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Abstract— In this paper we present a Markov Chain model for
TCP congestion avoidance phase. With this model we are able to
analyze congestion window behavior as a discrete-time stochastic
process and distinguish between window transient period and
steady state. Using this result we are able to obtain more accurate
estimate of TCP latency over lossy links compared to existing
models. We then simplify the proposed model and show that the
transient period evolves with an exponential rate. Our results are
validated using NS2 simulation and show significant improvement
in latency estimate for a wide range of file sizes.

I. INTRODUCTION

Transmission Control Protocol (TCP), as the most widely
used reliable transport layer protocol, constitutes the majority
of the current Internet traffic. Its behavior over lossy links
has been the subject of extensive study in recent years. It
has been shown by multiple independent studies and via
different approaches that the steady-state throughput of TCP
(or throughput of an infinite source) in an environment with
random losses is inversely proportional to both the round-trip
time (RTT) of the connection and the square-root of the loss
rate, see for example, [1], [2], [3], [4]. Furthermore, [2] studied
asymmetric connections with finite buffers and determines
throughput as a function of buffering, round trip times and
normalized asymmetry. [3] modeled TCP’s congestion window
size as a stochastic process and presents analysis for derivation
of its steady-state distribution. In [4] a more accurate model
is developed to determine the steady-state throughput of Reno
TCP by explicitly modeling timeouts.

All the above work is steady-state analysis and implies
long-lasting connections. [5] and [6] introduced methods to
estimate the latency for finite or small file transfers. Both
methods are based on the assumption that the connection enters
steady state immediately after the first loss it experiences. In
particular, the latency analysis is divided into two parts. In the
first part the congestion window grows exponentially during
slow-start until the first expected loss occurs. The number
of packets successfully sent and the amount of time spent
during this stage can be calculated explicitly. In the second
part, the connection is assumed to be in steady state and thus
the throughput can be estimated using existing results, e.g.,
from [3], [4]. The time spent in this stage is then the amount of
remaining packets in the connection divided by the steady-state
throughput. The total latency of the connection is obtained

by taking the sum of time spent in each of the two parts.
The limitation of this approach is illustrated in Figure 1. We
compared the actual average congestion window size (aver-
aged over 100 independent simulations using different random
seeds), over the duration of the connection, to that obtained
via the above analysis assuming that the connection reaches
steady state immediately following the first loss. The main
observation is that the congestion window will go through
a transient period (decay in this example) before reaching
the steady-state throughput. If the file is not large enough
then the congestion window may never reach steady state and
therefore the slow-start and this transient period will dominate
the window evolution. The above assumption can result in
fairly accurate estimates if the file is very small (i.e., likely
to finish transfer before the expected first loss occurs) or very
large (i.e., the connection reaches steady-state and remains
in steady-state for sufficiently long so that the effect of this
transient period is diluted). However, as will be shown later,
neglecting this transient part leads to large error in estimating
the latency for a wide range of intermediate file sizes.
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Fig. 1. Congestion window evolution. Slow-start
threshold(Wsst)=40,Bandwidth=5Mb/sec, random loss probability(q)=0.005,
RTT=400msec

This has motivated us to find a more accurate latency
estimate that accounts for this transient period. In this paper we
present a Markov Chain model that gives accurate estimates
on file transfer latency regardless of the file size. In addition,
our model captures the complete characteristics of the window
evolution as a function of time, specifically its probability mass



function. This allows for immediate extension to analysis that
potentially involve probability distribution or higher moments
of the window size.

The rest of the paper is organized as follows. In the next
section we present our model and underlying assumptions. In
section 3 we briefly go over the slow-start analysis, since this
part is widely studied in the literature. In section 4 we analyze
congestion avoidance phase of TCP using a Markov Chain
model and solve the chain according to its initial conditions.
In section 5 the steady state of this Markov Chain is studied
and the result is compared to the existing steady-state analysis.
In section 6 we simplify our model and derive an exponential
evolution for the window size in steady state. In section 7 we
verify our model and compare it with existing model using
NS2. Section 8 concludes the paper.

II. NETWORK MODEL AND ASSUMPTIONS

In Section 4 we will model the dynamics of the congestion
window (assuming TCP is in its congestion avoidance stage)
using a finite state Markov Chain {cwndn}, where cwndn

denotes the congestion window size at step n, cwndn ∈
{1, 2, · · · ,Wmax}, and n represents the nth RTT. In doing
so we make the following assumptions: (i) The variance
in RTT is small compared to the observed period or the
connection duration. Therefore RTT is approximated as being
constant and each RTT is considered a “step” in this model;
(ii) Losses in the network are random and each packet ex-
perience independent losses with a fixed loss probability q.
This assumption is not unreasonable considering the wide
deployment of Random Early Discard (RED) routers but it
is different from the observations from tail-drop queues. (iii)
Any change in the congestion window size can be made at the
edge of each step. In reality when a packet loss is detected,
action is taken immediately, but in our model TCP keeps
its window size constant within each RTT. If a packet is
lost in a window, the server will be notified before the next
window starts, so each loss in the window will affect the
next window size. (iv) The congestion window is halved at
most once in each RTT. This assumption makes our model
closest to NewReno [7] or TCP Sack [8] rather than TCP
Reno [9]. Note that this assumption can be easily relaxed
and the same modeling framework can be applied to TCP
Reno. (v) Whenever the congestion window is halved, it is
rounded to the closest integer below the halved value. This
is obviously an approximation in exchange for a finite state
space and less computation. (vi) The return path for ACK is
lossless. Since acknowledgments are cumulative, this is not an
unrealistic assumption. (vii) The send rate of the TCP source
is constrained by the congestion window size rather than
by the network link capacity, therefore can be approximated
using rate = cwnd

round−trip−time . (viii) For simplicity reasons we
will also ignore timeouts during congestion avoidance. It has
been shown in [4] that not considering timeouts can lead to
large error in TCP throughput estimation especially when loss
probability is high. However, since our stochastic model is
mainly for the transient stage, leaving out timeouts has limited

effect. Existing model with timeout can be used for steady-state
analysis.

In the next section we will deviate briefly to discuss the
slow-start window evolution and will resume the discussion
on congestion avoidance in Section 4.

III. SLOW-START WINDOW EVOLUTION

Denoting by Wsst the slow-start threshold and W0 the initial
window size, we first analyze what happens before the first loss
occurs or Wsst is reached. TCP starts by setting initial window
size to W0 and increases it by one for every ACK from the
receiver. If TCP enters the congestion avoidance phase at the
nth

0 RTT, then as shown in [5] we have:

cwndi = W0 · ri where i = 0, 1, 2, ..., n0 − 1 (1)

where r = 1+ 1
b and b indicates the number of packets received

before an ACK is sent (b > 1 means delayed ACK). n0 − 1
is the time when either the first loss is detected or Wsst is
reached (this is the last RTT in slow-start).

Claim 1: Suppose the number of packets sent before the
first loss is detected or Wsst is reached is d and let the file
size to be M packets. We have:

E[d] =
k∑

i=1

(i − 1) · q · (1 − q)i−1 + k · (1 − q)k (2)

where k = min((Wsst − W0)b,M).
Proof: Suppose i − 1 packets are sent successfully and the

ith packet is lost. The probability of this event is q ·(1−q)i−1.
If none of the packets are lost by the time cwnd = Wsst, then
the congestion avoidance phase starts. Since TCP increases its
window size for each receiving ACK, the maximum number
of packets that could be transmitted before entering congestion
avoidance is (Wsst − W0)b if there is enough packets to be
sent, otherwise the maximum number of packets will be equal
to M. Therefore the maximum number of packets that can be
transmitted during slow-start is k = min((Wsst−W0)b,M). If
there is any loss before that, congestion avoidance starts right
after the loss. If there is no loss by the kth packet congestion
avoidance phase starts. The probability of the latter is (1−q)k.

The following result is shown in [5]. For self-sufficiency
we state it here with a very simple proof. Note that in our
notation, the last step to transmit in slow-start is n0 − 1.

Proposition 1: Using the above claim for deriving E[d], we
can calculate E[n0] as follows.

E[n0] = 1 + �logr

E[d]
b · W0

+ 1� (3)

proof: The total number of packets transmitted up to step
(E[n0] − 1) is:

E[d] =
E[n0]−1∑

n=0

W0 · rn = W0 · b · (rE[n0]−1 − 1)

Solving for E[n0], (3) is obtained.



IV. TRANSIENT BEHAVIOR OF THE TCP WINDOW DURING

CONGESTION AVOIDANCE

In this section we model the the evolution of congestion
window as a finite state Markov Chain based on assumptions
discussed in Section 2. Congestion avoidance phase has previ-
ously been modeled as a Markov chain (see for example [3]),
to derive the stationary behavior of TCP. To the best of our
knowledge, our study in this paper is the first on analyzing the
transient phase.

Following our assumptions, if there is no error in the nth

window/RTT of size cwndn = i and assuming no delayed
ACKs are used, we have cwndn+1 = i+1. Otherwise if there
is one or more errors TCP will halve its window in the next
RTT: cwndn+1 = � i

2�. This results in a finite state space
S = {1, 2, ...,Wmax} where Wmax is the maximum window
size. Figure 2 illustrates the transition between states as an
example when the maximum window is 6. P (i) denotes the
probability of having error (one or more) in a window of size
i, thus P (i) = 1 − (1 − q)i where q is the per-packet loss
probability. The following state-dependent Markov Chain can
thus be constructed:

pij = Prob{cwndn+1 = j | cwndn = i} =




1 − P (i) if j = i + 1, 1 ≤ i < Wmax or
if j = i = Wmax

P (i) if j = � i
2�, 1 < i ≤ Wmax or

if j = i = 1
0 else

This model can easily be extended to account for delayed
acknowledgment. For example if one ACK is sent for every
two TCP segments (b = 2), we have cwndn+1 = cwndn + 1

2
if there is no error in the nth window and cwndn+1 = cwndn

2
when there is error. In order to have finite number of states
we approximate cwndn+1 using Xn− 1

2
2 whenever Xn is not

an integer and there is a loss. This results in a state space
S = {1, 1.5, 2, 2.5, 3, ...,Wmax}. Similar transition probabili-
ties can then be derived. The rest of analysis presented here is
for the case when delayed ACKs are not used. Extending them
to the case where delayed ACKs are used is straightforward.
We will point out major differences in the analysis where
necessary.

We can now define a Wmax×Wmax matrix P , the transition
probability matrix, whose elements pij are defined above.
Denoting the probability that cwndn = i as wn(i) for all i,
and wn to be the column vector of all such probabilities at
time n, we have:

wn+1
T = wn

T · P (4)

This gives us complete description of the congestion window
dynamics during the congestion avoidance stage. In order to
calculate window distribution we need the initial probability
distribution wn0 , where n0 is the time when congestion
avoidance phase starts.
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Fig. 2. Markov Chain of window evolution, no delayed ACK, Wmax = 6.

Claim 2: If there is enough packets in the file such that
slow start is completed by reaching Wsst, then

wn0(i) =




q(1 − q)b·(2i−W0) · (1 + (1 − q)b) if W0 ≤ 2i < Wsst

(1 − q)b·(i−W0) if i = Wsst

0 else

where i ∈ {1, 2, · · · ,Wmax} when b = 1 and when b = 2,
i ∈ {1, 1.5, · · · ,Wmax}.
Proof: Suppose congestion avoidance phase starts from
cwndn0 = i by detecting a loss in slow-start. It means that
at the time when loss was detected the congestion window
size was 2i or 2i+1. On the other hand, in slow-start window
is increased by one upon receiving each ACK, i.e. successful
transmission of a packet. Considering that the initial window
is equal to W0 there must have been either (2i − W0) or
(2i − W0 + 1) acknowledgements received. If the sender
receives one ACK for each b successful transmissions, then
there must have been b.(2i−W0) or b.(2i−W0+1) successful
transmissions prior to the detection of the first loss and by
using the independence of losses we can easily verify that
the probability of this event is q.(1 − q)b.(2i−W0) + q.(1 −
q)b.(2i−W0+1). If there is no loss in the first Wsst − W0
packets then slow-start ends as the threshold is reached and
the probability of this event is (1− q)b.(i−W0). Thus verifying
the claim.

Claim 3: If there is not enough packets in the file to reach
Wsst (i.e., Wsst > W0 + M

b ), then

wn0(i) =




q(1 − q)b·(2i−Wo) · (1 + (1 − q)b) if W0 ≤ 2i < W0 + M
b

(1 − q)M if i = W0 + M
b

0 else

where i ∈ {1, 2, · · · ,Wmax} when b = 1 and when b = 2,
i ∈ {1, 1.5, · · · ,Wmax}.

Proof of this claim is the same as the the previous one and
is thus not repeated.



Using the above initial conditions, (4) can be solved and the
average window size in the nth RTT is

wave(n) =
Wmax∑

i=1

i · wn(i), n > n0 (5)

We now have a complete characterization of TCP window
size evolution. To summarize, we have the exponential growth
for the congestion window from the beginning until nth

0 win-
dow when congestion avoidance starts. The initial condition
for this instant is given by claim 1 and 2. From this point on,
the state of the system is given by (4). To calculate the average
window size in each RTT, (5) is used. In order to translate from
step n to real time axis, we will need to multiply n by RTT.

V. STEADY-STATE ANALYSIS

In this section we study the convergence of the Markov
Chain presented in the previous section.

Due to space limit, complete derivation of steady-state
probabilities is omitted, and can be found in [10]. Here we
use the results to calculate the average window size in steady
sate. Figure 3 compares the steady state obtained using the
above procedure with the steady-state analysis derived using
the square-root formula without considering timeouts. It is
shown [3], [4] that TCP throughput is proportional to 1

RTT
a√
q

in packets per unit time. a equals
√

3/2 in the special case of
TCP Reno [4].
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Fig. 3. Steady-state congestion window size vs. error probability, Wsst =
40, Wmax = 80

VI. SIMPLIFYING THE PROPOSED MODEL

Following analysis in the previous sections, the TCP window
evolution can be divided into three distinct regions: (1) Slow-
start where the window grows exponentially; (2) Congestion
avoidance transient phase; and (3) Steady state. These three
regions are illustrated in Figure 4.

Analysis of the first and third regions results in relatively
simple closed form solutions, but for analyzing the transient
part, we have to use the Markov Chain model which involves
a large amount of calculation and does not provide a lot of
intuition. In this section we simplify our transient analysis
calculation and present it in a more illustrative way.

time

slow−start congestion avoidance−transient steady−state

congestion window

Wf

Wc

Fig. 4. Summary of the congestion window evolution of TCP

We use the Perron-Frobenius Theorem from [11] to simplify
our model. Based on this theorem, the system described by
the state transition probability matrix P converges to steady
state with rate |λn

2 |, where λ2 is the second largest eigen
value (in absolute value) (SLEV) of P . This implies that the
TCP congestion window size converges to steady state with
rate |λn

2 |. Since the average window size is averaging over
all possible window size values, this average also converges
to its steady state with the rate |λn

2 |. |λ2| is calculated from
P . Compared to executing (4) multiple times this results in
significant savings in computation. Moreover, the simplified
model is mathematically more tractable.

To summarize, we have the following model for TCP
window size evolution.

wavg(t) =
{

r
t

RT T if t ≤ t0
Wf + (Wc − Wf )|λ2|

t
RT T if t > t0

(6)

where Wc is the expected window size when congestion
avoidance starts, and is obtained using Wc =

∑Wmax

i=1 i·wn0(i).
t0 is the time when wavg(t) = Wc (when congestion avoidance
starts), i.e. t0 = RTT logr Wc.wn0 is given by either claim1 or
claim 2. Wf is the steady-state window size calculated either
from the state transition probability matrix P (see [10]) or by
using the formula derived in [4]. Here timeouts can also be
considered. Note that results in [4] are based on a different
loss assumption where following the first loss in a window,
all remaining packets in the same window are also assumed to
be lost. This is somewhat different from the independent loss
probability we have assumed in this paper. However when loss
rate is low the assumptions become close.

VII. VALIDATING THE RESULTS

In this section we use the network simulator NS2 to validate
our results. All simulation results are the average over 100
independent simulation runs using different random seeds. We
used TCP SACK for our simulation. The size of each TCP
packet is set at 1Kbytes and Wmax = 2Wsst.

Figure 5(a) compares the result from our analysis to the
result obtained from simulation. We assume that the sender
always has packets to send and we compare the average
number of packets sent at each time with our analysis. It
is compared to the results obtained without considering the
transient part (this is essentially the same model obtained in
[5]). This figure shows that both results (considering transient
part or not) are “diverging” from the result from simulation.



This is due to the fact that when comparing the number of
transmitted bytes in time, errors are cumulative. However if
we compare the resulting throughput (Figure 6), the error stays
within a small range.

Figure 5(b) compares congestion window size evolution for
the same scenario (compared to Figure 1). It can be seen that
although our window size analysis perfectly match that from
simulation, file transfer latency is underestimated (still much
more accurate than not considering the transient part). This is
mainly because timeouts are not considered in the transient
part of our model.

From the example shown in Figure 5(a) (where Wsst is set
to 40), we can see that for files smaller than 103 Kbytes or
bigger than 800 Kbytes considering the transient phase does
not provide special benefit. This is because in the former the
transfer is most likely to complete within the slow-start period
so the transient part has very small effect on average, whereas
in the latter the effect of the transient part is diluted by the
extended steady state phase. Figure 5(b) shows that the amount
of time that the window size is in transient phase is roughly
10 seconds. Note that these quantities are case specific. For
example, if we increase Wsst, the slow-start phase will be
longer, so the transient part will only be effective starting from
some file-size greater than the 103 Kbytes in this example. If
the error probability is increased, the slope of the transient part
will increase and the system will go to steady state faster.
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Figure 6 considers the same scenario and compares the
throughput obtained from analysis to the simulation results.
Throughput is simply defined as file size divided by its latency.
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Fig. 6. Throughput comparison - One way delay = 200ms, q = 0.005,
Wsst = 40, C = 5Mb/sec.

It is worth pointing out that the window size does not
necessarily need to be decreasing in order for our analysis
to hold. In fact Figure 4 can be modified for the case where
Wf > Wc. Figure 7 illustrates one such case.
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Fig. 7. Congestion window size - One way delay = 30ms, q = 0.003,
Wsst = 15, C = 5Mb/sec.

Results above were derived using the exact Markov Chain
analysis. Now we show the accuracy of our approximation.
Wf is calculated using the square-root approximation given
earlier. Figure 8 illustrates the accuracy of this approximation.

VIII. CONCLUSION

In this paper we studied TCP’s congestion window evolution
over time. We presented a Markov Chain for analyzing the
congestion window behavior following the first loss and before
entering steady state. We showed that window size evolves
with an exponential rate based on the window probability
distribution. This transient part affects the estimate of file
transfer latency for a wide range of file sizes. The effect
of this transient part becomes more significant as the SLEV
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increases. Using our model we showed very accurate estimate
in congestion window size and latency.
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