be successful.
To facilitate such design, Gupta and Kumar [1] introduced a
concept that we refer to as a distance-based success criterion.
This is a criterion that can be tested knowing only the distances
between the transmitters in a hop set and the various intended
receivers. Specifically, Gupta and Kumar first introduced such
a criterion called the protocol model, which is specified by two
parameters ρ and ∆ and which declares that a transmission
from t1 to r is successful in the presence of other transmitters
in T , if ‖t1 − r‖ ≤ ρ and ‖t′ − r‖ ≥ ρ(1 + ∆) for all t′ ∈ T
except t. However, in deriving constructive results, [1] used a
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distance criterion of the following form, which we find more
useful.

Definition 3: - Distance-Based Success Criterion
DC(C1, C2)
Given that all nodes in the set T are transmitting
simultaneously and given C1, C2 > 0, the transmission
from t1 ∈ T to receiver r satisfies DC(C1, C2) (and we say
t1, r, T is DC(C1, C2) successful) if (and only if)

‖t1 − r‖ ≤ C1

and
‖t − t′‖ ≥ C1(2 + C2) for all t, t′ ∈ T.

Notice that there is no dependence on power, only on
internode distances. Notice also that instead of requiring
‖t′−r‖ to be large for t′ 6= t1 (as in the protocol model), this
criterion requires ‖t′ − t‖ to be large. However, the triangle
inequality implies that if t1, r, T satisfies DC(C1, C2), then
‖r − t′‖ > C1(1 + C2) for all t′ 6= t1. Notice also that
DC(C1, C2) constrains the distance between every pair of
nodes in T . This has the effect of limiting the density of
transmitters, and consequently their total interfering power at
r.

To use this distance criterion, one must choose C1 and C2

so that the SINR criterion is satisfied whenever DC(C1, C2)
is satisfied. No matter how C1 and C2 are chosen, satisfaction
of the SINR criterion depends on the power P , the noise
power No and a propagation model η(d). Given the latter
two items, No and η(d), a pair C1, C2 are said to ensure the
SINRβ criterion, if there exists P > 0 such that any t1, r, T
that satisfies DC(C1, C2) also satisfies the SINRβ criterion
at power P , i.e SINR(t, r, T, P, No, η) ≥ β. In order to find
such C1, C2, we prove the following lemma, using techniques
similar to those used in [1].

Lemma 1: If t, r, T satisfies DC(C1, C2) and η is given by
Propagation Model B for some choice of α, then for any P >
0,

SINR(t, r, T, P, No, η)

≥ 1

(1 + C1)α
(

No

P +
∑Kn

k=1
6k+3

(1+kC1(1+C2/2))α

) ,

where Kn = d 2nγ

C1(1+C2/2)e.
Notice that for any C1 and C2, one can choose P so large

that the term No/P in the denominator of (1) is negligible.
We therefore obtain the following.

Corollary 2: C1, C2 ensure the SINR criterion if

(1 + C1)
α

Kn
∑

k=1

6k + 3

(1 + kC1(1 + C2/2))α
<

1

β
, (1)

where Kn = d 2nγ

C1(1+C2/2)e.
The following lemma provides a useful example of C1, C2

that ensure the SINR criterion. Among other things, it shows
that there is no need to vary C1, C2 with n.

Lemma 3: For any α > 2, β > 0 and C1 > 0, there exists
C2 > 0 such that (C1, C2) ensures the SINR criterion for all
n.

The next lemma shows that the condition of Corollary 2
cannot be satisfied when both C1 and C2 are small.

Lemma 4: When α ≥ 2, n ≥ (1/2 + α/4)1/γ , and C1(1 +
C2) ≤ 1,

(1 + C1)
α

Kn
∑

k=1

6k + 3

(1 + kC1(1 + C2/2))α

≥ 3(2 + α)

(2 + α/2)α

1

C1(1 + C2/2)
.

We now provide a converse result, which indicates that if
C1 and C2 become sufficiently small, then DC(C1, C2) does
not ensure the SINR criterion.

Lemma 5: Given No and Propagation Model B with param-
eter α > 0, and given C1, C2 and n,

inf
T, r, t satisfying DC(C1, C2)

|T | ≤ n

sup
P

SINR(t, r, T, P, No, η)

≤ (1 + n1/2C1(2 + C2))
α

4n1/2 − 12
.

This lemma gives an indication of how SINR can decrease as
C1, C2 decrease.

IV. THE PRINCIPAL RESULT

The following, which is the principal result of this paper,
shows that throughput scaling on the order of 1

n1−γ is asymp-
totically attainable.

Theorem 6: Consider the many-to-many communication
task for a set of n source-destination pairs Pn randomly
distributed over a disk of radius nγ , 0 < γ < 1/2, with a
propagation model of the form η(d) = 1/(1+d)α with α > 2,
an SINR success criterion with parameter β, and background
noise with power No. Then there exists c > 0 such that for any
n and source-destination set Pn, there exists a power Pn and a
many-to-many system Sn with throughput denoted λ(n), such
that for any packet transmission rate of W > 0 bits per slot,
as n → ∞

Pr (Sn is SINRβ-successful) → 1 (2)

and
Pr

(

λ(n) ≥ W

cn1−γ

)

→ 1 . (3)

To prove this theorem, we first prove a result like the above,
but with the SINR success criterion replaced by a distance-
based partial success criterion. The previous theorem will then
be proven by appropriate choice of the parameters of the
distance-based criterion.

Theorem 7: Consider the many-to-many communication
task for a set of n source-destination pairs Pn randomly
distributed over a disk of radius nγ , 0 < γ < 1/2, with a
distance-based partial success criterion, and packet transmis-
sion rate of W packets per slot. For each n, let C1(n) be
chosen so that

C1(n) <
1

2
nγ (4)

and

n
C1(n)

nγ
∣

∣

∣
ln C1(n)

nγ

∣

∣

∣

→ ∞, as n → ∞ . (5)
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Then for any n, any C2(n) > 0, and any source-destination
set Pn, there exists a constant c and a many-to-many system
Sn, with throughput denoted λ(n), such that as n → ∞

Pr (Sn is DC(C1(n), C2(n))-successful) → 1 (6)

and

Pr

(

λ(n) ≥ W

c n1−γ C1(n)(2 + C2(n))2

)

→ 1 . (7)

Notice that (4) and (5) are rather mild conditions. The first
places a natural upper bound on C1(n). For example, when
γ = 0, (4) requires that C1(n) ≤ 1

2 . The second prevents
C1(n) from decreasing too rapidly with n. For example, it is
satisfied if C1(n)

nγ = nε

n1/2
for ε > 0, but not if ε = 0.

Sketch of the Proof: We follow an approach similar in many
respects to that of [1]. The theorem is proven in the following
steps.

Step 1: Route selection
Given n and C1(n), let z = C1(n)/2, it can be shown that

the network region region An can be partitioned into convex
cells, each having diameter at most z and area at least µz2,
where µ > 0 is some constant that does not depend on n, γ, or
the z’s, and that the number of cells in the partition, denoted
Mn, is at most πn2γ

µz2 .
For each (s, d) in the source-destination set Pn, draw a

straightline line from s to d. Form a route for this pair by
following the line from s to d and selecting one node for the
route from each cell intersected by the line, whenever there
is such a node. Convexity of the cells insures that the line
does not pass through the same cell twice. The fact that cells
have diameter no larger than z implies that if there is at least
one node in each cell intersected by the line, then the length
of each hop is at most 2z ≤ C1(n). Ordinarily, there will be
more than one node in a given cell, a fact that can be used
to reduce the likelihood that a node is assigned to too many
routes. Indeed, if Xi source-destination lines intersect the ith
cell and this cell contains Yi nodes, we apportion the Xi routes
as equally as possible among the Yi nodes. Thus, each node
is assigned no more than

⌈

Xi

Yi

⌉

routes. If there are no nodes

in ith cell, then we take
⌈

Xi

Yi

⌉

to be infinity, even if Xi = 0.

Let L(n) denote the maximum of
⌈

Xi

Yi

⌉

over all cells.
Step 2: Potential transmitter sets
We begin by forming a graph with the nodes as the vertices

and an edge between any pair of nodes separated by C1(n)(2+
C2(n)) or less. The degree of node si is the number of edges
connected to it. Let S(n) equal the maximum degree of any
node. We now use the graph coloring theorem [10], [11] to
assign one of S(n) distinct colors to each node in such a way
that no two nodes connected by an edge receive the same color.
We then partition the n nodes into the S(n) identically colored
groups. Since every pair of nodes in one group is separated by
C1(n)(2 + C2(n)), transmissions to receivers located within
C1(n) of each will be DC(C1(n), C2(n))-successful.

Step 3: System
Step 3 combines the routes of Step 1 and the potential trans-

mitter sets of Step 2 to form compatible scheduled routes, i.e. a

system, with period pn no larger than L(n)S(n) and through-
put λ(n) = W

L(n)S(n) . This system will be DC(C1(n), C2(n))-
successful if all hops have length C1(n) or less, as was the
goal of Step 1.

Step 4: Establish two results
In this step we establish the following two results:

(1) L(n) = O
(

nγ

C1(n)

)

with high probability, and
(2) S(n) = O

(

n1−2γC2
1 (n)(2 + C2(n))2

)

with high proba-
bility.
These two results are proven using the next two lemmas.

Lemma 8: Under the conditions of Theorem 7,

Pr

(

L(n) ≤ c1
nγ

C1(n)
+ 1

)

→ 1, as n → ∞

where c1 = 214π.
Lemma 9: Under the conditions of Theorem 7,

Pr

(

S(n) ≤ 18

π
n

(

C1(n)(2 + C2(n))

nγ

)2
)

→ 1 as n → ∞ .

Step 5: Completion of proof
The system has been designed so that it will be successful

provided only that all hops have length C1(n) or less, which,
as explained earlier, happens if L(n) ≤ c1

nγ

z . Therefore, from
Step 4,

Pr (Sn is DC(C1(n), C2(n))-successful) ≥ Pr

(

L(n) ≤ c1
nγ

z

)

(8)
Where the right hand side goes to 1 as n → ∞. Since λ(n) =

W
L(n)S(n) from Step 4, we have that the following quantity
goes to 1 as n → ∞:

Pr

(

λ(n) ≥ W

c n1−γ C1(n)(2 + C2(n))2

)

. (9)

This completes the proof of Theorem 7. �

As mentioned earlier, with the above result, Theorem 6 is
proven by appropriate choice of the parameters of the distance-
based criterion.
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