
Optimal Sleep Scheduling for a Wireless Sensor
Network Node

David Shuman and Mingyan Liu
Electrical Engineering and Computer Science Department

University of Michigan
Ann Arbor, MI 48109

dishuman,mingyan@umich.edu

Abstract— We consider the problem of conserving energy in
a single node in a wireless sensor network by turning off the
node’s radio for periods of a fixed time length. While packets may
continue to arrive at the node’s buffer during the sleep periods,
the node cannot transmit them until it wakes up. The objective
is to design sleep control laws that minimize the expected value
of a cost function representing both energy consumption costs
and holding costs for backlogged packets. We consider a discrete
time system with a Bernoulli arrival process. In this setting,
we characterize optimal control laws under the finite horizon
expected cost and infinite horizon expected average cost criteria.

I. I NTRODUCTION

Wireless sensor networks have recently been utilized in an
expanding array of applications, including environmental and
structural monitoring, surveillance, medical diagnostics, and
manufacturing process flow. In many of these applications,
sensor networks are intended to operate for long periods of
time without manual intervention, despite relying on batteries
or energy harvesting for energy resources. Conservation of
energy is therefore well-recognized as a key issue in the design
of wireless sensor networks [1].

Motivated by this, there have been numerous studies ex-
amining methods that effectively manage energy consumption
while minimizing adverse effects on other quality of service
requirements such as connectivity, coverage, and packet delay.
For example, [2], [3], and [4] adjust routes and power rates
over time to reduce overall transmission power and balance
energy consumption amongst the network nodes. Reference
[5] aggregates data to reduce unnecessary traffic and conserve
energy by reducing the total workload in the system. Reference
[6] makes the observation that when operating in ad hoc mode,
a node consumes nearly as much energy when idle as it does
when transmitting or receiving, because it must still maintain
the routing structure. Accordingly, many studies have exam-
ined the possibility of conserving energy by turning nodes on
and off periodically, a technique commonly referred to as duty-
cycling. Of particular note, GAF [7] makes use of geographic
location information provided for example by GPS; ASCENT
[8] programs the nodes to self-configure to establish a routing
backbone; Span [9] is a distributed algorithm featuring local
coordinators; and PEAS [10] is specifically intended for nodes
with constrained computing resources that operate in harsh

or hostile environments. While the salient features of these
studies are quite different, the analytical approach is similar.
For the most part, they discuss the qualitative features of the
algorithm, and then perform numerical experiments to arrive
at an energy savings percentage over some baseline system.

In this paper, we also consider a wireless sensor network
whose nodes sleep periodically; however, rather than evaluat-
ing the system with a given sleep control policy, we impose a
cost structure and search for an optimal policy amongst a class
of policies. In order to approach the problem in this manner,
we need to consider a far simpler system than those used in the
aforementioned studies. Thus, we consider only a single sensor
node and focus on the tradeoffs between energy consumption
and packet delay. As such, we do not consider other quality
of service measures such as connectivity or coverage. The
single node under consideration in our model has the option
of turning its transmitter and receiver off for fixed durations of
time in order to conserve energy. Doing so obviously results
in additional packet delay. We attempt to identify the manner
in which the optimal (to be defined in the following section)
sleep schedule varies with the length of the sleep period, the
statistics of arriving packets, and the charges assessed for
packet delay and energy consumption.

The only other works we are aware of that take a similar
approach are by Sarkar and Cruz, [11] and [12]. Under a
similar set of assumptions to our model, with the notable
exceptions that a fixed cost is incurred for switching sleep
modes and the duration of the sleep periods is flexible, these
papers formulate an optimization problem and proceed to
numerically solve the optimal duration and timing of sleep
periods through a dynamic program.

Our model of the duty-cycling node falls into the general
class of vacation models. Within the class of vacation mod-
els, we are particularly interested in systems resulting from
threshold policies; i.e., control policies that force the queue to
empty out and then resume work after a vacation when either
the queue length or the combined service time of jobs in queue
(learned upon arrival of jobs to the system) reaches a critical
threshold. The introduction of [13] provides a comprehensive
overview of the results on different types of threshold policies.
Of these models, [13] is the most relevant to our model, and
we discuss it further in Section III-B.

The rest of this report is organized as follows. In the next
section, we describe the general system model and formulate
the finite horizon expected cost and infinite horizon average
expected cost optimization problems. In Sections III and IV,
we analyze these two problems. Section V concludes the
report.

II. PROBLEM DESCRIPTION

In this section we present an abstraction of the sleep
scheduling problem outlined in the previous section.

A. System Model

We consider a single node in a wireless sensor network.
The node is modeled as a single-server queue that accepts
packet arrivals and transmits them over a reliable channel. In
order to conserve energy, the node goes to sleep (turns off
its transmitter) from time to time. While asleep, the node is
unable to transmit packets; however, packets continue to arrive
at the node. This essentially results in a queueing system with
vacations. We consider time evolution in discrete steps. Slott
refers to the slot defined by the interval[t, t + 1).

In general, switching on and off is also an energy consuming
process. Therefore ideally we do not want to put the node to
sleep very frequently. There are different ways to model this.
One is to charge a switching cost whenever we turn on the
node. In this study we adopt a different model. Instead of
charging the node for switching, we require that the sleep
period of the node has to be an integer multiple of some
constantN in time slots. By adjusting the value ofN we
can also prevent the node from switching too frequently.

We assume that even while asleep, the node accurately
learns its current queue size at each timet. A node makes
the sleeping decision (i.e., whether to remain awake or go to
sleep) based on the current backlog information, as well as
the current time slot.

There are two objectives in determining a good sleep policy.
One is to minimize the packet queueing delay and the other
is to conserve energy in order to continue operating for an
extended amount of time. Accordingly, our model assesses
costs to backlogged packets and energy consumed during the
slots in which the node remains awake. The goal of this study
is to characterize the control laws that minimize these costs
over a finite or infinite time horizon.

B. Notation

Before proceeding, we present the following notation.

T The length in slots of the time horizon.
N The fixed number of slots for which the node must

stay asleep once it goes to sleep.
Bt The node’s queue length at the beginning of thet-th

slot. This quantity is observed att−.
St Slots remaining until the node awakes; also observed

at time t−. St = 0 indicates node is awake at timet.
Xt := [Bt, St]

T
, the information state at timet.

Yt The observation available to the node at timet.
At The number of random arrivals during thet-th slot.
p The probability of an arrival in each time slot.

U := {0, 1} = {Sleep, Stay Awake}, the action space.
Ut The control R.V. denoting sleep decision for slott.
c The per packet holding cost assessed at the end of

each time slot.
D The cost incurred in each time slot during which

the node is awake.
Ft The σ-field induced by all information throught.
π := (π1, π2, . . .), a sleep policy, withπi ∈ U .

C. Assumptions

Below we summarize the important assumptions adopted
in this study. These assumptions apply to both problems
described in the next subsection.

1) We consider a node, which upon going to sleep, must
remain asleep for a fixed number,N, slots. The node is
allowed to take multiple vacations of lengthN in a row.

2) We assume a Bernoulli arrival process, with known
arrival rate,p, strictly between 0 and 1. Furthermore,
we assume that the arrivals are independent of both the
queue size and the allocation policy.

3) We assume that theAt packets arriving in time slott
arrive within (t, t + 1), and cannot be transmitted by
the node until the next time slot, i.e., the(t + 1)-st slot,
[t + 1, t + 2).

4) We assume attempted transmission of a queued packet is
successfulw.p.1. Only one packet may be transmitted
in a slot, and the transmission time of one packet is
assumed to be one slot.

5) We assume the node has an initial queue size ofB0, a
random variable taking on finite valuesw.p.1.

6) We assume the node has an infinite buffer size. Without
this assumption we need to introduce a penalty for
packet dropping/blocking.

7) We assume that in addition to perfect recall, the node has
perfect knowledge of its queue length at the beginning
of each time slot, immediately before making its control
decision for thet-th slot exactly at timet.

D. Problem Formulation

We consider two distinct problems. The first, Problem (P1),
is the infinite horizon average expected cost problem. The
second, Problem (P2), is the finite horizon expected cost
problem. The two problems feature the same information state,
action space, system dynamics, and cost structure, but different
optimization criteria.

For both problems, the system dynamics are given by:

Xt+1 =





[
Bt + At

St − 1

]
, if St > 0

[
Bt + At

N − 1

]
, if St = 0 & Ut = 0

[
[Bt + At − 1]+

0

]
, otherwise

Yt = Xt .

(1)

The information state,Xt, tracks both the current queue
length and the current sleep status. Given the current state,Xt,
the probability of transition to the next state,Xt+1, depends
only on the random arrival,At, and the sleep decision,Ut.
Thus, model (1) is a controlled Markov chain with a time-
invariant matrix of transition probabilities.

Note that when the node is asleep(St > 0), the only
available action is to sleep(Ut = 0); however, when the node
is awake(St = 0), both control actions are available.

Finally, we present the optimization criterion for each
problem. For Problem (P1), we wish to find a sleep control
policy π that minimizesJπ, defined as:

Jπ := lim sup
T→∞

1
T
· Eπ

{
T−1∑
t=0

D · Ut +
T∑

t=1

c ·Bt | F0

}
. (2)

In Problem (P2), the cost function for minimization isJπ
T ,

defined as:

Jπ
T := Eπ

{
T−1∑
t=0

D · Ut +
T∑

t=1

c ·Bt | F0

}
. (3)

In both cases, we allow the sleep policyπ to be chosen
from the set of all randomized and deterministic control
laws, Π, such thatUt = πt(Y t, U t−1), ∀t, where Y t :=
(Y0, Y1, . . . , Yt) andU t−1 := (U0, U1, . . . , Ut−1).

In the next two sections, we study the infinite horizon (P1)
and finite horizon (P2) problems, respectively.

III. A NALYSIS OF THE INFINITE HORIZON AVERAGE

EXPECTEDCOST PROBLEM

In this section, we characterize the optimal sleep control
policy π∗ that minimizes (2).

A. Characterization of Optimal Policy

Due to the assumption of an infinite buffer size, the con-
trolled Markov chain in Problem (P1) has a countably infinite
state space. For such systems, an average cost optimal policy is
not guaranteed to exist. See [14, pp. 128–132] for such coun-
terexamples. However, [14] also presents sufficient conditions
for the existence of an average cost optimal stationary policy.

Lemma 1: Problem (P1) satisfies the (BOR) assumptions
of Theorem 7.5.6 of [14], and therefore, there exists an optimal
stationary Markov policyπ∗ that minimizes (2).

We now present the main result of this section.
Theorem 1: In Problem (P2), the optimal control at state

X = [B, 0]T , for B > 0, is U∗ = 1. At the boundary state
[0, 0]T , the optimal control,U∗, is given by:

(
p

1− p

)(
N − 1

2

) U∗ = 0
≶

U∗ = 1

D

c
. (4)

The first half of the theorem follows from the fact that the
node must eventually serve packets, and can thus be proved
using an interchange argument. Since we know there exists an
optimal stationary Markov policy, the second half follows by
comparing the average expected cost under the two possible
controls. As a matter of notation, we refer to the threshold

policy with λ∗ = 0, often called the “0-policy,” asπ0, and
the threshold policy withλ∗ = 1, often called the “1-policy,”
asπ1 [13].

B. Related Work and Possible Extensions

The arguments we use to prove Theorem 1 are quite similar
to those applied to the embedded Markov chain model of [13].
In that paper, Federgruen and So consider an analogous prob-
lem in continuous time with compound Poisson arrivals. By
formulating the problem as a semi-Markov decision process
embedded at certain decision epochs, they show that either
a no vacation policy or a threshold policy is optimal under
a weaker set of assumptions. Specifically, they allow general
non-decreasing holding costs, multiple arrivals, fixed costs for
switching between service and vacation modes, and general
i.i.d. service and vacation times. We have not yet explored
relaxing our assumptions in a similar manner. By imposing
the extra assumptions, however, we have arrived at the more
specific conclusion that if the optimal policy is an N-threshold
policy, it is indeed a 1-policy. Additionally, we have identified
condition (4), distinguishing the parameter sets on which the 0-
policy is optimal from those on which the 1-policy is optimal.

IV. A NALYSIS OF THE FINITE HORIZON EXPECTEDCOST

PROBLEM

In this section, we analyze the finite horizon problem, (P2),
and attempt to characterize the optimal sleep control policy
π∗ that minimizes (3). Due to the finite time horizon and the
assumption of a finite initial queue size, this problem features
a finite state space (at most[B0 + T] ·N states). Additionally,
we have a finite number of available control actions at each
time slot. For such systems, we know from classical stochastic
control theory (see for example [15, pp. 78–79]) that there
exists an optimal deterministic Markov policy. While, in prin-
ciple, we can compute this optimal policy through a dynamic
program, we are more interested in deriving structural results
on the optimal policy, e.g., by showing that the optimal policy
satisfies certain properties or is of a simple form.

A. Optimal Policy Away from the Boundary

We now identify the optimal policy in a piecewise manner,
beginning with the slots at the end of the time horizon.

Lemma 2: If T − D
c ≤ k < T , the optimal policy to

minimize Jπ
k is U∗

t = 0 ∀t ∈ {k, k + 1, . . . , T − 1}; i.e.
sleep for the duration of the time horizon.

The simple intuition behind the above lemma is that the
incremental cost of staying awake for an extra slot remains
constant atD throughout the time horizon; however, the
benefit of doing so, as compared to sleeping for the duration
of the horizon, diminishes as we approach the end of the time
horizon.

We now proceed to the case when the node is awake, the
queue is non-empty, and the process is sufficiently far from
the end of the time horizon.

Lemma 3: If 0 ≤ t < T − D
c and Xt =

[
Bt

0

]
for some

Bt > 0, the optimal control at slott to minimizeJπ
t is U∗

t =
1; i.e., serve a job in slot[t, t + 1).

B. Optimal Policy at the Boundary State

We know from Lemma 2 that the optimal control atXt =[
0
0

]
is to sleep whent ≥ T − D

c . We now examine the optimal
control at this state whenz∗ −N < t < T − D

c .
Lemma 4: If t = z∗ :=

⌊
T − D

c

⌋
and Xt =

[
0
0

]
, the

optimal control policy to minimizeJπ
t is to sleep for the

duration of the time horizon.
Lemma 5: If z∗−N < t < z∗ andXt =

[
0
0

]
, the optimal

control at slot t to minimizeJπ
t is described by the threshold

decision rule:

c ·
z∗−t∑

j=1

{
pj (T − t− j)

}−D ·
z∗−t∑

j=0

pj
U∗

t = 0
≶

U∗
t = 1

0 . (5)

The LHS of (5) is non-increasing int, and thus, Lemmas
2, 4, and 5 imply that the optimal policy atXt =

[
0
0

]
is non-

increasing over time, from slotz∗−N +1 until the end of the
time horizon. The natural follow-up question is whether the
optimal policy atXt =

[
0
0

]
is necessarily monotonic over the

entire duration of the time horizon. Intuitively, this might make
sense if we extend the logic behind Lemma 2 to conclude
that the marginal reward for serving a packet continues to
increase as we move away from the end of the time horizon.
However, this intuition is not quite correct, as the following
counterexample demonstrates.

Counterexample 1: Consider Problem (P2) with the pa-
rametersT = 15, N = 3, c = 10, D = 21, andp = 2

3 . The
optimal sleep control policy at the boundary stateXt =

[
0
0

]
,

computed by dynamic program, is displayed in Fig. 1. Clearly,
this policy is not monotonic in time.

With such counterexamples in mind, we seek sufficient
conditions for the optimal policy at the boundary state to
be non-increasing over the entire time horizon. Based on the
extensive numerical experiments we conducted, we believe the
following conjecture is true, but have not yet been able to
prove it.

Conjecture 1: If the parameters of problem(P2) satisfy
the following condition:

(
p

1− p

)
·
(

N − 1
2

)
≥ D

c
, (6)

the optimal policy when the node is awake and the queue is
empty is non-increasing in time; i.e., if the expected cost-to-
go Vr

([
0
0

])
is minimized by sleeping, then for allt > r, the

expected cost-to-goVt

([
0
0

])
is minimized by sleeping.

Stay Awake

Sleep

Time

z*

12 1413113 100 152 4 51 7 986

Optimal
Control

Fig. 1. Optimal control policy atXt =
[

0
0

]
, when T = 15, N = 3,

c = 10, D = 21, andp = 2
3

Assuming the previous conjecture turns out to be true,
we would also like to characterize the optimal policy at the
boundary state when the parameters of Problem(P2) do not
satisfy condition (6). One might think that the periodic nature
of sleeping would lead to a periodic optimal policy at the
boundary; however, based on numerical results, we believe
the optimal policy at the boundary is still relatively “smooth,”
and can be characterized by the following conjecture.

Conjecture 2: If the parameters of problem(P2) satisfy
the following condition:

(
p

1− p

)
·
(

N − 1
2

)
<

D

c
, (7)

and if for somek, the optimal control at stateXk =
[
0
0

]
is U∗

k = 0 and the optimal control at stateXk+1 =
[
0
0

]
is

U∗
k+1 = 1, then for all0 ≤ t < k, the optimal control at state

Xt =
[
0
0

]
is U∗

t = 0.

Conjecture 2 essentially says that there can be at most one
jump up in the optimal control fromU∗

t = 0 at Xt =
[
0
0

]
to

U∗
t+1 = 1 at Xt+1 =

[
0
0

]
.

C. Discussion

In this section, we discuss the numerical results supporting
our belief in Conjectures 1 and 2, the intuition behind the
conjectures, and their implications if they turn out to be true.

If Conjectures 1 and 2 turn out to be true, they imply, in
combination with Lemmas 2-5, that the optimal control policy
at Xt =

[
0
0

]
is of the form:

U∗
t =

{
1 (serve), if λ∗1 ≤ t < λ∗2
0 (sleep), otherwise ,

for someλ∗1, λ
∗
2 ∈ {0, 1, . . . , z∗}, with λ∗1 ≤ λ∗2. Specifically,

only three structural forms of the optimal control policy at
[
0
0

]
are possible. These are shown in Fig. 2.

Moreover, Conjecture 1 states that form (b) is not possible
if condition (6) holds. Our numerical results not only support
these conclusions, but also show the following:

Observation 1: If the time horizon is sufficiently long, the
optimal control is of the form (a) if condition (6) holds, but
of the form (b) or (c) if the negation, (7), holds.

We now attempt to provide some intuition as to why the
optimal policy at the boundary state could be of form (b).
The underlying tradeoff at the state

[
0
0

]
is between staying

awake to reduce backlog costs and sleeping to avoid unutilized
slots. In the infinite horizon problem, consider the two policies
π0 (always awake) andπ1 (sleep only at boundary state)
described in Section III-A, and assume the node is at state[
0
0

]
at some timet. In our model, the order in which packets

are served is of no importance (e.g. FIFO, LIFO). Therefore,
let us assume that for every sample path, the packets arriving
from timet+N−1 onward are served at exactly the same time
under the two policies (by appropriate reordering of packets).
Then the extra backlog charges incurred underπ1 are entirely
due to the packets arriving during(t, t + N − 1). If there are
M arrivals during this period, the queue length at timet + N

(a) (b) (c)

, ,Sleep

Stay Awake

Time Time Time

*

*

*

*

*

*
Optimal
Control

Fig. 2. Possible structural forms for the optimal control policy atXt =
[

0
0

]

underπ1 is M more than the queue length underπ0. With
each non-arrival after timet + N , π1 “catches up” toπ0 by
one packet. Eventually, afterM non-arrivals, the two policies
will have served the same number of jobs and both will end
up back at the state

[
0
0

]
. If we compare the expected energy

charges incurred byπ1 during theN unutilized slots of one
such cycle to the expected extra backlog costs incurred by
π0, we get precisely the comparison (4), which describes the
optimal stationary policy at the boundary state in the infinite
horizon case.

Returning to the finite horizon problem, we see that (6) and
(7) together are equivalent to (4). Let us now reconsider the
two policies from the previous paragraph in the finite horizon
context. The probability that the sleep policy catches up to the
always awake policy beforez∗+1, the time at which the node
goes to sleep for good, increases ast → 0. So Observation 1
makes intuitive sense as it just states that the optimal control at
the boundary state in the finite horizon problem converges to
the optimal control at the boundary state in the infinite horizon
problem as we move farther and farther back from the end of
the time horizon.

As we move closer to the end of the horizon, there is a
higher probability of reaching timez∗ + 1 before the two
policies reach the same state again. Any “extra” packets at
z∗+ 1 will be charged for the rest of the time horizon, which
has length

⌊
D
c

⌋
. This extra risk of going to sleep is likely

the reason why form (b) is a possible form of the optimal
policy. The middle bump in the policy plays the role of a
“buffer zone” that incorporates the risk of unserved packets
incurring charges throughout the shutdown zone at the end of
the horizon.

Observation 2: The structural forms in Fig. 2 lie on a
spectrum in the sense that changing one parameter at a time
leads to a shift in the form of the optimal policy from either
form (a) to form (b) to form (c), or vice versa. In particular,
the form of the optimal policy shifts from (c) to (b) to (a) as
we individually (or collectively) increasep, N , or c, but shifts
from (a) to (b) to (c) asD increases. Analogous statements can
also be made concerning the movements of the two individual
thresholds with variations in the parameters.

Finally, if the conjectures turn out to be true, we can
directly calculate the thresholdsλ∗1 and λ∗2 through an index
representing the expected difference in cost between the two
available policies. Doing so enables a complete characteriza-
tion of the optimal policy in a manner computationally simpler
than computing the entire policy via a dynamic program.

V. CONCLUSION

In this report we studied the problem of optimal sleep
scheduling for a wireless sensor network node, and considered
two separate optimization problems. For the infinite horizon
average expected cost problem, we completely characterized
the optimal control at each state in the state space. For
the finite horizon expected cost problem, we described the
optimal policy for all states except the boundary state. The
most significant difference from the infinite horizon was the
existence of a “shutdown” period at the end of the time horizon
in which the queue stops serving packets, regardless of the
queue size. We hypothesized a sufficient condition to guarantee
an optimal control that is non-increasing over time when the
queue is empty and the node is awake. Based on extensive
numerical experiments, we also conjectured that even when
this sufficient condition does not hold, there is at most one
jump in the optimal control, providing a single “buffer zone.”

REFERENCES

[1] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduction:
overview of sensor networks,”Computer, vol. 37, no. 8, pp. 41–49,
August 2004.

[2] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proceedings of the Hawaii International Conference on Systems
Sciences, Maui, Hawaii, January 2000.

[3] J. Chang and L. Tassiulas, “Energy conserving routing in wireless ad
hoc networks,” inProceedings of IEEE INFOCOM 2000, Tel Aviv,
Israel, March 2000.

[4] J. Sheu, C. Lai, and C. Chao, “Power-aware routing for energy
conserving and balance in ad hoc networks,” inProceedings of the
2004 IEEE Conference on Networking, Sensing, and Control, Taipei,
Taiwan, March 2004, pp. 468–473.

[5] D. Estrin J. Heidemann F. Silva C. Intanagonwiwat, R. Govindan,
“Directed diffusion for wireless sensor networking,”IEEE/ACM Trans-
actions on Networking, vol. 11, no. 1, pp. 2–16, February 2003.

[6] L. M. Feeney and M. Nilsson, “Investigating the energy consumption of
a wireless network interface in an ad hoc networking environment,” in
Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

[7] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy
conservation for ad hoc routing,” inProceedings of the Seventh
Annual ACM/IEEE International Conference on Mobile Computing and
Networking, Rome, Italy, July 2001.

[8] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring sEnsor
Networks Topologies,”IEEE Transactions on Mobile Computing, vol.
3, no. 3, pp. 272–285, July 2004.

[9] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
energy-efficient coordination algorithm for topology maintenance in
ad hoc wireless networks,” inProceedings of the Seventh Annual
ACM/IEEE International Conference on Mobile Computing and Net-
working, Rome, Italy, July 2001.

[10] F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A robust energy
conserving protocol for long-lived sensor networks,” inProceedings of
the Tenth Annual IEEE International Conference on Network Protocols,
Paris, France, November 2002.

[11] M. Sarkar and R. L. Cruz, “Analysis of power management for energy
and delay trade-off in a WLAN,” inProceedings of the Conference on
Information Sciences and Systems, Princeton, New Jersey, March 2004.

[12] M. Sarkar and R. L. Cruz, “An adaptive sleep algorithm for efficient
power management in WLANs,” inProceedings of the Vehicular
Technology Conference, Stockholm, Sweden, May 2005.

[13] A. Federgruen and K. C. So, “Optimality of threshold policies in single-
server queueing systems with server vacations,”Adv. Appl. Prob., vol.
23, no. 2, pp. 388–405, June 1991.

[14] L. I. Sennott, Stochastic Dynamic Programming and the Control of
Queueing Systems, John Wiley and Sons, 1999.

[15] P. R. Kumar and P. Varaiya,Stochastic Systems: Estimation, Identifica-
tion, and Adaptive Control, Prentice-Hall, 1986.

