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Abstract—In this paper we study the optimality of an index
policy for a bandwidth allocation problem, where a single server
is allocated among N queues in a slotted system based on the
queue backlog information. Due to the physical nature of the
system this information is delayed, in that when the allocation
decision is made, the server only has the backlog information
from an earlier time. This results in imperfect and partial state
observation. Queues have Bernoulli arrival processes with differ-
ent probabilities of arrival, as well as different buffering/holding
costs to differentiate heterogeneous classes of traffic/service. The
objective is to minimize the expected total discounted holding cost
over a finite or infinite horizon. We introduce an index policy with
indices defined as functions of the state of a queue. We first show
that when the state of the system is away from the boundary,
i.e., no empty queues, the index policy is optimal. When there are
empty queues, we show that under sufficient separation of the
indices the index policy is still optimal. We show by example that
if the separation does not hold, the index policy is not necessarily
optimal. We then formulate the optimal bandwidth allocation as a
restless bandit problem and show under what conditions the index
policy calculated using Whittle’s heuristics, which in general is
only asymptotically optimal, is optimal for the finite case.

Index Terms—Optimal bandwidth allocation, resource allo-
cation, optimization, index policy, restless bandit, delayed state
observation, differentiated services

I. INTRODUCTION

In this paper we study a class of bandwidth/resource alloca-
tion problems, where allocation decisions are based on partial
and delayed information of the system state. In particular, we
will examine the optimality of an index policy for one special
case of such problems.
Consider the problem of N users/queues competing for a

common channel to transmit packets to a single server. The
channel consists of time frames of a fixed number of time slots,
sayM . Each slot is equivalent to one packet transmission time.
A bandwidth allocation policy determines which slot to assign
to which user within a frame, as shown in Fig. 1. The allocation
decision is made once per frame based on backlog information,
i.e., instantaneous queue occupancy, given by the users/queues
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at the beginning of each frame. Due to non-negligible channel
propagation delay, such information reaches the server only in
time for the allocation decision to be made for the next frame,
by which time the queue occupancies likely have changed due
to packet arrivals within the current frame. In other words,
the state information is delayed and partially obsolete. This
results in possible over-allocation or under-allocation. Thus in
this case the allocation needs to take into account unknown
random arrivals that occur in between observations or state
information updates. Every queued packet incurs a cost at the
beginning of each frame, known as the buffering or holding
cost. This cost may vary from one queue to another, allowing
us to consider differentiated service classes, i.e., some queues
are more expensive or of a higher priority than others. The
objective of the problem is to minimize the total expected
discounted cost over a finite or an infinite horizon.
This optimal bandwidth allocation problem is primarily

motivated by wireless communication systems that either have
large propagation delay, e.g., a satellite data communica-
tion scenario, or where resource allocation is done relatively
infrequently compared to packet transmission time, due to
cost or design constraint. In the case of a satellite network,
users/terminals transmit packets to the Network Operating
Center (NOC) via the common satellite channel. The data
communication link from users to the satellite, also known as
the return channel, follows a dynamic TDMA schedule. Each
user is assgined/allocated a certain number of slots within a
TDMA frame that consists of a fixed number of slots. A user
can only transmit within its assigned slots during every frame.
A user informs the NOC of its current queuing situation (e.g.,
number of backlogged packets) carried either in packet headers
or in a special packet at the beginning of its transmission.
The assignment/allocation could be determined either by the
satellite or by the NOC, and is broadcast to the users over a
forward channel, which is separate from (noninterfering with)
the return channel. An allocation specifies which slot in the
upcoming frame is reserved and to be used by which user.
Under such a scenario, due to the long propagation delay of
the satellite channel (250 ms from ground/user to satellite and
back, or 500 ms from ground/user to ground/NOC via satellite
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Fig. 1. The bandwidth allocation problem

and back), the allocation decision for a particular frame is
made based on the backlog information collected during the
previous frame, which is delayed and partially “obsolete” by
the time the allocation is used since by that time the backlog
situation may have changed.

Optimal bandwidth allocation problems under various sce-
narios have been extensively and intensively studied in the
literature. Here we review those most relevant to the one under
consideration. In [1] the problem of parallel queues with dif-
ferent holding cost and a single server was considered, where
packet transmissions are successful with a certain probability
(or equivalently the transmission time follows a geometric
distribution) and that we have perfect state information on
queue backlogs. It was found that the simple cµ rule was
optimal, where c is the unit holding cost and µ is the
probability of transmission success. This can be viewed as
an index policy in that the server is always allocated to the
non-empty queue with the highest cµ value, the index. [2],
[3], [4] considered the server allocation problem to multiple
queues with varying connectivity probability but of the same
service class. Each of them determined policies that maximize
throughput over an infinite horizon. In particular, [2] derived
the sufficient condition for stability and has shown that the
Longest Connected Queue (LCQ) policy stabilizes the system
if system is stabilizable and that the same policy minimizes the
delay in the special case of symmetric queues. The LCQ policy
can also be viewed as an index policy in that the index of a
queue is defined as the queue size if it is connected and 0 if not.
[5] further considered a similar problem but with differentiated
service classes where different queues have different holding
cost, with the objective being to minimize total discounted
holding cost over a finite horizon. An interesting result is
that the optimality of an index policy only holds when the
indices are sufficiently separated. The intuition, as pointed
out in [5] is that due to different holding costs, allocation to
shorter but more costly queues (which then runs the risk of
emptying the queue) is only justified (or compensated) if it is
sufficiently more expensive than a longer, less costly queue. All
the above cases considered either random queue connectivity
or transmission success probability or both, but the state of
the system, i.e., connectivity and the number of packets in
each queue, is always precisely known when server allocation

is made. This is a major difference between the above cited
work and the problem considered here.
[6], [7] considered a server allocation problem with the

assumption that the transmission times are asynchronous. [8]
considered the problem of routing arriving packets to a set
of queues each having its own server. The structures of these
problems are quite different from the one examined in this
paper and they lead to different solutions.
The problem studied in this paper (in the case of an infinite

horizon) can also be cast as a special case of the restless
multi-armed bandit problem [9] with multiple plays, where
the passive projects undergo state transitions even when they
are not selected. This is because in our case the backlog of
each queue continuously changes as packets arrive. [9] and
[10] studied the asymptotic behavior of this class of problems
when the number of arms/projects (queues in this case) and
servers (slots in a frame in this case) go to infinity with a fixed
ratio. A general optimal solution is not known for this class
of problems. However, an index policy can be defined based
on the Whittle’s heuristic, which is sub-optimal in the finite
(number of servers and arms) case and asymptotically optimal
in the infinite case.
In [11] we considered a problem similar to the one studied

here, with the difference that all queues have the same holding
cost and arbitrary but iid arrival processes. We were able to
define a class of optimal allocation policies. Considering dif-
ferent holding costs and different arrival processes significantly
complicates the situation and it is not clear at this point if a
general solution exists. As a first step, in this paper we will
only focus on a special case of the outlined problem, with
Bernoulli arrivals, i.e., binary, though each queue may have
different arrival probabilities, and with only one slot in every
frame (M = 1), resulting in a single server allocation scenario
for every allocation period. We will introduce an index policy
of server allocation for this case and examine the conditions
under which it is optimal. Extension of work reported in this
paper to the more general case of arbitrary arrivals and multiple
slot assignment is an important aspect of our ongoing research.
The rest of the paper is organized as follows. In the next

section we formulate the problem and state our assumptions.
In Section III, we study the optimality of an index policy over
a finite horizon. In Section IV we consider the infinite horizon
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case and further formulate the problem as a restless bandit
problem. We also examine the optimality of indices calculated
based on Whittle’s heuristic. In Section V we discuss the
intuition behind our results and show by examples that if the
conditions derived earlier are not satisfied, the index policy is
not necessarily optimal. Section VI concludes the paper.

II. PROBLEM FORMULATION AND ASSUMPTIONS

In this section we describe the network model we adopted as
an abstraction of the bandwidth allocation problem described
in the previous section, and formally present the optimization
problem along with a summary of assumptions and notations.

A. Problem Formulation

Consider N queues that need to transmit packets to a single
server/receiver and compete for shares of a common channel
bandwidth. Time is slotted. Packets are of equal length and one
packet transmission time equals one slot time. Transmissions
are always successful. Packets arrive at each queue as a
Bernoulli process. The probability of having a single arrival
within a slot at queue i is pi and the probability of having no
arrivals is 1− pi.
As mentioned before, for the rest of this paper we will only

consider the case where allocation is done once for each slot,
i.e., each frame consists of exactly one slot. The bandwidth
allocation decision is based on the backlog information of
each queue (number of packets waiting/existing in the queue)
provided by the queues at the beginning of a frame. We
will ignore the transmission time of such information. This
is reasonable since one can always increase the frame length
with dedicated fixed number of slots at the beginning for the
transmission of such information, which does not affect our
discussion of optimal allocation. Based on this information
an allocation decision is made by the server and broadcast to
all queues over a non-interfering channel. This broadcast is
received by the queues at the end of that frame, in time to be
used for the next frame. The same procedure then repeats, as
shown in Fig. 2, with M = 1.
Each user advertises to the server its buffer size at the

beginning of the tth frame, denoted by the N-vector b(t), with
bi(t), i = 1, · · · , N being the queue size of queue i at time
t. The server allocates slots to be used for transmission in
the next time frame, denoted by the N-vector x(t + 1), with
xi(t+1) being the allocation to queue i. Since there is only one
slot, xi(t+1) ∈ {0, 1}, i = 1, · · · , N and

PN
i=1 xi(t+1) = 1.

This procedure starts from t = 0 and ends at t = T , the finite
time horizon. Note that in this scenario during the first frame
queues do not have a slot allocated and only start transmitting
in the second frame (starting t = 1). Similarly, the state
information update is not shown for the last frame (starting
t = T − 1) since the horizon ends at t = T .

We assume that the holding cost for queue/user i is ci. The
objective is to find an allocation policy π that minimizes the

following cost function.

JπT = Eπ[C|F0], (1)

C =
TX
t=1

βt−1
NX
i=1

cibi(t).

where F0 summarizes all the information available at time
t = 0, and β < 1 is the discount factor.

B. Assumptions
Below we summarize important assumptions underlying our

network model.
1) We assume that each user has an infinite buffer. Without
this assumption we need to introduce penalty for packet
dropping/blocking. This is an important extension to
work presented here but is out of the scope of this paper
and will be considered in a future study.

2) We assume that if for some i and t, xi(t) > bi(t) then
the one slot allocation cannot be used to transmit the
possible packet arrival during the tth frame/slot, i.e.,
within [t, t+1). This is because the exact arrival time of
this packet is random, and unless it arrives right before
t it cannot be transmitted during that slot.

3) We assume that the arrivals to each queue are mutually
independent. The arrival probabilities within each slot
are also known to the server in making the allocation
decision.

4) The server recalls the latest allocation it has made.
5) We will also adopt the trivial assumption that x(0) = 0
for the simplicity of our discussion. It does not affect
our results on optimal policy and can be easily relaxed
in a straightforward way.

C. Notations
We consider time evolution in discrete time steps indexed

by t = 0, 1, · · ·T , with each increment representing a frame
length. Frame t refers to the frame defined by the time interval
[t, t+1). In subsequent discussions we will use terms frames,
slots, steps and stages interchangeably.
In general we will use arguments to denote the time index

and the subscripts to denote a specific user/queue. For example
bi(t) denotes the buffer occupancy at the beginning of time slot
t for the i-th queue. All boldface letters represent column vec-
tors and all normal letters represent scalars/random variables.
Whenever we need to distinguish two policies, we show the
policy as a superscript. For example bπi (t) means the buffer
size of the i-th queue at time t under policy π.
A list of notations are as follows.
b(t) = [b1(t), b2(t), · · · bN(t)]0: The column vector of all

queue occupancies at time t.
x(t) = [x1(t), x2(t), · · · , xN(t)]0: The number of slots

(amount of bandwidth) allocated to users, xi(t) ∈ {0, 1}, i =
1, · · · , N, t = 1, · · · , T − 1.
d(t) = [b(t−1)−x(t−1)]+, where [w]+ takes value w or

0, whichever is greater. This value is completely determined
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from the buffer occupancy and allocation information of the
(t− 1)th frame. We will call this amount the existing backlog
since this is the amount carried over from the previous slot
due to under-allocation (as opposed to new arrivals occurred
during the previous slot). Alternatively we will also call this
value the amount of deterministic packets to be distinguished
from the random arrivals occurred during that frame.
a(t) = [a1(t), a2(t), · · ·aN(t)]0: The number of packet

arrivals during frame t, ai(t) ∈ {0, 1}, i = 1, · · · , N, t =
0, · · · , T − 1.
di+(t) := d(t) + ei where ei is an N -dimensional vector

with all entries zero except for a 1 in the i-th position.
pi: Probability of having one arrival to queue i during each

slot. 0 ≤ pi ≤ 1. Probability of having no arrivals is 1− pi.
Cu =

PT
t=u β

t−1PN
i=1 cibi(t): The cost to go, from time

t on (note that C1 = C).
Ft: The σ-field of the information available up to time t.
Remark 1: The information available for making the allo-

cation at time t is the queue occupancy of the previous frame
b(t − 1) and the allocation made earlier: x(t − 1). This will
determine the number of deterministic packets in the buffer at
time t, d(t). The total number of packets in the queue at time
t is the sum of this deterministic part plus the random arrival
during slot t− 1, therefore we have;

b(t) = d(t) + a(t− 1) (2)

Separating the queue size into deterministic part and random
part will prove convenient in our analysis of the optimal policy.

III. THE OPTIMALITY OF AN INDEX POLICY
In this section we study the optimality of an index policy

for the problem formulated in the previous section. Define the
index of queue i, denoted by Ii(t), to be:

Ii(t) =

(
ci if di(t) > 0,

ci · pi if di(t) = 0.
(3)

Furthermore, we define an index policy to be the policy that
serves the queue with the highest index at each time step.
The intuition behind this policy seems obvious. It essentially

says that when a queue is for sure not empty (if di(t) > 0
then bi(t) must be positive), its priority is determined by its
unit holding cost, and we should serve the costliest queue

possible. When a queue may be empty (if di(t) = 0 then
bi(t) = 0 with probability 1−pi) on the other hand, its priority
is determined by the expected holding cost, the original holding
cost discounted by the arrival probability. Note here the indices
are defined based on the deterministic part of the queue, di(t),
since we do not know the actual queue size bi(t).
It turns out that this policy is not always optimal. When the

state of the system is away from the boundary, i.e., all queues
have non-zero deterministic part, the above index policy is
optimal. However, at the boundary, i.e., the deterministic part
of some or all of the queues is zero, the index policy is
not necessarily optimal. To simplify our presentation, in what
follows we will call queue i “empty” at time t if it has a
zero deterministic part, i.e., if di(t) = 0, and “non-empty”
otherwise.
Our main result is summarized in the following theorem.
Theorem 1: Let the time horizon be T . Suppose that at

time t (1 ≤ t ≤ T−1) for some queue i, Ii(t) ≥ Ij(t) ∀j 6= i.
Then
1) if T = 2 then it is optimal to allocate the slot at time t
to queue i;

2) for arbitrary T , if di(t) > 0, then it is optimal to allocate
the slot at time t to queue i;

3) for arbitrary T , if di(t) = 0, then it is optimal to allocate
the slot at time t to queue i if for all j 6= i we have:

Ii(t)(
1− (piβ)T−t
1− piβ

) ≥ Ij(t)(
1− βT−t

1− β
) (4)

This theorem says that it is always optimal to serve the
highest indexed queue, i.e., the index policy is optimal, if
this queue is also not empty (deterministically). We consider a
system in this state to be away from the boundary condition.
However, when the state of the system is on the boundary, i.e.,
queue with the highest index has zero deterministic packets,
then the index policy is optimal, if the highest index is
sufficiently separated from (larger than) all other indices. This
separation is given by (4), and is reminiscent of the separation
condition derived in [5]. The intuition behind this sufficient
condition is that due to the randomness in packet arrival, which
is unobservable at the time of the decision, assigning the slot
to an empty queue, rather than another non-empty or empty
queue, can be optimal if this queue is sufficiently “costly”, so
that the gain sufficiently compensates the loss due to potential
over-allocating (i.e., a wasted slot if there is no packet arrival
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and the deterministic part is also zero).
Later we show via examples that if this condition is not

satisfied then the index policy is not necessarily optimal.
In the following we show these results via a sequence of

lemmas.
Lemma 1: Suppose T = 2 and Ii(1) ≥ Ij(1). Let π be

the policy that assigns the slot at time t = 1 to queue j and
let π0 be the policy that assigns the slot to queue i. Then
JπT ≥ Jπ

0
T a.s..

Proof: Since there is only one allocation period we drop
the argument t from Ii(t). Under both policies, the queue size
for both queues will be the same at time t = 1. Therefore
the difference between the costs under the two policies is as
follows:

JπT − Jπ
0

T = (Eπ[C2|F1, di(1), dj(1)]
−Eπ0 [C2|F1, di(1), dj(1)]) a.s.

= βE[cib
π
i (2) + cjb

π
j (2)]

−βE[cibπ
0

i (2) + cjb
π
0

j (2)] a.s.

At time t = 2 we have:
bπi (2) = [di(1) + ai(0)] + ai(1);
bπj (2) = [dj(1) + aj(0)− 1]+ + aj(1);
bπ

0
i (2) = [di(1) + ai(0)− 1]+ + ai(1);
bπ

0
j (2) = [dj(1) + aj(0)] + aj(1).

We consider the following four cases:
case 1: di(1) > 0, dj(1) > 0⇒ Ii = ci , Ij = cj .

JπT − Jπ
0

T = β · (ci − cj) = β · (Ii − Ij) ≥ 0 a.s. . (5)

case 2: di(1) = 0, dj(1) > 0⇒ Ii = pici , Ij = cj .

JπT − Jπ
0

T = pi · β · (ci − cj)− (1− pi)cjβ

= β(pici − cj) = β(Ii − Ij) ≥ 0 a.s. (6)

case 3: di(1) > 0, dj(1) = 0⇒ Ii = ci , Ij = pjcj .

JπT − Jπ
0

T = pjβ(ci − cj) + (1− pj)βci

= β(ci − pjcj) = β(Ii − Ij) ≥ 0 a.s. (7)

case 4: di(1) = dj(1) = 0→ Ii = pici , Ij = pjcj .

JπT − Jπ
0

T = β(pici − pjcj) = β(Ii − Ij) ≥ 0 a.s. (8)

This lemma essentially shows that when the horizon is 2, the
index policy is optimal. Under this policy the queue with the
highest index should be served, regardless of whether queues
are empty or not.
Lemma 2: Let the time horizon be T and suppose Ii(1) ≥

Ij(1) and di(1) > 0. Let π be a policy that serves queue j
at time t = 1 and then follows an optimal policy given dπ(2)
thereafter. Let π0 be a policy that serves queue i at time t = 1
and then follows an optimal policy given dπ0(2) thereafter.
Then we have JπT ≥ Jπ

0
T a.s..

Proof: Let t0 be the first time that π allocates the slot to
queue i (let t0 = T if π never allocates the slot to queue i).

Define policy π̂ to be such that it serves queue i at t = 1 and
serves queue j at t = t0 and is the same as policy π everywhere
else, i.e., for all t 6= 1, t0. We then have:

JπT − J π̂T ≥
(Pt0

t=2 β
t−1(ci − cj) if dj(1) > 0,Pt0

t=2 β
t−1(ci − pj · cj) if dj(1) = 0.

(9)

This is because since di(1) > 0 and queue i is not served in
between time slot 1 and t0 under both π and π̂, π costs ci
more than π0 for every slot between 2 and t0, both inclusive,
for not serving queue i in the first slot. Note that starting t0+1
queue i has the same occupancy under both policies. At the
same time, the most π can save on queue j, for serving queue
j in the first slot, is cj for every slot between 2 and t0 if queue
j starts out non-empty and never empties out between 2 and
t0. Thus the equality in (9) in the case dj(1) > 0 is achieved
when queue j never becomes empty before t0. If queue j starts
out empty, then the most policy π can save is to have an arrival
during the first slot and never becomes empty before t0, thus
maintaining a difference of pjcj . Rewriting (9) we have

JπT − J π̂T ≥
t0X
t=2

βt−1(Ii(1)− Ij(1)) ≥ 0 a.s. (10)

On the other hand, note that by assumption, after the first
slot π0 follows the optimal policy. Therefore we must have
J π̂T ≥ Jπ

0
T a.s., thus proving the lemma.

This lemma shows that if a non-empty queue has a higher
index than other queues (empty or not) at a particular time step,
then it is optimal to serve this queue, given that the allocation
made for the remaining steps are optimal. Note that we did
not specify what the optimal policy is for the remaining steps.
The next question is what if the highest indexed queue

happens to be empty. We need the following two lemmas
to derive sufficient conditions for the optimality of the index
policy for this case.
Lemma 3: Let π be an optimal policy given the initial state

d and let π0 be an optimal policy given the initial state di+.
Then

Eπ0 [C|F0,d(1) = di+]−Eπ[C|F0,d(1) = d]
≤ ci(1− βT )

1− β
a.s. (11)

Proof: π is an optimal policy given the initial state d. Let π̂
be a policy defined for the initial state di+, that schedules the
exact same queues as policy π does for d. We now compare
applying π starting with d with applying π̂ starting with di+.
Since they both schedule the same queue every slot, in the
worst case, the latter would end up having one more packet in
queue i throughout the entire horizon. Therefore,

Eπ̂[C|F0,d(1) = di+]−Eπ[C|F0,d(1) = d]

≤
TX
t=1

βt−1 · ci = ci(1− βT )

1− β
a.s. (12)

On the other hand policy π̂ is not necessarily the optimal
policy for the initial state di+. Therefore,

Eπ̂[C|F0,d(1) = di+] ≥ Eπ0 [C|F0,d(1) = di+] a.s. (13)
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Combining the two inequalities (12) and (13) proves the
lemma.
Lemma 4: Let π be an optimal policy given initial state d

and we have di = 0. Let π0 be an optimal policy given initial
state di+. Then

Eπ0 [C|F0,d(1) = di+]−Eπ[C|F0,d(1) = d]
≥ ci(1− (piβ)T )

1− piβ
a.s. (14)

Proof: π0 is an optimal policy given the initial state di+.
Let π̂ be a policy defined for the initial state d, that schedules
the exact same queues as policy π0 does for di+. We now
compare applying π starting with di+ and applying π̂ starting
with d. Since they both schedule the same queue every slot, in
the best case (in the sense of minimizing the cost difference),
the former might be able to transmit only from queue i till it
empties out (the deterministic part). Therefore the least cost
difference is

Eπ0 [C|F0,d(1) = di+]−Eπ̂[C|F0,d(1) = d] ≥
TX
t=1

βt−1pt−1i · ci = ci(1− (piβ)T )
1− piβ

a.s. (15)

On the other hand, policy π̂ is not necessarily optimal for
initial state d. Therefore,

Eπ[C|F0,d(1) = d] ≤ Eπ̂[C|F0,d(1) = d] a.s. (16)

Combining the two inequalities (15) and (16) proves the
lemma.
The next two lemmas give sufficient conditions under which

a higher indexed but empty queue should be served, given all
subsequent allocations are done optimally.
Lemma 5: Let the time horizon be T and suppose we have

Ii(1) ≥ Ij(1), di(1) = 0, and dj(1) > 0. Let π be a policy
that serves queue j at time t = 1 and then follows an optimal
policy given dπ(2) thereafter. Let π0 be a policy that serves
queue i at time t = 1 and then follows an optimal policy given
dπ

0
(2) thereafter. Then we have;

Eπ[C|F0, di(1) = 0, dj(1) 6= 0]
≥ Eπ0 [C|F0, di(1) = 0, dj(1) 6= 0] a.s., (17)

if
pici

(1− (βpi)T−1)
(1− βpi)

≥ cj
1− βT−1

1− β
(18)

Proof: Queue sizes are the same at t = 1 under both policies.
Given that di(1) = 0, dj(1) > 0, and that π assigns the slot to
queue j at t = 1 and π0 assigns to queue i, at time t = 2 we
have

dπi (2) = ai(0);

dπj (2) = [d1(j) + aj(0)− 1];
dπ

0
i (2) = [ai(0)− 1]+;
dπ

0
j (2) = d1(j) + aj(0).

We can see that
dπi (2) = dπ

0
i (2) + 1 with probability pi, and

dπj (2) = dπ
0

j (2)− 1 with probability one.

We have

Eπ[C|F0, di(1) = 0, dj(1) 6= 0]−
Eπ0 [C|F0, di(1) = 0, dj(1) 6= 0]

= Edπ ,dπ0{Eπ[C2|F1,dπ(2)]−
E[C2|F1,dπ0(2)]|di(1) = 0, dj(1) 6= 0} a.s.,

= Edπ0{pi · (Eπ[C2|F1,dπ0(2) + ei]

−Eπ0 [C2|F1,dπ0(2)])
+(Eπ[C2|F1,dπ0(2)− ej ] (19)
−Eπ0 [C2|F1,dπ0(2)])|di(1) = 0, dj(1) 6= 0}

where Edπ,dπ0 is the expectation over all values of d(2) under
policies π, π0 conditioned on di(1) = 0, dj(1) 6= 0 and Edπ0 is
the same expectation for values of d(2) under policy π0. Now
using Lemmas 3 and 4 we have

Eπ[C|F0, di(1) = 0, dj(1) 6= 0]
− Eπ0 [C|F0, di(1) = 0, dj(1) 6= 0]
≥ β(pici

(1− (βpi)T−1)
(1− βpi)

− cj
1− βT−1

1− β
) a.s.. (20)

It can be seen that if equation (18) is satisfied, then we have;
Eπ[C|F0, di(1) = 0, dj(1) 6= 0]

≥ Eπ0 [C|F0, di(1) = 0, dj(1) 6= 0] a.s.

Lemma 6: Let the time horizon be T and suppose we have
Ii(1) ≥ Ij(1) and di(1) = dj(1) = 0. Let π be a policy that
serves queue j at time t = 1 and then follows an optimal
policy given dπ(2) thereafter. Let π0 be a policy that serves
queue i at time t = 1 and then follows an optimal policy given
dπ

0
(2) thereafter. Then we have

Eπ[C|F0, di(1) = dj(1) = 0]

≥ Eπ0 [C|F0, di(1) = dj(1) = 0] a.s., (21)

if

pici
(1− (βpi)T−1)
(1− βpi)

≥ pjcj
1− βT−1

1− β
(22)

Proof: The proof proceeds in a similar way to that with
Lemma 5. All queue sizes are the same at t = 1 under both
policies. Since π assigns the slot at time t = 1 to queue j and
π0 assigns it to queue i, at time t = 2 we have

dπi (2) = ai(0);

dπj (2) = [aj(0)− 1]+;
dπ

0
i (2) = [ai(0)− 1]+;
dπ

0
j (2) = aj(0).

Specifically, if there is an arrival to queue i, then dπi (2) = 1
and dπ0i (2) = 0. If there is an arrival to queue j, then dπj (2) = 0
and dπ

0
j (2) = 1.
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These combined with Lemmas 3 and 4 gives us

Eπ[C|F0, di(1) = dj(1) = 0]−
Eπ0 [C|F0, di(1) = dj(1) = 0]

= Edπ,dπ0{Eπ[C2|F1,dπ(2)]−
E[C2|F1,dπ0(2)]|di(1) = dj(1) = 0} a.s.

≥ βpici
(1− (βpi)T−1)
(1− βpi)

− βpjcj
1− βT−1

1− β
a.s.,

where Edπ,dπ0 is the expectation over all values of d(2) under
policies π, π0 conditioned on di(1) = dj(1) = 0.
Therefore if Equation (22) is satisfied we have

Eπ[C|F0, di(1) = dj(1) = 0]

≥ Eπ0 [C|F0, di(1) = dj(1) = 0] a.s.. (23)

We note the following facts from the above results:
1) If (18) is satisfied, then (22) is also satisfied, i.e., (18)
is a stronger condition than (22).

2) If (18) is satisfied for some horizon T then it is also
satisfied for any horizon T 0 ≤ T , i.e., the condition
becomes weaker and weaker as T decreases. Same
applies to (22).

3) All the above lemmas remain valid for the allocation of
an arbitrary time slot t within the horizon (1 ≤ t ≤ T−1
as opposed to t = 1), given d(t), when T is replaced by
T − t+1 in Equations (11), (14), (18), and (22). This is
because in all these lemmas what matters is the time to
go, which is T − t + 1 for an allocation made at t and
a horizon of T .

Combining Lemmas 1, 2, 5, and 6 we are now able to prove
Theorem 1 as follows.
Proof of Theorem 1: The case of T = 2 is directly given by

Lemma 1.
If di(t) > 0 then it follows directly from Lemma 2 that it

is optimal to serve queue i.
Suppose di(t) = 0 and its index satisfies (4) with respect to

all other queues. Consider now some other queue j such that
dj(t) 6= 0, and queue k such that dk(t) = 0. Then by Lemma
5 the policy that serves queue i at time t and then follows
an optimal policy is at least as good as any policy that serves
queue j at time t. Similarly by Lemma 6 the policy that serves
queue i at time t and then follows an optimal policy is at least
as good as any policy that serves queue k at time t. Thus a
policy that serves queue i at time t and then follows an optimal
policy is at least as good as any other policy. Therefore serving
queue i under (4) when di(t) = 0 is optimal.
Remark 2: Theorem 1 gives a sufficient condition for the

optimality of the index rule for one step when the state of the
system is on the boundary (the queue with the highest index
is empty). A straightforward induction argument shows that
if the conditions of Theorem 1 hold in every time step (this
requires the indices to be separated as defined by condition
(4)), then the index policy is optimal for the entire horizon.

Remark 3: How restrictive the sufficient condition (4) may
be, is not immediately clear , as it depends on the horizon T ,
the discount factor β and the arrival probabilities. It can be
evaluated for a specific system with known values of these
parameters.

IV. INFINITE HORIZON AND THE RESTLESS BANDIT
FORMULATION

A. Infinite Horizon
The optimality condition given in Theorem 1 is time and

horizon dependent. A fairly straightforward extension of this
result to the infinite horizon case gives us the following
theorem as T →∞.
Theorem 2: Consider an infinite horizon. Suppose that at

time t for some queue i, we have Ii(t) ≥ Ij(t) ∀j 6= i. Then
1) if di(t) > 0, then it is optimal to allocate the slot at time

t to queue i.
2) if di(t) = 0, then it is optimal to allocate the slot at time

t to queue i if for all j 6= i,
Ii(t)

1− piβ
≥ Ij(t)

1− β
. (24)

Theorem 2 gives a sufficient condition for the optimality of
the index policy over an infinite horizon.

B. Calculating the Indices for a Restless Bandit Problem
In what follows we will consider the infinite horizon prob-

lem and formulate it as a restless bandit [9], [10]. Consider
the problem of allocatingM slots to N queues whereM < N
and each queue can be allocated at most one slot per allocation
period (frame). We want to find the optimal policy that mini-
mizes the total expected discounted cost (equation (1)) over an
infinite horizon. The problem studied in previous sections is a
special case (M = 1) of this more general formulation. Whittle
in [9] showed that by relaxing the condition of serving exactly
M queues within each frame to that of serving an average
of M queues per frame over the horizon, the problem can
be separated into N one-dimensional problems and an index
can be calculated for each queue, if the indices satisfy some
indexability condition. The policy then would be to serve the
queue with the highest index. For more details see [9], [12],
[13].
It can be shown that our problem satisfies Whittle’s index-

ability property and the index is calculated as follows. Each
queue will be considered individually. A subsidy is given to
taking the passive action on queue i (not allocating the slot to
the queue). In our problem this is equivalent to charging user i
an amount γ if a slot is allocated. The index then is the amount
of subsidy/charge such that allocating and not allocating the
slot to queue i are equally optimal. Below we proceed to
calculate the index for an individual user as a function of its
state d. Since only one queue is under consideration, we will
use similar notations as before but suppress all subscripts.
Again arrivals will be assumed to be of a Bernoulli type

within each frame, with an arrival probability p. In each time
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frame we have the option to either allocate a single slot to
the queue or not. If we choose to allocate a slot, the cost
for this allocation is γ. The unit holding cost for the queue
for each packet during a time frame is c. The information
available when the decision is being made for allocation at
time t is d(t), the number of deterministic packets in the queue.
Let v(t) = 1 if the slot is allocated for time frame t and
let v(t) = 0 otherwise. The objective is to find a policy π
that minimizes the the following cost function over an infinite
horizon.

Jπ∞ = Eπ[
∞X
t=1

βt−1 ·R(b(t), v(t))|F0] (25)

where

R(b(t), v(t)) =

(
c · b(t) + γ v(t) = 1,

c · b(t) v(t) = 0.
(26)

Define d(t) to be the state of the system at time t. The dy-
namic programming formulation to this problem is as follows:

V (0)

= cp+min{γ + βV (0), β(pV (1) + (1− p)V (0))};
V (d)

= c(d+ p) +min{γ + β(pV (d) + (1− p)V (d− 1)),
β(pV (d+ 1) + (1− p)V (d))} d ≥ 1, (27)

where V (d) is the value function, or cost-to-go given state d.
Definition 1: An index at state d, γ∗(d) is defined as

follows. γ∗(d) is the supremum of all γ for which it is optimal
to allocate the slot when there are d deterministic packets in
the queue. Alternatively, it is also the γ value for which it is
equally optimal to assign and not assign the slot.
Using the two lemmas from the Appendix we can obtain

the following result:

γ∗(0) =
βpc

1− pβ
;

γ∗(d) =
βc

1− β
, d ≥ 1 . (28)

Whittle’s heuristic index policy is to allocate the slot to the
queue with the highest index. This index policy is asymptoti-
cally optimal for N and M going to infinity with fixed ratio,
and is only sub-optimal in general for finite cases (M = 1 in
this case).
Here we point out the relationship and differences between

the Whittle’s heuristic index policy and our index policy for
infinite horizon in Theorem 2.
1) Comparing (28) with (3) we see that when the state of
the system is away from the boundary (di(t) 6= 0, ∀i),
Whittle’s index policy coincides with our index policy,
and is optimal by Theorem 2. The optimal policy is
simply to serve the queue with the highest cost.

2) When di(t) = 0 for some queue i, then under Whittle’s
index policy the slot will be allocated to i if and only if
γi ≥ γj , j 6= i. As we will show in the next section,

in this case Whittle’s index policy is not necessarily
optimal.

V. EXAMPLES AND DISCUSSIONS

In this section we show via two examples, both over infinite
horizon, that the Whittle’s index policy is not necessarily
optimal for the problem under consideration, and that if
Equation (24) is not satisfied, our index policy is also not
necessarily optimal.
Example 1: Suppose we only have two queue, with c1 =

10, c2 = 7, p1 = 0.8, p2 = 1, β = 0.9. Suppose d1(t) =
0, d2(t) 6= 0. We need to determine whether the slot should be
allocated to queue 1 or 2 for slot t, given all subsequent slots
will be allocated optimally.
One can easily check that in this example we have γ1 < γ2,

and I1 > I2. Therefore, under the Whittle’s index policy, the
slot should be assigned to queue 2, whereas under our index
policy the slot should be assigned to queue 1. Also note that

I1
1−p1β < I2

1−β , thus the sufficient condition (24) is not satisfied.
As we show below, the optimal decision is indeed to allocate
the slot to queue 2. Therefore our index policy is not optimal
in this example where (24) is not satisfied.
Let π be the policy that allocates the slot at time t to queue

1 and follows the optimal policy afterwards. Let π0 be the
policy that allocates the slot at time t to queue 2 and follows
the optimal policy afterwards. We show that Jπ0∞ ≤ Jπ∞ a.s.
as follows.
Policy π allocates the slot at t to queue 1 and follows an

optimal policy afterward. Let t0 be the first (random) time that
policy π allocates to queue 2 (let t0 be ∞ if policy π never
serves queue 2 a.s.).
Define π̂ to be the following policy. At time t it allocates

the slot to queue 2. Afterwards we have one of the following
cases:
1. If a1(t− 1) = 0, then from time t+ 1, π̂ allocate to the

same queue as policy π. In this case, since p2 = 1, there will
always be one more packet in queue 2 when policy π is used
compared to policy π̂.
2. If a1(t−1) = 1, then π̂ starts allocating subsequent slots

to queue 1. If d1(t) = 0 for some time t1 < t0, then from
t1+1, π̂ starts allocating to the same queue as policy π (note
since there are only two queues, t1 < t0 necessarily means
that π allocates all slots to queue 1 as well until t0, therefore
the two policies essentially have the same allocations). In this
case after t1 there will always be one more packet in queue
2 when π is used. If d1(t) has not become empty by time
t0, then π0 allocates the slot at t0 to queue 1, and follow the
same allocation as π does afterwards (note that from t0+1 on
queues will be in the same state under both policies).
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We then have

Jπ∞ − J π̂∞ = βt(1− p1) · c2
1− β

−

βtp1 · (
t0X

u=t+1

βu−t−1pu−t−11 (c1 − c2))

≥ βt[
(1− p1)c2
1− β

− p1(c1 − c2)

1− βp1
]. (29)

The first term on the right hand side corresponds to a1(t−
1) = 0 and the second term to a1(t− 1) = 1. If we have

(1− p1)c2
1− β

≥ p1(c1 − c2)

1− βp1
, (30)

then Jπ∞ ≥ J π̂∞. It can be easily verified that the data in
Example 1 satisfies (30). On the other hand policy π̂ is not
necessarily optimal after t. So we have Jπ

0
∞ ≤ J π̂∞.

Therefore in Example 1 it is optimal to serve queue 2.
In the next example we consider a variation of Example 1

which has a different solution.
Example 2: Consider the same two queues as above, and

suppose there are N − 2 other queues with ci = 11, pi = 0.1.
Also assume that at time t we have d1(t) = 0, d2(t) 6= 0, and
di(t) = 0 i 6= 1, 2. We need to determine which queue to
allocate for slot t.
In this example, we can easily verify that I1, I2 > Ii, i 6=

1, 2, γ1, γ2 > γi, i 6= 1, 2, and that I1 and I2 satisfies (24)
w.r.t all other queues, respectively. Therefore under both index
policies we should allocate the slot to either queue 1 or queue
2. In particular, since the parameters on queue 1 and queue
2 did not change from Example 1, under the Whittle’s index
policy the slot should be assigned to queue 2.
However, as N →∞ the probability of having a packet in

one of the queues i 6= 1, 2 approaches one. Since their cost is
greater than c1 and c2, the probability that either queue 1 or
queue 2 being served again approaches zero. This is because
with probability 1 there will be a non-empty queue i 6= i, 2
having the highest index, and by Theorem 2 it is optimal to
serve this queue. Thus in this case, it is optimal to allocate the
slot to the first queue since p1c1 ≥ c2.
To summarize, Example 1 shows that when the sufficient

condition (24) is not satisfied, our index policy is not neces-
sarily optimal. Although the example is for infinite horizon,
one can construct a similar finite horizon example to show the
same (e.g., by having very large T in Example 1). Example
2 shows that the Whittle’s index policy is also not necessarily
optimal. In addition, combining these two examples we see
that when the queue with the highest index is empty and (24)
is not satisfied, then the optimal policy may not be determined
by indexing a queue based on its own state (i.e., an “index”,
if exists, may depend on all other queues in the system).
Note that the above examples are constructed to show that

the two index policies are not necessarily optimal. These
examples may or may not reflect certain practical scenarios.

VI. CONCLUSION AND FUTURE WORK
In this paper we studied the optimality of an index policy for

allocating a single server to N parallel queues, when the queue
size is not perfectly observed, the arrivals are Bernoulli and the
services are differentiated. We derived sufficient conditions for
the index policy to be optimal, for both the finite horizon and
infinite horizon cases. We also show by examples that when
the sufficient condition is not satisfied, this index policy is not
necessarily optimal.
We then compared our results to Whittle’s heuristic index

policy derived for the same problem over an infinite horizon.
Although Whittle’s index heuristic is asymptotically optimal
when number of allocation slots and the number of queues
go to infinity, it is not necessarily optimal for the finite case.
We showed when the Whittle’s index policy is optimal in this
problem, and showed via examples that it is not necessarily
optimal when the sufficient condition is not satisfied.
Our future work will focus on generalizing these results into

the case of arbitrary arrivals and multiple allocation slots.

APPENDIX
The following two lemmas demonstrate that the indices

shown in Equation (28) are indeed the Whittle’s indices for
the restless bandit problem over an infinite horizon. Consider
the single queue scenario described in section IV.B with the
holding cost c, arrival probability p and a charge for allocating
a slot γ.
Lemma A-1: Suppose d(t) 6= 0. If γ ≤ βc

1−β , then it is
optimal to allocate the slot for the next time frame and if
γ ≥ βc

1−β then it is optimal not to allocate the slot for the next
time frame. In case of equality it is equally optimal to allocate
or not to allocate the slot.
Proof: Let π be the policy that allocates a slot for time t

and then allocates optimally. Let π0 be the policy that does not
allocate the slot for t and then allocates optimally. Let t0 > t
be the first time that π0 allocates a slot.
Define π̂ to be the following policy. π̂ allocates a slot at t

and then does not allocate any slots for all time frames less
than or equal t0. At t0+1 the queue will be in the same state
whether under π̂ or under π0. Therefore,

Jπ
0
∞ − J π̂∞

= βt
0−1γ − βt−1γ +

t0X
u=t+1

βu−1c

= βt−1{βc(1− βt
0−t)

1− β
− γ(1− βt

0−t)} (A-1)

It can be seen that if γ ≤ βc
1−β , then we have J

π0∞ ≥ J π̂∞. Also
note that we have Jπ∞ ≤ J π̂∞. Thus if γ ≤ βc

1−β then we have
Jπ

0
∞ ≥ Jπ∞, which means that it is optimal to allocate the slot
at time t.
Now we redefine policy π̂ to be the following. Policy π̂ does

not allocate a slot for time t. After time t it allocates exactly
the same as policy π. Therefore in the worse case under policy
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π̂ there will always have one more packet in the queue. So we
have

Jπ∞ − J π̂∞ ≥ βt−1γ − βtc

1− β
(A-2)

Therefore if γ ≥ βc
1−β , then we have J

π∞ ≥ J π̂∞. On the other
hand since Jπ

0
∞ ≤ J π̂∞, we conclude that if γ ≥ βc

1−β , then
Jπ∞ ≥ Jπ

0
∞ . Therefore it is optimal not to allocate the slot for

the next time frame.
When γ = βc

1−β , from the above two arguments we know
that Jπ∞ = Jπ

0
∞ , meaning allocating and not allocating are

equally optimal.
Lemma A-2: Suppose d(t) = 0. If γ ≤ βpc

1−βp , then it is
optimal to allocate the slot for the next time frame and if
γ ≥ βpc

1−βp then it is optimal not to allocate the slot for the
next time frame. In case of equality it is equally optimal to
allocate or not to allocate the slot.
Proof: If γ ≥ βc

1−β , then with a method similar to that in
Lemma A-1 it can be shown that it is optimal not to allocate a
slot for the next time frame (note that if d(t) = 0, (A-2) holds
for π and π̂ defined in Lemma A-1).
Now consider the case γ ≤ βc

1−β .
Let π be the policy that allocates a slot when d(t) = 0 and π0

be the policy that does not allocate a slot when d(t) = 0. Both
policies allocate the slot when d(t) 6= 0, since this is optimal
by the previous lemma and the assumption that γ ≤ βc

1−β .
Let d(t) = 0. Then, policy π allocates a slot and policy π0

does not allocate a slot for time t.
If a(t− 1) = 0, then both policies will be in the same state

at time t+1. If a(t− 1) = 1, then both policies continuously
allocate a slot until the deterministic part becomes zero again,
(note that policy π allocates the slot by definition and policy π0
allocates the slot because γ ≤ βc

1−β ). After π
0 has transmitted

all the deterministic packets, then both queues will again be
in the same state. Therefore we have Jπ0∞ ≥ Jπ∞ iff

∞X
u=t+1

βu−1pu−tc− βt−1γ ≥ 0

⇐⇒ βt−1(
βpc

1− βp
− γ) ≥ 0 (A-3)

Thus, If γ ≤ βpc
1−βp , then Jπ0∞ ≥ Jπ∞, thus it is optimal to

allocate the slot for the next time frame. If γ ≥ βpc
1−βp then

Jπ0∞ ≤ Jπ∞ and it is optimal not to allocate the slot for the next
time frame. In case of equality it is equally optimal either to
allocate or not to allocate the slot.
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