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Abstract— In this paper we consider the problem of query
and search in a network, e.g., searching for a specific node or
a piece of data. We limit our attention to the class of TTL
(time-to-live) based controlled flooding search strategies where
query/search packets are broadcast and relayed in the network
until a preset TTL value carried in the packet expires. Every
unsuccessful search attempt results in an increased TTL value
(i.e., larger search area) and the same process is repeated.
Every search attempt also incurs a cost (in terms of packet
transmissions and receptions) and a delay (time till timeout or
till the target is found). The primary goal is to derive search
strategies (i.e., sequences of TTL values) that minimize a worst-
case cost measure subject to a worst-case delay constraint. We
present a constrained optimization framework and derive a class
of optimal strategies, shown to be randomized strategies, and
obtain their performance as a function of the delay constraint.
We also use these results to discuss the trade-off between search
cost and delay within the context of flooding search.

Index Terms— data query and search, TTL, controlled flood-
ing search, wireless sensor and ad hoc networks, constrained
optimization, randomized strategy, competitive analysis

I. INTRODUCTION

Query and search form an important functionality for many
network applications. Searching for a destination node whose
location is unknown is a prime example frequently encoun-
tered by ad hoc network routing protocols and services, e.g.,
[1], [2], [3]. Other examples include the search for certain data
of interest in an environmental monitoring sensor network [4],
and more broadly, the search for a shared file in a peer-to-
peer (P2P) network. A good search mechanism should have a
short response time, e.g. the time it takes to find the object of
interest, and should do so with minimal cost. Such cost refers
to the amount of processing and transmissions incurred by
the search. This is particularly important in a wireless context
where cost is associated with energy consumption, measured
by the amount of packet transmissions and receptions.

There are a variety of mechanisms one may use to conduct
search. These include maintaining a centralized directory
service, or by sending out a query packet that traverses the
network in a certain way, e.g., the rumor routing proposed in
[4] and the random walk method in [5].

In this paper we focus on the class of TTL-based con-
trolled flooding search. This decentralized search mechanism
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is widely used, e.g., in ad hoc routing protocols [6] as well as
in P2P networks [7]. Under this scheme the node originating
the search (also referred to as the source node) sends out a
query packet that carries an integer TTL (time-to-live) value. If
the underlying network is wired, this query will be transmitted
once along each outgoing link of the source. In a wireless
network, this packet reaches all immediate neighbors in a
single broadcast transmission. If the search target is found at
a neighboring node, it will reply to the source. Otherwise it
decrements the TTL value by one and retransmits the query
packet containing the new TTL value. This continues until
TTL reaches zero. Thus how much of the network has been
queried is controlled by the TTL value. If the target is not
found in this search area, the source node will eventually time
out and initiate another round of search covering a bigger
area using a larger TTL value, and presumably setting a larger
timeout value for that round of search. This process continues
until either the object is found or the source gives up. Hence
the performance of a search strategy both in terms of cost and
delay is determined by the sequence of TTL values used.

Controlled flooding search has previously been studied in
[7], [8], [6], [9]. In [8] it was shown that if the target
location distribution is known, then a dynamic programming
formulation can be used to find TTL sequences that mini-
mize the average search cost. When this distribution is not
known, [7] derived the optimal deterministic TTL sequence
that minimizes a worst-case cost measure. For the same cost
measure [8] showed that the best strategies are randomized
TTL sequences. [9] further derived the optimal randomized
strategy. All these studies focused only on the cost of search
and did not consider the delay of search.

The primary goal of this paper is to derive TTL controlled
flooding search strategies that perform well both in terms
of the search cost and the search delay. While there are a
variety of ways to handle multiple (potentially conflicting)
objectives, in this study we will approach this by formu-
lating a constrained optimization problem. Specifically, we
will attempt to minimize a cost measure subject to a delay
constraint. The solution to this problem results in search
strategies that minimize the search cost and locate the target
within a specified time constraint.

Imposing a delay constraint also allows us to study the
trade-off between search cost and search delay. This trade-off
can be seen by considering the strategy of flooding the entire
network (e.g., setting the TTL to be the maximum allowed
value, assumed sufficient to cover the whole network). Such



a strategy would most likely result in a short search delay, as
the target node is likely to be found during the first round.
On the other hand, this strategy is not the most cost effective
[7], [8], as it results in a large amount of packet transmissions
and retransmissions. Conversely, it may be the case that some
strategy incurs extremely low cost but suffers from high delay.
Under the constrained optimization framework studied in this
paper, we will be able to conveniently address the above
performance trade-off.

The main contributions of this paper are summarized as
follows:

1) We provide an analytical framework within which the
delay of search strategies can be studied along with
their cost. The previously studied unconstrained problem
(simply minimizing a cost measure) [7], [9] becomes
a special case under this framework when the delay
constraint is not binding. In this sense, this method
is a key generalization of prior work and presents a
much more powerful analytical tool. To the best of our
knowledge, delay has not been studied in this context
before.

2) When a worst-case delay constraint is imposed, we
derive a class of optimal strategies that minimize worst-
case cost measure among all strategies that satisfy the
delay constraint. In [8], it was shown that random-
ized strategies outperform deterministic strategies in the
unconstrained problem. With this study we show that
the same holds when a worst-case delay constraint is
imposed.

3) We establish an understanding of the trade-off between
delay constraints and corresponding optimal achievable
cost, and show specifically how the two conflicting
objectives can affect each other.

In addition to the above, our problem formulation and
abstraction generalize to a much larger class of optimization
problems involving constrained resource allocation. This is
discussed at the end of this paper.

The rest of the paper is organized as follows. In Section
II we present the network model and assumptions used in
this study. We then introduce our performance measures and
objectives, along with the main results of this paper in Section
III. In Section IV we derive the optimal worst-case strategies
satisfying a delay constraint. These results are discussed and
examined in Section V. Section VI concludes the paper.

II. NETWORK MODEL

A. Model and Assumptions

We will limit our analysis to the case of searching for a
single target, which is assumed to exist in the network. For the
rest of our discussion we will use the term object to indicate
the target of a search, be it a node, a piece of data or a file.
Within the context of controlled flooding search, the distance
between two nodes is measured in number of hops, assuming
that the network is connected. Two nodes being one hop away
means they can reach each other in one transmission.

We measure the position of an object by its distance to the
source initiating the searching. We will use the term object
location to indicate the minimum TTL value needed to locate
the object, denoted by X . The term network dimension refers
to the minimum TTL required to reach every node in the
network, denoted by L. Also, F̄X(u) = P (X > u) denotes
the tail distribution of the random variable X .

We will assume that a TTL value of u will reach all
nodes within u hops of the source and will find the object
with probability 1 if it is located within u hops, when the
timer expires. This assumption implies that a timeout event is
equivalent to not finding the object in the u-hop neighborhood,
and that flooding the entire network will for sure locate the
object. This is reasonable in a wired network, as long as packet
loss is low and timeout values are properly set to sufficiently
account for delay in the network. On the other hand, this
assumption is a simplification in a wireless network because
packet collisions and corruption losses can cause the query
propagation process to be much more random and less reliable.
This assumption nevertheless allows us to reveal some very
interesting fundamental features of the problem and obtain
valuable insights.

A search strategy u is a TTL sequence of certain length
N , u = [u1, u2, · · · , uN ]. It can be either fixed/deterministic
where ui, i = 1, · · · , N, are deterministic values, or random
where ui are drawn from probability distributions. For a
fixed strategy we assume that u is an increasing sequence.
For randomized strategies, we assume all realizations are
increasing sequences. The requirement for the sequence to be
increasing is a natural one under the assumption that search
with TTL u will always find the object if it is indeed within u
of the source. Note that in a specific search experiment we may
not need to use the entire sequence; the search stops whenever
the object is found.

In practice, it is natural to only consider integer-valued (dis-
crete) policies. However, considering real-valued sequences
proves to be helpful in deriving optimal integer-valued strate-
gies. For this reason we will also consider continuous (real-
valued) strategies, denoted by v, where v = [v1, v2, · · · , vN ],
and vi is either fixed or a continuous random variable that
takes real values. When considering discrete strategies, TTL
values are integers and the object location X is assumed to be
a positive integer taking values between 1 and L. In analyzing
continuous strategies, X is assumed to be a real number in
the interval [1, L].

A strategy is admissible if it locates any object of fi-
nite location with probability 1. For a fixed strategy this
implies uN = L. For a random strategy, this implies
Pr (ui = L for some 1 ≤ i ≤ N) = 1. In the asymptotic
case as L → ∞, a strategy u is admissible if ∀ x ≥
1, P r (un ≥ x for some n ∈ Z

+) = 1. This implies that in
the asymptotic case, u is an infinite-length vector. We let V
denote the set of all real-valued admissible strategies (random
and fixed). U denotes the set of all integer-valued admissible
strategies (random and fixed).



B. Search Cost and Delay

We will associate a cost C(u) with a single round of
search using TTL value u. The functional form of this cost
depends on the properties of the network as well as the
underlying broadcast techniques used. In our analysis we will
ignore these details and simply assume that such a function is
obtainable, i.e., by estimating the number of transmissions and
receptions, etc. C(u) is therefore an abstraction of the lower
layer properties, and for the rest of our discussion we will no
longer regard network as wired or wireless, but only discuss
in terms of the search cost C(u).

Note that in general, a node receiving the search query will
be unaware whether the object is found at another node in the
same round (except perhaps when the object is found at one
of its neighbors, or some other more sophisticated schemes
are employed). Thus this node will continue the process by
decrementing the TTL value and passing on the search query.
We can therefore regard the search cost as being paid in
advance, i.e., the search cost for each round is determined
by the TTL value and not by whether the object is located in
that round.

We next introduce the search delay function. We denote
by Dt(u) the timeout value used when searching with TTL u.
This is the delay incurred when the object is not found using u,
i.e., when u < X . On the other hand, if u ≥ X , then the object
will be found within this round of search. The delay incurred
in this case is the amount of time it takes for the query to
propagate X hops and for the reply to reach back to the source.
We will denote this delay by Dr(X) for object location X .
Therefore mathematically the search delay of using TTL value
u can be written as: I(u < X)Dt (u) + I(X ≤ u)Dr (X) ,
where I is the indicator function: I(A) = 1 if A is true and
0 otherwise.

For real-valued sequences, we require that the function
C(v) and D(v) be defined for all v ∈ [1,∞), while for
integer-valued sequences we only require that the cost and
delay functions be defined for positive integers. When the cost
function is invertible, we write C−1(·) to denote its inverse.
We will adopt the natural assumption that C(v1) > C(v2) and
D(v1) > D(v2) if v1 > v2. We also denote by C the class of
cost functions C : [1,∞) → [C(1),∞), that are increasing,
differentiable, and have the property limv→∞ C(v) = ∞.
Finally, we let C1 denote the set of functions C(·) ∈ C such
that limx→∞

C(x+1)
C(x) = 1. Note that even though C1 is a

subclass of C, it contains all polynomial cost functions and
therefore remains very general.

III. PROBLEM FORMULATION AND MAIN RESULTS

A. Problem Formulation

We will consider the search performance in the asymptotic
regime as L → ∞. This is because it is difficult if at all
possible to obtain a general strategy that is optimal for all
finite-dimension networks as the optimal TTL sequence often
depends on the specific value of L. In this sense, an asymp-
totically optimal strategy may provide much more insight into

the intrinsic structure of the problem. It will become evident
that asymptotically optimal TTL sequences also perform very
well in a network of arbitrary finite dimension.

Let Ju
X denote the expected search cost of using strategy u

when the object location is X . This quantity can be calculated
as follows:

Ju
X = EuEX

[ ∞∑
k=1

I (X > uk−1) C(uk)

]
(1)

= Eu

[ ∞∑
k=1

F̄X(uk−1)C(uk)

]
, (2)

where u0 = 0, Eu and EX denote expectations with respect
to u and X , respectively. The expectation and summation can
be interchanged due to the Monotone Convergence Theorem
[10]. We will drop the variable from the subscript when it is
clear which variable the expectation is taken with respect to.

Similarly, let Du
X denote the expected search delay induced

by strategy u for X . This quantity can be calculated as follows:

Du
X = EuEX

[ ∞∑
k=1

I(X > uk)Dt(uk)

]

+ EuEX

[ ∞∑
k=1

I(uk ≥ X > uk−1)Dr(X)

]

= Eu

[ ∞∑
k=1

F̄X(uk)Dt(uk)

]
+ EX [Dr(X)] . (3)

When the distribution of X is known in advance, a natural
objective is to determine strategies that minimize Ju

X subject
to some constraint on Du

X . In general, such computations
are numerical and the optimal solutions can be determined
by standard constrained optimization techniques [11] [12].
In Section IV-B, we will derive the optimal strategy for a
particular distribution of X and delay constraint under which
the optimal strategy has a very interesting structure.

On the other hand, when the distribution of X is not known
in advance, as is often the case, then we need a different
approach. In this study we adopt a worst-case performance
measure. Consider an omniscient observer who knows the
object location in advance and will use a TTL of X , incurring
an expected cost of E[C(X)]. We can then measure the
performance of a strategy u by the following:

ρu = sup
{pX(x)}

Ju
X

E[C(X)]
, (4)

where {pX(x)} denotes the set of all probability distributions
for X such that E[C(X)] < ∞. The term ρu is an upper-
bound, or worst-case measure, on the ratio between the cost
of strategy u and the omniscient observer, over all X . We will
refer to ρu as the competitive ratio, or worst-case cost ratio,
of u. This type of worst-case measure is commonly used in
many online decision and computation problems [13]. It was
introduced in [7] as a method of analyzing flooding strategies,
and generalized in [8] to study randomized strategies.



We apply a similar worst-case analysis to delay. The min-
imum expected delay is E[Dr(X)], obtainable by either an
omniscient observer or a strategy that uses the highest TTL
(u = [L] as L → ∞). Hence the worst-case delay ratio is
defined as:

τu = sup
{pX(x)}

Du
X

E[Dr(X)]
, (5)

where we note in this case {pX(x)} is the set of all location
distributions such that E[Dr(X)] < ∞. Note that the worst-
case cost and delay ratios are always strictly greater than 1
for any admissible strategy as it is impossible to equal or do
better than the omniscient observer.

We define the following set:

Ud =

{
u ∈ U : sup

{pX(x)}

Du
X

E[Dr(X)]
≤ d

}
, (6)

for some constant d > 1. This is the set of all strategies
whose delay is always within a factor d of the delay of the
omniscient observer, regardless of X . We will call d the delay
constraint. Note that as d → ∞, the delay constraint becomes
less restrictive and the set Ud approaches U .

We seek a strategy that satisfies this delay constraint d
and has the smallest worst-case cost ratio, i.e. achieves the
minimum worst-case cost ratio among all u ∈ Ud:

ρ∗d = inf
u∈Ud

sup
{pX(x)}

Ju
X

E[C(X)]
. (7)

This essentially constitutes our constrained optimization prob-
lem (P), rewritten as follows:

inf
u

sup
{pX(x)}

Ju
X

E[C(X)]
(8)

s.t. sup
{pX(x)}

Du
X

E[Dr(X)]
≤ d (9)

Note that the two supremums in (P), one in the objective
function and the other in the constraint, are in general not
achieved under the same distribution pX(x). The intention for
adopting such a worst-case formulation, which may be viewed
as somewhat conservative, is to place an upper bound on both
the delay and the cost over all possible locations.

The above definitions also hold analogously for continuous
strategies, by simply replacing U with V , and replacing the set
{pX(x)} with {fX(x)}, which is the set of density functions
such that E[C(X)] < ∞, or E[Dr(X)] < ∞ depending on
whether we consider worst-case cost or delay. We will thus
denote ρv, τv and Vd as the continuous versions of (4), (5),
(6), respectively. We will use the same notation ρ∗d to denote
the minimum worst-case cost ratio achieved by continuous
strategies satisfying a delay constraint d; the distinction should
be clear from the context. Vd is defined as follows for any
d > 1:

Vd =

{
v ∈ V : sup

{fX(x)}

Dv
X

E[Dr(X)]
≤ d

}
. (10)

We now show that there is no loss in generality in assuming
that Dt(·) = Dr(·). Let D̃u

X denote expected delay of strategy
u for object location X when these two functions are equal.
Then note the following:

Du
X

E[Dr(X)]
=

E[Dt(X)]
E[Dr(X)]

Eu

[∑∞
k=1 F̄X(uk)Dt(uk)

]
E[Dt(X)]

+ 1

=
E[Dt(X)]
E[Dr(X)]

(
D̃u

X

E[Dt(X)]
− 1

)
+ 1 (11)

Hence, the delay ratio when Dt �= Dr is simply a rescaling of
the ratio when Dt and Dr are the same functions. Specifically,
a strategy u satisfies Du

X/E[Dr(X)] ≤ d if and only if:

D̃u
X

E[Dt(X)]
≤ E[Dr(X)]

E[Dt(X)]
(d − 1) + 1 (12)

Therefore, the set Ud that we defined for the case of Dt �=
Dr can easily be redefined if Dt = Dr, by simply rescaling
the delay constraint d. Note that this result holds in both the
discrete and continuous cases. Therefore for the rest of the
analysis, we will assume these two functions are equal while
noting that the results apply to the unequal case by scaling
the constant d. We let D(u) = Dt(u) = Dr(u) for all u. It
follows that using a TTL value u for object location X will
incur a delay of D (min {X,u}).

B. Main Results

In this section we present our main results to be proven
and discussed later in this paper. We begin by examining
optimal continuous strategies, i.e., finding the strategy in Vd

that achieves minimum worst-case cost ratio. We define the
following class of continuous strategies:

Definition 1: Assume that the cost function C(·) ∈ C. Let
v[r, Fv1(·)] denote a jointly defined sequence v = [v1, v2, ...]
with a configurable parameter r, generated as follows:

(J.1) The first TTL value v1 is a continuous random variable
taking values in the interval

[
1, C−1(r · C(1))

)
, with

its cdf given by some nondecreasing, right-continuous
function Fv1(x) = Pr(v1 ≤ x). Note that this means
Fv1 (1) = 0 and Fv1

(
C−1(r · C(1))

)
= 1.

(J.2) The k-th TTL value vk is defined by vk =
C−1

(
rk−1C(v1)

)
for all positive integers k.

From (J.1) and (J.2), it can be seen that r and Fv1(·) uniquely
define the TTL strategy, and that given the selection of v1, the
cost of successive TTL values essentially form a geometric
sequence of base r, i.e., C(vk) = rk−1C(v1). More discussion
on this structure is given in Section V.

Our main theorem regarding the class of continuous strate-
gies V is as follows.

Theorem 1: When C(·) ∈ C and C(·) = βD(·)m for some
m,β > 0, we have:

(1) For any fixed 1 < d < m + 1,

inf
v∈Vd

sup
{fX(x)}

Jv
X

E[C(X)]
=

(d − 1)
m

e
m

d−1 . (13)



Moreover, this minimum worst-case ratio is achieved by using
the strategy v[r, 1

ln r ln C(·)
C(1) ] with r = e

m
d−1 .

(2) For d ≥ m + 1, we have:

inf
v∈Vd

sup
{fX(x)}

Jv
X

E[C(X)]
= e . (14)

Moreover, this minimum worst-case ratio is achieved by using
the strategy v[r, 1

ln r ln C(·)
C(1) ] with r = e.

Note the optimal strategy of Theorem 1 can be adjusted
for different delay constraints by varying the parameter r.
These optimal continuous strategies will be used to derive
discrete strategies which perform well in the worst-case and
are optimal for a subset of C. In particular, we have the
following.

Theorem 2: When C(·) ∈ C and C(·) = βD(·)m for some
m,β > 0, we have:

(1) For 1 < d < m + 1,

inf
u∈Ud

sup
{pX(x)}

Ju
X

E[C(X)]
≤ (d − 1)

m
e

m
d−1 . (15)

(2) For d ≥ m + 1,

inf
u∈Ud

sup
{pX(x)}

Ju
X

E[C(X)]
≤ e . (16)

Whether the upper bounds in Theorem 2 become equalities
appears to depend on the specific cost function C(·). By
restricting our attention to cost functions C(·) ∈ C1 we
have the following result. For any strategy v, let �v	 denote
the strategy [�v1	, �v2	, · · · ], where �vk	 denotes the greatest
integer less than or equal to vk.

Theorem 3: Consider C(·) ∈ C1 and C(·) = βD(·)m for
some m,β > 0.

(1) For 1 < d < m + 1,

inf
u∈Ud

sup
{pX(x)}

Ju
X

E[C(X)]
=

(d − 1)
m

e
m

d−1 , (17)

where this minimum worst-case ratio can be achieved by
the discrete strategy u∗ = �v∗	, where v∗ denotes strategy
v∗[e

m
d−1 , d−1

m ln C(·)
C(1) ] given by Definition 1.

(2) For d ≥ m + 1, we have

inf
u∈Ud

sup
{pX(x)}

Ju
X

E[C(X)]
= e . (18)

Moreover, this minimum worst-case cost ratio is achieved by
strategy u∗ = �v∗	, where v∗ denotes strategy v∗[e, ln C(·)

C(1) ].
This result shows that we can take the floor of the optimal

continuous strategy to obtain a discrete strategy which is
optimal when the cost is a subclass of C.

C. Discussion of Main Results

The main results described in the previous subsection are
derived under a worst-case performance measure. This implies
that for any object location, the optimal (for 1 < d < m + 1)
strategy v of Theorem 1 has an expected search cost within
d−1
m e

m
d−1 times the expected cost of the omniscient observer.

Similarly, its expected delay is always within factor d of the
delay incurred by an omniscient observer.

The differentiation between the two cases, 1 < d < m + 1
vs. d ≥ m+1, in all three theorems is due to the fact that the
optimization problem (P) has an active/binding constraint in
the former, and an inactive/non-binding constraint in the latter,
as we show in the next section.

The main results rely on the relationship C(·) = βD(·)m

for some m,β > 0, where the factor m essentially describes
the relative rate at which the cost and delay functions grow
with respect to TTL. First note that the constant positive factor
β cancels out in the cost or delay ratio calculated in (4) and
(5). Hence we can assume β = 1 without loss of generality.

Secondly, the relationship C(·) = D(·)m holds, for ex-
ample, in a very representative case of a searching in a
2-dimensional network with search cost proportional to the
number of transmissions incurred. In this case C(v) is well
approximated by a quadratic function (see e.g., [7], [8]) and
D(v) can be chosen to be a linear function of v (implying
m = 2), or quadratic (implying m = 1). Another scenario
described by this relationship is when m = 1, where the cost
and delay scale in the same fashion. This could be a good
model in a linear network with constant node density where
both cost and delay increase proportionally (linearly) to the
number of transmissions.

IV. OPTIMAL STRATEGIES WITH DELAY CONSTRAINTS

In this section we prove the results shown in the previous
section, i.e., the solution to problem (P). The solution approach
we take is outlined as follows. We first (in Section IV-B)
consider the continuous version of problem (P) and derive a
tight lower-bound to the minimum worst-case cost under the
delay constraint. This is accomplished by interchanging the
inf and sup in (7), and introducing a constrained optimization
problem whose objective is to minimize the average search
cost subject to a delay constraint. Then in Section IV-C we
derive a class of randomized continuous strategies whose
worst-case cost ratio matches this lower bound for all d,
proving that they are optimal. These continuous strategies are
then used in Section IV-D to derive good discrete strategies
whose performance is at least as good in the worst case. We
will also prove that they are optimal for a subclass of C.

Unless otherwise stated, all proofs can be found in the
Appendix.

A. Preliminaries

The following lemmas are critical in our subsequent analy-
sis. We will let Ju

x and Du
x denote the expected search cost and

delay, respectively, of using strategy u when Pr(X = x) = 1.
Lemma 1: For any search strategy v ∈ V and u ∈ U ,

sup
{fX(x)}

Jv
X

E[C(X)]
= sup

x∈[1,∞)

Jv
x

C(x)
, (19)

sup
{pX(x)}

Ju
X

E[C(X)]
= sup

x∈Z+

Ju
x

C(x)
, (20)

where Z
+ denotes the set of natural numbers.

Proof of this lemma can be found in [9]. In words, this
lemma states that the cost ratio is maximized when the object



location is a single point. We also have an analogous lemma
for search delay.

Lemma 2: For any search strategy v ∈ V and u ∈ U ,

sup
{fX(x)}

Dv
X

E[D(X)]
= sup

x∈[1,∞)

Dv
x

D(x)
, (21)

sup
{pX(x)}

Du
X

E[D(X)]
= sup

x∈Z+

Du
x

D(x)
. (22)

Proof of Lemma 2 can be found in [14]. These two lemmas
reduce the space over which the worst-case cost or delay can
occur, and thus are very useful in subsequent analysis.

B. A Tight Lower Bound

Consider any d > 1. To establish a tight lower bound to the
minimum worst-case cost ratio, we can interchange infimum
and supremum [11] to obtain the following:

sup
{fX(x)}

inf
v∈Vd

Jv
X

E[C(X)]
≤ inf

v∈Vd

sup
{fX(x)}

Jv
X

E[C(X)]
. (23)

Any lower bound of the left-hand side of (23) can be found
by fixing some object location distribution fX and finding the
strategy within Vd that minimizes the expected cost. Note that
the strategy in Vd that minimizes the cost may be randomized,
which makes the minimization very difficult.

Therefore, we further lower-bound the left hand side by
considering a larger set of strategies than Vd. In particular, let
Vd(Y ) denote the following set of strategies for some object
location Y such that E[D(Y )] < ∞:

Vd(Y ) =
{
v ∈ V :

Dv
Y

E[D(Y )]
≤ d

}
. (24)

Clearly, Vd(Y ) ⊇ Vd for any Y because any v ∈ Vd has
a delay ratio upper bounded by d for all object locations.
Therefore,

sup
{fX(x)}

inf
v∈Vd(Y )

Jv
X

E[C(X)]
≤ sup

{fX(x)}
inf

v∈Vd

Jv
X

E[C(X)]
, (25)

because for any object location X , the infimum on the right
hand side is over a smaller set.

A valid lower bound of the left hand side of (25) can
be obtained by choosing particular distributions for X and
Y , and finding the strategy within Vd(Y ) that minimizes the
expected cost. To obtain a tight lower bound, we need to find
a combination of X and Y such that the optimal average-cost
strategy under X satisfying the delay constraint induced by Y
has a high expected cost ratio. It is important to note that it is
not necessary that Y and X have the same distribution; this
property allows us to obtain tight lower-bounds.

We consider the following problem (P1), whose solution not
only provides a tight lower bound to (23) but also serves as an
example for deriving optimal average-cost strategies subject to
a delay constraint.

Problem 1: Suppose C(·) = βD(·)m. Let F̄X(x) =
P (X > x) = (C(x)/C(1))−α, and F̄Y (x) = P (Y > x) =

(C(x)/C(1))−α+1− 1
m , for some α > 1 and for all x ≥ 1.

Consider the following constrained optimization problem:

inf
v

Jv
X

E[C(X)]
s. t.

Dv
Y

E[D(Y )]
≤ d (26)

We solve the above problem for the following choice of α:
(1) If 1 < d < m + 1, choose α to be such that

1 < α < 1 +
m + 1 − d

m(d − 1)
. (27)

(2) If d ≥ m + 1, choose any α > 1.
As explained earlier, the distinction between the two cases

is that Problem 1 under the former (1 < d < m + 1) has a
binding constraint, while it has a non-binding constraint under
the latter (d ≥ m+1), which also means in this case Problem
1 reduces to an unconstrained optimization problem.

Solution: The optimal strategy v for this problem satisfies
C(vj)/C(1) = γj for all j. The value of γ depends on d as
follows (details can be found in the Appendix).

If 1 < d < m + 1, then γ is:

γ =
(

1 +
(α − 1)m

[(α − 1)m + 1](d − 1)

) 1
α−1

. (28)

The optimal cost ratio for this case is given by:

Jv
X

E[C(X)]
=
[
d − 1
mα

+ d

(
α − 1

α

)]
γ . (29)

If d ≥ m + 1, then γ = α
1

α−1 and the optimal cost ratio is
α

1
α−1 .
Using this solution, we see that as α approaches 1 from

above, the optimal cost ratio for the case 1 < d < m + 1 has
the following limit:

lim
α→1+

Jv
X

E[C(X)]
=

(d − 1)
m

e
m

d−1 , (30)

where the limit is reached from below. When d ≥ m + 1, then
the optimal cost ratio satisfies: limα→1+ α

1
α−1 = e. Hence, the

highest minimum cost ratio is lower bounded as follows:
Theorem 4: When C(·) = βD(·)m for β,m > 0, for any

1 < d < m + 1 the best worst-case cost ratio is lower bounded
by the following:

inf
v∈Vd

sup
{fX(x)}

Jv
X

E[C(X)]
≥ (d − 1)

m
e

m
d−1 .

Therefore, any strategy in Vd which achieves a worst-case cost
ratio of (d−1)

m e
m

d−1 must be optimal.
Similarly, when d ≥ m + 1, we have:

inf
v∈Vd

sup
{fX(x)}

Jv
X

E[C(X)]
≥ e . (31)

Therefore any strategy in Vd which achieves a worst-case cost
ratio of e must be optimal.

We next derive strategies achieving the lower bounds estab-
lished above.
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ρ∗d = e

optimal: u∗ = �v∗	
Fig. 1. Summary of results on optimal worst-case strategies under (P).

C. Optimal Delay-Constrained Strategies

For convenience, we summarize the main results given in
Section III in Figure 1. In this and the next subsection we will
prove these results. We proceed to find strategies that match
the lower bounds established in the previous subsection. To do
so, we will consider strategies of the form v[r, Fv1(x)] given
by Definition 1.

Lemma 3: Assume C(·) ∈ C and C(·) = βD(·)m for
some β,m > 0. Then for any strategy v[r, Fv1(·)], its worst-
case delay ratio is given by:

sup
1≤z<r

1
m

{
1

r
1
m − 1

g(r
1
m ) + (r

1
m − 1)g(z)

zD(1)
g′(z)
D(1)

}
+ 1 ,

where g(z) is defined as follows for 1 ≤ z ≤ r
1
m :

g(z) = D(1) +
∫ z·D(1)

D(1)

F̄v1(D
−1(y)) dy , (32)

and g′(z) denotes the derivative of g with respect to z.
Due to space limitations, the proof of this lemma is not

included in the Appendix, but can be found in [14].
Consider the family of strategies of the form

v[r, 1
ln r ln C(·)

C(1) ], we have:

g(z) = D(1)
[
z − mz ln z

ln r
+

zm

ln r
− m

ln r

]
, (33)

and g′(z) = D(1)(1−m ln z
ln r ) for all z. We have the following

results regarding this family of strategies:

(1) The worst-case delay ratio of these strategies is m
ln r +1.

This is easily verified by using Lemma 3.
(2) The worst-case cost ratio of these strategies is r

ln r .
This result was proven in [9].

We consider two special cases of this family of strategies.
The first case is when r = e

m
d−1 for some 1 < d < m +

1. With the above results, the worst-case delay ratio of this
strategy is exactly d. Hence this specific strategy belongs to Vd.
Meanwhile, its worst-case cost ratio is (d−1)

m e
m

d−1 (plugging
r = e

m
d−1 into r

ln r ), achieving the lower bound established in
Theorem 4.

The second case is when r = e. In this case we achieve
a worst-case delay ratio of m + 1 and worst-case cost ratio
of e. Hence when d ≥ m + 1, this strategy belongs to Vd

and is optimal since it matches the lower-bound established
in Theorem 4. If d > m + 1, the delay constraint becomes
non-binding under this strategy. Thus for d > m + 1 this is
also the solution to the unconstrained problem. This result was
proven separately in [9] within the context of an unconstrained
optimization problem, which we have now shown to be a
special case of the more general result in this paper.

Combining these two cases together, we obtain Theorem 1.
Therefore, we have obtained the optimal worst-case continuous
strategies for any delay constraint d > 1.

D. Optimal Discrete Strategies

As stated earlier, we are interested in deriving robust integer-
valued strategies for the TTL-based controlled flooding search,
i.e. finding u ∈ Ud achieving the minimum worst-case cost
ratio. We will use our optimal continuous strategies of the
previous subsection to derive discrete strategies that perform
well in the worst-case. We begin with the following lemma:

Lemma 4: For any v ∈ V , we have D
�v�
x ≤ Dv

x and
J
�v�
x ≤ Jv

x for all x ∈ Z
+. That is, we can take the floor of

any continuous strategy to find a discrete strategy that performs
just as well if the object location is restricted to integers.

Using this result, we can prove Theorem 2. The proof is
given in the Appendix. This theorem gives an upper bound
on the best worst-case discrete strategy, for all C(·) ∈ C.
It appears that the actual value of the minimum worst-case
cost will depend on the specific function C(·). A general
result is currently not available, but if we restrict ourselves
to cost functions C(·) ∈ C1, then we can obtain Theorem 3
presented earlier. Recall that C1 contains all polynomial cost
functions. Therefore, Theorem 3 still holds for a very general
class of cost and delay functions. Proof of this theorem is
rather lengthy and can be found in [14]. A sketch is provided
in the Appendix.

V. APPLICATIONS, EXAMPLES AND DISCUSSION

A. Cost-Delay Tradeoff

Having derived optimal strategies for any delay constraint,
it is worth examining how the delay constraint affects the
minimum achievable worst-case cost ratio. Figure 2 depicts
the tradeoff between optimal worst-case cost ratio as given by
Theorem 1 and the delay constraint d when C(·) = βD(·)m.
The dotted portion of each curve indicates when the delay
constraint is not binding, i.e., for d ≥ m + 1 = 1.5, 2, 3,
respectively. In these cases the optimal unconstrained strategy
(using r = e) has a minimum worst-case cost ratio of e. Note
that the plot is logarithmic. As d approaches 1 from above, the
best worst-case cost ratio approaches ∞ for all m. Hence, as
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Fig. 2. When C(·) = βD(·)m, a logarithmic plot of the minimum worst-
case cost ratio as a function of the delay constraint d. Dotted portions indicate
when the delay constraint is not binding and hence the unconstrained strategy
of Theorem 1, part (2) is optimal. For d ≥ 3, the best worst-case cost ratio
is e for all three curves.

the constraint on delay becomes tighter, the minimum worst-
case cost increases unboundedly.

For any fixed d, as m increases the minimum worst-case
cost also increases. This can be understood by fixing some
delay function D(·). As m increases, the cost function C(·) =
βD(·)m increases faster. For any given delay constraint, it then
becomes more difficult to achieve a low cost ratio.

B. Examples

We present an example scenario where the search delay
grows linearly in the TTL value used, while the search cost
grows quadratically. Specifically, consider D(x) = βx and
C(x) = ξx2 for some β, ξ > 0 so m = 2. As mentioned ear-
lier, this could be a good representation of a two-dimensional
network, where transmissions are on the order of x2, and the
delay is proportional to number of hops.

From Theorem 1, the optimal strategy is v[e
2

d−1 , (d−1) ln x]
whenever 1 < d < 3. When d ≥ 3, the optimal strategy is
v[e, 2 ln x]. Figure 3 depicts the cost and delay ratio curves,
with respect to object location, of the corresponding optimal
strategies when d = 1.5, 2, and 3.

Note that both the delay and cost ratio curves approach their
maximum values very rapidly. Hence, the worst-case value of
cost and delay under asymptotic network size (as L → ∞) can
approximate the performance when the network size is finite.
At the same time, the worst-case is approached asymptotically.
Hence the cost ratio at any finite object location is less than
the worst-case cost ratio. Also note that the cost and delay
ratio curves are smooth and nearly flat with respect to object
location. Thus the actual object location does not significantly
change the performance of these strategies. One can view this
as a built-in robustness for both the cost and delay criteria.

Similar results hold for other values of d and m, and other
functional forms of C(·) and D(·). They are not repeated here.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

Object Location

C
os

t R
at

io

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

Object Location

D
el

ay
 R

at
io

d=1.5

d=2

d=3

Fig. 3. Cost and delay ratios of optimal strategies under different delay
constraints, when cost is quadratic and delay is linear, i.e. C(·) = D(·)2.

C. Comparison

It was shown in [8] and [9] that when adopting a worst-case
cost measure, randomized strategies outperform deterministic
ones. The results of the previous sections show that random-
ized strategies also perform better when delay constraints are
added. Here we illustrate this in more detail.

Note that both the optimal deterministic strategy for Prob-
lem 1 and the optimal randomized strategies of Section IV-C
share the property that the costs of the TTL values grow ge-
ometrically. That is, for any realization, C(vk) = rk−1C(v1)
for all k. It was shown in [7] that the unconstrained optimal
deterministic strategy under linear cost C(·) is also a geometric
sequence: uk = 2k−1 for all k.

Below we compare deterministic and randomized geometric
strategies when both cost and delay are linear, i.e. when
D(v) = C(v) = v for all v. For deterministic geometric
strategies with parameter r, C(vk) = rk−1C(v1) for all k ≥ 1.
It can be shown [14] that such strategies have a worst-case
delay ratio of (2r − 1)/(r − 1) and worst-case cost ratio of
r2

r−1 . Now consider the randomized strategies v[r, 1
ln r ln C(·)

C(1) ],
shown to be optimal in Theorem 1. For any r > 1 and m = 1,
it was shown that the worst-case cost ratio of v is r

ln r and the
worst-case delay ratio is 1

ln r + 1.
In Figure 4 we plot the worst-case cost and delay ratios, as

functions of r, for the aforementioned geometric deterministic
and randomized strategies. Note that for any r, the randomized
strategy achieves a lower worst-case cost and a lower worst-
case delay than its deterministic counterpart. Hence, random-
ization has the effect of decreasing worst-case cost and delay
at the same time.

In addition, note that the worst-case delay ratio of the
randomized strategies approaches 1 as r → ∞, but for the
fixed strategies this limit is 2. It can be seen that even by
arbitrarily increasing the value of r for deterministic geometric
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Fig. 4. Comparison of deterministic and randomized strategies discussed
in Section V-C, as a function of r. Note that for any r, the randomization
achieves lower worst-case cost ratio and delay ratio.

strategies, it is not possible to match the worst-case delay ratio
of the optimal randomized geometric strategies of Theorem 1
(which always achieve a worst-case delay ratio below 2).

By varying the cost/delay functions and m, the curves in
Figure 4 may change, but the general relationship between
randomized and deterministic strategies will still hold.

D. Generalization of the Problem Abstraction

The problem introduced in this paper is primarily motivated
by the flooding search application in networks. However,
further consideration reveals some quite general and appealing
features about the abstraction of this problem that can poten-
tially be applied to a variety of problems involving constrained
resource allocation. Here we restate the same problem in a
more general context.

Consider an individual who seeks to complete a task (e.g., a
computing job). There is a minimum level of resources/effort
X required to accomplish the task (e.g., an updating step
size in the computing job). X is a random variable whose
distribution may be unknown to the individual. Its realization
is not known in advance. The individual may choose from a
range of resources/effort levels she is willing to put in the
job, and the outcome (e.g., the precision of the computing
result obtained) depends on the effort level. If she chooses
a level v ≥ X , then the task returns successfully and the
process terminates. Otherwise the task returns failure and the
individual increases her resources/effort level and tries again.
When a level v is chosen, the individual commits to paying
a cost of C(v) (e.g., memory and processing needed in the
computing job), regardless of whether she succeeds or not. At
the same time, with a level v the job takes a certain amount
of time to return (either with a success or a failure), and this
delay is given by D (min {v,X}).

The successive resource levels v = [v1, v2, · · · ] chosen by
the individual form a strategy, which determines the total cost
paid and time expended by the individual in accomplishing the
job. As the cost is committed when a level is chosen, the indi-
vidual must balance between selecting too low a level (more
likely to be unsuccessful) and too high a level (more costly or
wasteful). When one wishes to find a low cost strategy subject
to a delay constraint, a constrained optimization problem is
obtained. If furthermore the objective and the constraint are in
the form of worst-case cost/delay measure, then a formulation
akin to the one presented in this paper arises.

VI. CONCLUSION

In this paper we studied the class of TTL-based controlled
flooding search and presented a constrained optimization
framework in order to derive strategies that minimize a worst-
case search cost measure subject to a worst-case search delay
constraint. Optimal strategies were obtained in the continuous
as well as discrete cases and their performance was studied.
These results were used to discuss the trade-off between cost
and delay using this type of search method. We also showed
there the abstraction underlying the search application has a
broad generalization that can be applied to solve a range of
constrained resource allocation problems.
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VII. APPENDIX

A. Solution to Problem 1

To begin, we calculate the mean of object location cost and
delay, noting that X takes values on [1,∞):

E [C(X)] =
∫ ∞

0

Pr (C (X) > x) dx

= C(1) +
∫ ∞

C(1)

[
C(C−1(x))

C(1)

]−α

dx

=
α

α − 1
C(1) . (34)

E [D(Y )] = E
[
C(Y )1/m

]
=
∫ ∞

0

Pr
(
C (Y )1/m

> x
)

dx

=
1 + (α − 1)m

(α − 1)m
C(1)1/m . (35)

Using (3) to evaluate the delay ratio for (deterministic) v:

Dv
Y

E[D(Y )]
=
∑∞

k=1 F̄Y (vk)D(vk)
E[D(Y )]

+ 1 (36)

By rearranging (36) and observing that only the numerator of
the cost ratio depends on v, Problem 1 is equivalent to:

inf
v

Jv
X s. t.

∞∑
k=1

F̄Y (vk)D(vk) ≤ (d − 1)E[D(Y )].

Therefore, we define the Lagrangian for λ ≥ 0:

G(v, λ) =
∞∑

k=0

F̄X(vk)C(vk+1)

− λ

(
(d − 1)E[D(Y )] −

∞∑
k=1

F̄Y (vk)D(vk)

)

=
∞∑

k=0

(
C(vk)
C(1)

)−α

C(vk+1) − λ(d − 1)E[D(Y )]

+ λ

∞∑
k=1

(
C(vk)
C(1)

)−α+1−1/m

C(vk)1/m ,

where v0 = 1 for notational convenience. A necessary condi-
tion [11] for optimality of v is that the partial derivative of G
with respect to vj is 0, for all j ≥ 1. In other words,

∂G

∂vj
=

∂C(vj)
∂vj

C(1)α
[
C(vj−1)−α − αC(vj+1)C(vj)−α−1

+λ(1 − α)C(vj)−αC(1)
1
m−1

]
= 0 (37)

Because the derivative of the cost function is strictly positive
and C(1) > 0, then equation (37) is satisfied if and only if the
term inside the brackets is equal to 0. Setting this term equal
to 0, letting λ̄ = λC(1)

1
m−1 for notational convenience, and

rearranging yields the following recursion for j ≥ 1:

C(vj+1) =
C(vj)

α

[(
C(vj)

C(vj−1)

)α

+ λ̄(1 − α)
]

, (38)

Hence, any optimal strategy must satisfy the recursion given
by (38). Let γj = C(vj)

C(vj−1)
for all j ≥ 1. This quantity indicates

the relative amount of cost increase after every unsuccessful
search. Then (38) reduces to:

γj+1 =
1
α

(
γα

j − λ̄(α − 1)
)

(39)

Note that the value of γ1 uniquely defines the remaining values
γj for all j ≥ 2. At the same time, the entire sequence {γj}
uniquely defines the strategy. Hence it remains to determine
values of γ1 that define optimal strategies.

Lemma 5: Fix λ̄ ≥ 0. A necessary condition for optimality
is that for all j ≥ 1, γj = γ where γ is the unique solution to
the following equation:

1
α

γα − γ = λ̄
(α − 1)

α
. (40)

Hence, any optimal strategy for Problem 1 will have costs
increasing geometrically by factor γ.

Proof: It should be noted for completeness that equation
(40) has a unique solution because the function 1

αxα − x is
strictly increasing in x (this can be seen by differentiating with
respect to x), is equal to 0 when x = α

1
α−1 , is continuous,

and increases to ∞ as x → ∞. At the same time, λ̄ (α−1)
α is

a nonnegative finite quantity.
Note that if γ1 = γ, then γj = γ for all j ≥ 2. Hence, it

suffices to prove that γ1 = γ is necessary for optimality. We
proceed by contradiction.

Case 1: γ1 > γ.
Note that if γj > γ for some j, then we have the following:

γj+1 =
1
α

(
γα

j − λ̄(α − 1)
)

=
1
α

γα
j − γj + γj − λ̄(α − 1)

α

>
1
α

γα − γ − λ̄(α − 1)
α

+ γj = γj , (41)

where the last inequality follows from the fact that 1
αxα − x

is strictly increasing in x, as noted earlier. Hence we have the
following: if γj > γ for some j, then γj+1 > γj . This means
that because γ1 > γ, then γ2 > γ1 > γ, and so on. Hence by
induction, the {γj} form a strictly increasing sequence, where
γj > γ for each j. So for each j ≥ 1 by rearranging the
recursion (39):

γj+1

γj
α

=
1
α
− λ̄

(α − 1)
γα

j α
≥ 1

α
− λ̄

(α − 1)
γαα

= γ1−α , (42)

where the inequality holds because γα
j > γα, and the last

equality holds from the definition of γ. The inequality becomes
strict when λ̄ > 0.

Note that for any j ≥ 1, we have by the definition of γj

that C(vj) = C(1)
∏j

k=1 γk. Hence, the expected cost of any
such strategy is given by:

Jv
X =

∞∑
j=0

F̄X(vj)C(vj+1) =
∞∑

j=0

(
C(vj)
C(1)

)−α

C(vj+1)

=
∞∑

j=0

C(1)γ1

j∏
k=1

γk+1

γα
k

, (43)



where the product is defined to be equal to 1 if j = 0.
We have shown that if γ1 > γ, then γk+1

γk
α > γ1−α for all

k. Hence for any such strategy where γ1 > γ, the expected
search cost is lower-bounded by:

∞∑
j=0

C(1)γ1

j∏
k=1

γk+1

γα
k

>

∞∑
j=0

C(1)γ
j∏

k=1

γ1−α (44)

However, note that the right-hand side of the above equation
is simply the expected search cost for a strategy such that
γj = γ for all j (plug γj = γ into (43)). Hence from (44),
any strategy where γj > γ for all j has expected search cost
strictly greater than using γj = γ, and these strategies cannot
be optimal.

Case 2: γ1 < γ.
Note that for any optimal strategy, γj > 1 for all j, because

only strictly increasing TTL sequences can be optimal. Hence
the sequence {γj} is always lower-bounded by 1. Note that if
γj < γ for some j, then we have the following:

γj+1 =
1
α

(
γα

j − λ̄(α − 1)
)

=
1
α

γα
j − γj + γj − λ̄(α − 1)

α

<
1
α

γα − γ − λ̄(α − 1)
α

+ γj = γj (45)

Hence, if γ1 < γ, then γ2 < γ1 < γ, and so on.
Because the {γj} are bounded, then the sequence converges

(since all monotonic bounded sequences converge). Let γ∞ =
limj→∞ γj . Because the γj are strictly less than γ and form
a decreasing sequence, then γ∞ < γ. On the other hand,

lim
j→∞

γj+1 = lim
j→∞

{
1
α

[
γα

j − λ̄(α − 1)
]}

=⇒ γ∞ =
1
α

[
γα
∞ − λ̄(α − 1)

]
=⇒ 1

α
γα
∞ − γ∞ = λ̄

(α − 1)
α

We defined γ as the unique number satisfying (40). Because
we have just shown that γ∞ is bounded and also satisfies the
same equation we have that γ∞ = γ. However, this contradicts
the fact that γ∞ < γ, which we showed earlier. Hence, it is
not possible to have γ1 < γ if the {γj} are bounded.

Therefore, combining Case 1 and Case 2 proves that γj = γ
for all j is the only possible optimal strategy for fixed λ̄.

For any strategy v where γj = γ, we have the following:
C(vj) = C(1)

∏j
k=1 γk = C(1)γj . Therefore we have the

following geometric sum, which converges since γ > 1
(necessary for increasing sequence) implies 0 < γ1−α < 1:

∞∑
k=1

F̄Y (vk)D(vk) = C(1)1/m
∞∑

k=1

(
C(vk)
C(1)

)1−α

= C(1)1/m
∞∑

k=1

(γ1−α)k =
C(1)1/m

γα−1 − 1
(46)

Using (46) into (36), we can see that it is possible to achieve
a delay ratio arbitrarily close to 1 by choosing a sufficiently
high enough value of γ. Therefore, for every d > 1, there
exists a strategy achieving delay ratio below d. Hence the

optimal strategy for Problem 1 must satisfy the Kuhn-Tucker
condition (see [11] and [12]):

λ̄

( ∞∑
k=1

F̄Y (vk)D(vk) − (d − 1)E[D(Y )]

)
= 0 (47)

Therefore either λ̄ = 0 or the delay constraint is satisfied
with equality. We use this to prove solutions for two cases,
depending on whether 1 < d < m + 1 or d ≥ m + 1.

Case 1: 1 < d < m + 1
When λ̄ = 0, then λ = 0 and we have an unconstrained

optimization problem. In this case, γ = α
1

α−1 from Lemma
5. The summation in (46) is then equal to C(1)1/m/(α − 1)
for this value of γ. From (36), we know that dividing this
summation by (35) and then adding 1 gives the delay ratio:

Dv
Y

E[D(Y )]
=
∑∞

k=1 F̄Y (vk)D(vk)
E[D(Y )]

+ 1 =
m

1 + (α − 1)m
+ 1 .

From inequality (27) on α, this delay ratio is thus strictly
greater than d. Hence, this strategy does not meet the delay
inequality requirement.

Therefore, we seek solutions for which the delay constraint
is met with equality, i.e. the term inside the brackets of (47)
is equal to 0. In this case, (46) needs to be equal to (d −
1)C(1)

1
m

(α−1)m+1
(α−1)m , and solving for γ gives:

γ =
(

1 +
(α − 1)m

[(α − 1)m + 1](d − 1)

) 1
α−1

(48)

From the earlier equation (40) relating γ and λ̄, we have that
λ̄ can be calculated as:

λ̄ = γ

(
γα−1 − α

α − 1

)
= γ

(
m

[(α − 1)m + 1](d − 1)
− 1
)

The cost ratio can be calculated by multiplying both sides
of (38) by F̄X(vj) and then summing over j ≥ 1 to give:

∞∑
j=1

F̄X(vj)C(vj+1)

=
1
α

∞∑
j=0

F̄X(vj)C(vj+1) − λ̄
α − 1

α

∞∑
j=1

C(vj)F̄X(vj)

The left-hand sum is simply Jv
X − C(v1), so rearranging and

solving for Jv
X gives:

Jv
X

α − 1
C(1)α

=
C(v1)
C(1)

− λ̄
α − 1
C(1)α

∞∑
j=1

C(vj)F̄X(vj)

=⇒ Jv
X

E[C(X)]
=

C(v1)
C(1)

− λ̄

∑∞
j=1 C(vj)F̄ (vj)

E[C(X)]
(49)

To evaluate this ratio, note that:
∞∑

j=1

C(vj)F̄ (vj) = C(1)
∞∑

k=1

(
C(vk)
C(1)

)1−α

=
C(1)

γα−1 − 1

= C(1)(d − 1)
(

1 +
1

(α − 1)m

)
(50)



Dividing by E[C(X)] from equation (34) gives:∑∞
j=1 C(vj)F̄ (vj)

E[C(X)]
= (d − 1)

(
(α − 1)m + 1

mα

)
(51)

Using (48), the corresponding λ̄, and (51) into (49) gives:

Jv
X

E[C(X)]
=

C(v1)
C(1)

− λ̄(d − 1)
(

(α − 1)m + 1
mα

)
= γ−

γ

(
m

[(α − 1)m + 1](d − 1)
− 1
)

(d − 1)
(

(α − 1)m + 1
mα

)

=
[
d − 1
mα

+ d

(
α − 1

α

)]
γ (52)

Hence (52) gives the optimal cost ratio when 1 < d < m + 1.
Case 2: d ≥ m + 1.
As explained in Case 1, it follows from Lemma 5 that when

λ̄ = 0 (the unconstrained case), then using γ = α
1

α−1 is
optimal. Because this strategy is the optimal unconstrained
strategy, it achieves minimum average-cost when it satisfies
the delay constraint. It was shown that the delay ratio for this
strategy is 1 + m

1+(α−1)m , which is always strictly less than
m+1 for all α > 1. Hence for d ≥ m + 1, the delay constraint
is not binding and the optimal strategy uses γ = α

1
α−1 . From

(49), the optimal cost ratio is α
1

α−1 because λ̄ = 0.

B. Proof of Lemma 4

Proof: Fix any x ∈ Z
+. Note that �vk	 > x if and

only if vk > x, since x is an integer. Therefore for all k:
I(�vk	 > x) = I(vk > x) w.p.1, (with probability 1). In
addition, D(�vk	) ≤ D(vk) w.p.1, since the delay function is
increasing. This gives:

D�v�
x =D(x) + E

[ ∞∑
k=1

I(�vk	 > x)D(�vk	)
]

≤ D(x) + E

[ ∞∑
k=1

I(vk > x)D(vk)

]
= Dv

x . (53)

This proves the delay part of the lemma. Similarly, C(·) being
increasing implies C(�vk	) ≤ C(vk) w.p.1. Therefore,

J�v�
x = E

[ ∞∑
k=1

I(�vk−1	 > x)C(�vk	)
]

≤ E

[ ∞∑
k=1

I(vk−1 > x)C(vk)

]
= Jv

x , (54)

which establishes the inequality on the expected cost.

C. Proof of Theorem 2

Proof: For 1 < d < m + 1, consider the strategy
v∗[e

m
d−1 , d−1

m ln C(·)
C(1) ] of Theorem 1. Let u∗ = �v∗	. From

Lemma 4, we have that v∗ ∈ Vd implies u∗ ∈ Ud. Also from
Lemma 4, Ju∗

x ≤ Jv∗
x for all integers x. From Theorem 1, the

worst case ratio of v∗ is d−1
m e

m
d−1 . Hence, the worst-case cost

ratio of u∗ over all integers is less than or equal to d−1
m e

m
d−1 ,

which establishes the theorem for 1 < d < m + 1.
For d ≥ m + 1, similar steps can be applied to the floor of

v∗[e, ln C(·)
C(1) ] to establish the theorem.

D. Sketch Proof of Theorem 3

Proof: Due to space limitations, a complete proof can
be found in [14]. Here we outline the main steps of our proof.

First, for any u ∈ U , we have the following:

sup
x∈Z+

Ju
x

C(x)
= sup

{
Ju

1

C(1)
, sup
x∈[1,∞)

Ju
x

C(x + 1)

}
(55)

sup
x∈Z+

Du
x

D(x)
= sup

x∈[1,∞)

Du
x

D(x + 1)
(56)

Next, it can be shown

sup
{fX(x)}

Jv
X

E [C(X + 1)]
= sup

x∈[1,∞)

Jv
x

C(x + 1)
, (57)

and a similar result holds for delay.
Define Ṽd similarly to Vd in (10), but replace D(X) with

D(X + 1). Also, define Ṽd(Y ) similarly to Vd(Y ) in (24)
but replace D(X) with D(X + 1). Note that from (56) and
U ⊆ V , we have that Ud ⊆ Ṽd. Therefore, if we can prove a
lower-bound on the best cost ratio in Ṽd, the same bound will
also apply to Ud. To proceed, we use the following:

inf
v∈Ṽd

sup
x∈[1,∞)

Jv
x

E [C(x + 1)]
≥ sup

{fX(x)}
inf

v∈Ṽd

Jv
X

E [C(X + 1)]

≥ sup
{fX(x)}

inf
v∈Ṽd(Y )

Jv
X

E [C(X + 1)]
(58)

To obtain a tight upper-bound, we modify Problem 1:
Problem 2: Define X and Y as in Problem 1.

inf
v

Jv
X

E[C(X + 1)]
s.t.

Dv
Y

E[D(Y + 1)]
≤ d

Solution: Similar to Problem 1, the optimal cost ratio for
this problem satisfies the following for 1 < d < m + 1:

lim
α→1+

Jv
X

E[C(X + 1)]
=

(d − 1)
m

e
m

d−1 , (59)

where the limit is reached from below. For d ≥ m + 1, then
the optimal cost ratio approaches e from below as α → 1+.

The optimal solutions to the two problems are similar
because limα→1+

E[C(X+1)]
E[C(X)] = 1 for the class of cost

functions given by the theorem. The same holds for D(X)
and D(X + 1). Plugging the result into (58) gives that
infv∈Ṽd

supx∈[1,∞)
Jv

x

C(x+1) is lower bounded by d−1
m e

m
d−1 .

Finally, using the fact that Ud ⊆ Ṽd gives:

inf
u∈Ud

sup
x∈Z+

Jv
x

C(x)
= inf

u∈Ud

sup
x∈[1,∞)

Jv
x

C(x + 1)
≥ d − 1

m
e

m
d−1 ,

for 1 < d < m + 1. Combining this with Lemma 1 and
Theorem 2 proves the theorem for 1 < d < m + 1. Similar
steps can be applied for the case d ≥ m + 1.


