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Abstract. In this paper we investigate the capability of large-scale sen-
sor networks to measure and transport a two-dimensional field. We con-
sider a data-gathering wireless sensor network in which densely deployed
sensors take periodic samples of the sensed field, and then scalar quan-
tize, encode and transmit them to a single receiver/central controller
where snapshot images of the sensed field are reconstructed. The quality
of the reconstructed field is limited by the ability of the encoder to com-
press the data to a rate less than the single-receiver transport capacity of
the network. Subject to a constraint on the quality of the reconstructed
field, we are interested in how fast data can be collected (or equivalently
how closely in time these snapshots can be taken) due to the limitation
just mentioned. As the sensor density increases to infinity, more sensors
send data to the central controller. However, the data is more correlated,
and the encoder can do more compression. The question is: Can the en-
coder compress sufficiently to meet the limit imposed by the transport
capacity? Alternatively, how long does it take to transport one snap-
shot? We show that as the density increases to infinity, the total number
of bits required to attain a given quality also increases to infinity under
any compression scheme. At the same time, the single-receiver transport
capacity of the network remains constant as the density increases. We
therefore conclude that for the given scenario, even though the corre-
lation between sensor data increases as the density increases, any data
compression scheme is insufficient to transport the required amount of
data for the given quality. Equivalently, the amount of time it takes to
transport one snapshot goes to infinity.

1 Introduction

In this paper we investigate the ability of a dense wireless sensor network to
measure and transport independent snapshots of a two-dimensional field to a
central location, i.e. a collector, where reconstructions of these field snapshots
are formed.

More specifically, N sensors are uniformly spaced over some finite geograph-
ical region. At regular time intervals, each sensor measures the field value at its
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location; then quantizes its value and losslessly encodes it with bits. The wireless
network, which has a transceiver at each sensor, operates in slotted time steps
to transport the bits generated by the sensor encoders to the central collector.
Multiple hops may be required. There is a number W such that each sensor can
transmit or receive at most W bits in one slot. Note that because a sensor value
is known only at its own location, the quantization and encoding must be done
independently at each sensor location.

When the central collector has received from each sensor the encoded quan-
tized value corresponding to a particular sampling time, i.e. corresponding to
one complete snapshot, it forms a reconstruction of that snapshot. The sam-
pling and data transport are pipelined in the sense that further snapshots may
be taken by the sensors and their transport may begin before the network has
finished transporting prior snapshots to the collector.

The principal question to be addressed is how frequently can a new snapshot
be taken and transported successfully to the collector. If new snapshots can be
received by the collector every u slots, then we say the network has throughput
1/u snapshots per slot. Clearly, large throughput is desired. Alternatively, one
may ask how many network slots are needed (i.e. how many times the network
must be used) to transport a snapshot. If new snapshots can be received by
the collector every wu slots, then we say the network has usage rate u slots per
snapshot, which is the inverse of the throughput. Clearly, small usage rate is
desired.

One might also ask how much time must transpire between the time the
snapshot is taken by the sensors and the time the collector has the data needed
for its reconstruction. This delay will not be discussed here, except to say that
due to pipelining the usage rate is at most as large as the delay, and usually
substantially smaller.

We are particularly interested in how the network throughput and usage
rate vary as IV, the number of sensors, increases. Of course, the sensor spacing
decreases with NV, and the sensor density increases with N. Must the usage rate
(i.e. the number of slots/snapshot) increase with N? If so, does it saturate at
some finite value? Or does it increase without bound?

To answer these questions, one must answer a compressibility question and
a capacity question: How many bits must be generated by each sensor’s quan-
tizer /encoder per snapshot? And how many bits can be transported on the
average by the network to the collector per sensor per slot? (Here, we only count
new bits generated at the sensors — not bits relayed by the sensors.) Suppose the
answer to the compressibility question is by, i.e. by is the minimum number of
bits per sensor per snapshot that must be generated for a network of size NV, and
suppose the answer to the capacity question is ¢y, i.e. ¢y is the maximum aver-
age number of bits that can be transported to the collector per sensor per slot.
(en is less than W — usually much less.) Then the smallest possible usage rate
is uny = by /cn slots/snapshot. Equivalently, the maximum possible throughput
is ty = en/bn snapshots/slot.



To answer the capacity question, we adopt a transmission and interference
model similar to that of Gupta and Kumar [1], and we show in Section 3 that

cy =0 (%) bits/sensor/slot , (1)
where 9(%) means there exist constants a; and ap such that ¢ < cy < 3 for
sufficiently large N. That is, ¢y, which may be considered to be the many-to-one
capacity of the network, is bounded. This is essentially due to the fact that the
number of bits per slot that the collector can receive is bounded by W. As a
result, there is a bottleneck at the collector. In comparison, Gupta and Kumar [1]

found the peer-to-peer capacity of a similar network to be cy = © (ﬁ)

On the other hand, the compressibility question is not well posed until one
specifies a model for the two-dimensional field being measured and the criteria
with which the fidelity of the reconstructed snapshots are judged. These are
described in the next two paragraphs.

The model for the field is a stationary two-dimensional, random field X (u, v).
That is, X (u,v) is a real-valued random variable representing the field value
at Euclidean coordinates (u,v), where v and v vary continuously. We make
only benign assumptions about the random field. We make no assumption as
to whether the random field is bandlimited or not (bandlimited refers to spatial
frequency content). A principal characteristic of the random field is its autocor-
relation function R(7i,72), which indicates the correlation between values of X
separated horizontally and vertically by distances 7 and 79, respectively. For
example, R(11,72) = exp {—\/712 + 722} is an example of an isotropic autocor-
relation function that decays exponentially with Euclidean distance. We require
that the autocorrelation function not be a constant, i.e. the field cannot be spa-
tially constant, even if the constant is random. Finally, we assume that successive
snapshots are independent. That is, each snapshot is modeled as a random field
that is independent of the random fields modeling other snapshots.

In effect, the sensors take samples of the random field at locations denoted
(u1,v1), (uz,v2), ..., (un,vN). It is these samples that are quantized, encoded
and transported to the collector. The collector creates a reproduction X (u,v),
(u,v) € G as a reproduction of the original snapshot X (u,v), (u,v) € G, where
G denotes the geographic region of interest over which the sensors are dispersed.
This obviously involves interpolation. We quantify the fidelity of the X repro-
duction with mean squared error:

MSE:é/GE(X(u,v)—)Z'(u,v))2 dudv (2)

where E denotes expected value with respect to the random field, the integral is
taken over the region G, and |G| denotes its area. Note that due to interpolation
and quantization errors, it is not possible to have MSE = 0. Therefore, the sensor
network performs, in effect, lossy, rather than lossless coding of the random
field. (Sampling, followed by scalar quantization and lossless binary encoding



is a common method of lossy coding.) When N is large and, consequently, the
sensors are closely spaced, the component of MSE due to interpolation error
is negligible, and the MSE is well approximated simply by the average MSE
between the N sensor samples and their reconstructions. That is,

N 2
MSE = % ; E (X(u,-,u,-) — X(us, v,-)) . (3)

From now on, we will fix a positive number D, and assume throughout the
paper that the goal of the sensor network is to sample, quantize, encode and
transport snapshots of the field with a mean squared error of D or less, as given
by (2) or (3).

We will assume also that the quantizers used by the various sensors are
identical. Every such quantizer maps a sensor value X (u;, v;) to an integer that
indexes the possible quantization cells/bins. This index is then encoded in some
lossless fashion. Though only the X’s at the sensor locations will be quantized,
we nevertheless need to assume that the random field and quantizer are such
that the probability that each X (u,v) in the entire region of interest G would
quantize to the same integer is less than one. (Equivalently, the probability that
all X (u,v)’s are in the same quantization cell is less than one.) This is another
benign assumption, because if it does not hold, i.e. if with probability one all
Xs lies in the same quantization cell, then clearly the quantizer is too coarse to
be of use.

We can now pose the compressibility question. With the above models for
the random field and the fidelity measure, and with a fixed MSE target D, then
as discussed in Section 2, one may show that by — 0 as N — oo, where by
is the minimum number of encoded bits per sensor per snapshot that must be
transported to the collector to attain MSE less than or equal to D. The idea
is that as N increases, the sensors become increasingly close, the correlation
between the values produced by nearby sensors increases, and it is possible to
exploit this correlation using schemes such as conditional coding or Slepian-Wolf
distributed lossless coding! on the quantizer outputs to make by — 0. On the
other hand, although by — 0, we also show in Section 2 that no matter how
the lossless coding is done, by does not decrease as rapidly as 1/N. That is,

Nby — o0 as N — o0 . 4)

Note that Nby is the total number of bits coming from the quantizer/encoders
from all sensors. Note also that the above result is quite general and not limited
to a particular lossless coding scheme.

! Slepian-Wolf coding is a remarkable method that permits lossless coders to inde-
pendently encode the data from correlated sources (such as the data produced by
neighboring sensors) as efficiently as if each encoder could see the values produced by
the other data sources. Also, note that Slepian-Wolf coding entails the simultaneous
encoding of a block of successive outputs from the quantizer of a given sensor.



Combining (4) with the many-to-one capacity result (1), we find that the
smallest usage rate for which the mean squared error can be D or less is

N
U(N,D) = ’;_Z _ NI;Z

—rowas N — 0. (5)
This indicates that to obtain a given MSE D, the number of slots per snapshot
must grow without bound as NV increases.

It must be said that this is somewhat disappointing, as it had been hoped that
as N increases, the inter-sensor correlation would increase sufficiently rapidly
to make Nby (and U(N, D)) saturate at a finite value, rather than approach
infinity. Note, however, that this result does not say that sensor networks cannot
do the desired job of measuring and transporting a two-dimensional field. Rather
it says that the efficiency with which it does so, as expressed by the usage or
throughput, degrades as the density of the sensors becomes very large.

It should be noted that the efficiency also degrades when N becomes too
small. Specifically, there is some threshold value N, such that for N < N,, the
interpolation error by itself exceeds D. Thus, there is no quantization-encoding-
transport scheme that attains MSE D. Moreover, as IV approach N, from above,
the quantizer must have increasingly fine resolution, which causes by — oc.
And since in this case N > N,, we also have Nby — o0. Thus as in (5),
U(N,D) — o0 as N N\ N,. We conclude that given a target MSE D and a
random field model, there is an optimum value of N. This is the value for which
Nby is smallest. This conclusion applies to bandlimited and non-bandlimited
fields alike. For bandlimited fields the optimum value of IV is not necessarily the
value that leads to Nyquist sampling.

Based on the above analysis, an alternative strategy, to be pursued in future
work, is to fix the number of sensors at the value of N that minimizes Nby,
and then to permit there to be an additional set of transceivers at locations
between the sensors. This is equivalent to having a network of N’ > N sensors,
and putting all but N of them to sleep, while keeping all transceivers active.

We assert that the result in (4) is not at all obvious. Indeed, the limiting
behavior of Nby has been a long standing question in the theory of sampling
and quantization, which has only recently been resolved in [2]. The discussion
we give in Section 2 is for one-dimensional random processes, but clearly extends
to two-dimensional random fields as well. To see just how delicate the question
is, in Section 2, we discuss how the rate-distortion theory branch of information
theory shows that if ideal lossy coding were used instead of scalar quantization
plus binary lossless coding, then Nby would not increase to infinity. However,
the sensor network requires that coding be done independently at each sensor.
This is why we use scalar quantization, rather than say vector or predictive
quantization. On the other hand, it can be shown that even if one were allowed
to use vector quantization, unless the dimension of the quantizer increases with
N, Nby would still grow without bound.

Having shown that Nby grows to infinity, the question arises as to how fast it
grows. In Section 2, we find the rate with which Nby increases for the special case
of Gaussian random fields and a particular form of Slepian-Wolf coding. This also



leads to a result on how fast U(NN, D) grows in this special case. Specifically, for
a one-dimensional Gaussian field with exponential autocorrelation, it is shown
that U(N, D) — oo at rate O(V'N log N).

In addition to the many-to-one capacity, we also consider the many-to-many
capacity, which is the maximum average number of bits per sensor per slot that
can be transported from each sensor to every other sensor. Section 3 shows that
the many-to-many capacity is:

1
ey =0 (N) bits/sensor/slot . (6)

This is the same as the many-to-one capacity. Thus the behavior of a network
operating in many-to-many fashion, e.g. the asymptotic usage rate U (N, D) is
the same as the behavior of a network operating in many-to-one fashion.

We conclude this introduction with a comment on the results of a recent
paper by Scaglione and Servetto [3]. The latter appears to claim that as N
increases, the capability of the dense sensor network and the correlation structure
of a typical random field are sufficient to permit any node to obtain the two-
dimensional field quantized to within any prescribed distortion value. (It focuses
on the many-to-many scenario.) If by such sufficiency the paper means to say
that this can happen with bounded network usage (i.e., the number of slots per
snapshot does not go to infinity), then our results show otherwise. That is, the
number of slots needed between successive snapshots does indeed grows without
bound. If such sufficiency does not involve any notion of time, then it is not clear
to us what the claim means. The paper’s intermediate results seem to indicate
that a network can transport the field in @(v/N) slots, which is unbounded.
Therefore its overall claim of sufficiency does not appear to match this result.
Furthermore, the ©(v/N) result (Equation (1) in [3]) is based on the assumption
that the information theoretic rate-distortion function is attainable. However, in
a sensor network, quantization must be done independently at each node, and
our results show that in this case the ratio of the number of required encoded
bits to the rate-distortion function approaches infinity. Therefore, the @(v/N)
result is also in doubt.

The remainder of the paper is organized as follows. The next section presents
the results on the number of bits by resulting from quantizing and encoding the
sensor samples. Section 3 derives the many-to-one and many-to-many transport
capacity of the sensor network when NV is large. Section 4 summarizes and con-
cludes.

2 The Compressibility of Sensor Data

We need to assess the minimum number of bits that an encoder could produce
when encoding a quantized sensor value, when sensors are densely placed, and
consequently, their values are highly correlated. We will summarize and use the
recent results of [2].



As stated in the introduction, we view the sensors as taking uniformly spaced
samples of a stationary two-dimensional random field over a finite geographical
region. The collection of all samples taken at one time instance form a snapshot.
Successive snapshots are assumed to be independent.

Though the field is two-dimensional, the basic ideas are more readily apparent
and simpler to describe in one dimension. Therefore, we will focus on the case
that NV sensors are uniformly spaced on a straight line of length L < oco. In this
case, let X (s), 0 < s < L denote the field value at location s. X (s) is assumed to

be a continuous parameter stationary random process. Let (X1,..., Xn) denote
the N sensor values taken at a spacing of d = L/N. Let (I1,...,In) denote the
integers resulting from quantizing (Xi,..., Xy) with some fixed quantizer.

21 by — O

From basic information theory we know that no lossless compression technique
could compress the output of the quantizer with fewer than

H(IL,...,Iy) bits. (7)

Equivalently, it requires on average at least

%H(Il, ..., IN) bits per sample (8)
to losslessly encode each quantized sensor value.

The lower bound in (7) can in fact be attained using Slepian-Wolf distributed
lossless coding. This requires every sensor to simultaneously encode a block of,
say, M successive outputs from its quantizer. Observe that the block of outputs is
a temporal block rather than a spatial one. Temporal blocks are needed in order
for the encoder, at each sensor, to operate at rate close to some conditional
entropy value (these conditional entropies will be stated shortly). Spatial blocks,
however, are not used since every sensor knows only its own values and so the
quantization and encoding must be done independently at each sensor.

The lower bound in (7) is attained in the following way. Let all sensors
quantize their values independently. Let sensor 1 losslessly encode its block of M
successive quantizer outputs into approximately M H (1) bits using conventional
block lossless coding?, where H(I;) denotes the entropy of one of its quantizer
outputs, and where the independence of successive outputs has been used. Let
sensor 2 encode its values using Slepian-Wolf style coding with respect to sensor
1. Then, it losslessly encodes its block of M successive quantizer outputs into
approximately M H (I5|I;) bits, where H(I5|I;) denotes the conditional entropy

% This and subsequent similar approximations can be made arbitrarily tight by choos-
ing M large. Moreover, this and subsequent block encodings are nearly rather than
perfectly lossless, meaning that there is a nonzero probability that the decoder out-
put does not match the encoder input. However, such decoding error probabilities
can be made arbitrarily small by choosing M large, thereby having negligible effect
on the overall MSE.



of an output of sensor 2 given an output of sensor 1 in the same snapshot. (The
decoder will already have decoded the I’s, before decoding the I5’s.) Similarly,
sensor 3 uses Slepian-Wolf coding with respect to sensors 1 and 2, thus mapping
its M quantizer outputs into approximately M H(I3|I5,I;) bits. And so on. It
follows that for the kth sensor, the number of bits per snapshot generated by its
quantizer/encoder is approximately by (k) = H(Ij|I1, ..., Ix—1). It is well known
that by (k) decreases monotonically with k. Thus, for large N, most of the by (k)’s
are approximately the same. That is, there is a value by such that by (k) = by
for most k. It is this value to which Section 1 refers when prescribing the number
of bits per sensor per slot produced by each sensor’s quantizer/encoder.

It also follows that the total number of bits By produced by all the sensors
is given by:

k=1
=H(L)+ H(L|L)+ ...+ HUIn/In-1,IN_2,--.,11)
=H(L,...,In), 9)

where the last equality is an elementary property of entropy. This shows that
the Slepian-Wolf approach does indeed attain the lower bound in (7).

We now show by — 0 as N — oo. Using elementary information theory
relations,

N
by = Z b (k)
k=1

H(Ik|Ik—13Ik—2a . 'aIl)

2=

IA
2=

H(I| i)

= 10=

o~
Il

1

HIL) , (N-1),

=—~ T x (I2]1y)

—)H(Ig|.[1) as N — o0 . (10)

As N increases the sensors become closer and closer. Consequently their corre-
lation increases. Specifically, as N — oo, the distance between sensors 1 and 2
goes to zero. Thus their sample values become essentially identical resulting in
H(I|I;) — 0, which in turn implies that by — 0.

2.2 Nby — o©

It has recently been shown [2] that H(Iy,...,In) — o0 as N — oo. The
following briefly sketches the basic idea. Let T, denote a quantization threshold



that X (s) crosses with probability one in the interval [0, L]. Let S, denote the
location of the first crossing of this threshold. The assumptions in Section 1
about the random field and quantizer insure the existence of T,. Furthermore,
they imply that S, is a continuous random variable, thus having infinite entropy.
When N is large and consequently the sample spacing d is small, from the
quantizer outputs (I1,...,Ix), one can immediately and easily determine in
which time interval of length d the first threshold crossing occurs. Thus one
obtains an estimate S, of S, that is accurate to within d. Sinced — 0 as N —
oo and since S, has infinite entropy, it follows from elementary information
theory that the entropy H(S,) tends to infinity. Finally, since S, is a function
of (Il,...,IN), R

H(L,...,In)> H(S,) — o0 . (11)
Since from (7) By = Nby can be no smaller than H(Iy,...,Iy), we see that
Nby — 0.

This argument can be generalized to the case of a two-dimensional field. We
note also that if the snapshots of the field were dependent, it can be shown that
using an encoding scheme that encodes based on previous snapshots will do no
better.

2.3 The Growth of Rate For a Gaussian Random Field

As mentioned, although the encoding of the sensor value X; must be done with-
out knowledge of the other sensor values with which it is correlated, one could
nevertheless losslessly encode it with approximately by = %H (I1,...,IN) Dits,
provided Slepian-Wolf distributed coding is used [4]. A suboptimal but easier to
analyze case is where Slepian-Wolf coding is used to encode each sensor value
with approximately by = H(I2|I1) bits. For this situation, it has been shown
in [2] that when X (s) is a stationary Gaussian random process and the scalar
quantizer is uniform with step size A and an infinite number of levels, then

H(L|I
lim LY

p=1 —/1 — p? log+/1 — p? My A

where p is the correlation coefficient of X;,X> and M, a is a constant that
depends on the variance o2 of X (s) and the quantization step size A.

Let us consider now, as examples, two autocorrelation functions for the ran-
dom process X(s). To keep notation simple, let the process X (s) have unit
variance.

=1 (12)

1. Rx(s) = e!*l: The correlation coefficient in this case is p = e~?, recall-

ing that d = L/N is the spacing between adjacent sensors. It follows from
the usual expansion of the exponential that /1 — p2 — v/2d as d — 0.
Therefore, (12) can be rewritten as follows:

lim H(L|1)
d—0 —/2d log\/ﬁMl,A

=1. (13)
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Consequently for large N,

| N
By ~ —NV2dM; A logv2d = V2L M; A \/Nlog oL — ooas N — 0.
(14)
In this case, 2BN increases as v N log N. ,
2. Rx(s) = e~* : The correlation coefficient in this case is p = e~¢". It follows
from the usual expansion of the exponential that \/1 — p2 — v/2d as d —
0. Therefore, (12) can be rewritten as follows:
H(I,|I)

I —1. 15
i50 —/2d log /2d My A (15)

Consequently for large IV,

By = —N\/ﬁdMl,A log(\/id) = \/§LM1,A (log ) —ooas N — .

(16)

N
V2L
In this case By increases as log N.

In light of the previous discussion that the total number of bits must increase
to infinity as N increases, it should not be surprising that (14) and (16) increase
without bound as N — 00. Note that in these examples the number of bits per
sensor by = By/N goes to 0.

On the other hand, suppose that instead of independently scalar quantizing
each sensor value, a hypothetical omniscient encoder could jointly quantize a
block of, say, Ky adjacent sensor values from the same snapshot. Then if Ky
is permitted to grow with N, information theoretic rate-distortion theory can
be used to show that By, the number of bits per snapshot required to attain
a target MSE D, will remain bounded rather than grow to infinity. However, if
K is not permitted to grow with NV, then an argument like that used above for
scalar quantization shows that By must again go to infinity. This indicates the
criticality of the independent quantization/encoding requirement. Moreover, it
indicates that even if the latter were not required, it would still be very difficult
to have By remain bounded.

3 Transport Capacity

In this section we analyze the transport capacity of a network where communi-
cation is of a many-to-one fashion (or more specifically all-to-one in this case).
This follows from the motivating application illustrated in Section 1 whereby
all sensors send sampled data to a single collector/receiver. We will extend this
analysis to discuss the capacity when the communication is of a many-to-many
fashion as well. We present two types of results in this section. The first type of
result is in the form of an upper bound, i.e., a level that the transport capacity
cannot possibly exceed given our assumptions. The second type is in the form of
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a constructive lower bound, i.e., the transport capacity that is achievable via a
particular construction of routing and scheduling mechanisms. These two results
serve different purposes in this paper. The upper bound is used jointly with Sec-
tions 2.1 and 2.2 to show that the number of slots required per snapshot grows
without bound. The lower bound is used jointly with Section 2.3 to character-
ize the usage rate in the special case of a Gaussian random field with known
autocorrelation functions.

Capacity of wireless networks has attracted much attention in recent studies
with the assumption that source traffic is uncorrelated. The seminal work by
Gupta and Kumar [1] first developed the transport capacity of a wireless net-
work where sources and destinations are randomly chosen. The main results of

[1] state that the total transport capacity of a network of N nodes is O( \/%)

Equivalently, the per source transport capacity is @(ﬁ). Both are through-
put capacities in amount of data transported end-to-end per unit of time. The
main difference of the scenario studied in this section is that there is a single
receiver.

Throughout this section the transport capacity is defined in two ways, the
total transport capacity, which is the total rate at which the network transports
data to the single receiver, and the per-node transport capacity, which is the rate
at which each sensor transports to the single receiver. When each sensor has
equal amount of data to send these two definitions become equivalent. We will
use terms collector, sink, and receiver interchangeably, and use terms sensor,
node, and source interchangeably.

We assume that the network used for our calculations is deployed following
a uniform distribution over a field of area A. For simplicity we also assume that
this field has a circular shape and that the collector is located at the center
of the field. We assume that the collector cannot simultaneously receive from
multiple sensors. The sensors are stationary once deployed and cannot transmit
and receive simultaneously. As mentioned before, time is slotted, and all nodes
share a channel with capacity of W bits per slot. We assume nodes use omni-
directional antennas, and use a fixed transmission power and achieve a fixed
transmission range, denoted by r. We use transmission and interference models
similar to those used in [1]. Let X; and X; be two sources with distance d; ;
between them. Then the transmission from X; to X; will be successful if and
only if

di,j <7 and dk,]‘ >r+46, 6>0 (17)
for any other source Xy, that is simultaneously transmitting. Here § denotes the

interference range. We assume that the transmission range r is sufficiently large
to guarantee connectivity with high probability.

3.1 Capacity Upper Bound

We first consider an obvious upper bound on the total transport capacity in the
case of a single receiver. From the collector’s point of view, the maximum rate
of transport is achieved when it is receiving 100% of the time. Since W is the
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transmission capacity of the shared channel, it follows that the collector cannot
receive at rate faster than W. We thus have the following result:

Theorem 1. The total transport capacity in a wireless network featuring many-
to-one communications is upper bounded by W .

Equivalently, if each sensor sends an equal amount then the per-node transport
capacity is upper bounded by %

Note that this result is independent of the assumption of the shape of the
field, the location of the collector and the interference model. It also is not an
asymptotic result so it can be applied to networks with finite N. It is simply
a (direct) consequence of the assumption that the collector cannot receive si-
multaneously from multiple sensors. In [5] we show that this upper bound is in
general not achievable with high probability as the number of sensors increases
to infinity.

We now extend the above result to the many-to-many case. More specifically
we consider the all-to-all broadcast scenario where data generated at each sensor
is to be delivered to all other sensors in the network. Note in this case there is
not a single collector, but rather that every sensor is a collector. Again we note
that receiving at a rate of W for a given sensor can only be achieved when the
sensor is continuously receiving. This is clearly infeasible since each sensor also
needs to transmit its own data. Thus in this case the total transport capacity
is also upper bounded by W bits per slot. Here the transport capacity refers to
the number of distinct bits delivered per slot, thus a bit that reaches multiple
destinations (since each bit has a destination of all other sensors in the network)
is not counted multiple times.

3.2 Achievable Capacity

In this subsection we show constructively that a transport capacity on the
order of W (but less than W) can be achieved. Here we will explicitly as-
sume that all nodes need to transmit the same number of bits, or need to
achieve a same rate. This assumption coincides with the suboptimal encoding
scheme in subsection 2.3 where each sensor value is encoded using approximately
by = H(I;|I;—1) = H(Iz|I1) bits. Consequently we will determine the achievable
per-node capacity or per-node throughput, denoted by A, and then multiply this
result by IV to obtain the total transport capacity instead of considering the total
transport capacity directly. The result here is obtained with high probability in
the asymptotic regime as N goes to infinity. We assume that the area A contains
at least a circular area of radius 2r + §. This is not an unreasonable assumption
since the range r required to maintain connectivity decreases as N — oo. We
begin with the following lemma.

Denote by Ag the area of a circle of radius R, i.e., Ag = mR2. Let random
variable Vg denote the number of nodes within an area of size Ag. We then have
the following lemma.
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Lemma 1. In a randomly deployed network with N nodes,

NA
Prob (Nj:R —vVayN <Vg < AR + aNN) —1 as N — o0,(18)

where the sequence {an} is such that imn_, o S = €, € positive but arbitrarily
small.

This result can be easily shown using Chebychev’s inequality and noting that

the mean of Vg is Y42 and the variance o2 is Y42 (1 — 42):

2 Ar (1 _ Ar

Prob NAR—«/aNNSVRSN—AR+\/aNN >1-2 :1—A( )
A A ayN ayn

(19)

The second term on the right hand side of (19) goes to zero since ay — o as
N — .

This lemma shows that the number of nodes in a fixed area is bounded within
vanN of the mean where an goes to infinity as N — oo but limy o 5 is
arbitrarily small.

Using this lemma, the following theorem constructs capacity that can be
achieved with high probability as N — oo in the many-to-one case. Note that
our result is as a function of the transmission range r and we have assumed
that r is sufficiently large to guarantee connectivity. We construct this bound
assuming that the routing and relaying scheme is such that each of the nodes one
hop away from the sink carries an equal share of the total traffic. This is feasible
given that the collector is at the center, the nodes are uniformly distributed and
each sensor generates the same amount of bits.

Theorem 2. A uniformly deployed network using multi-hop transmission for

many-to-one communication can achieve per-node throughput
A> W mrt Ve

= N 4nr244nrd+m2++/€
Lemma 1.

with high probability as N — 0o, where € is as given in

To see this, consider a source that is at least 2r 4+ ¢ away from the closest
border of the network. The area of interference is thus a circle of radius r = 2r+4
centered at this source. Using Lemma 1, with high probability the number of
interfering neighbors including the source, k1, is

NAI NAI
AT —vayN <k < AT + vayN. (20)

Consider the entire network represented as a connected graph G(V,E), with
edges connecting nodes that are within each other’s interference range. Then the
highest degree of this graph is k1 — 1, since k; is the number of nodes within any
interference area. Using the known result from graph theory, see for example [6,
7], that the chromaticity of such a graph is upper bounded by the highest degree
plus one, i.e., k; —1+ 1 = k; in this case, there exists a schedule of length at
most [ < k; slots that would allow all nodes to transmit at least once during this
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schedule. The nodes one hop away from the sink carry the traffic of the entire
network. Denote the number of these one hop nodes by k, there thus exists a
schedule of length [ such that %)\ = % Note that ko is bounded with high
probability by Lemma, 1: NTAT —vVayN < ky < NTA“ + vayN. Therefore we
have

N E,\:E2K> w
aNN ko l k1 'r* +\/—
1 w
AT vaN/N Nﬁl"f‘\/OZNN
A
as N — oo, )‘>K'AA, Ve
N +\/g
_w 7r? — /e
T N A4wr? 4+ 4nrs + 72 + 4 Je
w
since /€ arbitrarily close to 0) ~ . 21
( Y ) AN(1+6(L+ %)) (21)
w mr2—\/e

Since there are N nodes transmitting with A > & 1— g P s awy and
considering the result of Section 3.1 the achievable total transport capacity of
the network is @ (1).

We now briefly discuss the many-to-many case. Consider a node at any lo-
cation in the network. When it first transmits its data, the data reaches every
node within a distance r from the this node. Nodes on the edge of this area
then retransmit the data to other nodes which were not reached in the first
transmission. Because the size of the field is finite, it takes a finite number of
transmissions k to cover the whole field. Once the whole field is covered, all in-
tended destinations must have received the data. Consider a network where each
node transmits its data this way, one starting as soon as the previous one has
just finished. Under such a construction it would take at most Nk transmissions
to transmit data from every node to every other nodes in the network. Therefore

A =)

Since there are N nodes in the network, each with A > the total transport
capacity of the network will again be © ( ).

Note that the parameter k does not depend on N since an increase in N only
means an increase in density when the size of the field is fixed. An increase in
density means that every transmission reaches more nodes, but does not affect
the number of transmissions needed to cover the field. An increase in the field
size or a decrease in r will increase k, but as long as > 0 and the field size is
finite, k£ will be finite.

To summarize we have shown in this section that overall the total transport

capacity of the network is @ (1) in both the many-to-one and the many-to-many

k:N7
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cases. Equivalently the per-node capacity is (9(%) The key is that the total
capacity does not grow as the size of the network increases. This is a major
difference from what was derived in [1] for the peer-to-peer case. At the same

time, the per-node throughput decays as fast as % as N increases.

4 Conclusion

In this paper we characterized the amount of data required to sample, quantize,
and encode a field densely deployed with wireless sensors, and the amount of
data that can be transported by the wireless sensor network, motivated by an
imaging application where there is a single receiver/collector. We showed that as
the number of sensors increases to infinity, the total amount of data generated
for every snapshot also goes to infinity. At the same time, while the number of
bits generated per sensor per snapshot may go zero, it can only do so at a rate
strictly less than % On the other hand, as the size grows, the total transport
capacity of the network remains constant on the order of 1, and the transport
capacity per node is on the order of % Therefore the amount of data required for
a fixed MSE cannot be transported within finite network usage. We would like
to emphasize that this result holds for both a bandlimited and non-bandlimited
random field, regardless of the encoding scheme used.

We showed that in the special case of a one-dimensional Gaussian random
field with two example autocorrelation functions, there exists a coding scheme
with which the number of bits per sensor per snapshot is on the order of 135\/% and
ligNﬁ. We also constructively showed that the achievable per node capacity is on
the order of . Therefore in this special case the network usage is O(V/NlogN)
and O(log N), respectively.

We also discussed that since the number of slots per snapshot increases with
the number of sensors, there should exist an optimal number of sensors that
minimizes the number of slots per snapshot. We do not know what this optimum
is, but if we did, it would place a limit on how densely sensors should be deployed,
beyond which one should suppress sensors, e.g. put sensors to sleep, to prevent
over-sampling.
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