
Congestion Games with Resource Reuse and Applications in Spectrum
Sharing

Mingyan Liu, Sahand Haji Ali Ahmad and Yunnan Wu

Abstract— In this paper we consider an extension to the
classical definition of congestion games (CG) in which multiple
users share the same set of resources and their payoff for using
any resource is a function of the total number of users sharing
it. The classical congestion games enjoy some very appealing
properties, including the existence of a Nash equilibrium and
that every improvement path is finite and leads to such a NE
(also called the finite improvement property or FIP), which
is also a local optimum to a potential function. On the other
hand, this class of games does not model well the congestion or
resource sharing in a wireless context, a prominent featureof
which is spatial reuse. What this translates to in the context of
a congestion game is that a user’s payoff for using a resource
(interpreted as a channel) is a function of the its number
of its interfering users sharing that channel, rather than the
total number among all users. This makes the problem quite
different. We will call this the congestion game with resource
reuse (CG-RR). In this paper we study intrinsic properties of
such a game; in particular, we seek to address under what
conditions on the underlying network this game possesses the
FIP or NE. We also discuss the implications of these results
when applied to wireless spectrum sharing.

I. I NTRODUCTION

In this paper we present a generalized form of the class of
non-coopertive strategic games known ascongestion games
(CG) [1], [2], and study its properties as well as its applica-
tion to wireless spectrum sharing.

A congestion game Γ is given by the tuple
(N ,R, (Σi)i∈N , (gr)r∈R), where N = {1, 2, · · · , N}
denotes a set of players/users,R = {1, 2, · · · , R} the set
of resources,Σi ⊂ 2R the strategy space of playeri, and
gr : N → Z a payoff (or cost) function associated with
resourcer. Specificallygr is a function of the total number
of users of resourcer. A player in this game aims to
maximize (minimize) its total payoff (cost) which is the
sum over all resources its strategy involves. More detailed
and formal description of this class of games are provided
in Section II.

The congestion game framework is well suited to model
resource competition where the resulting payoff (cost) is a
function of the level of congestion (number of active users).
It has been extensively studied within the context of network
routing, see for instance the network congestion game studied

This work is supported by NSF award CNS-0238035 and through col-
laborative participation in the Communications and Networks Consortium
sponsored by the U. S. Army Research Laboratory under the Collaborative
Technology Alliance Program Cooperative Agreement DAAD19-01-2-0011.

M. Liu and S. Ahmad are with the Electrical Engineering and Computer
Science Department, University of Michigan, Ann Arbor, MI 48105, USA
{shajiali,mingyan}@autsubmit.com

Y. Wu is with Microsoft Research, Redmond, WA 98052, USA
yunnanwu@microsoft.com

in [5], where source nodes seek minimum delay path to a
destination and the delay of a link depends on the number
of flows going through that link.

Congestions games are closely related to potential games
[4], and enjoy some remarkable features. In particular, a
congestion game is an exact potential game as it admits
an exact potential function [2]. Finding a solution (Nash
equilibrium or NE) to a congestion game is equivalent to
finding a (local) optimal solution to this potential function.
It is also known that any improvement path is finite (in which
each player’s improvement move also improves the potential)
and leads to a pure strategy NE. In other words, while the
system is decentralized and all players are selfish, by seeking
to optimize their individual objectives they end up optimizing
a global objective, the potential function, and do so in a finite
number of step regardless of the updating sequence.1

With its appealing physical interpretation and the afore-
mentioned attractive features, it is tempting to model re-
source competition in a wireless communication system as
a congestion game. However, the standard congestion game
fails to capture two critical aspects of resource sharing in
wireless communication:interferenceand spatial reuse. A
key assumption underlying the congestion game model is
that all users have an equal impact on the congestion, and
therefore all that matters is the total number of users of a
resource2. This however is not true in wireless communica-
tion. Specifically, if we consider bandwidth or channels as
resources, then sharing the same channel is complicated by
pair-wise interference; a user’s payoff (e.g., channel quality,
achievable rates, etc.) depends onwho the other users are
and how much interference it receives from them. If all
other simultaneous users are located sufficiently far away,
then sharing may not cause any performance degradation, a
feature commonly known as spatial reuse.

The above consideration poses significant challenge in
using the congestion game model depending on what type of
user objectives we are interested in. In our recent work [13],
we tried to address the user-specific interference issue within
the congestion game framework, by introducing a concept
calledresource expansion, where we define virtual resources

1This in turn means that if the potential function of a particular congestion
game has a meaningul and desirable physical interpretation, then the
solution (an NE) to this decentralized game has certain built-in performance
guarantee, as it is also a local optimal solution to a global objective. This is
a desirable feature as in general an NE can be fairly inefficient with respect
to a given global objective function.

2This function may be user-specific (see for example the one studied in
[3]), but it remains a function of the total number of active users of that
resource.



as certain spectral-spatial unit that allows us to capture pair-
wise interference. This approach was shown to be quite
effective for user objectives like interference minimization.
In particular, using resource expansion we were able to
demonstrate that two recently published distributed interfer-
ence minimization algorithms in a multi-channel multi-user
system [11], [9] have equivalent congestion game form rep-
resentations, thereby showing that (1) stability and optimality
results can be obtained automatically following this mapping,
and (2) these problems can be made a lot more general
by drawing from known results on congestion games. The
same idea also allows us to formulate a base station channel
adaption problem in [13].

In this paper, we take a different approach where we
generalize the standard congestion games to directly account
for the interference relationship and spatial reuse in wireless
networks. Specifically, under this generalization, each user is
associated with an interference neighborhood, and in using
a resource (a wireless channel in our context), its payoff isa
function of the total number of userswithin its interference
neighborhoodusing it. In other words, resources arereusable
beyond a user’s interference set in that the user is oblivious
to users outside this set even if they are simultaneously using
the same resources. This extension is a generalization of the
original congestion game definition, as the former reduces to
the latter if all users in the game belong to exactly the same
interference domain/neighborhood (i.e., every user interferes
with every other user). This class of generalized games will
be referred to ascongestion games with resource reuse(CG-
RR).

The applicability of this class of games to a multi-
channel, multi-user wireless communication system can be
easily understood. Specifically, we consider such a system
where a user can only access one channel at a time, but
can switch between channels. A user’s principal interest
lies in optimizing its own performance objective (i.e., its
data rate) by selecting the best channel for itself. This and
similar problems have recently captured increasing interest
from the research community, particularly in the context of
cognitive radio networks (CRN) and software defined ratio
(SDR) technologies, whereby devices are expected to have
far greater flexibility in sensing channel availability/condition
and moving operating frequencies.

While directly motivated by resource sharing in a multi-
channel, multi-user wireless communication system, the def-
inition of CG-RR is potentially more broadly applicable. It
simply reflects the notion that in some application scenarios
resources may be shared without conflict of interest. In
subsequent sections we will examine what properties this
class of games possesses (in particular, under what conditions
the finite improvement properties or a Nash equilibrium
exists).

It has to be mentioned that game theoretic approaches have
often been used to devise effective decentralized solutions to
a multi-agent system. Within the context of wireless com-
munication networks and interference modeling, different
classes of games have been studied. An example is the well-

known Gaussian interference game[6], [12]. In a Gaussian
interference game, a player can spread a fixed amount of
power arbitrarily across a continuous bandwidth, and triesto
maximize its total rate in a Gaussian interference channel
over all possible power allocation strategies. It has been
shown [6] that it has a pure strategy NE, but the NE can be
quite inefficient; playing a repeated game can improve the
performance. In addition, previous work [7] investigated a
market based power control mechanism via supermodularity,
while previous work [10] studied the Bayesian form of
the Gaussian interference game in the case of incomplete
information.

By contrast, in our problem the total power of a user is
not divisible, and it can only use it in one channel at a
time. This set up is more appropriate for scenarios where the
channels have been pre-defined, and the users do not have
the ability to access multiple channels simultaneously (which
is the case with many existing devices). In addition, in a CG-
RR interference is modeled using the notion of interference
set (equivalent of a binary interference relationship) whereas
a Gaussian interference game interference is calculated using
pair-wise distance. These differences lead to very different
technical approaches and results.

The organization of the remainder of this paper is as
follows. In Section II we present a brief view on the literature
of congestion games, and formally define the class of conges-
tion games with resource reuse in Section III. We then derive
conditions under which this class of games possesses the
finite improvement property (Section IV). We further show
a series of conditions, on the underlying network graph in
Section V and on the user payoff function in Section VI,
under which these games have an NE. We discuss extensions
to our work and conclude the paper in VII.

II. A R EVIEW OF CONGESTIONGAMES

In this section we provide a brief review on the definition
of congestion games, their relation to potential games and
their known properties3. We then discuss why the standard
congestion game does not take into account interference and
spatial reuse, and motivate our generalized CG-RR games.

A. Congestion Games

Congestion games [1], [2] are a class of strategic games
given by the tuple(N ,R, (Σi)i∈N , (gr)r∈R), whereN =
{1, 2, · · · , N} denotes a set of users,R = {1, 2, · · · , R} a
set of resources,Σi ⊂ 2R the strategy space of playeri,
andgr : N → Z a payoff (or cost) function associated with
resourcer. The payoff (cost)gr is a function of the total
number of users using resourcer and in general assumed to
be non-increasing (non-decreasing). A player in this game
aims to maximize (minimize) its total payoff (cost) which is
the sum total of payoff (cost) over all resources its strategy
involves.

3This review along with some of our notations are primarily based on
references [1], [2], [4].



If we denote byσ = (σ1, σ2, · · · , σN ) the strategy profile,
whereσi ∈ Σi, then useri’s total payoff (cost) is given by

gi(σ) =
∑

r∈σi

gr(nr(σ)) (1)

wherenr(σ) is the total number of users using resourcer

under the strategy profileσ.
Rosenthal’s potential functionφ : Σ1×Σ2×· · ·×Σn → Z

is defined by

φ(σ) =
∑

r∈R

nr(σ)∑

i=1

gr(i) (2)

=

N∑

i=1

∑

r∈σi

gr(n
i
r(σ)) , (3)

where the second equality comes from exchanging the two
sums andni

r(σ) denotes the number of players using re-
sourcer whose index does not exceedi (i.e., in the set
{1, 2, · · · , i}).

Now consider playeri, who unilaterally moves from
strategyσi (corresponding to the profileσ) to strategyσ

′

i

(corresponding to the profileσ
′

). The potential changes by

∆φ(σi → σ
′

i)

=
∑

r∈σ
′

i
,r 6∈σi

gr(nr(σ) + 1) −
∑

r∈σi,r 6∈σi

i

gr(nr(σ))

=
∑

r∈σ
′

i

gr(nr(σ
′

)) −
∑

r∈σi

gr(nr(σ))

= gi(σ−i, σ
′

i) − gi(σ−i, σi) , (4)

where the second equality comes from the fact that for
resources that are used by both strategiesσi and σ

′

i there
is no change in their total number of users. The above result
may be obtained either directly from Rosenthal’s potential
definition (2), or more easily, from the alternative change of
sums equation (3) by assuming we are considering theN -th
player.

The above result shows that the gain (loss) caused by any
player’s unilateral move is exactly the same as the gain (loss)
in the potential, which may be viewed as a global objective
function. Since the potential of any strategy profile is finite, it
follows that every sequence of improvement steps is finite,
known as the finite improvement property (FIP), and they
converge to a pure strategy Nash Equilibrium. This NE is a
local maximum (minimum) point of the potential functionφ,
defined as a strategy profile where changing one coordinate
cannot result in a greater value ofφ.

To summarize, we see that in this game, any sequence
of unilateral improvement steps converges to a pure strategy
NE, which is also a local optimum point of a global objective
given by the potential function.

Theφ() defined above is called an exact potential function,
where individual payoff (cost) change as a result of a
unilateral move is exactly reflected in this global function:

gi(σ−i, σ
′

i) − gi(σ−i, σi) = φ(σ−i, σ
′

i) − φ(σ−i, σi) . (5)

More generally, a functionφ is called an ordinal poten-
tial function if we have gi(σ−i, σ

′

i) ≥ gi(σ−i, σi) ⇔
φ(σ−i, σ

′

i) ≥ φ(σ−i, σi). Games that possess the above
properties are called exact potential games and ordinal poten-
tial games, respectively. A congestion game is thus an exact
potential game. In [4] it was also shown that every potential
game may be converted into an equivalent congestion game.

B. Extension to Resource Reuse

It should now be clear why the standard definition of a
congestion game does not capture the features of wireless
communication. In particular, if we consider channels as
resources, then the payoffgr(n) for using channelr when
there aren simultaneous users does not reflect reality: the
function gr() is user specific in that the quantityn is
perceived differently by different users, depending on how
manyinterferingusers a user has. This user specificity is also
different from that studied in [3], wheregr() is a user-specific
functiongi

r but it takes the non-user specific argumentn. In
other words, while the user-specific payoff is reflected in the
functional form of the payoff function, in our context it is
reflected through the user-specific argument.

In our recent paper [13] we took the approach of adopting
alternative definitions of resources to circumvent some of
the above problem. In particular, by defining resources as
certain spectrum-space units we were able to map some exist-
ing formulations on interference minimization into standard
congestion game forms, and therefore were able to directly
apply properties associated with congestion games. However,
a major limitation of this approach is that it does not
work well when user objectives are rate maximizing rather
than interference minimizing. To understand what happens
when the user objective is rate maximization, where a user’s
payoff gr(n) for using channelr where there are a total
of n interfering users (including itself) is a non-increasing
function ofn, we would need to direct extend and generalize
the definition of the standard congestion game.

For the rest of this paper, the termplayer or userspecif-
ically refers to apair of transmitter and receiver in the
network. Interference in this context is between one user’s
transmitter and another user’s receiver. This is commonly
done in the literature, see for instance [6]. We will also
assume that each player has a fixed transmit power.

III. PROBLEM FORMULATION

In this section we formally definite our generalized con-
gestion games, also referred to ascongestion games with
resource reuse.

Specifically, CG-RR has one more element than the stan-
dard CG. It is given(N ,R, (Σi)i∈N , {Ni}i∈N , (gr)r∈R),
whereNi is the interference set of useri, including itself,
while all other elements maintain the same meaning as
before. The payoff useri receives for using resourcer is
given bygr(n

i
r(σ)) whereni

r(σ) = |{j : r ∈ σj , j ∈ Ni}|.
That is, useri’s payoff for usingr is a function of the number
of users interfering with itself, including itself.



A user’s payoff is the summation of payoffs from all the
channels he is using. Note that if a user is allowed the
strategy to simultaneous use all available resources, thenits
best strategy is to simply use all of them regardless of other
users, provided thatgr is a non-increasing function. If all
users are allowed such a strategy, then the existence of an
NE is trivially true.

In this paper, we will limit our attention to the special case
where each user is allowed only one channel at a time, i.e., its
strategy space consists ofR single channel strategies. In this
case the payoff useri receives for using a single channelr is
given bygr(n

i
r) whereni

r(σ) = |{j : r = σj , j ∈ Ni}|. Our
goal is to find out what property this game has, in particular,
when does an NE exist. Other issues of interest to us include
whether or not this game is a potential game, whether or
not it has the finite improvement property. It’s worth noting
that due to this generalization, Rosenthal’s definition of a
potential function as given in the previous section no longer
applies.

By the definition of the functiongr(n) of resourcer,
it is implied that all users have the same payoff function
when they user (they may perceive different values ofn,
but the function applies to all). If this function is different
to different users, i.e., given bygi

r(n), then we refer to
this as theuser-specificpayoff functions. In our motivating
application this may be interpreted as users with different
coding/modulation schemes may obtain different rates from
using the same channel. In subsequent sections some of our
analysis is limited to the non-user-specific payoff function,
while others can be generalized to the case of user-specific
payoff functions. This is shown through the difference in the
notationgr(n) vs. gi

r(n).

To slightly simplify this problem, we make the extra
assumption thati ∈ Nj if and only if j ∈ Ni. This has the
intuitive meaning that if one nodei interferes with another
node j, the reverse is also true. This symmetry does not
always hold in reality, but is nonetheless a useful one to help
obtain meaningful insight. We explicitly assume that payoff
function for any channel is non-increasing in the number of
perceived interfering users.

It is easy to see that we can equivalently represent the
problem on a graph, where each node represents a user
and there is a directed edge leaving nodei and entering
node j only if i ∈ Nj. This can now be phrased as a
coloring problem where each node needs to pick a color
and receive a value depending on conflict (number of same
colors neighboring to a node), and where the goal is to see
whether a decentralized selfish scheme leads to an NE. For
the special case that we consider in this paper, the graph is
undirected, where there is an edge between nodesi and j

only if i ∈ Nj andj ∈ Ni.

For simplicity of exposition, in subsequent sections we
will often present the problem in its coloring version, and
will use the termsresource, channel, andcolor interchange-
ably.

IV. EXISTENCE OF THEFINITE IMPROVEMENT

PROPERTY

In this section we investigate whether the CG-RR pos-
sesses the FIP property. Once a game has the FIP, it imme-
diately follows that it has an NE as we described in Section
II. Below we show that in the case of two resources (colors)
the CG-RR game indeed has the FIP property, and as a result
an NE exists. Furthermore, this property holds in the case
of two resources even when the payoff functions are user-
specific.

We also show through a counter example that for the case
of 3 or more colors the FIP property does not hold. This also
implies that in such cases an exact potentially function does
not exist for this game, as the FIP is a direct consequence
of the existence of a potential function.

A. Finite Improvement Property for 2 resources

In this section we prove that the finite improvement
property holds when there are only two resources/colors to
choose from and a user can only use one at a time. We shall
establish this result by a contradiction argument. Suppose
that we have a sequence of updates (we will remove the
word asynchronousin the following with the understanding
that whenever we refer to updates they are assumed to be
asynchronous updates) that starts and ends in the exact same
color assignment (or state) for any user. We denote such a
sequence by

U = {u(1), u(2), · · ·u(T )}, (6)

where u(t) ∈ {1, 2, · · · , N} denotes the user making the
change at timet, andT is the length of this sequence. The
starting state (or the color choice) of the system is given by

S(1) = {s1(1), s2(1), · · · , sN(1)}, (7)

wheresi(1) ∈ {r, b}, i.e., the state of each user is either “r”
for Red, or “b” for Blue. We assume that a user’s state/color
is observed at timet−, i.e., right before a color change is
made by some user at timet. In other words,si(t) denotes
the color of useri at timet−. We use the notation̄s to denote
the opposite color of a colors.

Since this sequence of updates form a loop in that
S(1−) = S(T +), we can naturally view these updates on
a circle, starting at time1− and ending atT +, when the
system returns to its original state. This is shown in Figure
1. Note that traversing the circle starting from any point gives
rise to an improvement path; hence the notion of a starting
point becomes inconsequential.

Since this sequence of updates is an improvement path,
each change must not decrease the payoff of the user making
the change. For example, suppose useri changes from red to
blue at timet, andi hasx red neighbors andy blue neighbors
at t. Then we must have:

gi
b(y + 1) > gi

r(x + 1), (8)

where we denote useri’s specific payoff function asgi
r()

andgi
b(), respectively, for colorsr andb. Similarly, we can
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Fig. 1. Representing an improvement loop on a circle: times of updatest
and the updating useru(t) are illustrated.

obtain one inequality for each of theT changes. Our goal is
to show that theseT inequalities cannot be consistent with
each other. The challenge here is that this contradiction has to
hold for arbitrary non-increasing functions{gi

r, g
i
b}. The way

we address this challenge is to show that the above inequality
leads to another inequality that doesnot involve the payoff
functions when we consider pairs of reverse changes by the
same user. This is shown in Lemma IV-A.

Definition 1 (Reverse-change pairs):
Consider an arbitrary useri’s two reverse strategy/color
changes in an improvement path, one froms to s̄ at time
t and the other from̄s to s at time t′. Let SSt,t′ denote the
set ofi’s neighbors not includingi who have the same color
asi at both times of change (i.e., att− andt′−, respectively).
Let OOt,t′ denote the set ofi’s neighbors not includingi
who have the opposite color asi at both times of change.
Similarly, we will denote bySOt,t′ (respectivelyOSt,t′)
the number ofi’s neighbors whose color is the same as
(respective opposite of)i’s at the first update and the opposite
of (respectively same as)i’s at the second update.

Lemma 1: (Reverse-change inequality)Consider the
CG-RR game with two resources/colors. Consider an ar-
bitrary user i’s two reverse strategy/color changes in an
improvement path, one froms to s̄ at time t and the other
from s̄ to s at time t′. Then we have

|SSt,t′ | > |OOt,t′ |, (9)

That is, amongi’s neighbors not includingi, there are strictly
more users that have the same color asi at both times of
change, than those with the opposite color asi at both times
of change.

Proof: Since this is an improvement path, whenever
i makes a change it’s for higher payoff. Thus we must
have at the time of its first change and its second change,
respectively, the following inequalities:

gi
s̄(|OSt,t′ | + |OOt,t′ | + 1) > gi

s(|SOt,t′ | + |SSt,t′ | + 1)
(10)

gi
s(|SOt,t′ | + |OOt,t′ | + 1) > gi

s̄(|OS t,t′ | + |SSt,t′ | + 1)
(11)

We now prove the lemma by contradiction. Suppose that the
statement is not true and that we have|SSt,t′ | ≤ |OOt,t′ |.

We then have

gi
s̄(|OSt,t′ | + |SSt,t′ | + 1) ≥ gi

s̄(|OSt,t′ | + |OOt,t′ | + 1)

> gi
s(|SOt,t′ | + |SSt,t′ | + 1)

≥ gi
s(|SOt,t′ | + |OOt,t′ | + 1)

(12)

where the first and the third inequalities are due to the
non-increasing assumption on the payoff functions, and the
second inequality is due to (10). However, this contradicts
with (11), completing the proof.

We point out that by the above lemma the payoff com-
parison is reduced to counting different sets of users. This
greatly simplifies the process of proving the main theorem
of this section. Below we show that it is impossible to have
a finite sequence of asynchronous improvement steps ending
in the same color state (set of user strategies) as it started
with. At the heart of the proof is the repeated use of the
above lemma to show that loops cannot form in a sequence
of asynchronous updates.

Theorem 1: When there are only two resources/colors to
choose from and a user can only use one at a time, we have
the finite improvement property.

Proof: We prove this by contradiction. As illustrated by
Figure 1, we consider a sequence of improvement updates
that results in the same state.

Consider every two successive color changes, along this
circle clockwise starting from timet = 1, that a useru(t)
makes at timet and t′ from color s = su(t)(t) to s̄, and
then back tos, respectively. Note that this will include the
two “successive” changes formed by a user’s last change and
its first change (successive on this circle but not in terms of
time). We have illustrated this in Figure 1 by connecting a
pair of successive color changes using an arrow. It is easy
to see that there are altogetherT arrows.

For each arrow in Figure 1, or equivalently each pair of
successive color changes by the same user, we consider the
two setsSSt,t′ andOOt,t′ in Definition 1. Due to the user
association, we will also refer to these sets asperceivedby
useru(t). By Lemma 1, given an updating sequence with
the same starting and ending states, we have for each pair of
successive reverse changes by the same user, at timet and
time t′, respectively:

|SSt,t′ | > |OOt,t′ |. (13)

That is,SS sets are strictly larger thanOO sets.
This gives a total ofT inequalities, one for each update

in the sequence and each containing two sets. Equivalently
there is one inequality per arrow illustrated in Figure 1. We
next consider how many users are in each of these2T sets
(note that by keeping the same “>” relationship, theSS sets
are always on the LHS of these inequalities and theOO sets
are always on the RHS). To do this, we will examine users
by pairs – we will take a pair of users and see how many
times they appear in each other’s sets in these inequalities.
In Claim 1 below, we show that they collectively appear the
same number of times in the LHS sets and in the RHS sets.
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Fig. 2. Example of an updating sequence “ABAABBABAA” illustrated on
a circle.

We then enumerate all user pairs. What this result says is
that these users collectively contributed to an equal number
of times to the LHS and RHS of the set of inequalities given
in Eqn (13). Adding up all these inequalities, this translates
to the fact that the total size of the sets on the LHS and
those on the RHS much be equal. This however contradicts
the strict inequality, thus completing the proof.

Claim 1: Consider a pair of usersA andB in an improve-
ment updating loop, and consider how they are perceived in
each other’s set. Then A and B collectively appear the same
number of times in the LHS sets (theSS sets) and in the
RHS sets (theOO sets).

Proof: First note thatA and B have to be in each
other’s interference set for them to appear in each other’s
SS andOO sets. Since we are only looking at two users
and how they appear in each other’s sets, without loss of
generality we can limit our attention to a subsequence of the
original updating sequence involving onlyA and B, given
by

UAB = {u(t1), u(t2), · · · , u(tl)} (14)

whereu(ti) ∈ {A, B}, ti ∈ {1, 2, · · · , T }, andl is the length
of this subsequence, i.e., the total number of updates between
A andB. As before, this subsequence can also be represented
clockwise along a circle.

It helps to consider an example of such a sequence, say,
ABAABBABAA, also shown in Figure 2. In what follows we
will express an odd train as the odd number of consecutive
changes of one user sandwiched between the other user’s
changes, e.g., the odd train “BBB” in the subsequence
“ABBBA”.

A few things to note about such a sequence:

1) Since the starting and ending states are the same, each
user must appear an even number of times in the update
sequence. Since each user appears an even number of
times, there must be an even number of odd trains
along the circle for any user.

2) A user (say A) only appears in the other’s (say B’s)
SS or OO sets if it has an odd train between the
other user’s two successive appearances. This means
that there is an even number of relevant inequalities

where A appears in B’s inequalities (either on the LHS
or the RHS), and vice versa.

3) Consider the collection of all relevant inequalities
discussed above one for each odd train, in the order of
their appearance on the circle (all four such inequalities
are illustrated in Figure 2). Then A and B contribute
to each other’s inequalities on alternating sides along
this updating sequence/circle. That is, suppose the first
inequality is A’s and B goes into its LHS, then in
the next inequality (could be either A’s or B’s) the
contribution (either A to B’s inequality or B to A’s
inequality) is on the RHS. Take our running example,
for instance, the first inequality is due to the odd train
marked by the sequence ABA, and the second BAB.
Suppose A and B start with different colors, then in the
first inequality, B appears in the RHS; in the second,
A appears in the LHS.

We now explain why the third point above is true. The
reason is because for one user (B) to appear in the other’s
(A’s) LHS, they must start by having the same color and
again have the same color right before A’s second change
(see e.g. the subsequence “ABA” in the running example).
Until the next odd train (“BAB”), both will make an even
number of changes including A’s second change (“AABB”).
The next inequality belongs to the user who makes the last
change before the odd train (B) . As perceived by this user
(B) right before this change, the two must now have different
colors. This is because as just stated A will have made an
even number of changes from the last time they are of the
same color (by the end of “AB”), while B is exactly one
change away from an even number of changes (by the end
of “ABAAB”). Therefore, the contribution from the other
user (A) to this inequality must be to the RHS.

Alternatively, one can see that essentially the color rela-
tionship between A and B reverses upon each update, and
there is an odd number of updates between the starting points
of two consecutive odd trains, so the color relationship flips
for each inequality in sequence.

The above argument establishes that as we go down the
list of inequalities and count the size of the sets on the LHS
vs. that on the RHS, we alternate between the two sides.
Since there are exactly even number of such inequalities, we
have established that A and B collectively appear the same
number of times in the LHS sets and in the RHS sets.

B. Counter-Example for 3 Resources

The above theorem establishes that when there are only
two resources, the FIP property holds, and consequently an
NE exists. This holds for the general case of user-specific
payoff functions. Below we show a counter-example that the
FIP property does not necessarily hold for3 resources/colors
or more.

Example 1: Suppose we have three colors to assign,
denoted byr (red), p (purple), andb (blue). Consider a
network topology shown in Figure 3, where we will primarily
focus on nodesA, B, C andD. In addition to nodeC, node
A is also connected toAr, Ap andAb nodes of colors red,



green and blue, respectively.Br, Bp, Bb, Cr, Cp, Cb, and
Dr, Dp, Db and similarly defined and illustrated in Figure
3. Note that there may be overlap between these quantities,
e.g., a single node may contribute to bothAr and Br, and
so on.

Consider now the following sequence of improvement
updates involving only nodesA, B, C, andD, i.e., within
this sequence none of the other nodes change color (note
that this is possible in an asynchronous improvement path),
where the notations1 → s2 denotes a color change froms1

to s2 and at time0 the initial color assignment is given.

time step A B C D

0 b p p b
1 b → r
2 p → r
3 b → r
4 p → r
5 r → p
6 r → b
7 r → b
8 r → b
9 p → b

10 b → p
11 b → p

We see that this sequence of color changes form a loop,
i.e., all nodes return to the same color they had when the
loop started. For this to be an improvement loop such that
each color change results in improved payoff, it suffices for
the following sets of conditions to hold (here we assume all
users have the same payoff function):

gr(Ar + 1) > gb(Ab + 1) > gb(Ab + 2)

> gp(Ap + 1) > gr(Ar + 2) ;

gr(Br + 1) > gp(Bp + 2) > gb(Bb + 1)

> gr(Br + 2) ;

gb(Cb + 3) > gr(Cr + 1) > gr(Cr + 4)

> gp(Cp + 1) > gb(Cb + 4) ;

gr(Dr + 1) > gb(Db + 1) > gr(Dr + 2)

It is straightforward to verify the sufficiency of these condi-
tions by following a node’s sequence of changes.

To complete this counter example, it remains to show that
the above set of inequalities are feasible given appropriate
choices ofAx, Bx, Cx and Dx, x ∈ {r, p, b}. There are
many such choices, below we give one example:

Ax = 5; Bx = 3; Cx = 7; Dx = 1, x ∈ {r, p, b}

With such a choice, and substituting them into the earlier
set of inequalities, we obtain the following single chain of
inequalities:

gr(2) > gb(2) > gr(3)

> gr(4) > gp(5) > gb(4) > gr(5)

> gr(6) > gb(6) > gb(7) > gp(6) > gr(7)

> gb(10) > gr(8) > gr(11) > gp(8) > gb(11)

It should be obvious that this chain of inequalities can be
easily satisfied by the right choices of payoff functions.

It is easy to see how if we have more than 3 colors , this
loop will still be an improving loop as long as the above
inequalities hold. This means that for 3 colors or more the
FIP property does not hold. Note that the updates in this
example are not always best response updates . It is also now
obvious from this example that potential and semi-potential
functions don’t always exist for cases with 3 colors or more.
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Ap Ab
Br

Bp

Bb

Dr Dp

Db

Cr

Cp

Fig. 3. A counter example of 3 colors: nodesA, B, C, andD are connected
as shown; in addition, nodeW , W ∈ {A, B, C, D}, is connected toWx

other nodes of colorx ∈ {r, p, b}.

V. SUFFICIENT CONDITIONS ON GRAPH PROPERTIES

In this section we examine what graph properties will
guarantee the existence of an NE. The results here are not as
general as we would’ve liked, though they do shed further
insights on the nature of this class of games.

Theorem 2: When the graph is complete a NE always
exists for the CG-RR game defined on this graph.

This theorem has a trivial proof. It is simply a direct
consequence of known results on the standard CG: in a
complete graph every node is every other node’s neighbor,
therefore the CG-RR extension reduces to the original CG,
thus this result. Furthermore, for the same reason when the
graph is complete the FIP property also holds.

Theorem 3: Consider the network graph in the form of
a tree, and order theR resources/colors in decreasing order
of gr(1), such thatg1(1) ≥ g2(1) ≥ · · · ≥ gR(1). If g2(1) ≥
g1(2), then a Nash equilibrium exists.

Proof: Consider an arbitrary nodeA as the root of the
tree, and partition all other nodes according to their distance
to nodeA into setsA1, A2, · · · , AL, where setAi contains
all nodes that at exactly distancei away from nodeA, and
L is the depth of the tree. We will refer to setsAi wherei is
even aseven sets, and refer to setsAi wherei is odd asodd
sets. Now assign resource1 to all nodes in setsAi wherei

is even; assign resource2 to all nodes in setsAi wherei is
odd. We claim this is a Nash equilibrium assignment.

Note that due to the tree structure, any node in an even set
has all its neighbors in odd sets, and vice versa. As a result,a



node that belong to an even set has a payoffg1(1) and has no
incentive to change its strategy. A node that belong to an odd
set has a payoffg2(1) and is connected to at least one node
with resource1. Under the condition thatg2(1) > g1(2),
this node also has no incentive to change its strategy, thus
completing the proof.

Theorem 4: When the network has a star topology
where a single nodeA is connected to all other nodes
A1, A2, . . . , AN−1, a Nash equilibrium exists.

Proof: As in the previous theorem, we order the
resources/colors such thatg1(1) ≥ g2(1) ≥ · · · ≥ gR(1).

If g2(1) ≥ g1(N) then we assign2 to nodeA and assign
1 to all other nodes. This is trivially an NE.

If g1(N) ≥ g2(1) then we assign1 to all nodes and this
again is an NE.

Theorem 5: If the network is in the form of a loop, then
there always exists a Nash equilibrium involving no more
than 3 resources/colors.

Proof: We know from Theorem 1 that when there are
only 2 colors an NE always exists. Thus assume there are at
least 3 colors to choose from. Thus there always exist three
colors r, b, p that have the highest single-user occupancy
payoff values and suppose we have

gr(1) ≥ gb(1) ≥ gp(1)

If the loop has an even number of nodes then compare
gr(3) with gb(1). If gr(3) ≥ gb(1), then assigningr to all
nodes will result in an NE; ifgb(1) ≥ gr(3) then assigning
r andb alternately will result in an NE.

Now consider the case where the loop has an odd number
of nodes, labeled from1 to 2n+1, where nodei is connected
to nodei+1 and node2n+1 is connected to node1. Again
we see that ifgr(3) ≥ gb(1) then assigningr to all nodes
results in an NE.

Assume nowgb(1) ≥ gr(3) and consider the following
assignment. Assignr and b alternately to nodes from2 up
to 2n, so that nodes2 and2n are both coloredr. It remains
to determine the coloring of nodes1 and2n+1. We have the
following four cases (under the conditiongb(1) ≥ gr(3)):

1) gb(2) ≥ gr(2) and gb(2) ≥ gp(1): in this case (b, b)
assignment to nodes1 and 2n + 1 will result in an
overall NE.

2) gb(2) ≥ gr(2) and gb(2) < gp(1): in this case either
(b, p) or (p, b) for nodes1 and 2n + 1 will result in
an overall NE.

3) gb(2) < gr(2) and gr(2) ≥ gp(1): in this case either
(b, r) or (r, b) for node1 and2n + 1 will result in an
overall NE.

4) gb(2) < gr(2) and gr(2) < gp(1): in this case either
(b, p) or (p, b) for nodes1 and 2n + 1 will result in
an overall NE.

Therefore in all cases we have shown an NE exists.

Corollary 1: In a chain network (an open loop), an NE
exists that involve no more than 2 colors.

VI. SUFFICIENT CONDITIONS ON USERPAYOFF

FUNCTIONS

In this section we examine what properties on the user
payoff functions will guarantee the existence of an NE.
Specifically, we show that for general network graphs, an
NE always exists if (1) there is one resource with a domi-
nating payoff function (much larger than the others), or (2)
different resources present the same type of payoff for users.
Moreover, in the case of (2) the game has the FIP property.
We note that case (2) is of particular practical interest and
relevance, as this case in the context of spectrum sharing
translates to evenly dividing a spectrum band into sub-bands,
each providing users with the same bandwidth and data rate.
Below we present and prove these results.

Theorem 6: For a general network graph, if there exists
a resourcer and its payoff function is such thatgr(Nd) ≥
gs(1), whereNd = max{Ni, i = 1, 2, · · · , N}, for all s ∈
1, 2, · · · , R then a Nash Equilibrium exists.

HereNd is the maximum node degree in the network, i.e.,
the maximum possible number of users sharing the same
resource. In words, this theorem says that if there exists a
resource whose payoff “dominates” all other resources, an
NE exists. This is a rather trivial result; an obvious NE is
when all users share the dominating resource.

Theorem 7: For a general network graph, if all resources
have identical payoff functions, i.e., for all resourcesr and
s, we havegr(n) = gs(n) = g(n) for n = 1, 2, · · · , N and
some functiong()̇, then there exists a Nash Equilibrium, and
the game has the finite improvement property.

Proof: We prove this theorem by using a potential
function argument.

Recall that useri’s total payoff under the strategy profile
σ is given by (here we have suppressed the subscriptr since
all resources are identical):

gi(σ) = g(ni(σ)), ni(σ) = |{j : σj = σi, j ∈ Ni}| (15)

where σi ∈ R since we have limited our attention to the
case where each user can select only one resource at a time.

Now consider the following function defined on the strat-
egy profile space:

φ(σ) =
∑

i,j∈N

1(i ∈ Nj)1(σi = σj)

=
1

2

∑

i∈N

ni(σ) , (16)

where the indicator function1(A) = 1 if A is true and0
other wise. For a particular strategy profileσ this functionφ

is the sum of all pairs of users that are connected (neighbors
of each other) and have chosen the same resource under this
strategy profile. Viewed in a graph, this function is the total
number of edges connecting nodes with the same color.

We see that every time useri improves its payoff by
switching from strategyσi to σ

′

i, and reducingni(σ−i, σi) to
ni(σ−i, σ

′

i) (g is a non-increasing function), the value ofφ()



strictly decreases accordingly4. As this function is bounded
from below, this means that in this case the game has the
FIP property so this process eventually converges to a fixed
point which is a Nash Equilibrium.

VII. C ONCLUSION

In this paper we have considered an extension to the
classical definition of congestion games by allowing re-
sources to be reused among non-interfering users. This is
a much more appropriate model to use in the context of
wireless networks and spectrum sharing where due to decay
of wireless signals over a distance, spatial reuse is frequently
exploited to increase spectrum utilization.

The resulting game, congestion game with resource reuse,
is a generalization to the original congestion game. We have
shown that when there are only two resources and users
can only use one at a time, then the game has the finite
improvement property; the same is shown to be false in
general when there are three or more resources. We further
showed a number of conditions on the network graph as well
as the user payoff functions under which the game has an
NE. Perhaps most relevant to spectrum sharing is the result
that when all resources present the same payoff to users (e.g.,
all channels are of the same bandwidth and data rate for all
users), then the game has the finite improvement property
and an NE exists.
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