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Abstract—In this paper we develop an adaptive learning
algorithm which is approximately optimal for an opportunistic
spectrum access (OSA) problem with polynomial complexity.
In this OSA problem each channel is modeled as a two state
discrete time Markov chain with a bad state which yields no
reward and a good state which yields reward. This is known
as the Gilbert-Elliot channel model and represents variations in
the channel condition due to fading, primary user activity, etc.
There is a user who can transmit on one channel at a time,
and whose goal is to maximize its throughput. Without knowing
the transition probabilities and only observing the state of the
channel currently selected, the user faces a partially observed
Markov decision problem (POMDP) with unknown transition
structure. In general, learning the optimal policy in this setting
is intractable. We propose a computationally efficient learning
algorithm which is approximately optimal for the infinite horizon
average reward criterion.

Index Terms—Approximate optimality, online learning, oppor-
tunistic spectrum access, restless bandits.

I. INTRODUCTION

We consider the following opportunistic spectrum access
(OSA) problem: There is a set of m channels indexed by
1, 2, . . . ,m, each modeled as a two-state Markov chain (e.g.,
the Gilbert-Elliot channel model), with a bad state b that yields
no reward and a good state g that yields some reward rk > 0
for channel k. The state process of each channel follows
a discrete time Markov rule independent of other channels.
There is a user whose goal is to maximize its long term average
throughput by opportunistically selecting a channel to transmit
on at each time step t = 1, 2, . . .. Initially, the user does not
know the transition probabilities of the channels and it can
only partially observe the system, i.e., at any time t it only
knows the state of the channel selected at t, but not the states of
other channels which continue to evolve. Thus, the user faces
a tradeoff between exploration and exploitation. By exploring,
the user aims to decrease the uncertainty about the state of
the system and the unknown transition probabilities, whereas
by exploiting the user aims to maximize its reward. In order
to achieve this goal, we would like to develop an adaptive
learning algorithm which carefully balances exploration and
exploitation. This adaptive learning algorithm should be ad-
missible, computable and approximately optimal. Admissible
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means that the decision at t should be based on all past
decisions and observations and nothing more than the user
knows up to this time. Computable means that the number
of mathematical operations needed to make the decision at
any t should be a polynomial in the number of channels.
Approximately optimal means that the infinite horizon average
reward of the adaptive learning algorithm should not be worse
than a constant factor of the infinite horizon average reward
of the optimal policy given the transition probabilities of the
channels. Under the assumptions in this paper, learning the
optimal policy requires exponential complexity in the number
of channels, while we show that approximate optimality can be
guaranteed with linear complexity in the number of channels.

When the rewards and transition probabilities of the chan-
nels are known by the user, the optimal policy can be found
by dynamic programming, and the problem becomes a special
case of the restless bandit problem which is known to be
intractable in general [1]. However, heuristic, approximately
optimal and optimal policies for special cases have been
considered by [2], [3], [4] and others. In particular, Guha
et. al. [3] proposed the first provably approximately optimal,
polynomial complexity policy for the problem outlined above
with known channel transition probabilities. The adaptive
learning algorithm we develop in this paper is based on a
threshold variant (ε1-threshold policy) of Guha’s policy which
is also approximately optimal.

Specifically, we show that when each channel is ergodic, and
given that the user knows that probability of transition from
the good state to the bad state is lower bounded by some δ
for all channels, the adaptive learning algorithm based on the
ε1-threshold policy achieves the same infinite horizon average
reward as the ε1-threshold policy. Moreover, we show that for
any finite horizon N , the difference between the undiscounted
total rewards of our learning algorithm and the ε1-threshold
policy is on the order of logN . Since our OSA problem
is equivalent to a restless bandit problem we will use the
terms channel/arm, and selecting a channel/playing an arm
interchangeably.

To summarize, the main contributions of this paper are
(1) a threshold variant of Guha’s policy (the ε1-threshold
policy) which we show to be approximately optimal and
computationally simple, and (2) an adaptive learning algorithm
based on the ε1-threshold policy which we show to achieve the



same infinite horizon average reward as the ε1-threshold policy
and logarithmic regret uniform in time in its total reward with
respect to the ε1-threshold policy.

The remainder of this paper is organized as follows. Section
II presents related work. In Section III we give the problem
formulation and preliminaries. We explain Guha’s policy in
Section IV, and present the threshold variant of Guha’s policy
in Section V. In Section VI we present the adaptive learning
algorithm based on the ε1-threshold policy, and analyze its
number of deviations from the ε1-threshold policy in Section
VII. Based on this, we derive the infinite horizon average
reward of the adaptive learning algorithm, and compare its
performance with the ε1-threshold policy for finite time in
Section VIII. Discussion and conclusion are given in Sections
IX and X respectively.

II. RELATED WORK

Work in optimal adaptive learning dates back to [5] under a
Bayesian setting. Lai and Robbins [6] considered the problem
where asymptotically optimal adaptive policies for the multi-
armed bandit problem with i.i.d. reward process for each arm
were constructed. These are index policies and it is shown that
they achieve the optimal regret both in terms of the constant
and the order. Later Agrawal [7] considered the i.i.d. problem
and provided sample mean based index policies which are
easier to compute, order optimal but not optimal in terms of
the constant in general. Anantharam et. al. [8], [9] proposed
asymptotically optimal policies with multiple plays at each
time for i.i.d. and Markovian arms respectively. However, all
the above work assumed parametrized distributions for the re-
ward process of the arms. Auer et. al. [10] considered the i.i.d.
multi-armed bandit problem and proposed sample mean based
index policies with logarithmic regret when reward processes
have a bounded support. Their upper bound holds uniformly
over time rather than asymptotically but these bounds are not
asymptotically optimal. Following this approach Tekin and
Liu [11], [12] provided policies with uniformly logarithmic
regret bounds with respect to the best single arm policy for
restless and rested multi-armed bandit problems and extended
the results to multiple plays [13]. Decentralized multi-player
versions of the i.i.d. multi-armed bandit problem under differ-
ent collision models were considered in [14], [15], [16]. Other
research on adaptive learning focused on Markov Decision
Processes (MDP) with finite state and action spaces. Burnetas
and Katehakis [17] proposed index policies with asymptotic
logarithmic regret, where the indices are the inflations of right-
hand side of the estimated average reward optimality equations
based on Kullback Leibler (KL) divergence, and showed that
these are asymptotically optimal both in terms of the order and
the constant. However, they assumed that the support of the
transition probabilities are known. Tewari and Bartlett [18]
proposed a learning algorithm that uses l1 distance instead
of KL divergence with the same order of regret but a larger
constant. Their proof is simpler than the proof in [17] and
does not require the support of the transition probabilities
to be known. Auer and Ortner proposed another algorithm

with logarithmic regret and reduced computation for the MDP
problem, which solves the average reward optimality equations
only when a confidence interval is halved. In all the above
work the MDPs are assumed to be irreducible. Based on
the work on MDP, under some assumptions on the transition
probabilities and structure of the optimal policy for the infinite
horizon average reward problem, [19] proposed a learning
algorithm for the restless bandit problem, a special case of
the POMDP problem, with logarithmic regret uniformly over
time with respect to the optimal undiscounted finite horizon
policy given the transition probability matrices.

III. PROBLEM FORMULATION AND PRELIMINARIES

Let Z+ denote the set of non-negative integers, and I(.)
the indicator function. Assume that there are m arms indexed
by the set M = {1, 2, . . . ,m}. Let Sk = {g, b} denote the
state space of arm k. Let Xk

t denote the random variable
representing the state of arm k at time t. Pk is the transition
probability matrix of arm k where the transition probabilities
are pkij = P (Xk

t+1 = j|Xk
t = i), i, j ∈ Sk. We assume that Pk

is such that the channels are ergodic. When arm k is played
in state g (b), it yields reward rk > 0 (0). We assume that
the arms are bursty, i.e., pkgb + pkbg < 1,∀k ∈ M . Moreover
pkgb > δ > 0,∀k ∈ M . If an arm is played τ steps ago and
the last observed state is s ∈ Sk, let (s, τ) be the information
state for that arm. Let vk,τ (uk,τ ) be the probability that arm
k will be in state g given that it is observed τ steps ago in
state b (g). We have

vk,τ =
pkbg

pkbg + pkgb
(1− (1− pkbg − pkgb)τ ),

uk,τ =
pkbg

pkbg + pkgb
+

pkgb
pkbg + pkgb

(1− pkbg − pkgb)τ ,

and vk,τ , 1 − uk,τ are monotonically increasing concave
functions by the burstiness assumption.

There exists a user whose goal is to maximize the infinite
horizon average reward by only playing one of the arms at
each time step. We assume that there is a dummy arm which
yields no reward and the user has the option to select this arm,
i.e., not play at each time step. The user does not know the
transition matrices Pk, k ∈M , but knows the bound δ on pkgb,
and can only observe the reward of the arm it plays at time t.
We note that the user knows that the reward of a bad state is 0,
thus observing the reward of an arm is equivalent to observing
the state of the arm from the user’s perspective. Without loss
of generality we assume that the user knows the rewards of
the good states, since this information can be acquired by
initially sampling each arm until a good state is observed.
Let γ be an admissible algorithm for the user. We represent
the expectation with respect γ when the transition matrices are
P = (P1, . . . , Pk) and initial state is ψ0 by EPψ0,γ

[.]. Many
subsequent expressions depend on the algorithm γ used by the
user, but we will explicitly state this dependence only when it
is not clear from the context.



Let u(t) denote the arm selected by the user at time t. We
define a continuous play of arm k starting at time t with state
s as a pair of plays in which arm k is selected at times t and
t+ 1 and state s is observed at time t. Let

Nk
n(s, s′)

=

n−1∑
t=1

I(u(t) = u(t+ 1) = k,Xk
t = s,Xk

t+1 = s′)

be the number of times transition from s to s′ is observed in
continuous plays of arm k up to time n. Let

Ckn(s) =
∑

s′∈{g,b}

Nk
n(s, s′)

be the number of continuous plays of arm k starting with state
s up to time n. These quantities will be used to estimate the
state transition probabilities. Below, we give a definition and
a lemma that will be used in the proofs. The norm used is the
total variation norm.

Definition 1: [20] A Markov chain X = {Xt, t ∈ Z+} on
a measurable space (S,B), with transition kernel P (x,G) is
uniformly ergodic if there exists constants ρ < 1, C <∞ such
that for all x ∈ S,∥∥exP t − π∥∥ ≤ Cρt, t ∈ Z+ , (1)

where ex is the |S|-dimensional unit row vector whose x-th
component is one while all other components are zero and π
is the row vector representing the stationary distribution of the
Markov chain.

Lemma 1: ([20] Theorem 3.1.) Let X = {Xt, t ∈ Z+} be a
uniformly ergodic Markov chain for which (1) holds. Let X̂ =
{X̂t, t ∈ Z+} be the perturbed chain with transition kernel
P̂ . Given the two chains have the same initial distribution let
ψt, ψ̂t be the distribution of X, X̂ at time t respectively. Then,∥∥∥ψt − ψ̂t∥∥∥ ≤

(
t̂+ C

ρt̂ − ρt

1− ρ

)∥∥∥P̂ − P∥∥∥
= C1(P, t)

∥∥∥P̂ − P∥∥∥
where t̂ =

⌈
logρ C

−1
⌉
.

Clearly for a finite state Markov chain uniform ergodicity
is equivalent to ergodicity, and the total variation norm is the
l1 norm for vectors, and the induced norm is the maximum
row sum norm for matrices.

IV. GUHA’S POLICY

For the optimization version of the problem we consider,
where Pk’s are known by the user, Guha et. al. [3] proposed
a (2 + ε) approximate policy for the infinite horizon average
reward problem. Under this approach, Whittle’s LP relaxation
was first used, where the constraint that exactly one arm is
played at each time step is replaced by an average constraint
that on average one arm is played at a time. Let OPT
be the optimal value of Whittle’s LP. Guha et al. showed
that OPT is at least the value of the optimal policy in the

original problem. The arms are then decoupled by considering
the Lagrangian of Whittle’s LP. Thus instead of solving the
original problem which has a size exponential in m, m
individual optimization problems are solved, one for each arm.
The Lagrange multiplier λ > 0 is treated as penalty per play
and it was shown that the optimal single arm policy has the
structure of the policy Pk(τ) given in Figure 1: whenever an
arm is played and a good state is observed, it will also be
played in the next time; if a bad state is observed then the
user will wait τ − 1 time steps before playing that arm again.
Thus, τ is called the waiting time. Let Rk,τ and Qk,τ be the
average reward and rate of play for policy Pk(τ) respectively.
Qk,τ is defined as the average number of times arm k will be
played under a single arm policy with waiting time τ . Then
from Lemma A.1 of [3] we know that

Rk,τ =
rkvk,τ

vk,τ + τpkgb
,

Qk,τ =
vk,τ + pkgb
vk,τ + τpkgb

.

Then, if playing arm k is penalized by λ, the gain of Pk(τ)
will be

Fk,λ,τ = Rk,τ − λQk,τ .

The optimal single arm policy for arm k under penalty λ is
thus Pk(τk(λ)), where

τk(λ) = min arg max
τ≥1

Fk,λ,τ ,

and the optimal gain is

Hk,λ = max
τ≥1

Fk,λ,τ .

Hk,λ is a non-increasing function of λ by Lemma 2.6 of [3].
Let Gλ =

∑m
k=1Hk,λ. Guha et. al. proposed the algorithm in

Figure 2, and showed that the infinite horizon average reward
of this algorithm is at least OPT/(2 + ε), where ε > 0 is the
performance parameter given as an input by the user which
we will refer to as the stepsize. The instantaneous and the
long term average reward are balanced by viewing λ as an
amortized reward per play and Hk,λ as the per step reward.
This balancing procedure is given in Figure 3. After computing
the balanced λ, the optimal single arm policy for this λ is
combined with the priority scheme in Figure 2 so that at all
times at most one arm is played. Denote the gain and the
waiting time for the optimal arm k policy at the balanced λ
by Hk and τk.

Note that it is required that at any t one and only one arm
must be in good state in Guha’s policy. This can be satisfied
by initially sampling from m − 1 arms until a bad state is
observed and sampling from the last arm until a good state
is observed. Such an initialization will not change the infinite
horizon average reward, and in this paper we always assume
that such an initialization is completed before the play begins.



At time t:
1. If arm k is just observed in state g, also play arm k at
t+ 1.
2. If arm k is just observed in state b, wait τ − 1 steps,
and then play arm k.

Fig. 1. Policy Pk(τ)

Choose a balanced λ by the procedure in Figure 3. Let
S = {k : Hk,λ > 0}, τk = τk(λ).
Only play the arms in S according to the following priority
scheme:
At time t:
1. Exploit: If ∃k ∈ S in state (g, 1), play arm k.
2. Explore: If ∃k ∈ S in state (b, τ) : τ ≥ τk, play arm k.
3. Idle: If 1 and 2 do not hold do not play any arm.

Fig. 2. Guha’s Policy

V. A THRESHOLD POLICY

In this section we consider a threshold variant of Guha’s
policy, called the ε1-threshold policy. The difference between
the two is in balancing the Lagrange multiplier λ. The com-
plete policy is shown in Figure 4. Let H̃k,λ, τ̃k,λ denote the
optimal gain and the optimal waiting time for arm k calculated
by the ε1-threshold policy when the penalty per play is λ. For
any λ if the optimal single arm policy for arm k has gain
Hk,λ < ε1, that arm is considered not worth playing and
H̃k,λ = 0, τ̃k,λ = ∞. For any λ and any arm k with the
optimal gain greater than or equal to ε1, the optimal waiting
time after a bad state and the optimal gain are the same as
Guha’s policy.

Note that at any λ, any arm k which will be played by the
ε1-threshold policy will also be played by Guha’s policy with
τk,λ = τ̃k,λ. Arm k with Hk,λ < ε1 in Guha’s policy will not
be played by the ε1-threshold policy. The following Lemma
states that the average reward of an ε1-threshold policy cannot
be much less than OPT/2.

Lemma 2: Consider the ε1-threshold policy shown in Fig-
ure 4 with step size ε2. The average reward of this policy is
at least

OPT

2(1 + ε2)
−mε1 .

Proof: Let λ∗ be the balanced Lagrange multiplier com-
puted by Guha’s policy with an input of ε2. Then from Figure

Input: ε. Perform binary search to find the balanced λ =
λ(ε):
1. Start with λ =

∑m
k=1 rk, Calculate Gλ =

∑m
k=1Hk,λ .

2. While λ > Gλ
2.1 λ = λ/(1 + ε),
2.2 Calculate Gλ.
3. Output λ, τk, k ∈M

Fig. 3. Procedure for the balanced choice of λ

ε1-threshold policy
1: Input: ε1, ε2
2: Initialize: λ =

∑m
k=1 rk.

3: Compute Hk,λ, τk,λ,∀k ∈M .
4: for k = 1, 2, . . . ,m do
5: if Hk,λ < ε1 then
6: Set H̃k,λ = 0, τ̃k,λ =∞
7: else
8: Set H̃k,λ = Hk,λ, τ̃k,λ = τk,λ,
9: end if

10: end for
11: G̃λ =

∑m
k=1 H̃k,λ.

12: if λ < G̃λ then
13: Play Guha’s policy with τ1 = τ̃1,λ, . . . , τm = τ̃m,λ.
14: else
15: λ = λ/(1 + ε2). Return to Step 3
16: end if

Fig. 4. pseudocode for the ε1-threshold policy

3 we have,

λ∗ <

m∑
k=1

Hk,λ∗ ≤ (1 + ε2)λ∗

For any λ we have
m∑
k=1

Hk,λ −mε1 ≤
m∑
k=1

H̃k,λ ≤
m∑
k=1

Hk,λ . (2)

We consider two cases:
Case 1: λ∗ <

∑m
k=1 H̃k,λ∗ . Then, λ∗ is also the balanced

Lagrange multiplier computed by the ε1-threshold policy.
Case 2: λ∗ ≥

∑m
k=1 H̃k,λ∗ . Then, ε1-threshold policy will

continue the process of decreasing λ and recomputing G̃λ until
it reaches some λ′ such that

λ′ <

m∑
k=1

H̃k,λ′ ≤ (1 + ε2)λ′ .

Since H̃k,λ is non-increasing in λ we have
m∑
k=1

H̃k,λ′ ≥
m∑
k=1

H̃k,λ∗

Thus by (2),

(1 + ε2)λ′ ≥
m∑
k=1

H̃k,λ∗ ≥
m∑
k=1

Hk,λ∗ −mε1.

By Guha’s policy
∑m
k=1Hk,λ∗ ≥ OPT/2. Therefore,

m∑
k=1

H̃k,λ′ ≥ OPT/2−mε1,

λ′ ≥ OPT/(2(1 + ε2))−mε1
The result follows from Theorem 2.7 of [3].

The following lemma shows that computing τ̃k for the ε1-
threshold policy can be done by considering waiting times in
a finite window.



Lemma 3: For any λ, in order to compute τ̃k, k ∈ M , the
ε1-threshold policy only requires to evaluate Fk,λ,τ for τ ∈
[1, τ∗(ε1)], where τ∗(ε1) = drmax/(δε1)e.

Proof: For any λ, Fk,λ,τ ≤ Rk,τ . For τ ≥ τ∗(ε1),

Rk,τ = rk
vk,τ

vk,τ + τpkgb
≤ rmax

τpkgb
≤ rmax

δτ
.

The following lemma shows that the procedure of decreas-
ing λ can only repeat a finite number of times.

Lemma 4: Assume that there exists an arm k such that for
some λ > 0, H̃k,λ ≥ ε1. Otherwise, no arm will be played by
the ε1-threshold policy. Let

λ̂ = sup{λ : H̃k,λ ≥ ε1},

λ∗ = min{λ̂, ε1}. Let z(ε2) be the number of cycles, i.e.,
the number of times λ is decreased until the computation of
τ̃k, k ∈M is completed. We have

z(ε2) ≤ min

{
z′ ∈ Z+ such that (1 + ε2)z

′
≥

m∑
k=1

rk/λ
∗

}
.

Proof: Since H̃k,λ is non-increasing in λ, H̃k,λ∗ ≥ λ∗.
The result follows from this.

Let Θ(ε2) = {
∑m
k=1 rk,

∑m
k=1 rk/(1 +

ε2), . . . ,
∑m
k=1 rk/(1 + ε2)z(ε2)} be the set of values λ

takes in z(ε2) cycles, and

Tk(λ) = arg max
τ≥1

Rk,τ − λQk,t,

T ′k(λ) = arg max
τ≥1,τ /∈Tk(λ)

Rk,τ − λQk,t,

be the set of optimal waiting times, and best suboptimal
waiting times under penalty λ respectively. Let

δ(k, λ) = (Rk,τk − λQk,τk)− (Rk,τ ′k − λQk,τ ′k),

τk ∈ Tk(λ), τ ′k ∈ T ′k(λ),

and δ2 = mink∈M,λ∈Θ(ε2) δ(k, λ).
Consider a different set of transition probabilities P̂ =

(P̂1, . . . , P̂m). Let R̂k,τ , Q̂k,τ and ˜̂τk denote the average
reward, average number of plays and the optimal waiting time
for arm k under ε1-threshold policy and P̂ respectively.

Lemma 5: For ε3 = δ2/ (2(1 +
∑m
k=1 rk)), the event{

|Rk,τ − R̂k,τ | < ε3, |Qk,τ − Q̂k,τ | < ε3,

∀τ ∈ [1, τ∗(ε1)]} (3)

implies the event {τ̃k = ˜̂τk,∀k ∈M}.
Proof: By (3), for any λ ∈ Θ, τ ∈ [1, τ∗(ε1)],

|(Rk,τ − λQk,τ )− (R̂k,τ − λQ̂k,τ )|
≤ |Rk,τ − R̂k,τ |+ λ|Qk,τ − Q̂k,τ |

≤ |Rk,τ − R̂k,τ |+
m∑
k=1

rk|Qk,τ − Q̂k,τ |

< (1 +

m∑
k=1

rk)ε3 =
δ2
2
.

Thus, F̂k,λ,τ̃k can be at most δ2/2 smaller than Fk,λ,τ̃k , while
for any other τ 6= τ̃k, F̂k,λ,τ can be at most δ2/2 larger than
Fk,λ,τ for any λ. Thus the maximizers are the same for all λ
and the result follows.

The following lemma shows that τ̃1, . . . , τ̃m for the ε1-
threshold policy can be efficiently computed. We define a
mathematical operation to be the computation of Rk,τ−λQk,τ .
We do not count other operations such as additions and
multiplications.

Lemma 6: Finding the balanced λ and τ̃1, . . . , τ̃m requires
at most m dlog(z(ε2))e τ∗(ε1) mathematical operations.

Proof: Since G̃λ =
∑m
k=1 H̃k,λ is decreasing in λ, the

balanced λ can be computed by binary search. By Lemma
4 the number of cycles required to find the optimal λ by
binary search is dlog(z(ε2))e. For each λ and each arm k, H̃k,λ

and τk(λ) can be calculated by at most τ∗(ε1) mathematical
operations.

VI. THE ADAPTIVE BALANCE ALGORITHM (ABA)
We propose the Adaptive Balance Algorithm (ABA) given

in Figure 5 as a learning algorithm which is based on the
ε1-threshold policy instead of Guha’s policy. This choice has
several reasons. The first concerns the union bound we will use
to relate the probability that the adaptive algorithm deviates
from the ε1-threshold policy with the probability of accurately
calculating the average reward and the rate of play for the
single arm policies given the estimated transition probabilities.
In order to have finite number of terms in the union bound, we
need to evaluate the gains Fk,λ,τ at finite number of waiting
times τ . We do this by the choice of a finite time window
[1, τ∗], for which we can bound our loss in terms of the
average reward. Thus, the optimal single arm waiting times
are computed by comparing Fk,λ,τ ’s in [1, τ∗]. The second
is due to the non-monotonic behaviour of the gain Fk,λ,τ
with respect to the waiting time τ . For example, there exists
transition probabilities satisfying the burstiness assumption
such that the maximum of Fk,λ,τ occurs at τ > τ∗, while the
second maximum is at τ = 1. Then, by considering the time
window [1, τ∗], it will not be possible to play with the same
waiting times as in Guha’s policy independent of how much
we explore. The third is that for any OPT/(1 + ε) optimal
Guha’s policy, there exists ε1 and ε2 such that the ε1-threshold
policy is OPT/(1+ε) optimal. Thus, any average reward that
can be achieved by Guha’s policy can also be achieved by the
ε1-threshold policy.

Let p̂kbg(t), p̂
k
gb(t), k ∈ M , and P̂ (t) = (P̂1(t), . . . , P̂k(t))

be the estimated transition probabilities and the estimated
transition probability matrices at time t respectively. We will
use .̂ to represent the quantities computed according to P̂ (t).

ABA consists of exploration and exploitation phases. Explo-
ration serves the purpose of estimating the transition probabil-
ities. If at time t the number of samples used to estimate the
transition probability from state g or b of any arm is less than
a log t, ABA explores to increase the accuracy of the estimated
transition probabilities. We call a the exploration constant.
In general it should be chosen large enough (depending on



P, r1, . . . , rm) so that our results will hold. We will describe
an alternative way to choose a (independent of P, r1, . . . , rm)
in Section IX. If all the transition probabilities are accurately
estimated, then ABA exploits by using these probabilities in
the ε1-threshold policy to select an arm. Note that the transition
probability estimates can also be updated after an exploitation
step, depending on whether a continuous play of an arm
occurred or not. We denote ABA by γA.

In the next section, we will show that the expected number
of times in which ABA deviates from the ε1-threshold policy
given P is logarithmic in time.

Adaptive Balance Algorithm
1: Input: ε1, ε2 τ∗(ε1), a > 0.
2: Initialize: Set t = 1, Nk(i, j) = 0, Ck(i) = 0,∀k ∈
M, i, j ∈ Sk. Play each arm once so the initial
information state can be represented as an element of
countable form (s1, τ1), . . . , (sm, τm), where only one
arm is observed in state g one step ago while all other
arms are observed in state b, τk > 1 steps ago.

3: while t ≥ 1 do
4: p̂kgb = 1I(Nk(g,b)=0)+Nk(g,b)

2I(Ck(g)=0)+Ck(g)
,

5: p̂kbg = 1I(Nk(b,g)=0)+Nk(b,g)
2I(Ck(b)=0)+Ck(b)

,
6: W = {(k, i), k ∈M, i ∈ Sk : Ck(i) < a log t }.
7: if W 6= ∅ then
8: EXPLORE
9: if u(t− 1) ∈W then

10: u(t) = u(t− 1)
11: else
12: select u(t) ∈W arbitrarily.
13: end if
14: else
15: EXPLOIT
16: Start with λ =

∑m
k=1 rk.

17: Run the procedure for the balanced choice λ given
by the ε1-threshold policy with step size ε2 and
transition matrices P̂ (t).

18: Obtain τ̂1, . . . , τ̂m.
19: Play according to Guha’s Policy with parameters

τ̂1, . . . , τ̂m for only one step.
20: end if
21: if u(t− 1) = u(t) then
22: for i, j ∈ Su(t) do
23: if State j is observed at t, state i is observed at

t− 1 then
24: Nu(t)(i, j) = Nu(t)(i, j) + 1, Cu(t)(i) =

Cu(t)(i) + 1.
25: end if
26: end for
27: end if
28: t := t+ 1
29: end while

Fig. 5. pseudocode for the Adaptive Balance Algorithm (ABA)

VII. NUMBER OF DEVIATIONS OF ABA FROM THE
ε1-THRESHOLD POLICY

Let γε1,P be the rule determined by the ε1-threshold policy
given ε2 and P = (P1, . . . , Pk), and τ̃1, . . . , τ̃m be the waiting
times after a bad state for γε1,P . Let TN be the number of
times γε1,P is not played up to N . Let Et be the event that
ABA exploits at time t. Then,

TN ≤
N∑
t=1

I(τ̂k(t) 6= τ̃k for some k ∈M)

≤
N∑
t=1

I(τ̂k(t) 6= τ̃k for some k ∈M,Et) +

N∑
t=1

I(ECt )

≤
m∑
k=1

N∑
t=1

I(τ̂k(t) 6= τ̃k, Et) +

N∑
t=1

I(ECt )

≤
m∑
k=1

N∑
t=1

I(|Rk,τ − R̂k,τ (t)| ≥ ε3 or |Qk,τ − Q̂k,τ | ≥ ε3

for some τ ∈ [1, τ∗(ε1)], Et) +

N∑
t=1

I(ECt )

≤
m∑
k=1

N∑
t=1

τ∗(ε1)∑
τ=1

(
I(|Rk,τ − R̂k,τ (t)| ≥ ε3, Et)

+I(|Qk,τ − Q̂k,τ | ≥ ε3, Et)
)

+

N∑
t=1

I(ECt ) (4)

We first bound the regret due to explorations.
Lemma 7:

EPψ0,γA

[
N−1∑
t=0

I(ECt )

]
≤ 2ma logN(1 + Tmax),

where Tmax = maxk∈M,i,j∈Sk E[Tk,ij ]+1, Tk,ij is the hitting
time of state j of arm k starting from state i of arm k. Since
all arms are ergodic E[Tk,ij ] is finite for all k, i, j.

Proof: The number of transition probability updates that
results from explorations up to time N − 1 is at most∑m
k=1

∑
i∈Sk a logN . The expected time spent in exploration

during a single update is at most (1 + Tmax).
The next two lemmas bound the probability of deviation

of R̂k,τ (t) and Q̂k,τ (t) from Rk,τ and Qk,τ respectively. Let
C1(Pk, τk), k ∈ M, τk ∈ [1, τ∗(ε1)] be the constant given in
Lemma 1, C1(P ) = maxk∈M,τk∈[1,τ∗(ε1)] C1(Pk, τk).

Lemma 8: When ABA is used, for

a ≥ 3

2(min{C1(P )εδ2

4rmax
, εδ2

2rmax
})2

,

we have on the event Et (here we only consider deviations in
exploitation steps)

P (|Rk,τ − R̂k,τ (t)| ≥ ε) ≤ 18

t2
.



Proof:

P (|Rk,τ − R̂k,τ (t)| ≥ ε)

= P

(∣∣∣∣∣ rkvk,τ
vk,τ + τpkgb

− rkv̂k,τ (t)

v̂k,τ (t) + τ p̂kgb(t)

∣∣∣∣∣
)

= P
(
τrk|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥

ε|vk,τ + τpkgb||v̂k,τ (t) + τ p̂kgb(t)|
)

≤ P
(
τrk|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ ετ2δ2

)
≤ P

(
|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ εδ2

rmax

)
≤ 18

t2
,

where the last inequality follows form Lemma 12 since a ≥
3/(2(min{C1(P )εδ2

4rmax
, εδ2

2rmax
})2).

Lemma 9: When ABA is used, for

a ≥ 3

2(min{ εδ
2C1(P )

4 , εδ
2

2 })2
,

we have on the event Et

P (|Qk,τ − Q̂k,τ (t)| ≥ ε) ≤ 18

t2
.

Proof:

P (|Qk,τ − Q̂k,τ (t)| ≥ ε)

= P

(∣∣∣∣∣ vk,τ + pkgb
vk,τ + τpkgb

−
v̂k,τ (t) + p̂kgb(t)

v̂k,τ (t) + τ p̂kgb(t)

∣∣∣∣∣
)

= P
(
(τ − 1)|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥

ε|vk,τ + τpkgb||v̂k,τ (t) + τ p̂kgb(t)|
)

≤ P
(
(τ − 1)|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ ετ2δ2

)
≤ P

(
|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ εδ2

)
≤ 18

t2
,

where the last inequality follows form Lemma 12 since a ≥
3/(2(min{εδ2C1(P )/4, (εδ2)/2})2).

The lower bound on the exploration constant a in Lemmas 8
and 9 is sufficient to make the estimated transition probabilities
at an exploitation step close enough to the true transition
probabilities to guarantee that the estimated waiting time is
equal to the exact waiting time with very high probability,
i.e., the probability of error at any time t is O(1/t2). The
following theorem bounds the expected number of times ABA
differs from γε1,P .

Theorem 1:

E[TN ] ≤ 36mτ∗(ε1)β + 2ma logN(1 + Tmax),

for

a ≥ 3

2 min{C1(P )ε3δ2

4rmax
, ε3δ2

2rmax
, C1(P )ε3δ2

4 , ε3δ
2

2 }
, (5)

where

β =

∞∑
t=1

1

t2
.

Proof: Taking the expectation of (4) and using Lemma 7

E[TN ] ≤
m∑
k=1

N∑
t=1

τ∗(ε1)∑
τ=1

(
P (|Rk,τ − R̂k,τ (t)| ≥ ε3, Et)

+P (|Qk,τ − Q̂k,τ | ≥ ε3, Et)
)

+ 2ma logN(1 + Tmax).

Then, by results of Lemmas 8, 9,

E[TN ] ≤
m∑
k=1

N∑
t=1

τ∗(ε1)∑
τ=1

20

t2
+ 2ma logN(1 + Tmax)

≤ 36mτ∗(ε1)β + 2ma logN(1 + Tmax).

VIII. PERFORMANCE OF ABA

In this section we consider the performance of ABA. First
we show that the performance of ABA is at most ε worse
than OPT/2. Since each arm is an ergodic Markov chain, the
ε1-threshold policy is ergodic. Thus, after a single deviation
from the ε1-threshold policy only a finite difference in reward
from the ε1-threshold policy can occur.

Theorem 2: Given δ, ε1, ε2 and a as in (5), the infinite
horizon average reward of ABA is at least

OPT

2(1 + ε2)
−mε1 =

OPT

2
− ε,

for

ε =
ε2OPT

2(1 + ε2)
+mε1.

Moreover, the number of mathematical operations required to
select an arm at any time is at most

m dlog(z(ε2))e τ∗(ε1).

Proof: Since, after each deviation from the ε1-threshold
policy only a finite difference in reward from the ε1-threshold
policy can occur and the expected number of deviations of
ABA is logarithmic (even sublinear is sufficient), ABA and
the ε1-threshold policy have the same infinite horizon average
reward. Computational complexity follows from Lemma 6.

ABA has the fastest rate of convergence (logarithmic in
time) to the ε1-threshold policy given P , i.e., γε1,P . This
follows from the large deviation bounds where in order to
logarithmically upper bound the number of errors in exploita-
tions, at least logarithmic number of explorations is required.
Although finite time performance of Guha’s policy and γε1,P

is not investigated, minimizing the number of deviations will
keep the performance of ABA very close to γε1,P for any
finite time. We define the regret of ABA with respect to γε1,P

at time N as the difference between the expected total reward
of γε1,P and ABA at time N . Next, we will show that this
regret is logarithmic, uniformly over time.



Theorem 3: Let rγ(t) be the reward obtained at t by policy
γ. Given δ, ε1, ε2 and a as in (5),∣∣∣∣∣EγAP,ψ0

[
N∑
t=1

rγ
A

(t)

]
− Eγ

ε1,P

P,ψ0

[
N∑
t=1

rγ
ε1,P

(t)

]∣∣∣∣∣
≤ K(36mτ∗(ε1)β + 2ma logN(1 + Tmax)),

where K is the maximum difference in expected reward
resulting from a single deviation from γε1,P .

Proof: A single deviation from γε1,P results in a dif-
ference at most K. The expected number of deviations from
γε1,P is at most (20mτ∗(ε1)β + 2ma logN(1 + Tmax)) from
Theorem 1.

IX. DISCUSSION

We first comment on the choice of the exploration constant
a. Note that in computing the lower bound for a given by
(5), ε3 and C1(P ) are not known by the user. One way to
overcome this is to increase a over time. Let a∗ be the value
of the lower bound. Thus, instead of exploring when Ckt (s) <
a log t for some k ∈ M, s ∈ Sk, ABA will explore when
Ckt (s) < a(t) log t for some k ∈ M, s ∈ Sk, where a is
an increasing function such that a(1) = 1, limt→∞ a(t) =
∞. Then after some t0, we will have a(t) > a∗, t ≥ t0 so
our proofs for the number of deviations from the ε1-threshold
policy in exploitation steps will hold. Clearly, the number of
explorations will be in the order a(t) log t rather than log t.
Given that a(t) log t is sublinear in t, Theorem 2 will still
hold. The performance difference given in Theorem 3 will be
bounded by a(N) logN instead of logN .

Secondly, we note that our results hold under the burstiness
assumption, i.e., pkgb + pkbg < 1,∀k ∈ M . This is a sufficient
condition for the approximate optimality of Guha’s policy
and the ABA. It is an open problem to find approximately
optimal algorithms under weaker assumptions on the transition
probabilities.

Thirdly, we will compare the results obtained in the previous
sections with the results in [12] and [19]. The algorithm in
[12], i.e., the regenerative cycle algorithm (RCA) assigns an
index to each channel which is based on the sample mean of
the rewards from that channel plus an exploration term that
depends on how many times that channel is selected. Indices
in RCA can be computed recursively since they depend on
the sample mean, and the computation may not be necessary
at every t since RCA operates in blocks. Thus, RCA is com-
putationally simpler than ABA. It is shown that for any t the
regret of RCA with respect to the best single-channel policy
(policy which always selects the channel with the highest mean
reward) is logarithmic in time. This result holds for general
finite state channels. However, the best single-channel policy
may have linear regret with respect to the optimal policy which
is allowed to switch channels at every time [21]. Another
algorithm is the adaptive learning algorithm (ALA) proposed
in [19]. ALA assigns an index to each channel based on an
inflation of the right hand side of the estimated average reward
optimality equation. At any time if the transition probability

estimates are accurate, ALA exploits by choosing the channel
with the highest index. Otherwise, it explores to estimate
the transition probabilities. Thus, at each exploitation phase
ALA needs to solve the estimated average reward optimality
equations for a POMDP which is intractable. However, under
some assumptions on the structure of the optimal policy for
the infinite horizon average reward problem, ALA is shown to
achieve logarithmic regret with respect to the optimal policy
for the finite horizon undiscounted problem. Thus, we can say
that ABA lies in between the two algorithms discussed above.
It is both efficient in terms of computation and performance.

Finally, we note that the adaptive learning approach we used
here can be generalized for learning different policies, when-
ever the computation of actions are related to the transition
probability estimates in such a way that it is possible to exploit
some large deviation bound. As an example, we can develop a
similar adaptive algorithm with logarithmic regret with respect
to the myopic policy. Although myopic policy is in general not
optimal for the restless bandit problem it is computationally
simple and its optimality is shown under some special cases
[4].

X. CONCLUSION

In this paper we proposed an adaptive learning algorithm
for the OSA problem which is approximately optimal and
poly-time computable. Our algorithm is based on learning
a threshold-variant of Guha’s policy which is proved to be
approximately optimal when the transition probabilities of
channels are known by the user. To the best of our knowledge
this is the first result in OSA showing that approximate
optimality can be achieved with a computationally efficient
algorithm.
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APPENDIX

The following lemma, which is a large deviation bound, will
be frequently used in the proofs.

Lemma 10: (Chernoff-Hoeffding Bound) Let X1, . . . , Xn

be random variables with common range [0,1], such that
E[Xt|Xt−1, . . . , X1] = µ. Let Sn = X1 + . . . + Xn. Then
for all ε ≥ 0

P (|Sn − nµ| ≥ ε) ≤ 2e
−2ε2

n

Using Lemma 10, we will show that the probability that an
estimated transition probability is significantly different from
the true transition probability given ABA is in an exploitation
phase is very small.

Lemma 11:

P
(
|p̂kss′(t)− pkss′ | > ε,Et

)
≤ 2

t2
,

for all t, s, s′ ∈ Sk, k ∈M , for a ≥ 3/(2ε2).
Proof: Let t(l) be the time Ckt(l)(s) = l. We have,

p̂kss′(t) =
Nk
t (s, s′)

Ckt (s)

=

∑Ckt (s)
l=1 I(Xk

t(l)−1 = s,Xk
t(l) = s′)

Ckt (s)
.

Note that I(Xk
t(l)−1 = s,Xk

t(l) = s′), l = 1, 2, . . . , Ckt (s) are
i.i.d. random variables with mean pkss′ . Then

P
(
|p̂kss′(t)− pkss′ | > ε,Et

)

= P

∣∣∣∣∣∣
∑Ckt (s)
l=1 I(Xk

t(l)−1 = s,Xk
t(l) = s′)

Ckt (s)
− pkss′

∣∣∣∣∣∣ ≥ ε, Et


=

t∑
b=1

P

∣∣∣∣∣∣
Ckt (s)∑
l=1

I(Xk
t(l)−1 = s,Xk

t(l) = s′)

−Ckt (s)pkss′
∣∣ ≥ Ckt (s)ε, Ckt (s) = b, Et

)
≤

t∑
b=1

2e
−2(a log tε)2

a log t =

t∑
b=1

e−2a log t(ε)2

= 2

t∑
b=1

1

t2aε2
=

1

t2aε2−1
≤ 2

t2
,

where we used Lemma 10 and the fact that Ckt (s) ≥ a log t
w.p.1. in the event Et.

The following Lemma which is an intermediate step in
proving that if time t is an exploitation phase then the
difference between Rk,τ , R̂k,τ and Qk,τ ,Q̂k,τ will be small
with high probability, is proved using Lemma 11.

Lemma 12: When ABA is used, we have for a ≥
3/(2(min{εC1(P )/4, ε/2})2),

P (|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ ε, Et) ≤
18

t2
.

Proof:

P (|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ ε, Et)
≤ P (|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ ε,
|pkgb − p̂kgb(t)| < η,Et)

+ P (|pkgb − p̂kgb(t)| ≥ η,Et),

for any η. Letting η = ε/2 and using Lemma 11 we have

P (|vk,τ p̂kgb(t)− pkgbv̂k,τ (t)| ≥ ε, Et)

≤ 4

(
P

(
|pkgb − p̂kgb(t)| ≥

ε

4C1(P )
, Et

)
+P

(
|pkbg − p̂kbg(t)| ≥

ε

4C1(P )
, Et

))
+ P (|pkgb − p̂kgb(t)| ≥ ε/2, Et) ≤

18

t2
.


