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Abstract—We consider opportunistic spectrum access (OSA)
strategies for a transmitter in a multichannel wireless system,
where a channel may or may not be available and the transmitter
must sense/probe the channel to find out before transmission.
Applications for this work include joint probing and transmission
for a secondary user in a cognitive radio network. Limited by
resources, e.g., energy and time, the transmitter must decide on
a subset of a potentially very large number of channels to probe
and can only use for transmission those that have been found to
be available. In contrast to previous works, we do not assume the
user has a priori knowledge regarding the statistics of channel
states. The main goal of this work is to design strategies that
decide, based only on knowledge of the channel bandwidths/data
rates, which channels to probe. We derive optimal strategies that
maximize the total expected bandwidth/data rate in the worst-
case, via a performance measure in the form of a competitive
regret (ratio) between the average performance of a strategy and
a genie (or omniscient observer). We examine the performance of
these optimal strategies under a wide range of system parameters
and practical channel models via numerical studies.

I. INTRODUCTION

In this paper, we examine optimal channel sensing/probing
strategies for opportunistic spectrum access (OSA), where
a transmitter seeks to maximize its achievable data rate by
opportunistically transmitting over a select subset of a poten-
tially large number of channels. This is done by optimally
constructing a channel sensing/probing strategy to find out
which channels are available before transmitting.

This problem is motivated by wireless systems where a
transmitter is supplied with more channels than needed for
transmission. A channel, for example, could be a frequency in
an FDMA system, a code in a CDMA system, etc. Software
defined radio [1] and cognitive radio systems [2] may provide
users with multiple channels (e.g. tunable frequency bands and
modulation techniques) by means of a programmable hardware
which is controlled by software. Specifically, a transmitter
could be a secondary user in a cognitive radio network seeking
to utilize portions of the spectrum currently not being used by
a set of primary users. In doing so it needs to find out which
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part of the spectrum is available for transmission. Furthermore,
channel quality is in general time-varying due to multi-path
fading caused by factors such as mobility and interference.
Therefore the ability to probe or sense channel quality before
transmission can help transmitters select the best one(s) to use.
One method of channel probing is through the exchange of
control packets between transmitter and receiver [3]. Another
method, for example in a cognitive radio system, is to use
a spectrum sensor [2], [4] at the physical layer to provide
transmitters with information about channel quality.

Due to constraints on time, energy, and other resources,
a transmitter may only be able to probe a limited number
of channels. Therefore, it is imperative that it judiciously
select which channels to probe. If the transmitter has a priori
knowledge on the random distribution describing the states
of different channels, then it can design strategies which
maximize the expected transmission gain. Recent works such
as [5], [6], [7] have studied the tradeoff between probing to
gain more information about channel quality and maximizing
transmission gain. Meanwhile, [2] examined the joint design
of spectrum sensing at the physical layer and access policies
at the medium access control (MAC) layer. All of these works
require that the transmitter has a priori knowledge on the
channel distribution in order to design optimal strategies.

On the other hand, if the transmitter cannot accurately
model the distribution of channel states, these strategies may
no longer be applicable. In addition, if the distribution of
channel quality is constantly changing over time, e.g., in the
case of a mobile node, then it becomes impractical for a
transmitter to continually adjust its optimal strategy according
to the varying distribution. It may also be possible that the
transmitter’s knowledge on the channel distributions is incor-
rect, which could lead to errors in determining the optimal
strategy. Therefore, it is necessary in such cases to design
channel probing and transmission strategies which are more
robust and do not require a priori knowledge of the channel
statistics.

Motivated by these practical considerations, in this paper
we use competitive analysis [8] methods and seek to design
strategies that perform well in the worst case (to be defined
more precisely in Section II) for the following problem. A
transmitter has to decide which subset (up to K channels)
of N channels to probe, whereby it can only transmit using
those channels that have been probed to be available, and its



performance is measured against a genie who knows exactly
which channels are available. We will see that the resulting
strategies do not require a priori knowledge on the statistics
of channel state. To the best of our knowledge, this is the first
work which analyzes opportunistic spectrum access policies
using a competitive framework.

The main contributions of this paper include the following:
First, under a variety of worst-case performance measures,
we derive a class of optimal randomized strategies. These
strategies are obtained as functions of a range of system
parameters, e.g. number of channels, channel probes, etc. and
are thus tunable to many practical scenarios. The worst-case
performances of these strategies are also obtained, allowing
us to study the optimal performance guarantee if a transmitter
does not have knowledge on channel distributions. Second, we
derive an algorithm that constructs a strategy belonging to this
optimal class. Finally, we examine the performance of these
strategies via numerical means.

The rest of this paper is organized as follows. Section II
formulates the problem and presents the two primary worst-
case performance metrics (a difference metric and a ratio
metric) considered in this paper. Section III provides notation
and preliminary results. Section IV presents a class of optimal
strategies and describes an algorithm which sequentially con-
structs a subclass of the optimal strategies. Section V presents
numerical results and Section VI concludes the paper.

Unless otherwise stated, all results are proven in the Ap-
pendix. We have stated it can be shown for a few results
that are easy to verify and thus not included due to space
constraints.

II. PROBLEM FORMULATION

In this section we formulate the problem considered in this
paper. We then present various performance measures and
corresponding objectives.

A. Formulation and Strategies

We consider a wireless system consisting of N channels,
indexed by the set Ω = {1, 2, · · · , N} and a transmitter
who has access to these channels. The system works in
discrete time, and at each time step the transmitter needs to
determine which channels to use for transmission. To do so,
the transmitter can probe up to K of the N channels, where
1 ≤ K ≤ N .

A channel j has bandwidth or data rate denoted as rj .
We assume a binary channel model, where in each time step
a channel may be in one of two states, available (on) or
unavailable (off), with certain probability. If a channel j is
probed to be available and the transmitter decides to transmit
in that channel, then he receives a rate (also referred so as
the channel reward) of rj . If the channel is probed to be
unavailable, then the transmitter is not allowed to use that
channel for transmission. In addition, the transmitter is not
allowed to transmit using unprobed channels.

We assume that the transmitter knows the vector r =
[r1, r2, · · · , rN ]. Without loss of generality, we will assume

that r1 ≥ r2 ≥ · · · ≥ rN ≥ 0. However, in contrast
to previous works, we assume that the transmitter does not
have a priori information regarding the channel statistics, i.e.,
the probability of a channel being available. Thus the only
information the transmitter has in making the probing decision
is the channel bandwidths, but not the likelihood of a channel
being available.

We describe the channel state by binary (random) vectors
x = [x1, x2, · · · , xN ] where xj = 1 if channel j is on;
otherwise, xj = 0. We denote by X the set of all possible
channel states (random or deterministic). When the transmitter
does not have any knowledge regarding how many channels
are available, we have x ∈ X .

We will also consider the case when somehow the transmit-
ter knows the average number of available channels. It will
be seen that having such knowledge can help the transmitter
design better strategies. For this case, we define the following
set of channel states:

XL =


x ∈ X : Ex


 N∑

j=1

I{xj=1}


 ≤ L


 , (1)

where Ex denotes the expectation with respect to x, and I{·} is
the indicator function. XL is the set of channel states such that,
on average, at most L channels are on. Note that XN = X .
For generality, we will derive results in this paper for general
L, noting that by using L = N our results directly apply to the
case where the transmitter has no knowledge on the average
number of available channels.

The system proceeds as follows. The transmitter decides
which set of K channels in Ω to probe. After probing, the
transmitter then determines which K0 of these K probed
channels to use for transmission. We describe a user’s strategy
as a (random) binary vector u = [u1, u2, · · · , uN ], where
uj = 1 means the user probes channel j; otherwise, uj = 0.

We denote the probability mass function of uj by puj
. Thus,

puj
(k) = P (uj = k) for k ∈ {0, 1}. Let U be the set of

strategies, fixed or randomized. We define the following set of
strategies:

UK =


u ∈ U : P


 N∑

j=1

uj ≤ K


 = 1


 . (2)

That is, UK is the set of strategies that probe at most K
channels. Note that any strategy in UK must also satisfy:∑N

j=1 puj
(1) = Eu

[∑N
j=1 I{uj=1}

]
≤ K .

B. Competitive Regret

Our first worst-case performance measure is in the form of
the difference with respect to a genie as we present below.
For any integer k, we will let gk(z) denote the sum of the k
largest elements of any vector z. In addition, we let z1 · z2

denote the dot product between any two vectors z1 and z2.
Consider any strategy u ∈ UK . Its expected reward for any

x is given by:

V u
x = EuEx [gK0 (r · x · u)] , (3)



because the transmitter will use the K0 channels with highest
rate that are probed and available. Now consider an omniscient
observer or genie who knows the realization of channel states
in advance and can use up to K0 channels for transmission.
For a given realization, the genie can simply probe and use
the K0 available channels with highest bandwidth. Its expected
reward is thus given by:

V ∗
x = Ex [gK0 (r · x)] . (4)

Taking the difference between the genie’s expected reward
and that of strategy u, we obtain a comparison between
the relative performance of u and the best possible. As the
transmitter does not have any a priori information regarding
x, except possibly the average number of available channels,
we take a maximum of this difference over all x to obtain the
following worst-case performance measure of u:.

δu = max
x∈XL

{V ∗
x − V u

x }
This performance measure can also be interpreted as the regret
[9], or minimax regret [8] of u. The quantity δu provides
an upperbound on the performance of strategy u relative to
the best possible. That is, for any arbitrary state x ∈ XL,
strategy u will obtain expected reward within δu of the
omniscient observer. We will refer to δu as the worst-case
reward (difference) of strategy u. We emphasize again that
when the transmitter does not have knowledge on the average
number of available channels, then we can set L = N in the
equation for δu to obtain a performance measure with respect
to all possible channel states.

One can also view δu as the competitive regret of u versus
an oblivious adversary [8] who knows the distribution (but
not realization) of u in advance. Given u, the adversary will
choose an x ∈ XL that maximizes the difference between the
reward of u and the genie.

The objective for the first problem, which we call (A), is
to find the strategy which minimizes the above worst-case
measure, i.e. obtain the following minimum:

δ∗ = min
u∈UK

max
x∈XL

{V ∗
x − V u

x } , (5)

where we refer to δ∗ as the minimum worst-case difference.

C. Competitive Ratio

Our second worst-case performance measure, which is also
commonly used, is in the form of the ratio between the reward
of a strategy and the genie. Consider the following worst-case
performance measure of any strategy u:

ρu = min
x∈XL

V u
x

V ∗
x

= min
x∈XL

{
E [gK0(r · x · u)]

E [gK0(r · x)]

}
, (6)

which is also known as the competitive ratio [8] of strategy u.
For any state x, strategy u is guaranteed to obtain performance
within a factor ρu of the best possible. Note that ρu ≤ 1 for
any strategy u, as it is impossible to do better than the genie.
The corresponding objective for this problem, which we call
(B), is to determine the strategy achieving maximum worst-
case performance, maxu∈UK

ρu.

III. PRELIMINARIES

Before presenting the optimal strategies under the objectives
described in the previous section, we first describe some
important preliminary notation and results. We will assume
that rK > 0. If this were not true, then it means there are less
than K channels with positive rate, and the optimal strategy
is trivial: probe channel j if rj > 0.

We first present the following important result:
Lemma 1: For any K0, L, let L̃ = min{L,K0}. Then for

any u ∈ UK :

δu = max
x∈XL

{V ∗
x − V u

x } = max
x∈XL̃

{V ∗
x − V u

x } (7)

Thus in calculating δu for any strategy, such as in (8), we can
replace XL with XL̃. For the remainder of this paper, we will
let L̃ = min{L,K0}. This result implies the following:

δu = max
x∈XL̃

EuEx


 N∑

j=1

rjI{xj=1,uj=0}




= max
x∈XL̃




N∑
j=1

rj · pxj
(1)·puj

(0)


 , (8)

where we have used the linearity of expectation and inde-
pendence between x and u. Note that δu only depends on
u and x through their marginal probabilities, and not their
joint probabilities. Therefore throughout this paper we will
describe strategies and channel states in terms of their marginal
probabilities. In Section IV, we will demonstrate a method for
constructing strategies based on these marginal probabilities.

Next, we define the following parameter for any K:

M = max

{
n ∈ {K, · · · , N} : rn > 0, rn ≥ (n − K)∑n

j=1
1
rj

}
(9)

Note that the above set is guaranteed to be nonempty, since
rK > 0 and therefore K lies in the above set. Also note that
because rj ≥ rk whenever j < k, the above summation does
not involve any division by 0. It will be seen that parameter
M is crucial to describing the optimal strategy, and for some
special cases denotes the channels which should be probed.

We will assume without loss of generality that N ≥ M + L̃.
If this condition does not hold, one can add extra channels with
rates rN+1 = · · · = rN+L̃ = 0. As a user has no incentive to
use these extra channels and they do not contribute to the total
reward, they do not affect the optimal strategy or its expected
reward. This assumption is made to avoid boundary conditions
in describing strategies and their worst-case rewards, thus
facilitating the description.

We introduce additional notation as follows. For any
L,K,N define M from (9). Then, for any integer 1 ≤ M̄ ≤
K, define:

η(M̄) = max


m ∈ {0, · · · , L̃} : rM̄+m

M̄∑
j=1

1
rj

≥ M̄ − K






where η(M̄) = 0 if the above set is empty. This term η(M̄)
is introduced simply for notational purposes in describing the
following class of algorithms and their worst-case rewards:

Definition 1: For any set of channels, define M from
(9). Then for any integer K, strategy u[l, M̄ ] is defined by con-
figurable parameters (integers) l and M̄ , where K ≤ M̄ ≤ M
and either l = 0 or η(M̄) + 1 ≤ l ≤ η(M̄ − 1) − 1. The
marginal probabilities for u[l, M̄ ] depend on l and M̄ as
follows:

If l = 0, the marginal probabilities for u[l, M̄ ] are:

pui
(1) =

{
1 − M̄−K

ri

∑ M̄
j=1

1
rj

if 1 ≤ i ≤ M̄

0 if M̄ + 1 ≤ i ≤ N

If η(M̄)+1 ≤ l ≤ η(M̄ − 1)−1, the marginal probabilities
for u[l, M̄ ] are given by:

pui
(1) =




1 − rM̄+l

ri
if 1 ≤ i ≤ M̄ − 1

1 − M̄ + K + rM̄+l

∑M̄−1
j=1

1
rj

if i = M̄

0 if M̄ + 1 ≤ i ≤ N

The parameters l and M̄ essentially determine a randomized
strategy. Note that from the definitions of M and η the strategy
u[l, M̄ ] has valid marginal probabilities for the range of l and
M̄ specified in Definition 1. For example, when l > 0 the
condition η(M̄) + 1 ≤ l ≤ η(M̄ − 1)− 1 is needed to ensure
that 0 ≤ pui

(1) ≤ 1 for all i.
We provide some intuition for considering the above class

of strategies via an example. Suppose M = N and consider
strategy u[0, N ]. We see that the term puj

(0)rj is constant
for all 1 ≤ j ≤ N . From (8), this means that the worst-case
difference for u only depends on the sum of the marginal
probabilities of x, but not the individual marginal probabilities.
Thus, u[0,M ] has constant performance for different x. This
type of constant performance with respect to x is a common
trait of robust worst-case strategies [8]. Similar reasoning can
be applied to u[l, M̄ ] for other values of l and M̄ . For these
strategies, the term puj

(0)rj is constant for some values of j.
This property is illustrated in Figure 1 through the following

example. Suppose we have N = 10 channels, with rates given
by r = [r1, r2, · · · , r9, r10] = [1, 0.9, · · · , 0.2, 0.1]. If
K = K0 = 6, we can compute M = 9 and use Definition 1
to determine various strategies u[l, M̄ ]. In Figure 1 (TOP), we
plot puj

(0)rj as j varies for strategies u[0, 7] and u[0, 9]. Note
that M̄ essentially controls the region over which puj

(0)rj is
constant, as well as its value in this region.

For fixed L̃, we know from (8) that the x which maximizes
the regret satisfies pxj

(1) = 1 for the L̃ highest values of
puj

(0)rj , and pxj
(1) = 0 for other values. Thus, from Figure

1 we see a tradeoff between using u[0, 7] and u[0, 9]. If L̃ is
small, u[0, 9] will have better worst-case performance since its
worst-case values of puj

(0)rj are smaller than that of u[0, 7].
On the other hand, if L̃ is large, then u[0, 7] performs better
in the worst-case since it has smaller puj

(0)rj for most values
of j, e.g. 1 ≤ j ≤ 7. A similar property holds for strategies
u[l, M̄ ] when l > 0, as shown in Figure 1 (BOTTOM). We see
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Fig. 1. For the scenario described in Section III, a plot of the term puj (0)·rj

as a function of j, for the following strategies: (TOP): u[0, 7] and u[0, 9]
(BOTTOM): u[3, 7] and u[2, 8].

again that l and M̄ essentially control the region over which
puj

(0)rj is constant.
In the next section, we will show the optimal strategy for

(A) belongs to the class of strategies given by Definition 1.

IV. OPTIMAL STRATEGIES

In this section, we present optimal strategies for (A) and
(B). We first focus on (A).

A. Optimal Strategies for (A)

As mentioned in Section III, (8) allows us to compute the
optimal worst-case strategy by only considering the marginal
probabilities for u and x. Thus we first describe strategies
in terms of their marginal probabilities, before presenting an
algorithm for constructing such strategies.

For any fixed K, we let WK = ∪M̄ ∪l u[l, M̄ ] be the set
of all strategies given by Definition 1. We now describe the
optimal strategy for (A):

Theorem 1: Optimal Strategy for (A) For any set of chan-
nels, define M from (9). Then the optimal strategy u ∈ WK .
That is, minu∈UK

δu = minu∈WK
δu. Moreover, the optimal

strategy is determined as follows.

1) If there exists K ≤ M∗ ≤ M satisfying the following:

rM∗ ≥ L̃ − η(M∗)∑M∗
j=1

1
rj

≥ rM∗+1 . (10)

Then u[0,M∗] is the optimal strategy.



2) Otherwise, there must exist an M∗, where K + 1 ≤
M∗ ≤ M , satisfying the following:

L̃ − η(M∗)>rM∗

M∗∑
j=1

1
rj

≥ L̃ − η(M∗ − 1) + 1 .

Then the optimal strategy is u[l∗,M∗], where:

l∗ = min


m ∈ {0, · · · , L̃} : m ≥ L̃ − rM∗

M∗∑
j=1

1
rj




Theorem 1 is proved in Section IV-C. Also, the correspond-
ing worst-case rewards (which are the minimum obtainable)
are given in Lemma 3 in closed form. Note that Theorem 1
provides a method to determine the optimal strategy, and this
procedure is a fairly simple one. In particular, cases 1 and 2
each require checking whether a condition holds, and there are
only M − K + 1 possibilities for the value of M∗. The term
η(·) is also not difficult to determine.

An alternative method for finding the optimal strategy is as
follows. First, note that WK contains at most (M −K + 1)L̃
strategies. For each u[l, M̄ ] ∈ WK , the worst-case difference
δu[l,M̄ ] can be easily determined, as we will show in Lemma
3 of Section IV-C. Thus combining this with |WK | ≤ (M −
K +1)L̃, the best strategy in WK can be determined with low
computational complexity.

An interesting special case of the above result is the
following. When K + L̃ ≤ M , then from the definition of
M , case 1 of Theorem 1 holds with M∗ = M . Thus we have
the following corollary:

Corollary 1: For any set of channels, define M from (9).
Then if K + L̃ ≤ M , the optimal strategy u∗ has the same
marginal probabilities as strategy u[0,M ] given by Definition
1.

Note that Corollary 1 and Theorem 1 describe the opti-
mal marginal probabilities, but they do not immediately or
uniquely determine an optimal strategy. By definition of UK ,
at most K channels can be probed for any realization of u.
Thus, it cannot be possible that channel selection is done in-
dependently for each channel, and therefore we cannot simply
multiply the marginal probabilities to obtain joint probabilities,
or come up with a strategy by flipping independent coins to
determine the inclusion/exclusion of each channel. Addition-
ally, suppose that using these marginal probabilities one can
construct the optimal strategy by appropriately defining the
probability mass function of u∗ over the set of all possible
binary vectors of length N . This set contains 2N elements,
however, which grows very quickly as N increases.

Below we present an procedure that computes u[0,M ] in a
sequential manner without considering the entire set of binary
vectors of length N . Consider the following algorithm which
takes inputs N, K, K0 and sequentially generates u[0, M̄ ].

Algorithm 1: (Sequential Method to Construct u[0, M̄ ])
For any N and K, define M as in (9) and consider any
K ≤ M̄ ≤ M .

Initially: M̄ ,K are defined. Set j = 1 and ul = 0 for all
1 ≤ l ≤ N .

Step 1: Let p = 1− M̄−K

rj

∑ M̄
l=1

1
rl

. Update K and u as follows:

• With probability p, set uj = 1 and K = K − 1.
• Otherwise (with probability 1− p), do not change u, K.
Step 2: Go to step 3 if K = 0. Otherwise, repeat Step 1

with j = j +1, M̄ = M̄ −1, and using the updated u and K.
Step 3: Stop and use strategy u.
We note from Step 2 that Algorithm 1 constructs a realiza-

tion of strategy u which, with probability 1, probes at most
K channels. Thus, u ∈ UK . We have the following result
which shows that Algorithm 1 constructs the optimal strategy
for case 1 of Theorem 1.

Lemma 2: Algorithm 1 constructs a strategy with marginal
probabilities which match the marginal probabilities of
u[0, M̄ ] given by Definition 1.
Therefore, by using M̄ = M in Algorithm 1, we can construct
the optimal strategy given in Corollary 1. In Section V, we
will show that u[0,M ] performs very well compared to the
optimal strategy given by Theorem 1. Thus, strategy u[0,M ]
is a practical alternative if the optimal strategy of Theorem 1
is difficult to construct. Algorithm 1 also constructs strategy
u[0, M̄ ] for any K ≤ M̄ ≤ M ; thus it generates the optimal
strategy whenever case 1 of Theorem 1 holds. For l > 0,
it is not immediately clear whether there exists a sequential
algorithm to easily construct u[l, M̄ ]. It may be possible that
constructing such a strategy requires defining a probability
mass function over all vectors of length N .

B. Optimal Strategies for (B)
For Problem (B) we have the following result:
Theorem 2: Consider any set of channels and integers

L,K. We have the following result for (B): maxu∈UK
ρu =

K/N , where the optimal strategy u∗ achieving this maximum
reward ratio has marginal probabilities given by: pu∗

j
(1) =

K/N for all 1 ≤ j ≤ N .
We see from Theorem 2 there exists an optimal strategy

which uniformly chooses from all length-N binary vectors
with exactly K elements equal to 1. In Section V, we com-
pare the performance of this uniform strategy to the optimal
strategies of Theorem 1.

C. Deriving Optimal Strategies

To derive Theorem 1, we first prove the following prelimi-
nary results on the set of strategies given by Definition 1.

Lemma 3: For any set of channels, consider any strategy
u[l, M̄ ] given by Definition 1.

If l = 0,

δu[0,M̄ ] =
η(M̄)∑
j=1

rM̄+j +
M̄ − K∑M̄

j=1
1
rj

(
L̃ − η(M̄)

)
.

Otherwise, for η(M̄) + 1 ≤ l ≤ η(M̄ − 1) − 1, then:

δu[l,M̄ ] =


M̄ − K − rM̄+l

M̄−1∑
j=1

1
rj


 rM̄ +

l−1∑
k=1

rM̄+k

+
(
L̃ − l

)
rM̄+l .



Now we prove that these strategies are optimal. It can
be shown (see [10]) that by interchanging maximum and
minimum, the following is always true:

min
u∈UK

max
x∈XL

{V ∗
x − V u

x } ≥ max
x∈XL

min
u∈UK

{V ∗
x − V u

x } (11)

The inequality in (11) is useful as it allows us to derive
lowerbounds to δ∗ as follows. Note that for any particular
x, the righthand-side of (11) is an optimization problem
with objective to minimize an average-reward criterion. By
choosing x ∈ XL such that the optimal average-reward is high,
we can obtain a useful lowerbound to the minimax regret. We
then show that these lower bounds match the quantities given
in Lemma 3, thereby proving the optimality of u[0,M∗] for
some M∗.

We first prove case 1 of Theorem 1. To derive a lowerbound
for (11), we consider the following problem:

Problem 1: For any given L,K and set of channels, define
M as in (9). Suppose case 1 of Theorem 1 holds for some
M∗, and let state x have the following marginal probabilities.
If 1 ≤ i ≤ M∗:

pxi
(1) =

L̃ − η(M∗)

ri

∑M∗
j=1

1
rj

. (12)

If M∗ + 1 ≤ i ≤ M∗ + η(M∗), let pxi
(1) = 1. Otherwise,

for all other values of i, let pxi
(1) = 0.

Solution: The optimal strategy for this problem will probe
any K of the channels in set {1, · · · ,M∗} (either randomly
or deterministically), and satisfies: minu∈UK

{V ∗
x − V u

x } =
δu[0,M∗]

These results are proven in Appendix E. Combining the
result of Problem 1 with (11), we see that u[0,M∗] must be
the optimal worst-case strategy.

Now we show that when case 1 of Theorem 1 does not
hold, then case 2 must be true. When case 1 of this theorem
is not true for all K ≤ M̄ ≤ M , then for each M̄ one of the
following is true:

rM̄ <
L̃ − η(M̄)∑M̄

j=1
1
rj

or rM̄+1 >
L̃ − η(M̄)∑M̄

j=1
1
rj

Combining this with η(K) = L̃ from the definition of η, it
can be shown that case 2 must be satisfied for some M∗.

We note that for l∗ and M∗ described by case 2 of Theorem
1, it can be shown that η(M∗) + 1 ≤ l∗ ≤ η(M∗ − 1) − 1.
Thus, u[l∗,M∗] is a valid strategy in Definition 1.

To prove that u[l∗,M∗] as described by case 2 is optimal,
we consider the following problem.

Problem 2: For any given L,K and set of channels, de-
fine M as in (9). Suppose case 2 of Theorem 1 holds for
some M∗ and l. Let state x have the following marginal
probabilities: For 1 ≤ i ≤ M∗ − 1, let pxi

(1) = rM∗
ri

. For
M∗ ≤ i ≤ M∗ + l − 1, let pxi

(1) = 1. When i = M∗ + l,
then let pxi

(1) = L̃ − l − rM∗
∑M∗−1

j=1
1
rj

. Otherwise, for all
other values of i, let pxi

(1) = 0.

Solution: As shown in Appendix F, the optimal strategy for
this problem probes any K of the channels in set {1, · · · ,M∗}
and satisfies: minu∈UK

{V ∗
x − V u

x } = δu[l,M∗] .
Combining this with (11) proves that for case 2 of Theorem

1, u[l,M∗] must be the optimal strategy.
This concludes the proof of Theorem 1, since we have

shown that either case 1 or 2 must hold, and we have derived
the optimal strategy for each case.

V. NUMERICAL RESULTS

In this section, we examine the performance of the proposed
algorithms under a range of system parameters. We first
compare the performance between the optimal strategies under
the different metrics described in Section II. Then we compare
the worst-case strategies to other heuristics or algorithms.

A. Comparison of Metrics

For the numerical results, we chose parameters rj as fol-
lows. For a given N , the rj were uniformly distributed in
[0, 1]. For each realization of the rates {rj}j∈S , we computed
the average reward obtained by the following strategies:

1) genie, or omniscient observer: knows in advance the L̃
available channels with highest bandwidth.

2) u∗: the optimal strategy within the class given by
Definition 1, and shown to be optimal in Theorem 1. We
used Lemma 3 to determine the best worst-case strategy
among this class for a given L,K,N .

3) u[0,M ]: the optimal strategy under the conditions given
by Corollary 1

4) uniform: the strategy which uniformly picks K out of the
N channels to probe, regardless of their rate/bandwidth,
shown to be optimal for (B) in Theorem 2.

Figure 2 (TOP) shows the performance of these two strate-
gies when we fix K0 = K = L = 3 and N varies from 5
to 10. In order to achieve L = 3, we set pxj

(1) = 3/N for
all 1 ≤ j ≤ N . We see that u∗ outperforms u[0,M ] and
uniform for most N . Note that for large N , u[0,M ] slightly
outperforms u∗. This is because even though u∗ may have
a lower worst-case difference (bound over all x), it does not
necessarily outperform u[0,M ] for some given x. In general,
the performance of these two strategies is similar for most
N , especially as N increases. The latter can be explained by
the fact that as N (and M ) increase while K stays fixed, it
becomes more likely that the conditions of Corollary 1 are
satisfied. Hence, as N increases then it is more likely that u∗

and u[0,M ] are the same strategy. The performance of the
genie varies for each realization of the {rj} and x, but its
average performance is relatively constant with respect to N
since L = 3 does not change and the genie can only use the
K0 = 3 available channels with highest rate.

Figure 2 (BOTTOM) shows the performance of these strate-
gies when N = 10, L = 5 and K = K0 increases from 3 to 9.
As expected, the average rewards of u∗, u[0,M ], and uniform
all approach the genie’s average reward as K increases. This
holds because it becomes more likely that these strategies will
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Fig. 2. (TOP): Average performance of the genie, algorithms u∗, u[0, M ],
and uniform as described in Section V, when K = L = 3 and N varies
from 5 to 10 (BOTTOM): When N = 10 and L = 5, average performance
of these strategies as K increases from 3 to 9.

probe the best channels as K increases. On the other hand,
we also see that u∗ strictly outperforms uniform for all K.

These results indicate that the optimal strategies under
the worst-case difference performance measure considered
in Section II-B appear to outperform the optimal algorithm
(uniform) arising from the worst-case ratio performance mea-
sure. In addition, if the procedure of determining u∗ becomes
impractical, then one can instead consider the strategy u[0,M ]
which has comparable performance for the scenario described
in this section but is very easy to construct using the proposed
Algorithm 1.

B. Sensitivity Analysis of Strategies

The optimal strategies in Section IV are derived under
worst-case performance measures. If the transmitter knows
the distribution of x, i.e. channel states, then it can probe
and use the K channels with highest values of pxi

(1)ri in
order to maximize V u

x (we call this the optimal average-reward
strategy) and outperform the optimal worst-case strategies. On
the other hand, if this knowledge of the distribution is incorrect
then the optimal average-reward strategy may have a poor
performance. The optimal worst-case strategies, on the other
hand, are guaranteed to perform well over all x and therefore
could be more robust to changes in x.

To illustrate this, we compare various strategies for the
following scenario, where N = 10 and L = K = K0 = 5.
For any given set of rewards {rj}, Pxj

(1) = jα/β for all
1 ≤ j ≤ N and some −5 ≤ α ≤ 5. Here, β is a normalizing
constant to ensure that x ∈ XL. Note that when α = 0, then x
takes on the uniform distribution. Negative (positive) α means
the channels with higher (lower) rate have a higher probability
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Fig. 3. Comparison of optimal average-reward strategies v0 and v2 to the
optimal worst-case strategies u∗, u[0, M ] and uniform as the channel state
distribution is varied, as described in Section V-B.

of being available. We let v0 and v2 to be the optimal average-
reward strategies when the transmitter believes α = 0, 2,
respectively. Note that strategy v0 (or v2) probes the K
channels with the highest values of rj (or rjj

2/β). Thus, these
strategies can be seen as simple heuristics which probe based
on weighted values of the channel rates.

As shown in Figure 3, we examined the performance of
these strategies by varying the real value of α. For a given
α, the {rj} were uniformly distributed in [0, 1] and the
average performance of v0, v2, u∗, u[0,M ], and uniform
was determined for 104 realizations. This process was repeated
for −5 ≤ α ≤ 5. Note that performance of v0 and v2 under
various α indicates how it is affected when there are errors in
the transmitter’s belief of the true α.

We see that for negative (positive) α, v0 (v2) performs very
well. On the other hand, we see that as α increases (decreases),
the expected reward of v0 (v2) approaches zero. This is
because v0 probes the channels with the K highest rewards,
thus it performs better when the channels with higher rate
have a higher probability of being available. Similar reasoning
can be applied for v2. On the other hand, u∗ and u[0,M ]
are relatively robust to changes in the value of α, as their
total reward does not approach 0 if α varies. This example
illustrates the robustness of worst-case strategies compared to
optimal average-reward strategies under varying distributions.

VI. CONCLUSION

In this paper, we examined optimal competitive algorithms
for joint channel probing and transmission. We formulated
multiple worst-case performance measures and derived a class
of optimal strategies. We presented an algorithm which se-
quentially generates a subclass of these strategies with low
computational complexity. The performance of these strategies
were also examined via numerical studies. These results and
algorithms are applicable to many practical scenarios, particu-
larly when the channel quality is changing unpredictably and
the transmitter cannot model it stochastically.
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APPENDIX

A. Proof of Lemma 1

For notation, let δu
x = V ∗

x − V u
x for any strategy u.

First note that because L̃ ≤ L, we have XL̃ ⊆ XL.
Thus, maxx∈XL

{δu
x}≥maxx∈XL̃

{δu
x}. Thus to complete

the proof, we only need to show that the righthandside of
this inequality is less than or equal to the lefthandside. To
prove this, we show that for any x ∈ XL there exists
corresponding y ∈ XL̃ such that V ∗

y − V u
y ≥ V ∗

x − V u
x .

Consider any x ∈ XL. Note from the equation for V ∗
x that

for any realization x(ω), where x = [x1(ω), · · · , xN (ω)],
only the min {K0, |x(ω)|} available channels with highest rate
determine the expected reward of the genie. We can define
a new channel state y such that yj(ω) = 1 if and only if
xj(ω) = 1 and j is one of the min {K0, |x(ω)|} available
channels with the highest rate.

We see that because |y(ω)| ≤ L̃ for all realizations ω, then
y ∈ XL̃ and V ∗

x = V ∗
y . At the same time, clearly V u

x ≥ V u
y

for any strategy u. Thus, V ∗
x − V u

x ≤ V ∗
y − V u

y .

B. Proof of Lemma 2

Note that since Algorithm 1 randomly chooses which chan-
nels to use, then the value for K after each step is a random
variable. Let K̄i denote the value for K after i iterations of
Step 1. The value of M̄ also changes after each iteration.
We let K̄0 and M0 denote the initial (fixed) values for K
and M̄ , respectively. Thus we need to show that any strategy
generated by Algorithm 1 has the same marginal probabilities
as u[0,M0] of Definition 1, with K̄0 replacing K. We first
show this holds for 1 ≤ i ≤ M0 by induction.

Induction Basis: As described in Algorithm 1, initially p =
1− M0−K̄0

r1
∑ M0

j=1
1

rj

and we set u1 = 1 with probability p. Therefore,

the result holds for i = 1.

Induction Hypothesis: First let’s consider any 2 ≤ l ≤ M0.
Suppose the result holds for i = 1, · · · , l − 1. We will
show it also holds for i = l. The probability that we
use channel l is a random variable given by: p = 1 −
[(M̄ − i + 1) − K̄i−1]/(ri

∑M0
j=i

1
rj

). Taking the expectation
of p gives the marginal probability that channel l is used:

pul
(1) = 1 − (M0 − l + 1) − E[K̄l−1]

rl

∑M0
j=l

1
rj

(13)

We note that E[K̄l−1] can be calculated as follows by consid-
ering Step 2 of Algorithm 1:

E[K̄l−1] = K̄0 −
l−1∑
j=1

puj
(1) = K̄0 −

l−1∑
j=1

[
1 − M0 − K̄0

rj

∑M0
l=1

1
rl

]
,

where we have used the induction hypothesis which gave us
puj

(1) for all j ≤ l − 1. Plugging this result back into (13) and
rearranging, we obtain: pul

(1) = 1−[M0 − K̄0]/[rl

∑M0
j=1

1
rj

],
which proves that the result holds.

Now consider any M0 + 1 ≤ l ≤ N . We need to prove that
pul

(1) = 0. By step 3 of the algorithm, this will always be
true if P

(
K̄M0 = 0

)
= 1. We prove this as follows. Initially,

K̄0 ≤ M0, and whenever K̄j−1 = M0 − j + 1 then from
Step 1 we have p = 1 which means that in Step 2 we will
obtain K̄j = K̄j−1 − 1 = M0 − (j + 1) + 1 = M0 − j. Thus,
it is impossible to have K̄j > M0 − j for any j. Therefore,
K̄M0 ≤ M0 − M0 = 0 with probability 1, which proves the
result.

C. Proof of Theorem 2

First let’s consider any strategy u∗ with marginal probabil-
ities described in Theorem 2. We have by using (6):

ρu∗
= min

x∈XL

{
K
N

∑N
j=1 rjpxj

(1)∑N
j=1 rjpxj

(1)

}
= min

x∈XL

{
K

N

}
=

K

N

Now consider any other strategy u with marginal probabil-
ities that differ from those given by Theorem 2, i.e. strategies
which do not probe channels uniformly. This implies there
exists 1 ≤ j ≤ N such that puj

(1) �= K/N . On the other
hand, we know from definition of UK in (2) that the sum of
the marginal probabilities is at most K. Thus, there exists
1 ≤ i ≤ N such that pui

(1) < K
N . Then we obtain the

following for this i, by setting pxi
(1) = 1 and pxj

(1) = 0
for all j �= i:

ρu = min
x∈XL

{∑N
j=1 rjpxj

(1)puj
(1)∑N

j=1 rjpxj
(1)

}
≤ ripui

(1)
ri

<
K

N
.

Thus we see that ρu∗ ≥ ρu for all u ∈ UK , and therefore u∗

must be optimal.

D. Proof of Lemma 3

First consider any strategy u[0, M̄ ]. We know from (8) that
δu is given by the following:

δu = max
x∈XL̃


 (M̄ − K)∑M̄

j=1
1
rj

M̄∑
i=1

pxi
(1) +

N∑
i=M̄+1

ri · pxi
(1)


 .



Meanwhile, by definition of η(M̄), we have the following
for all 1 ≤ i ≤ η(M̄) < k, where i, k are integers:

rM̄+i

M̄∑
j=1

1
rj

≥ M̄ − K > rM̄+k

M̄∑
j=1

1
rj

. (14)

From these inequalities, we see there exists state x which
achieves the maximum in δu by setting pxM̄+j

(1) = 0 for
j ≥ η(M̄) + 1, and pxM̄+j

(1) = 1 for 1 ≤ j ≤ η(M̄), and
pxj

(1) = 1 for any L̃ − η(M̄) values of j in 1 ≤ j ≤ M̄ .
Note that this is a valid x as η(M̄) ≤ L̃ by definition of η(M̄).
Thus δu reduces to the equation given in Lemma 3.

Now consider u[l, M̄ ] when l > 0. In this case δu becomes

δu = max
x∈XL̃




M̄−1∑
i=1

ripxi
(1)

rM̄+l

ri
+

N∑
i=M̄+1

ripxi
(1)

+rM̄pxM̄
(1)


M̄ − K − rM̄+l

M̄−1∑
j=1

1
rj





 (15)

By the definition of η(M̄ − 1), we have the following:
rM̄+η(M̄−1)+1

∑M̄−1
j=1

1
rj

< M̄ − 1 − K. Combining this with
l ≥ η(M̄ −1) and using rj ≤ rk for any j ≥ k, we obtain the

inequality: rM̄−1+l+1

(∑M̄
j=1

1
rj

)
< (M̄ − K). Rearranging

yields: rM̄+l < rM̄

(
M̄ − K − ∑M̄−1

j=1 (rM̄+l/rj)
)

.
Thus we see that (15) can be maximized by setting

pxM̄+k
(1) = 1 for 0 ≤ k ≤ l̃ − 1, and pxj

(1) = 1 for any L̃− l̃
values of j in 1 ≤ j ≤ M̄ − 1. Plugging this maximization
into (15) completes the proof.

E. Optimal Strategy for Problem 1

We first note from the definition of M∗ from case 1 of
Theorem 1 that 0 ≤ pxj

(k) ≤ 1, i.e. the marginal probabilities
for x are valid. Since V ∗

x does not depend on u, then we have
the following:

min
u∈UK

{V ∗
x − V u

x } = V ∗
x − max

u∈UK

V u
x .

Therefore, the optimal strategy for this problem is the one
which maximizes V u

x .

Plugging the marginal probabilities for x into the defining
equation for V u

x , we obtain:

V u
x =

M∗∑
j=1

puj
(1)

L̃ − η(M∗)∑M
j=1

1
rj

+
η(M∗)∑

j=1

puj
(1)rM∗+j .

We see from the definition of M∗ in case 1 of Theorem 1
that there exists a strategy which maximizes V u

x by setting
puj

(1) = 0 for all M + 1 ≤ j ≤ N and probes any K of the
channels in {1, · · · ,M∗}. Thus, the reward of using optimal
strategy u∗ is given by: V u∗

x = [L̃ − η(M∗)]K/(
∑M∗

j=1
1
rj

) ,
which holds regardless of which K of the channels are probed.

Meanwhile, we have:

V ∗
x =

N∑
l=1

rlpxl
(1) =

L̃ − η(M∗)∑M∗
j=1

1
rj

M∗ .

Taking the difference between V ∗
x and V u∗

x , and comparing
with δu[0,M∗] given by Lemma 3, we obtain the result.

F. Optimal Strategy for Problem 2

We follow a similar technique used in Appendix E for
Problem 1. First, the optimal strategy maximizes V u

x , which
can be written as follows:

V u
x =

M∗∑
j=1

rM∗

rj
puj

(1)rj +
l−1∑
j=1

puM+j
(1)rM+j

+


L̃ − l − rM∗

M∗−1∑
j=1

1
rj


 puM∗+l

(1)rM∗+l,

We see that because rj > rk for all j < k, then V u
x is

maximized by probing any K of the channels in {0, · · · ,M∗}.
Thus its reward is simply rM∗K.

Meanwhile, from (4) we have:

V ∗
x = rM∗M∗ +

l−1∑
j=1

rM+j +


L̃ − l − rM∗

M∗−1∑
j=1

1
rj


 rM∗+l .

Taking the difference between this and the reward of the op-
timal strategy, and comparing with δu[l,M∗] given by Lemma
3, proves the result.


