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ABSTRACT
We consider the problem of monitoring soil moisture evolu-
tion using a wireless network of in-situ underground sensors.
To reduce cost and prolong lifetime, it is highly desirable to
rely on fewer measurements and estimate with higher accu-
racy the original signal (soil moisture temporal evolution).
In this paper we explore results from the compressive sens-
ing (CS) literature and examine their applicability to this
problem. Our main challenge lies in the selection of two
matrices, the measurement matrix and a representation ba-
sis. The physical constraints of our problem make it highly
non-trivial to select these matrices, so that the latter can
sufficient sparsify the underlying signal while at the same
time be sufficiently incoherent with the former, two com-
mon pre-conditions for CS techniques to work well. We con-
struct a representation basis by exploiting unique features
of soil moisture evolution. We show that this basis attains
very good tradeoff between its ability to sparsify the sig-
nal and its incoherence with measurement matrices that are
consistent with our physical constraints. Extensive numer-
ical evaluation is performed on both real, high-resolution
soil moisture data and simulated data, and through com-
parison with a closed-loop scheduling approach. Our results
demonstrate that our approach is extremely effective in re-
constructing the soil moisture process with high accuracy
and low sampling rate.

Categories and Subject Descriptors
I.6.m [SIMULATION AND MODELING]: Miscella-
neous

General Terms
Performance, Measurement
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1. INTRODUCTION
This paper studies the efficient measurement scheduling

and sensing of soil moisture. Soil moisture is a critical data
type and measurement need in many scientific applications.
For instance, it is used in all land surface models, water and
energy balance models, weather prediction models, general
circulation models, and ecosystem process simulation mod-
els [1]. It is also a key measurement need in precision farming
and agricultural drought monitoring.

Soil moisture data has traditionally been collected using
remote sensing techniques like radars and radiometers on-
board satellites. Remote sensing covers large areas, but
produces very coarse grained measurements, on the order
of square kilometers. It was not until recently, with the
advances in integrated wireless communication, sensing and
processing technology, has in-situ sensing become a feasi-
ble option [2, 3]. In-situ moisture sensors can be densely
deployed over a region of interest, at a resolution of one
in every few square-feet, and thus can produce much finer
grained measurements. To collect desired data at a single
location, soil moisture sensor probes are typically placed ver-
tically under the ground at different depths, up to 2 meters
deep, with wires connecting them to a ground actuation and
wireless transceiver module, see e.g., the SoilScape project
[4]1. This wireless node actuates the moisture probes to take
measurements and transfers the collected data wirelessly to
a remote central location or base station for processing; an
example of such a network is described in more detail in [4].

To gather sufficient information on the temporal and spa-
tial variations and characteristics of soil moisture, it is highly
desirable to deploy moisture probes (and the associated wire-
less nodes) at sufficiently high density, and to take measure-
ments at sufficiently high frequency. A competing objective
is to have the network function in a unmanned fashion for as
long as possible, since such networks are typically deployed
in an open (sometimes remote) field without immediate ac-
cess to power or human intervention. This requires us to

1Similar and alternative instrumentations have been used
in other studies such as the Suelo project [3], which targets
the monitoring of soil which includes but is not specifically
designed for moisture data collection.



reduce the working times of the wireless nodes to conserve
energy, even when renewable sources are used.

For a single wireless node, these competing interests im-
ply that we need to make judicious decisions in measure-
ment scheduling, i.e., when is the best time to take a mea-
surement, so as to minimize the total amount of time the
node needs to be active in actuating the moisture probes
and in data transmission, while still satisfying the moni-
toring objective, i.e., achieving a desired level of accuracy in
the estimated soil moisture evolution using the measurement
data collected. In this paper we examine how compressive
sensing and sparse sampling theory may be used to achieve
these goals. Note that such measurement scheduling in gen-
eral runs parallel to other energy efficient methods one may
wish to adopt, including MAC and routing. It can also be
jointly designed with a node’s sleep schedules.

This problem belongs to the larger class of sensor schedul-
ing problems. There are two general approaches. The first
is a closed-loop approach that makes a measurement deci-
sion using past observations and decisions. This typically
requires the knowledge of prior statistics of the underlying
random process to be monitored, gained either through as-
sumption or training, and is also sometimes referred to as
the Bayesian approach; examples include [5, 6, 7, 8, 9, 10,
11, 12, 13, 14], with [10] focusing specifically on monitoring
soil moisture.

The second is an open-loop approach whereby measure-
ment decisions are made independent of past observations
and decisions. Compressive sensing based measurement falls
under this category. Recent advances in compressive sensing
(CS) theory [15, 16, 17] allow one to represent compress-
ible/sparse signals with significantly fewer samples than re-
quired by the Nyquist sampling theorem. It is therefore
particularly attractive in a resource constrained setting like
ours. This technique has been used in data compression
[18], channel coding [19], analog signal sensing [20], routing
[21] and data collection [22], with varying degrees of success.
Applied to our context, the idea would be to sample the soil
moisture in time in some fashion (typically randomly) and
use compressive sensing techniques to reconstruct or recover
the entire process.

There are two major challenges in applying CS techniques
to our problem context. (1) It is not immediately clear how
to find a good representation basis (Ψ) under which the soil
moisture process may be sparsely represented. There is no
systematic way of selecting such a matrix; it is usually done
through trials and experience. (2) Under the CS framework
the measurement scheduling is specified by a measurement
matrix (Φ) (see e.g., the commonly used Gaussian matrix),
which is often required to be dense, i.e., each measurement
corresponds to a linear combination of multiple samples [18,
21, 22]. However, in our problem the physical nature of
the monitoring device is such that each measurement corre-
sponds to one and only one sample of the underlying physi-
cal process. This makes our measurement matrix extremely
sparse, a feature that often does not bode well for its suc-
cess, see e.g., [21]. An additional consequence of a sparse
measurement matrix Φ is that it becomes hard to make it
sufficiently incoherent from Ψ, a typical condition required
for the success of CS techniques. We show in subsequent
sections how these challenges can be addressed.

Our main results and contributions are summarized as fol-
lows. (1) We identify a representation basis Ψ, under which

the soil moisture process can be nearly sparsely represented.
(2) This matrix is shown to work extremely well with a
number of measurement matrices that are consistent with
our application context, including those induced by random
and uniform scheduling methods. (3) We further compare
this approach to two non-CS based methods, a closed-loop
approach and an interpolation based approach, to demon-
strate its performance. In particular, the comparison with
the closed-loop approach sheds light on the inherent limit
of the latter. All our methods are tested using two sets of
data: a real soil moisture data set collected from a botani-
cal garden, and a simulated data set calibrated using data
collected from a farm.

Even though our evaluation is based on two specific soil
moisture data sets, the methodology presented in this paper
is more generally applicable. Firstly, this method works well
on soil moisture data from other soil types beyond the two
data sets used in the study. This is because our method
exploits the dynamics driven by rainfall events, which is
common across all soil types. Secondly, the combination of
representation basis we proposed and the recovery algorithm
used can potentially work well with other signal types that
are relatively smooth in nature as we note later in Section
4.2. This however must be borne out by further experiments
which is out of the scope of the current paper but may be
pursued in future studies. Finally, we believe the general
methodology followed in this paper, i.e., the selection of a
sampling method, a representation basis and a recovery al-
gorithm, as well as verifying the sparsity and incoherence,
is applicable to a broad range of similar studies that may
wish to employ compressive sensing techniques. While the
specific selections of these elements may vary from applica-
tion to application, and is typically done through experience
and trial-and-error, this study nevertheless represents as sys-
tematic as possible a scientific method that may be used by
other studies.

The remainder of this paper is organized as follows. In
Section 2 we describe the problem as well as the data sets
we use for our study. Section 3 gives brief background infor-
mation on related CS literature. In Section 4 we discuss the
design of the two matrices in order to apply CS technique
to our measurement scheduling problem. Numerical results
are presented in Section 5, with comparison to two non-CS
(closed-loop and interpolation) approaches discussed in Sec-
tion 6. Section 7 concludes the paper.

2. THE SCHEDULING PROBLEM AND
SOIL MOISTURE DATA

We will focus on the monitoring of soil moisture evolu-
tion at a single location, as the discussion and methodology
equally applies to monitoring multiple locations. As men-
tioned in the introduction, typically multiple soil moisture
probes are placed vertically, up to 2 meters deep under-
ground, at a single lateral location [4]. While these probes
can be activated separately, from an energy management
point of view it is far more efficient to activate them all
at the same time (i.e., to have them follow the same mea-
surement schedule). This is because the processor (on the
ground wireless node) needs to be on (in wake mode) in or-
der to activate any probe, and once it is on it takes very
little extra energy to activate an additional probe. For this



reason we will treat a single location as having a single mea-
surement schedule.

We will also assume that the underlying moisture process
is discrete in time. This is obviously not true, but a suf-
ficiently good representation of reality if the time unit is
small enough with respect to the time scale of change in the
soil moisture, which as we shall see is not very fast. More
importantly, it should be noted that since the measurement
device operates in discrete time no matter how high the fre-
quency is, the best “ground truth” data is also inevitably
discrete in time as a result. Therefore to adopt a discrete
time model allows us to precisely quantify the performance
of our method using the best ground truth we have available.

Denote by x = {xt, t = 0, 1, 2, · · · , N} an actual realiza-
tion of the soil moisture process. A measurement policy π is
given by a sequence of sampling times: T π = {t1, t2, · · · , tn} ∈
{1, 2, · · · , N}. Assuming perfect measurements (no error or
noise), this policy induces the following sampled sequence
xπ = {xt1 , xt2 , · · · , xtn}. An estimation policy λ then takes
this sampled sequence and produces estimates of the orig-
inal sequence x̂λ = {x̂t, t = 1, 2, · · · , N}, where x̂t = xt if
t ∈ T π, and x̂t = x̂λ

t (x
π) otherwise, for some estimation

function x̂λ
t ().

The objective is to select the best measurement and esti-
mation policies so as to minimize the estimation error sub-
ject to a requirement on the average sampling rate being no
more than a certain desired level:

min
π,λ

Err
(

x, x̂λ(xπ)
)

s.t. n/N ≤ α ,

where Err() is certain error measure, e.g., the mean-squared
error, and α is the requirement on sampling or measurement
rate.

We next discuss the moisture process x we use in our
study. As mentioned, we will use two data sets. The first
one, also referred to as the garden data, was collected at the
Matthaei Botanical Garden at the University of Michigan,
Ann Arbor ((latitude, longitude) approximately (42.300437,
-83.663442)), over a 2-month period between August and
October 2009. Three moisture probes were buried at depths
25mm, 67mm and 123mm, from the surface, respectively,
and took measurements at the rate of once every 10 minutes.
This is shown in Figure 1 in a progression of three figures,
each with increasing resolution to show both a global as well
as a zoomed-in view of the variation in the process.

A second data set, also referred to as the farm data, is a
simulated one in an environment consistent with the climate
and topography of Canton, Oklahoma ((latitude, longitude)
approximately (36.00063,-98.63319)), over a 6-month period,
between August 2010 and March 2011, at the sampling rate
of one measurement per hour. This data is generated by a
land surface hydrology simulation MOBIDIC [23], and has
been calibrated using location- and time-specific variable ex-
ogenous forcings (e.g., rainfall, temperature, cloud cover,
and solar radiation) and landscape parameters (e.g., vege-
tation cover, soil type, and topography), as well as actual
data collected at this location. The farm data contains one
depth per location; traces of 3 locations are shown in Figure
2, in a similar progression with increasing resolution.

The reason for using two different sets of data is to pro-
vide some diversity in the type of soil moisture processes
we use for evaluation. We see that the soil moisture peaks

shortly after a rainfall event, with the corresponding mois-
ture level primarily determined by the precipitation. The
moisture then slowly dissipates and evaporates, following a
roughly monotonic non-increasing pattern. Over a period of
dry weather, the soil moisture level stays relatively constant,
resulting in a piece-wise smooth curve between two succes-
sive rainfall events. Except for the up-shoot at the onset of a
rainfall, the moisture variation exhibits fairly high temporal
correlation.

3. COMPRESSIVE SENSING
In this section we briefly summarize the part of the com-

pressive sensing (CS) literature most relevant to the study
presented in this paper.

Consider a discrete signal given by the vector x of size N .
Results in compressive sensing [24] have shown that if x is
sparse, i.e., if ||x||o ≪ N , then it is possible to reconstruct
it from M random samples produced by a suitably chosen
linear transform Φ of x: yM×1 = Φx, where M < N . The
M ×N matrix Φ is usually referred to as the measurement
matrix. In other words, we can recover signal x from y if
x is sufficiently sparse, subject to some pre-conditions on
Φ (more discussed below). In practice, x is usually non-
sparse. However, it can often be sparsely represented in
an alternative domain. Specifically, x may be further writ-
ten as x = Ψs, for some N × N matrix Ψ, where s is the
N × 1 coefficient vector in the Ψ-domain with ||s||o = K,
where K ≪ N . The matrix Ψ will also be referred to as the
representation basis. The measurement vector can thus be
written as

y = ΦΨs , (1)

and the associated signal recovery problem is to determine
s for given measurement y and known matrices Φ and Ψ.
The reconstruction of the original signal is given by x =
Ψs. Clearly, Equation (1) is an under-determined linear
system, as the number of equations M is much smaller than
the number of variables N (i.e., number of entries of s).
Finding the solution to this ill-conditioned system has been
the subject of extensive study in recent years.

There are in general the following classes of approaches.
The first class seeks s with the smallest lo norm:

min
s∈RN

‖ s ‖o s.t. y = ΦΨs. (2)

Directly solving the above is intractable [25, 26], but fast
approach exists by using smoothed lo norm, see e.g. the
SL0 method proposed in [27]. A second class of approaches
bypasses the original lo minimization problem and instead
seeks to solve the l1 norm minimization problem to reduce
complexity, also known as Basis Pursuit (BP), see e.g., [28,
29]:

min
s∈RN

‖ s ‖1 s.t. y = ΦΨs, (3)

which can be easily solved using linear programming (LP)
methods. The justification for solving (3) is that for large
systems of equations, the solution to either minimization is
the same [28]. Algorithms exist to solve the above problem
in polynomial time, including interior-point methods; there
are also faster algorithms aimed at large-scale systems, see
e.g., [30, 31, 32, 27]. In addition to LP, the algorithms we
will examine include Iterative Re-weighted Least Squares
(IRWLS) [30], and Matching Pursuit (MP), see e.g. OMP
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(b) Variation before/after a rainfall.
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(c) Close-up view of a rainfall event.

Figure 1: Real soil moisture evolution collected from a botanical garden.
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(c) Close-up view of a rainfall event.

Figure 2: Simulated soil moisture evolution on a farm in Oklahoma.

[31] and ROMP [32]. They are considered faster than LP
but with worse estimation quality, especially if the signal is
not sufficiently sparse.

Using any of the above mentioned recovery algorithm, a
K-sparse signal can be reconstructed fromM measurements
with higher probability if M is such that:

M ≥ Cµ2(Φ,Ψ)K logN, (4)

where C is a positive constant, N is the dimension of the
signal, and µ(Φ,Ψ) is the coherence between the two ma-
trices Φ and Ψ. Given a pair (Φ,Ψ) of orthobases of RN ,
µ(Φ,Ψ) can be defined as

µ(Φ,Ψ) =
√
N max

1≤i,j≤N
| < φi, ψj > | ∈ [1,

√
N ]

where φi and ψj are row and column vectors of Φ and Ψ, re-
spectively. Thus given Φ and x, Ψ must be chosen carefully:
it is desirable to represent x in Ψ domain sparsely (small
K); at the same time, it is also desirable to have µ(Φ,Ψ) as
small as possible. The selection of Ψ to meet both criteria is
in general non-trivial, especially when Φ is constrained, as
we discuss next.

4. DESIGN OF MEASUREMENT AND
REPRESENTATION BASIS

In this section we discuss the selection of a measurement
matrix Φ and a representation basis Ψ. The measurement

matrix Φ directly corresponds to a measurement scheduling
policy, whereas the representation basis Ψ is used in a re-
construction algorithm so we can first determine s and then
recover the original signal x.

4.1 Measurement Scheduling Matrix Φ

Recall that the original soil moisture signal in time is de-
noted by the N × 1 vector x. The M × N measurement
matrix Φ specifies a measurement scheduling policy: it con-
tains a “1” in the (m,n) position (1 ≤ m ≤ M , 1 ≤ n ≤ N)
if the m-th measurement is taken at time n. The physical
nature of the instrument is such that only a single measure-
ment is taken at any scheduled time, i.e., upon actuation,
the soil moisture probe takes one measurement of the soil
moisture process at the time of actuation; the same point
in the process cannot be measured more than once due to
causality. This implies, regardless of the schedule, Φ con-
tains one and only one “1” element in any row, and at most
one “1” in any column, and “0” everywhere else.

As M < N , there will be exactly N −M empty (all-0)
columns, making the Φ matrix extremely sparse. This is
very different from what is commonly studied in the litera-
ture, e.g., the Gaussian measurement matrix which is very
dense with virtually no 0-entries. This poses a significant
challenge, since in general the measurement matrix is re-
quired to be dense with at least one non-zero entry in each
column [24, 15]. This same challenge also arose in a rout-
ing problem studied in [21], where the authors reported less



than satisfying results due to the difficulty in finding the
right Ψ matrix to match the highly constrained Φ matrix.

With the above constraint in mind, we will consider two
types of schedules. The first has periodic sampling times,
where measurements are taken at intervals of ⌊ N

M
⌋ discrete

units of time; this will also be referred to as the uniform
schedule (US), and the corresponding matrix denoted as ΦU .
The second follows random sampling times generated using
certain probability distribution with an average sampling
rate of M/N ; this will be referred to as the random schedule
(RS), and the corresponding matrix denoted as ΦR. Note
that since N is not always an integer multiple of M , in
such cases under the uniform schedule the first measurement
point is randomly selected within a small range [1, ⌊ N

M
⌋],

with subsequence measurements taken every ⌊ N
M
⌋ time units

till we exhaust N .
The reason we consider these two relatively simple sched-

ules is due to their ease in implementation. We do compare
their performance with more complex schedules (see below
and the closed-loop scheduling in Section 6). As we shall
see the estimation accuracy of our method turns out to be
highly robust against the measurement schedule.

For comparison purposes, we will also consider the com-
monly studied Gaussian scheduling (GS) matrix ΦG men-
tioned above. It should be emphasized that this matrix is
not practical in our scenario: since each row in this matrix
has typically many non-zero entries, it requires each mea-
surement be a linear combination of multiple samples from
the soil moisture process. More importantly, as there are
virtually no empty columns, this matrix essentially requires
the collection of nearly all samples of the original signal.
This obviously defeats our basic objective of minimizing the
amount of measurements taken.

4.2 Representation Basis Ψ

As mentioned, there are two main criteria in selecting a
good representation basis Ψ: (1) its corresponding inverse
has to sufficiently sparsify the signal x, and (2) it has to
be sufficiently incoherent with the measurement matrix Φ.
This is highly non-trivial due to the sparse nature of our Φ
matrix. In general the basis Ψ can be generated without
assuming a priori knowledge of the signal, other than its
size (which determines the size of the matrix). However, to
generate a basis that meets the above two criteria without
exploiting any feature of the signal can take a large amount
of trial-and-error. Thus typically certain known features of
the signal are taken into account in searching for a suitable
basis to speed up this design process.

To this end, we observe that the soil moisture process
(seen earlier in Figures. 1 and 2) is relatively smooth and
slow changing, except at the onset of a rainfall. This sug-
gests that the signal might be sparsely represented if we
consider the difference between two adjacent sample values.
This motivates the following difference matrix MD:

MD =



















−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
... · · · · · · · · ·

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −γ



















(5)

Table 1: Comparison of approximate sparsity.

N
Sparsity

Garden data Farm data
ΨD ΨH ΨD ΨH

64 24.9 1.0 15.4 1.1
128 28.4 1.1 21.0 1.1
256 23.1 1.3 19.8 1.3
512 12.4 1.6 17.2 1.3
1024 7.5 1.8 10.0 1.3
2048 7.0 2.5 10.0 2.0

where the last element γ, 0 < γ < 1, ensures that MD is
invertible.

Ideally, one would like the projection of x on MD, s =
MDx, to be a vector containing many zero/near-zero en-
tries. If this is the case, then the original signal x can be
sparsely represented in the MD-domain as x = M−1

D s. In
the numerical experiments presented in the next section we
will use M−1

D as a choice for the representation basis and
denote ΨD =M−1

D
2.

The temporal correlation and piece-wise smooth feature of
the soil moisture process also suggests that it may be more
compactly represented through a Haar (wavelet) transfor-
mation MH . We will thus use ΨH = M−1

H as a second
choice for the representation basis Ψ in our experiment.

We now check the quality of these two matrix choices
against the two criteria outlined earlier. It turns out that
neither ΨD nor ΨH can produce a precisely K-sparse signal
for K ≪ N (the amount of non-zero elements are above 50%
in both cases). However, the resulting s are approximately
K-sparse if we neglect small elements. Table 1 shows the ap-
proximate sparsity of ΨD and ΨH under different scale N ,
the signal size. Here the entire data set is segmented into
signals of size N , and the transformation is applied over each
signal. The overall sparsity is calculated as the sum of all
entries of the normalized s with values of at least 0.1, and
averaged over all signals. We see that as expected the Haar
transform is much more effective than the difference matrix
at sparsifying the signal.

We next examine the incoherence between these two rep-
resentation bases and our measurement matrices. As the
notion of coherence is not defined for non-orthogonal ma-
trices, in the following we will use its dual-incoherence to
indirectly measure the correlation between the proposed ΦU

(ΦR) and ΨD (ΨH). The incoherence of two matrices are
measured as follows [21]. Projecting each row of Φ onto the
space spanned by the columns of Ψ we get:

ζj = (ΨTΨ)−1ΨTφT
j , (6)

where φj is the jth row of Φ and ζj is the vector of coeffi-
cients corresponding to its projection on the space spanned
by the columns of Ψ. A measure of the incoherence is then
defined as

I(Φ,Ψ) = min
j=1,··· ,N

[

N
∑

i=1

1{ρji 6= 0}
]

∈ [1, N ], (7)

where ρji is the ith entry of vector ζj and 1{A} is the indi-
cator function: it is 1 when A is true and 0 otherwise. The

2A similar operation aiming to sparsify a spatial 2D signal
was used in [21], but as mentioned in the introduction it did
not lead to very good performance.



Table 2: Comparison of incoherence.

N
I(ΦR, ·)

ΨD ΨH

64 63 11
128 125 34
256 255 66
512 512 130
1024 1024 258
2048 2048 514

larger this quantity, the more incoherent the two matrices.
In Table 2, we show the incoherence obtained from Equa-
tion (7), for the random measurement matrix ΦR with the
two choices of Ψ at different scales. We see ΨD has much
higher incoherence with our measurement matrix than ΨH

does. Thus we have two representation bases, one (ΨH) bet-
ter at sparsifying the signal while the other (ΨD) much more
incoherent with the measurement matrix. In the next sec-
tion we examine which choice leads to better reconstruction
performance.

5. NUMERICAL EXPERIMENTS
In this section we evaluate the effectiveness of using com-

pressive sensing techniques to solve the soil moisture mea-
surement problem using the matrices introduced in the pre-
vious section, through extensive numerical experiments. In
the remainder of this section, the garden data refers to the
surface level (top level) soil moisture process shown in Fig-
ure 1, and the farm data refers to the soil moisture process
of Node 3 as shown in Figure 2. Unless otherwise specified,
we trim the real and simulated data to 4096 observations (or
discrete times steps) in total, for the convenience of the ex-
periment. To perform the experiments, we divide each data
set into W windows (or signal) of N points each. Our sam-
pling and recovery algorithms are applied to each window
separately and similarly. The N × 1 discrete signal within
the w-th window (1 ≤ w ≤ W ) is denoted as xw. Within
each window, M < N measurements are taken. The goal is
to reconstruct xw from the M direct observations.

Breaking the data set into windows of N allows us to
balance the computational complexity/delay and estimation
accuracy. If the measurement and reconstruction is done
in a close-to-real time fashion, then it is desirable to per-
form these operations over a smaller N . On the other hand,
larger N generally results in better estimates, though at the
expense of increased computational complexity.

The quality of the reconstruction is measured by the fol-
lowing average error criterion:

AvgError =
1

NW

W
∑

w=1

||xw − x̂w||1 , (8)

where W is the number of windows (W = 4096/N); xw and
x̂w are the true and estimated signal of window w; ||xw −
x̂w||1 is the sum of absolute errors in the estimate. This
error is further averaged over 20 random trials when the
measurement schedule is generated randomly. The scale-
down rate (γ) used in the difference matrixMD is 0.001. The
sampling times under a random schedule (RS) is generated
using a uniform probability distribution.

The overall quality of signal reconstruction is determined
by three elements: the choice of measurement scheduling

matrix Φ, the choice of the representation basis Ψ, and the
choice of a recovery algorithm (also referred to as a solver
below). In the following, we will first examine what types
of solvers work best with our choices of Φ (ΦU and ΦR) and
and Ψ (ΨD and ΨH). We then compare the performance of
different combinations of these matrices.

5.1 Effect of recovery algorithms
We first investigate what CS recovery algorithms or solvers

work best with our selection of Φ and Ψ. A candidate list of
these algorithms is discussed in Section 3, and they include
SL0, IRWLS, OMP and BP (using LP). Of these, SL0 aims
to minimize the lo norm, while the others aim at minimizing
the l1 norm. The Matlab code of IRWLS, OMP, and LP is
obtained from Sparse Lab [33] and SL0 from [34].

A set of experiments are run by increasing the window
size N . For each window, the number of measurement M is
set to 10% of N. As the Haar basis requires N to be a power
of two, we set N = 2p, p = 6, 7, 8, 9, 10, 11. For each value of
N we evaluate the average estimation error in applying one
of the above algorithms to the two data sets while using ΦR

as the measurement matrix, and ΨD and ΨH respectively
as the representation basis. The results are shown in Figure
3. Our main observations are as follows.

Firstly, compared to Haar, the difference matrix ΨD shows
significant advantage regardless of the data used and the
solver used: the AvgError of ΨH is at least 10 orders of
magnitude higher than ΨD. As discussed earlier, ΨH sparsi-
fies the data better than ΨD, while the later has much higher
incoherence with the measurement matrix ΦR. This obser-
vation thus suggests that in this case incoherence is more
critical in determining the effectiveness of these solvers.

Secondly, we see that there are substantial performance
gaps among different recovery algorithms. When ΨD is used,
we see from Figure 3(a) and 3(c) that SL0 and LP perform
the best (these two curves almost completely overlap) and
they significantly outperform IRWLS and OMP. When ΨH

is used, Figure 3(b) and 3(d) (the two curves of OMP and IR-
WLS almost completely overlap as well) again show that LP
performs the best and significantly so. Furthermore, since
the soil moisture content is measured between 10 and 35 (in
%), an estimation procedure effectively fails if its AvgError
exceeds 10. In this sense except for LP, all other solvers
do not work successfully with ΨH . These observations
suggest that the estimation quality of LP and SL0 is much
more robust to the level of sparsity than the faster solvers
(OMP, IRWLS) when there is sufficient incoherence (in the
case of ΨD. At the same time, LP is also robust to weak
incoherence when there is sufficient sparsity (in the case of
ΨH).

Based on these results, for the rest of our numerical eval-
uation we will limit our attention to SL0 and LP. As LP is
more computationally costly than SL0, we will only use SL0
when ΨD is used, and LP when ΨH is used.

5.2 Effect of measurement matrices
We next study the impact of scheduling methods on the

reconstruction quality. The three measurement matrices we
examine are random (ΦR), uniform (ΦU ) and Gaussian (ΦG)
introduced in Section 4.1. Note again that the Gaussian
matrix is used as a point of comparison; it is not a practical
scheduling policy for our problem.

Figure 4 illustrates the reconstruction quality under these
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Figure 3: Comparison of reconstruction perfor-
mance: (a)(b) Garden data; (c)(d) Farm data

three scheduling methods, with respect to the true soil mois-
ture values (denoted as TV in the figure). In this set of re-
sults, the representation basis and solver used are ΨD and
SL0, respectively, the window size is N = 128, and the
sampling rate is M = 10%N . To observe the finer differ-
ences among these methods, Figure 4 also provides zoomed-
in views around two peaks in the original data. Overall, all
three scheduling methods perform very closely, and all of
them reconstruct the original signal to very high accuracy.

To be more precise in quantitative comparison, Table 3
further shows the corresponding AvgError calculated over
different time segments in the data. Here, a range of “Total”
includes the entire period (i.e, from 1 to 4096), while the
ranges “Peak1” and “Peak2” refer to the two peaks amplified
in Figure 4 within each data set. Peak 1 is given by the
time intervals [400, 500] and [600, 750] for the garden and
farm data, respectively. Peak 2 is given by the time intervals
[3300, 3400] and [2200, 2400] for the garden and farm data,
respectively. As a comparison point, we also present the
same set of results when the Haar basis matrix ΨH and
the LP solver are used in same table. We repeat the same
calculation at different sampling rates, from 10% to 30%,
and present these results in Figure 5.

When the same (Ψ, solver) pair is used, the main factor
affecting the final reconstruction performance is the inco-
herence between Ψ and the measurement matrix Φ. The
incoherence between (ΦR, ΦU , ΦG) and ΨD is 125, 127, and
128, respectively, at N = 128. Thus it is not surprising
that we see very close performance as evidenced in Figure 4.
In particular, we see that the uniform (periodic) scheduling
provides the best overall performance.

It is however interesting to see, from Table 3, that both
uniform and random scheduling outperform Gaussian schedul-
ing, especially under the pair (ΨD, SL0). This is somewhat
surprising, because the Gaussian measurement matrix has
the highest incoherence with ΨD though by a small amount.
This is possibly due to the fact that while in theory ΨG

Table 3: Comparison of scheduling methods.

(Ψ, solver) Data Range ΦR ΦU ΦG

(ΨD , SL0)

Garden
Total 0.0827 0.0623 0.1040
Peak1 0.8738 0.7682 1.5367
Peak2 0.2340 0.3795 0.3732

Farm
Total 0.0909 0.0688 0.1280
Peak1 0.4712 0.2552 0.3628
Peak2 0.2156 0.3148 0.4973

(ΨH , LP)

Garden
Total 0.8553 0.7537 0.6473
Peak1 12.9222 0.1744 7.1455
Peak2 4.2919 4.1016 2.0057

Farm
Total 0.9797 0.9537 1.3647
Peak1 2.7720 0.5587 1.8389
Peak2 4.0324 4.5034 13.3529

should perform the best, such results often rely on the sig-
nal being precisely sparse, but in our case the signal x is
only approximately sparsified.

5.3 Comparison with interpolation
So far all solvers we tested are taken from the literature

on compressive sensing. It is also natural to consider simple
interpolation as an alternative to reconstructing the original
signal using a small set of samples. In the following we
provide an additional comparison point and examine the
performance of using spline interpolation (referred to as SP
in Figure 6).

In general, spline interpolation is preferred over polyno-
mial interpolation because the interpolation error can be
made small even when using low degree polynomials for the
spline. Figure 6 illustrates the difference between CS and
SP while using the uniform sampling matrix ΦU . For CS
we use ΨD as the representation basis and SL0 the solver.
Clearly, CS performs better than SP, and especially so when
the measurement cost (M) and estimation window (N) are
low; low values of M and N are preferred as they lead to
low computational complexity and estimate delay. However,
note that the SP performance is far better than if we had
used ΨH as the representation basis. This highlights the
importance of selecting the right matrix, for otherwise one
might do better by simply using standard interpolation.
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Figure 6: Performance comparison of CS and Spline
recovery using ΦU .

6. CLOSED-LOOP MEASUREMENT
SCHEDULING
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Figure 4: Performance comparison of different scheduling methods, using ΨD and SL0.
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Figure 5: Performance comparison of different sampling rate.

As pointed out in the introduction, the type of schedul-
ing policies studied so far (uniform, random, Gaussian) are
all open loop ones, i.e., the scheduling decision is indepen-
dent of the past and current state of the soil moisture pro-
cess, independent of past scheduling decisions, and does not
exploit any physics in the soil moisture dynamics. If one
possesses statistical information on the underlying random
process, then a conceptually more desirable approach is a
closed-loop one, where the physics of the process, as well as
the past observations and decisions are taken into account
when making the next measurement decision. Note how-

ever that unlike the compressive sensing based open-loop
approach developed in the preceding section, this closed-
loop approach in general requires training in order to learn
the statistics from past data. In this section we describe
such an approach which formulates a partially observable
Markov decision problem (POMDP); more details on this
method can be found in [10]. We then compare its perfor-
mance with compressive sensing based open-loop approach.
We further examine whether there is performance gain in
combining these two approaches.

Under a closed-loop framework, the soil moisture evolu-



tion (again at a single location) is modeled as a discrete-time
stochastic process {Xt}t=0,1,2,···. A decision Ut, t = 1, 2, · · · ,
is made at time t: Ut = 1 denotes taking a measurement at
time t and Ut = 0 otherwise. If a measurement is taken, then
a perfect observation Yt = Xt is made at time t, otherwise;
a “blank” observation results.

An estimated process X̂t of the soil moisture is formed,
with each new observation, using all past observations (some
of which are blanks) and all past scheduling decisions:

X̂t = ht

(

Y0, Y1, · · · , Yt;U1, U2, · · · , Ut

)

. (9)

Similarly, the scheduling decision for time t+ 1 is based on
all prior observations and scheduling decisions:

Ut+1 = gt
(

Y0, Y1, · · · , Yt;U1, U2, · · · , Ut

)

∈ {0, 1}. (10)

The sequences h :=
(

h1, h2, · · ·
)

and g :=
(

g1, g2, · · ·
)

are
the estimation and scheduling policies, respectively. The op-
timal policy pair (g∗,h∗) may be derived by adopting a cer-
tain cost (or reward) objective; below is an example of an
infinite horizon expected discounted cost:

(g∗,h∗) = arg min
(g,h)

E
g,h

{ ∞
∑

t=1

αt−1 ·
[

c(Ut) + ρ
(

Xt, X̂t

)

]}

(11)
where α ∈ {0, 1} is the discount factor, c(Ut) is the measure-

ment cost, and ρ
(

Xt, X̂t

)

is a penalty on estimation error,
e.g., the mean squared error. The expectation is over known
statistics of the process Xt.

Compared to an open-loop approach, the above closed-
loop framework is conceptually precise (it has an explicit
and well-defined optimization criterion), and it allows one
to adjust the tradeoff between the measurement cost and
the estimation error (by for instance introducing weights for
the two cost terms). The main disadvantage of such an
approach lies in (1) it requires a priori statistical knowledge
of {Xt}, which may only be available through training and is
often an approximation, and (2) it may be computationally
intractable due to the large state space.

In the experiments below, we will assume {Xt} to be first-
order Markov, with which the above problem becomes a
POMDP. This allows us to limit our attention to the class
of Markov policies. We will further assume that Xt can only
take on a finite number of values (i.e., soil moisture is quan-
tized), to limit the state space. Specifically, the quantization
levels used are given by Q = [8, 9.5, 11, 12.5, 13.25, 14, 14.75,
15.5, 16, 17.5] (all in %).

With these assumptions, the soil moisture data is first
quantized, and then the first T quantized values are used as
a training set to generate a state transition matrix P that
describes the evolution of the discrete-time discrete-valued
process {Xt}. The POMDP problem defined in Eqn (11)
is solved using Cassandra’s pomdp-solve package [35]. The
cost function c(Ut) is set to 0.05, 0.10, 0.50 and 1.00 for Ut =
1 and 0 otherwise in different experiments. This is intended
to control the sampling cost. The penalty ρ() is set to be the
sum of absolute error. The discount factor (α) is set to 0.99.
An interested reader is referred to [10] for more on parameter
options. The amount of data in the training set (T) is set
to 1000 and 3000, respectively. These are referred to as T1
and T2 in Figure 7, respectively. The solution to (11), in
the form of a policy pair is then applied to the segment of
garden data [3001, 5888], with the resulting estimation error
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Figure 7: Performance under different sampling
rates.

Table 4: Open-loop vs. closed-loop.

Method T Sampling rate (%) AvgError
(ΦU ,ΨD, SL0) 0 51 0.018

c(1) = 0.05
1000 51 0.481
3000 51 0.418

(ΦU ,ΨD, SL0) 0 41 0.018

c(1) = 0.10
1000 47 0.523
3000 38 0.460

(ΦU ,ΨD, SL0) 0 19 0.040

c(1) = 0.50
1000 22 0.652
3000 17 0.594

(ΦU ,ΨD, SL0) 0 13 0.049

c(1) = 1.00
1000 16 0.691
3000 11 0.646

reported in Figure 7 and Table 4. For comparison, we also
present results on the same data set (garden data, [3001,
5888]) by using uniform scheduling ΦU , representation basis
ΨD and solver SL0, with a window size of N = 128.

We see that compressive sensing based reconstruction per-
forms significantly better than the closed-loop approach, un-
der a range of cost levels and sampling rates (the rates can-
not be perfectly controlled in the experiments, and are or-
ganized into groups of similar values). Furthermore, the
open-loop approach improves much faster as the sampling
rate increases. The reason for the performance difference, as
well as the slow improvement of the closed-loop approach,
lies in the fact that in order to be computationally tractable,
we had to quantize the soil moisture in solving (11). As a
result the output of the estimation/reconstruction is also
quantized, which contributed to a significant part of the er-
ror; this phenomenon is also visible in Figure 7. We also
examine the effect of combining closed-loop scheduling (the
output scheduling policy g∗ from (11)), and the reconstruc-
tion based on ΨD and SL0, i.e., to replace the measurement
given by Φ with g∗. The comparison results over the same
data segment are shown in Table 5.



Table 5: Closed-loop scheduling, open-loop estimate

Method T Sampling rate (%) c(1) AvgError
(ΦU ,ΨD , SL0) 0 11 1.0 0.0763
(g∗

,ΨD, SL0) 3000 11 1.0 0.0750
(ΦU ,ΨD , SL0) 0 17 0.5 0.0533
(g∗

,ΨD, SL0) 3000 17 0.5 0.0607
(ΦU ,ΨD , SL0) 0 37 0.1 0.0241
(g∗

,ΨD, SL0) 3000 37 0.1 0.0285
(ΦU ,ΨD , SL0) 0 51 1.0 0.0191
(g∗

,ΨD, SL0) 3000 51 1.0 0.0195

We conclude that using closed-loop scheduling adds very
little, if any at all, to the reconstruction accuracy. This
shows that the compressive sensing method developed in the
previous sections performs very well indeed, with relatively
little room to improve. It also suggests that the combination
of ΨD and SL0 is extremely robust to the type of measure-
ment schedules used.

7. CONCLUSION AND FUTURE WORK
In this paper, we considered the problem of monitoring soil

moisture evolution using a wireless network of in-situ sen-
sors. We showed that at the cost of small estimation error
we can significantly reduce energy consumption by taking
a sparser set of measurements. We discussed how to apply
compressive sensing techniques to achieve this. With very
strict constraints imposed on the measurement matrix, we
investigated what types of representation basis can success-
fully sparsify the soil moisture signal while being sufficiently
incoherent with the measurement matrix. We showed that a
difference matrix attains a good tradeoff for these objectives.
The effectiveness of this combination is validated through
extensive numerical experiments over real soil moisture data
as well as simulated soil moisture data, and through compar-
ison with the often-used Gaussian measurement matrix and
a closed-loop approach. We showed that with these choices
we can achieve very low estimation error at no more than
10% of the standard sampling rate.

To give a more concrete sense of how much this level of
reduction in sampling rate can ultimately contribute to the
overall energy saving in the operation of an entire monitor-
ing system, we quote below some quantities based on a soil
moisture monitoring system Ripple-2 developed at the Uni-
versity of Michigan. The design and development of this
system have been partially documented in [4]. We estimate
that the lifetime of a wireless node under our system imple-
mentation would be significantly increased, from around 6
months to nearly 5 years by sampling at an average of 100-
min intervals compared to 10-min intervals. This is because
the amount of transmitted data is reduced by 10-fold, and
nodes can be in sleep mode for much longer periods of time.
It however should be cautioned that such quantitative es-
timates are clearly heavily dependent on other elements of
the system design. For instance, in our implementation the
uniform sampling method is particularly appealing because
the periodic scheduling is extremely easy to implement and
amenable to simple sleep scheduling as well.

There are many future directions to pursue. One question
is whether it is possible to obtain more precise performance
guarantee or a quantitative relationship between estimation
error and the sampling rate. A second is whether there are

other interesting measurement techniques to explore. For
instance, the estimation error under the current scheme is
mainly due to the failure in capturing the peak in the signal
after a rainfall. Thus the recovery performance can be im-
proved if the sensors can be alerted to the onset of a rainfall.
This is in fact feasible in practice through the use of a rain
gauge or similar sensors. Such instrumentation can allow
the wireless nodes to wake up upon rainfall and start taking
measurements. Similarly, one can also set higher sampling
rate immediately following the peak and let it gradually de-
crease while maintaining the same average rate. We are
actively working to include these in the next deployment of
our system. Finally, joint design of sampling at multiple lo-
cations may be beneficial. This is done naturally in a closed-
loop approach. Under a compressive sensing framework it
would be interesting to combine closed-loop scheduling for
multiple locations with CS based recovery and examine its
potential benefit.
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