
Mobile Networks and Applications 7, 429–439, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

AMRoute: Ad Hoc Multicast Routing Protocol

JASON XIE
University of Wisconsin, USA

RAJESH R. TALPADE and ANTHONY MCAULEY
Telcordia Technologies, USA

MINGYAN LIU
University of Maryland, USA

Abstract. The Ad hoc Multicast Routing protocol (AMRoute) presents a novel approach for robust IP Multicast in mobile ad hoc networks
by exploiting user-multicast trees and dynamic logical cores. It creates a bidirectional, shared tree for data distribution using only group
senders and receivers as tree nodes. Unicast tunnels are used as tree links to connect neighbors on the user-multicast tree. Thus, AMRoute
does not need to be supported by network nodes that are not interested/capable of multicast, and group state cost is incurred only by group
senders and receivers. Also, the use of tunnels as tree links implies that tree structure does not need to change even in case of a dynamic
network topology, which reduces the signaling traffic and packet loss. Thus AMRoute does not need to track network dynamics; the
underlying unicast protocol is solely responsible for this function. AMRoute does not require a specific unicast routing protocol; therefore,
it can operate seamlessly over separate domains with different unicast protocols. Certain tree nodes are designated by AMRoute as logical
cores, and are responsible for initiating and managing the signaling component of AMRoute, such as detection of group members and tree
setup. Logical cores differ significantly from those in CBT and PIM-SM, since they are not a central point for data distribution and can
migrate dynamically among member nodes. Simulation results (using ns-2) demonstrate that AMRoute signaling traffic remains at relatively
low level for typical group sizes. The results also indicate that group members receive a high proportion of data multicast by senders, even
in the case of a highly dynamic network.

Keywords: IP Multicast, mobile ad hoc networks, network protocols, routing

1. Introduction

Mobile Ad hoc Networks (MANETs [8]) are envisioned to
have dynamic, sometimes rapidly-changing, random, multi-
hop topologies that are likely composed of relatively band-
width-constrained wireless links. Individual nodes and even
whole networks of nodes may continuously move, or disap-
pear, leading to highly dynamic topologies. The TCP/IP pro-
tocol suite is expected to be used for robust communication
over heterogeneous network technologies in MANETs. Effi-
cient IP Multicast is needed for disseminating information to
large numbers of nodes.

This document describes the Ad hoc Multicast Routing
protocol (AMRoute), which enables the use of IP Multicast
in MANETs. Existing multicast protocols [1,5,10] do not
work well in MANETs as the frequent tree reorganization can
cause excessive signaling overhead and frequent loss of data-
grams. The tree reorganization in MANETs is more frequent
as compared to conventional static networks, since the mul-
ticast protocols have to respond to network dynamics in ad-
dition to group dynamics. AMRoute solves this problem by
tracking group dynamics only; the underlying unicast routing
protocol is relied upon for tracking network dynamics, which
it is required to do anyway. AMRoute emphasizes robustness
even with rapidly changing membership or highly dynamic
networks; it does not attempt to provide the absolute mini-

mum bandwidth or latency guarantees in a given topology.
The two key features of AMRoute that make it robust and
efficient in MANETs are:

• user-multicast trees, where replication and forwarding is
only performed by group members over unicast tunnels,

• dynamic migration of core node according to group mem-
bership and network connectivity.

The user-multicast tree includes only the group senders
and receivers as its nodes. Each node is aware of its tree
neighbors only, and forwards data on the tree links to its
neighbors. Multicast state is maintained by the group nodes
only, and is not required by other network nodes. In fact,
AMRoute does not even require non-member nodes to sup-
port any IP multicast protocol. The elimination of state in
other network nodes clearly saves node resources, especially
when compared with broadcast-and-prune native multicast
protocols that require per source and per group state at all
network nodes. More importantly, especially in highly dy-
namic ad hoc networks, user-multicast trees also eliminate the
need to change the tree as the network changes. Neighbor-
ing tree nodes are inter-connected by IP-in-IP tunnels, similar
to the approach adopted for connecting multicast routers on
the MBONE. Consequently, assuming unicast connectivity
is maintained among member nodes, the AMRoute distribu-
tion tree will continue to function despite network changes.



430 J. XIE ET AL.

Each group in the network has at least one logical core that
is responsible for discovering new group members and creat-
ing/maintaining the multicast tree for data distribution. This
logical core is significantly different from the core in CBT
and the RP in PIM-SM as it is not the central point on the data
path (only for signaling), it is not a preset node (chosen from
among currently known members) and it can change dynami-
cally. The absence of a single point of failure is an important
requirement for MANETs.

AMRoute includes some of the best features of other mul-
ticast protocols. Like CBT [1] and PIM-SM [5] it uses shared
trees, so only one tree is required per group, thus improving
its scalability. Like DVMRP [10], CBT and PIM the proto-
col is independent from specific semantics of the underlying
unicast routing protocol. Although some efficiency gains are
possible by tying the protocol closely with a unicast protocol,
we see the independence as more important. Its independence
allows use of the optimal ad hoc unicast protocol for the net-
work and can work transparently across domains supporting
different unicast protocols. Like DVMRP and PIM-DM, it
does not rely on core nodes in the data path. Like DVMRP
and PIM-DM, it provides robustness by periodic flooding for
tree construction. However, AMRoute periodically floods a
small signaling message instead of data.

Simulation results (using ns-2) indicate that as long as the
load on the network is not significantly high, AMRoute offers
a very good data delivery ratio. This does not change even if
the refresh rate is reduced to a minimal level. The broadcast
and unicast signaling load is comparable favorably with that
imposed by the ad hoc unicast routing protocols.

This paper is organized as follows. Section 2 explicitly
states the assumptions made during AMRoute design. A con-
ceptual explanation of the AMRoute design is presented in
section 3, followed by a description of the operation in sec-
tion 4. Experimental results using an ns-2-based simulation
are presented in section 5. Other approaches for multicast
routing in MANETs are discussed in section 6. A discussion
and plans for further work are presented in section 7.

2. Assumptions (or lack thereof)

AMRoute assumes the existence of an underlying unicast
routing protocol that can be utilized for unicast IP communi-
cation between neighboring tree nodes. However, no assump-
tions are made about the syntax or semantics of the unicast
protocol, and the same unicast protocol is not required to be
used in all domains. The actual paths followed by the two
directions of a unicast tunnel connecting neighboring group
members may be different. It is not required that all net-
work nodes support AMRoute or any other IP Multicast pro-
tocol. Non-multicast routers only need to support unicast, and
forward the control packets (without any AMRoute protocol
processing) if the IP-level TTL is non-zero (and decrement
the TTL field before forwarding).

Both multicast receivers and senders are required to ex-
plicitly join the multicast tree and perform data forwarding,

Figure 1. A virtual user-multicast tree.

which is a slight departure from the classical IP Multicast
model. All group members1 must be capable of processing
IP-in-IP encapsulation. No group members need have more
than one interface or act as unicast routers (we can build a tree
entirely from host computers). However, at least one member
(ideally all) must be capable of being AMRouter: forward-
ing and replicating datagrams to other members. AMRoute
routers must be able to set the TTL field in the IP headers
(decrementing the inner IP TTL field before a datagram is
repackaged and forwarded).

3. Concepts

AMRoute creates a per group multicast distribution tree using
unicast tunnels connecting group members. The protocol has
two main components: mesh creation and tree creation. Only
the logical core node initiates mesh and tree creation; how-
ever, the core can migrate dynamically according to group
membership and network connectivity. Bidirectional tunnels
are created between pairs of group members that are close to-
gether, thus forming a mesh. Using a subset of the available
mesh links, the protocol periodically creates a multicast dis-
tribution tree.

3.1. User-multicast distribution trees

Figure 1 shows a user-multicast tree connecting six mem-
bers. The group members forward and replicate multicast
traffic along the branches of the virtual tree. The datagram
that is sent between logically neighboring nodes is physically
sent on a unicast tunnel through potentially many intermedi-
ate routers. The path taken by the unicast tunnel can change
without affecting the user-multicast tree.

There are two key advantages to implementing our multi-
cast protocol using only members:

• Provided there remains a path among all nodes connected
by mesh branches, the user-multicast tree need not change

1 Group members include receivers and senders.



AD HOC MULTICAST ROUTING PROTOCOL 431

because of network changes (e.g., because of node move-
ment). This independence improves robustness and re-
duces signaling overhead.

• Non-members are not required to perform packet replica-
tion or even support any IP multicast protocol. This places
the processing and storage overhead needed to support the
multicast tree only on members.

The penalty paid for using a user-multicast tree is reduced
efficiency. Clearly, bandwidth efficiency is reduced, as non-
member routers are not allowed to perform packet replica-
tion. Furthermore, the delay is often increased. However, the
difference between an optimal tree using all network nodes
and an optimal tree using only member nodes is theoretically
bounded.

In a stable network, the worst case bandwidth overhead for
forwarding on a user multicast tree is less than twice as that
for an optimal tree using all network nodes. This worst case
overhead occurs in case of a simple star network with a non-
member central node directly connecting n member nodes:
a tree using the central node will take n hops, while a user
multicast tree will take 2(n − 1) hops. The worst case delay
overhead depends on the time it takes to do packet replication.
Assuming all nodes can only send one packet at a time, then
the worst case delay overhead is again twice as much as the
other case. (However, if a router can send on multiple inter-
faces simultaneously, then the worst case delay overhead will
be higher.)

In a dynamic network, the overhead becomes more com-
plex to calculate. The bandwidth overhead for using an opti-
mal tree must include the signaling overhead of maintaining
the tree. On the other hand, a user multicast tree has the over-
head of the tree becoming less optimal as nodes move. The
balance between these overheads depends on the mobility pat-
tern.

Just as there are many ways to create native multicast trees,
there are many ways to create user-multicast trees. We now
describe a way that is well suited to ad hoc networks.

3.2. Logical core and non-core members

In the AMRoute protocol each group has at least one logi-
cal core2 that is responsible for initiating signaling actions,
specifically: (a) mesh joins (discovering new group members
and disjoint mesh segments and (b) multicast tree creation.
A non-core node cannot initiate these two operations, and can
act only as a passive responding agent. Limiting the num-
ber of nodes that perform these two functions (ultimately to
a single logical core) ensures that AMRoute can scale, with-
out causing excessive signaling or processing overhead. Non-
core nodes may need to respond to signaling messages initi-
ated by the core node, thus making signaling traffic propor-
tional to group size. But this is much better than permitting
non-core nodes to initiate signaling messages, which would
result in significantly larger signaling traffic proportional to

2 The term logical core and core are used interchangeably for AMRoute, and
imply the same entity.

square of the group size (each group member sends and re-
ceives signaling messages from every other member).

The AMRoute logical core node is different from a CBT
core and a PIM-SM rendezvous point in several fundamental
aspects. In particular, it avoids robustness problems while
permitting scalability since it:

• is not a central point for all data. Forwarding can continue
on working branches of the tree regardless of the status of
the logical core and links to the logical core;

• is not a preset node. Each multicast tree segment desig-
nates one of its nodes to be the core based on the core
resolution algorithm;

• changes dynamically. The core node migrates according
to group membership and network connectivity.

An AMRoute segment can temporarily have more than one
core node for a group after new nodes join or disjoint seg-
ments merge together. A network node designates itself as
a core when first joining a group. As a logical core a node
can quickly discover new group members and join the mesh
and tree with its closest neighbors, not just to the existing
core. When multiple core nodes exist in a segment, they
will advertise their presence by sending out tree creation mes-
sages. Core nodes use the reception of tree creation messages
from other cores to decide whether to remain as a core. The
core resolution algorithm is run in a distributed fashion by all
nodes. The goal of the algorithm is to ensure that any group
segment has exactly one core node and that the core node mi-
grates to maintain a robust and efficient multicast tree.

An AMRoute segment can also have no core nodes be-
cause the core node disappears (e.g., leaves the group) or an
existing segment is split into multiple disjoint segments (e.g.,
because of link or node failure). If a segment does not have
a core node, one of the nodes will designate itself as the core
node at some random time, on not receiving any tree creation
messages.

A key issue with any algorithm that assigns a single core
node is that it can centralize the multicast tree and indeed the
mesh links on itself. AMRoute prevents centralization in the
following ways:

• A non-core node is not allowed to graft to its own logical
core. Without this limitation, all group members would
ultimately be connected to the core.

• All nodes, including the core, are only allowed to have a
limited number of tree links. If the limit is reached the
node must drop the link furthest (at highest cost) from its
current location.

• A logical core will take responsibility as core for a limited
time or until some event makes changing the core desir-
able. A new logical core can be picked; for example when
the core’s mesh connectivity limit is reached.

Clearly the core resolution and change algorithms are key
to the robustness and performance of the AMRoute protocol.
However, it is also desirable to contain the complexity of the



432 J. XIE ET AL.

algorithms. Simulations are hence being undertaken to de-
termine the tradeoffs between simplicity, robustness and effi-
ciency.

4. Operation

We now discuss the operation of AMRoute, with an emphasis
on explaining the design choices.

4.1. AMRoute messages

AMRoute uses five control messages for signaling purposes
and one data message format. These are sent directly over IP.
JOIN_REQ is the only message broadcast using an expanding
ring search, while the other control messages are unicast be-
tween group members. The purpose of the control messages
can be summarized as follows:

• JOIN_REQ. This is broadcast periodically by a logical
core for detecting other group segments.

• JOIN_ACK. This is generated by a tree node in response
to receiving a JOIN_REQ from a different logical core.

• JOIN_NAK. This is generated by a tree node if its appli-
cation leaves the group.

• TREE_CREATE. This is generated periodically by a logi-
cal core to refresh the group spanning tree.

• TREE_CREATE_NAK. This is generated by a tree node
to convert a tree link into a mesh link.

• DATA_MESSAGE. This is generated by a sender on re-
ceiving data from a multicast application.

A group member uses a monotonically increasing se-
quence number for messages generated for each group. These
are used by its tree neighbors for ordering of received mes-
sages, so that older messages are not processed after newer
ones have been received, and for dropping duplicate mes-
sages. The sequence number wrap-around problem is allevi-
ated by using a large field (32 bits), which translates to about
231 messages before wrap-around occurs. A worst-case sig-
naling message rate of 0.4 messages per second per group
member (from section 5) would result in a significantly large
period of 231/0.4 s before the sequence number wrapped-
around. Considering state-of-the-art wireless link bandwidth
of 10 Mbps, which translates to 2441 packets per second
(512 byte packet size), wrap-around for data messages will
not occur for 879 755 s (244 hours). A policy decision can be
made restricting an ad hoc network multicast group validity
to a time period less than 244 hours.

4.2. Mesh creation

An AMRoute mesh is a graph where each node is a mem-
ber (sender or receiver) of the group and every link is a bidi-
rectional unicast tunnel (figure 1). While the mesh estab-
lishes connectivity across all the members of a group, a tree
is needed for forwarding the data. We use a two step process
of creating a mesh before the tree because the mesh is simpler
and more robust.

It is much simpler to maintain a mesh (that could poten-
tially have loops) than a tree (with no loops) at every stage of
member mutual discovery phase. For example, a very naive
merging algorithm could result in a loop when three disjoint
trees discover each other. In addition, the redundant mesh
links contribute towards increased robustness in the case of
node/link failures. (Note that the use of unicast tunnels be-
tween neighboring nodes of the mesh itself contributes to-
wards robustness in the face of intermediate node/link fail-
ures along routes between them as the unicast protocol is ex-
pected to establish a separate route around the failed network
node/link.)

4.3. Joining and leaving a group

To create a mesh encompassing all the members (senders
and receivers) of a specific group, mechanisms are needed
to allow members to discover each other. The expanding
ring search mechanism based on TTL-limited broadcasts is
adopted. All core nodes periodically broadcast JOIN_REQ
messages.

Each member begins by identifying itself as the core of
a 1-node mesh consisting of only itself. The core node
sends JOIN_REQ packets with increasing TTL to discover
other members of the group. When a member (core or non-
core) node receives a JOIN_REQ from a core for a differ-
ent mesh for the same group, the node responds back with
a JOIN_ACK. A new bidirectional tunnel is established be-
tween the core and the responding node of the other mesh.
Due to mesh mergers, a mesh will have multiple cores. One
of the cores will emerge as the “winning” core of the unified
mesh due to the core resolution algorithm.

If a node leaves a group, it sends out a single JOIN_NAK
message to its neighboring nodes. If it subsequently receives
any data or signaling message for that group, it can send out
further JOIN_NAK messages.

4.4. Becoming a passive non-core node

Only logical core nodes initiate the discovery of other dis-
joint meshes, while both core and non-core nodes respond
to the discovery messages. It is simpler and more scalable
(in bandwidth usage) to have only the core node initiate dis-
covery as compared to every node of the mesh. However, to
avoid the situation where every merger adds a link to a core
(which might result in too many links from the core), non-
core nodes can participate in the mergers by responding to
discovery messages received from other cores.

4.5. Tree creation

This section discusses the creation of a tree for data forward-
ing purposes once a mesh has been established. The core is
responsible for initiating the tree creation process. From the
point of view of individual nodes of the mesh, this phase in-
volves identifying the subset of links incident on it that belong
to the tree.



AD HOC MULTICAST ROUTING PROTOCOL 433

The core sends out periodic TREE_CREATE messages
along all the links incident on it in the mesh. (Note that
TREE_CREATE messages are sent along the unicast tun-
nels in the mesh and are processed by group members only,
while JOIN_REQ messages are broadcast messages that are
processed by all network nodes.) The periodicity of the
TREE_CREATE messages depends on the size of the mesh
and on the mobility of the nodes of the mesh. As the
mesh nodes are mobile, the number of hops between neigh-
bors keeps changing dynamically. So newer and more op-
timal trees might be created when TREE_CREATE mes-
sages are sent out. Group members receiving non-duplicate
TREE_CREATEs forward it on all mesh links except the in-
coming, and mark the incoming and outgoing links as tree
links. If a node has a collection of neighbors all 1-hop away
on the same broadcast capable interface, then a possible op-
timization would be for the node to send a single broadcast
message to all 1-hop neighbors simultaneously.

The simplistic approach of forwarding incoming TREE_
CREATE on all outgoing mesh links can result in significant
signaling overhead due to TREE_CREATEs and consequent
TREE_CREATE_NAKs. One solution would be to restrict
the number of tree neighbors that a node could have. How-
ever, simply picking the first n mesh links is not sufficient.
This is because a new member will not be able to attach it-
self to an existing group member if the existing member had
already reached its limit on the number of tree neighbors.
The new member would need to continue broadcasting the
JOIN_REQ until it attached to an existing member that did
not have sufficient neighbors. It is thus necessary to permit a
member to chose deserving members as tree neighbors over
others. We use the number of TREE_CREATE_NAKs re-
ceived from group members as the criteria for picking the
n tree neighbors for a node. Members are considered more
deserving if they have sent fewer TREE_CREATE_NAKs.
Thus a new member would be most deserving compared to
existing neighbors, and would get the TREE_CREATE from
the group member. This approach also reduces the possibility
of loops by restricting the tree formation.

4.6. Purging of tree links

If a link is not going to be used as part of the tree,
the TREE_CREATE message is discarded and a TREE_
CREATE_NAK is sent back along the incoming links. On
receiving a TREE_CREATE_NAK, a group member marks
the incoming link as a mesh link and not a tree link. Thus,
each non-core node considers the link along which a non-
duplicate TREE_CREATE message was received and every
other link along which no TREE_CREATE_NAK message
was received to be part of the tree for a specific group. (Core
considers every link incident on it to be part of the tree.) Note
that all these tree links are bidirectional tunnels.

The choice of using ACK or NAK in response to the
TREE_CREATE messages is dictated by whether robustness
or saving bandwidth is more important. If an ACK-based
(positive acknowledgment) scheme is used, then data may not

be delivered along links where ACKs were lost. This results
in loss of data, but no waste of bandwidth. However, if a
NAK (negative acknowledgment) based scheme is used, loss
of NAKs can only result in same data being forwarded more
than once (which is discarded by the downstream node on re-
ception).

When data arrives at a group member along one of the tree
links, it is forwarded along all other tree links. However, if it
arrives along a non-tree link, a TREE_CREATE_NAK mes-
sage is sent back along that link and the data is discarded.

4.7. Transient loops

The tree created by the nth TREE_CREATE message might
not be the same as the one created by (n − 1)th message.
A situation may exist where some nodes are forwarding data
according to the older tree and some according to the newer
tree, which may result in loops or data loss. Such a transient
phase is to be expected due to the dynamic nature of ad hoc
networks.

We reduce the effect of loops by using sequence numbers
in the data packets. These sequence numbers are on a per
multicast group and per sender basis, which implies that a
group member can determine whether a data packet is a dupli-
cate and hence to be dropped. We reduce the processing and
state required for implementing such a solution at the group
members by requiring them to keep track of only the last data
sequence number (per sender per group). This tradeoff is nec-
essary to reduce the effect of loops at the cost of losing some
out-of-sequence data packets. As shall be seen in the simu-
lation results, this mechanism does not cause significant data
packet loss. In addition, group members do not forward pack-
ets that have a TTL value of one.

4.8. Effect of node failures and group leaves

Nodes leaving a group or node failures are only partially han-
dled by the redundant links in the mesh. In some situation,
node failures might result in splitting the mesh into multi-
ple disjoint meshes, where only one of these meshes has the
core. Each node in the mesh expects to periodically receive
TREE_CREATE messages. In case this message is not re-
ceived within a specific period, the node designates itself to
be the core after a random time. The node whose timer ex-
pires the earliest succeeds in becoming the core and initiates
the processes of discovering other disjoint meshes as well as
tree creation. Multiple cores that may arise in this case are
resolved by the core resolution procedure.

4.9. Core resolution

In case of mesh mergers, there may be multiple active cores
in the new mesh. Nodes in the mesh become aware of this
situation when they receive TREE_CREATE messages from
multiple cores. The nodes execute a deterministic core resolu-
tion algorithm to decide on a unique core for the mesh. They
forward TREE_CREATE messages arriving from the unique



434 J. XIE ET AL.

Figure 2. Formation of mesh and tree (1).

core and discard TREE_CREATE messages from other cores.
As the multiple cores in the mesh will also become aware of
the existence of other cores, they will also execute the same
core resolution algorithm. All the cores except the “winning”
core will demote themselves to non-core state. The simple
core resolution algorithm that we used picked the winning
core to be the one with the highest IP address.

4.10. Picking which branch to use for the tree

We adopt the simplest approach for picking a mesh-branch
as a tree-link by simply accepting the first TREE_CREATE
message that is received, and discarding any duplicate TREE_
CREATE messages using the sequence number included in
each TREE_CREATE message. This results is a reasonable
tree, but it is not necessarily the most bandwidth efficient
(e.g., using minimum number of total hops) or lowest latency.

4.11. Pictorial representation

Figures 2 and 3 demonstrate the formation of an AMRoute
tree in an ad hoc network. Nodes A and B simultaneously join

Figure 3. Formation of mesh and tree (2).

a group, elect themselves as logical cores and start transmit-
ting JOIN_REQ with expanding TTL. When either of them
receives the other’s JOIN_REQ, node B loses the core reso-
lution procedure and is relegated to being a non-core node.
There now exists a tree link (tunnel) connecting nodes A
and B. Node C now joins the group, elects itself as a log-
ical core, and starts transmitting JOIN_REQ with increas-
ing TTL. Node B is closer to node C, and so will receive
the JOIN_REQ from C before it reaches node A. A mesh
link will be formed between B and C. The core resolution
mechanism at B will determine that C is the winner. B will
forward TREE_CREATEs from C to A. A will also deter-
mine that C wins, and relegate itself to non-core node. There
now exists tree links from C to B and from B to A. Eventu-
ally JOIN_REQ from C will reach A, but since A is on the
same mesh as B, it ignores this JOIN_REQ. This step is a
tradeoff between reducing dynamic tree changes that can re-
sult in packet loss, and optimizing the tree structure. A new
group member D can now join this mesh by transmitting
JOIN_REQ, which are received at B. The core resolution at B
results in C remaining the core, and D is grafted onto the tree
at B. The JOIN_REQ from D may also have been received



AD HOC MULTICAST ROUTING PROTOCOL 435

Figure 4. AMRoute state diagram.

by A, but D may receive the TREE_CREATE from B before
getting it from A. So the mesh link between A and D does not
get converted to a tree link.

4.12. State diagram

AMRoute’s simplicity is illustrated by the state diagram in
figure 4, which shows the three main AMRoute states and
state transitions (with causing events and resulting actions).
The states can be interpreted as follows:

• NON-MEMBER – a node does not belong to the multicast
group.

• CORE – a node currently recognizes itself to be a logical
core.

• NON-CORE – a node is currently a non-core member in
the multicast group.

A node transitions from the NON_MEMBER state when
an application on the node joins a group and transitions to it
from all other states when the application leaves the group.
A node transitions to the CORE state when an application
joins a group, and by default sets itself to be a logical core.
A logical core sends out periodic JOIN_REQ messages and
TREE_CREATE messages. A logical core becomes a non-
core node if it loses in the core resolution procedure that
ensues when it receives a TREE_CREATE message from
another core belonging to the same multicast group, which
means the other core becomes the new core. A non-core
member expects periodic TREE_CREATE messages from a
logical core. If it does not receive one within the specified
period, the associated timer expires and the node resets itself
to be a core.

4.13. Timers

A logical core keeps two timers, namely the JOIN_REQ
_SEND timer and the TREE_CREATE_SEND timer. The ex-
piry of JOIN_REQ_SEND causes the node to compute the
new TTL value to use for the expanding ring search, broad-
cast a new JOIN_REQ with this TTL value and restart the
timer. To facilitate fast discovery of the group when a group
member is not connected to any other group member, the

JOIN_REQ_SEND timer has a significantly smaller value as
compared to that when the core is connected to other group
members. The TREE_CREATE_SEND timer is used to send
out periodic TREE_CREATE messages.

A non-core member uses a TREE_CREATE_RECV timer.
When it expires, the node waits for a random amount of
time before it sets itself to be a core, and starts sending out
JOIN_REQs and TREE_CREATEs. This period can be set
to be random to reduce the possibility of multiple non-core
nodes becoming cores simultaneously.

5. Simulation results

AMRoute was simulated using Network Simulator 2 (ns-2
[7]). The Dynamic Source Routing (DSR [2]) protocol was
used as the underlying unicast layer. The simulations were
carried out on a Pentium II 366 MHz machine running Redhat
Linux 5.2. A 50 node ad hoc network was simulated, with
one multicast group comprising of up to 20 members and up
to 5 senders. Node mobility and wireless functionality (IEEE
802.11) were provided by CMU [3].

Node mobility in the CMU model is simulated using the
“random waypoint” model. Each node begins the simulation
by being stationary for pause seconds. It can then move to-
wards a random destination in a 1500 m × 300 m grid at a
speed of up to 20 m/s. On reaching the destination, it pauses
for the same pause seconds before repeating the behavior. For
each simulation run, the pause time for all nodes could be ei-
ther of 0, 30, 60, 120, 300, 600 or 900 s, with each value
denoting a different level of node mobility, 1 indicating least
mobility (pause time of 900 s), through 7 indicating most
mobility (pause time of 0 s). Values of other control vari-
ables for the simulation runs, unless otherwise noted, were:
TREE_CRT_FLOODING_THRESHOLD = 3 (upper bound
on number of tree neighbors that a group member can have),
RING_EXPANSION_TTL = 3 (initial value of TTL for
JOIN_REQ from core), INIT_JOIN_REQ_SEND = 3 s (ini-
tial value of JOIN_REQ timer at core), CORE_JOIN_REQ_
SEND = 10 s (value of timer at core after at least one other
member has been discovered), TREE_CREATE_SEND =
10 s, TREE_CREATE_RECV = 20 s, size of data packets =
512 bytes.



436 J. XIE ET AL.

Each simulation data point was obtained by using 10 dif-
ferent network scenarios, so as to reduce the effect of specific
network configuration and node mobility patterns on the re-
sults. Thus the total number of simulation runs used for ob-
taining the results below were 840 (10 network scenarios × 7
pause times×4 group sizes × 3 experiment sets). Each simu-
lation run lasted for 900 simulation seconds. The parameters
of interest were signaling overhead and data delivery ratio.
The signaling overhead imposed by AMRoute in terms of to-
tal broadcast and unicast packets generated during the simula-
tion run was measured. The broadcast signaling load includes
the total number of JOIN_REQ packets, while the unicast sig-
naling load includes the total number of TREE_CREATE,
JOIN_ACK, JOIN_NAK and TREE_CREATE_NAK pack-
ets generated by all the nodes in the simulation. Since AM-
Route is not dependent on a specific unicast protocol, the sig-
naling generated by DSR is not considered in the measure-
ments. The data delivery ratio is the ratio of total number of
unique data packets received by all group members to the to-
tal number of unique data packets transmitted by the senders.
Since we wanted to study the effect of node mobility and
group size, and not of group dynamics, all group members
had joined the group before data transmission was initiated
by any sender. No group member left the group during the
simulation.

5.1. Effect of group size

The first simulation was aimed at understanding the effect of
group size on the results. The group size was varied from 5
through 20, in increments of 5. The number of senders (they
were also group members) were 5, with each transmitting 1
data packet every 5 s. Figure 5 indicates that the data de-
livery ratio is very good in case of low to medium mobility,
and is reasonable (above 91%) even in the case of continuous
mobility. The effect on the data delivery ratio of dropping du-
plicate data packets using a simplistic implementation (sec-
tion 4.7) thus seems to be minimal. The data delivery ratio
also seems to be independent of group size. This is because a
larger group size results in an improvement in tree connectiv-
ity, which leads to an improvement in data packets delivered
to group members and negates any adverse effect of increased
signaling traffic.

The unicast signaling load varies with the size of the group.
This load is comparable to that imposed by the unicast ad hoc
routing protocols in [3], and so can be considered reason-
able. The slight decrease in unicast signaling with increase
in mobility (for group size �10) can be attributed to weaker
connectivity for the mesh, which translates to group members
having fewer neighbors and hence exchanging fewer signal-
ing messages. This effect is not evident for group size 5 since
connectivity is sparse even in the absence of mobility. The
broadcast signaling load is also dependent on the size of the
group, and is within reasonable limits. However it increases
slightly with mobility, especially for group size �10. This
is because group members have to use more JOIN_REQs to

Figure 5. Effect of group size on signaling traffic and data delivery ratio.

discover other group members due to the increase in mobil-
ity.

5.2. Effect of increased data rate

The data transmission rate of each sender was increased to
1 packet per second. As is seen in figure 6, the data deliv-
ery ratio suffered in case of higher mobility for group sizes
>10. This could be because the network could not support the



AD HOC MULTICAST ROUTING PROTOCOL 437

Figure 6. Effect of increased data rate on signaling traffic and data delivery
ratio.

higher traffic load that is imposed with a larger group (more
multicast data packets are replicated and circulated in the net-
work).

The high packet drop rate is also reflected in the broadcast
signaling load, which is higher for high mobility and group
sizes >10. The signaling load is higher since JOIN_REQs
have a higher loss probability, which implies group mem-
bers require additional transmissions to get connected to the

multicast mesh. The unicast signaling load is similar to
the previous case in general, since it is timer-driven and,
hence, not affected by network drop rate. However there is
a noticeable drop in unicast signaling for high mobility and
group sizes >10. This is due to the sparser mesh connec-
tivity since more JOIN_REQs are dropped by the network
and more time is required to connect all the nodes to the
mesh.

5.3. Reducing the unicast signaling load

The unicast signaling load was further reduced by reduc-
ing the rate at which TREE_CREATEs are generated by the
core (TREE_CREATE_SEND = 15 s, TREE_CREATE_
RECV = 30 s; data rate was kept at 1 packet per 5 s as in
section 5.1). Interestingly, this did not significantly affect the
data delivery ratio (figure 7). This would lead one to believe
that the virtual tree structure is usable even at low refresh and
high mobility rates.

6. Related work

Since the introduction of AMRoute in August 1998, three
other approaches have been proposed for multicast routing in
MANETs.

The Ad hoc Multicast Routing protocol utilizing Increas-
ing ID-numbers (AMRIS [11]) assigns an identifier to each
node in a multicast session. A per-multicast session delivery
tree rooted at a special node (by necessity a sender) in the ses-
sion joins all the group members. The tree structure is main-
tained by assigning identifiers in increasing order from the
tree root outward to the other group members. Election algo-
rithms (not yet specified) may be required to choose one spe-
cial node if multiple senders are present in a multicast session.
All nodes in the network are required to support AMRIS and
any node can be on a tree. All nodes are required to process
the tree setup and maintenance messages that are transmit-
ted by the root periodically. No global state is required to be
maintained by nodes on the tree, and repairs to damaged links
are performed locally. AMRIS currently assumes the exis-
tence of bidirectional links between network nodes. It also
assumes that applications (multicast sessions) are long-lived,
and hence, sacrifices route discovery latency to route recovery
latency.

The On-Demand Multicast Routing Protocol [6] uses a
mesh-based approach for data delivery, rather than the tra-
ditional tree-based approaches. It requires sources rather than
receivers to initiate the mesh building by periodic flooding
of control packets. Receivers are required to periodically ex-
change information with their neighbors locally. All nodes in
the network are required to be involved in the protocol, with
per group and per source state being maintained at interme-
diate nodes and group members. Additionally, nodes on the
mesh seem to require maintenance of a cache to detect dupli-
cate data and control messages that may arise due to the use
of a mesh. The use of soft state implies that receivers/sources



438 J. XIE ET AL.

Figure 7. Reducing the unicast signaling load.

do not need to generate an explicit control message to leave
the mesh.

The Ad hoc On Demand Distance Vector (AODV [9]) pro-
tocol was primarily designed for unicast, but has since been
extended to support multicast. It uses the concept of a group
leader, which is similar to a logical core, for managing the
per-group, shared, bidirectional tree. Non-member nodes and
non-senders can also be part of the multicast tree, and hence
need to support AODV.

The Dynamic Source Routing (DSR [2]) protocol emu-
lates multicast by controlled flooding of data packets, using
the TTL field to limit the scope of the flooding. Individual
nodes within the scope of the TTL value used are required to
filter based on the multicast address specified in the destina-
tion field of the data packet. While this approach ensures that
the multicast data reaches all nodes within the specified scope,
both node and network resources are inefficiently utilized.

7. Discussion

The Ad hoc Multicast Routing protocol (AMRoute) presents
a novel approach for robust IP Multicast in mobile ad hoc
networks by exploiting user-multicast trees and dynamic log-
ical cores. It creates a bidirectional, shared tree for data dis-
tribution using only the group senders and receivers as tree
nodes. Unicast tunnels are used as tree links to connect neigh-
bors on the user-multicast tree. Thus, AMRoute does not
need to be supported by network nodes that are not inter-
ested/capable of multicast, and group state cost is incurred
only by group senders and receivers. Also, the use of tun-
nels as tree links implies that tree structure does not need to
change even in case of a dynamic network topology, which
reduces the signaling traffic and packet loss. Thus, AM-
Route does not need to track network dynamics; the under-
lying unicast protocol is solely responsible for this function.
AMRoute does not require a specific unicast routing proto-
col; therefore, it can operate seamlessly over separate do-
mains with different unicast protocols. Certain tree nodes
are designated by AMRoute as logical cores, and are re-
sponsible for initiating and managing the signaling compo-
nent of AMRoute, such as detection of group members and
tree setup. Logical cores differ significantly from those in
CBT and PIM-SM, since they are not a central point for
data distribution and can migrate dynamically among mem-
ber nodes.

Simulation results indicate that as long as the load on the
network is not significantly high, AMRoute offers a very good
data delivery ratio. This does not change even if the refresh
rate is reduced to a minimal level. The broadcast and unicast
signaling load is comparable favorably with that imposed by
the ad hoc unicast routing protocols.

AMRoute performance is influenced by the characteristics
of unicast routing protocol being used, which was DSR in
this case. Further simulations are needed to explore any spe-
cific effects of using other unicast protocols (DSR, AODV).
A performance comparison of AMRoute with PIM, DVMRP
and the other ad hoc multicast routing approaches under the
same simulation environment, mobility patterns and traffic
load would be useful.

Acknowledgement

This article was prepared through collaborative participation
in the Advanced Telecommunications & Information Dis-
tribution Research Program (ATIRP) Consortium sponsored



AD HOC MULTICAST ROUTING PROTOCOL 439

by the US Army Research Laboratory under the Federated
Laboratory Program, Cooperative Agreement DAAL01-96-2-
0002. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied of
the Army Research Laboratory or US Government.

References

[1] T. Ballardie, Core based Trees (CBT) multicast routing architecture,
RFC 2201 (September 1997).

[2] J. Broch, D. Johnson and D. Maltz, Dynamic source routing protocol
for mobile ad hoc networks, Internet Draft, draft-ietf-manet-
dsr-02 (June 1999).

[3] J. Broch, D. Maltz, D. Johnson, Y. Hu and J. Jetcheva, A performance
comparison of multi-hop wireless ad hoc network routing protocols, In
Proceedings of ACM MobiCom (October 1998).

[4] S. Corson and J. Macker, Mobile ad hoc networking: Routing protocol
performance issues and evaluation considerations, RFC 2501 (January
1999).

[5] D. Estrin et al., PIM-SM: Protocol specification, RFC 2362 (June
1998).

[6] S.-J. Lee, W. Su and M. Gerla, On-Demand Multicast Routing Protocol
for ad-hoc networks, Internet Draft, draft-ietf-manet-odmrp-
01 (June 1999).

[7] Network Simulator (Version 2), http://www-mash.cs.
berkeley.edu/ns/

[8] C. Perkins, Mobile ad hoc networking terminology, Internet Draft,
draft-ietf-manet-term-00 (October 1997).

[9] C. Perkins, E. Royer and S. Das, Ad hoc On Demand Distance Vec-
tor (AODV) routing, Internet Draft, draft-ietf-manet-aodv-
03 (June 1999).

[10] T. Pusateri, Distance Vector Multicast Routing Protocol, Internet Draft,
draft-ietf-idmr-dvmrp-v3-09 (September 1999).

[11] C. Wu, Y. Tay and C.-K. Toh, Ad hoc Multicast Routing protocol utiliz-
ing Increasing ID-numbers (AMRIS) functional specification, Internet
Draft, draft-ietf-manet-amris-spec-00 (November 1998).

Jason Xie is a software engineer in Asera Inc. (a
Silicon-Valley start-up). He participated in the AM-
Route research at Telcordia when he was a gradu-
ate student in the Department of Computer Sciences
at the University of Wisconsin-Madison. He com-
pleted his undergraduate degree from the Computer
Science Department at the University of North Car-
olina at Chapel Hill, and subsequently worked for
Bell Northern Research.

E-mail: jasonxie@cs.wisc.edu

Rajesh R. Talpade is a Senior Research Scientist at
Telcordia Technologies. He is currently the Techni-
cal Program Manager for a CECOM-funded project
on providing scalable QoS for IP networks. He is
also involved with other research projects including
mobile IP multicast (ARL-funded) and IP network
provisioning software. Dr. Talpade joined Telcordia
after completing a PhD in computer science from the
Georgia Institute of Technology, Atlanta. His thesis
was in the area of Internet Multicast, with focus on IP

Multicast over ATM networks and Reliable Multicast. Rajesh is the primary
author of an RFC on Multicast Servers Architectures (RFC 2149) within the

Internetworking over NBMA working group of the IETF. He has published
several papers based on his PhD and research at Telcordia Technologies.
E-mail: rrt@research.telcordia.com

Anthony McAuley received his PhD from Hull Uni-
versity, England, in 1985. He worked as a research
fellow in Caltech in 1985–1987. Since 1987 he has
been at Telcordia and is currently a Director in the
Wireless IP Networking Research group. His cur-
rent research projects include protocols for complete
network autoconfiguration, self-managed virtual net-
works and architectures and protocols for future IPv4
and IPv6 wireless and home networking systems. He
has built several mobile internetworking systems on

Linux that included novel software he wrote for autoconfiguration, proto-
col boosters, multicast proxies, and a Transport Protocol. In the past he has
also worked on IP multicasting in ad hoc and large-scale networks (including
the Comprehensive Test Ban Treaty network), efficient error correction and
detection codes, and design of VLSI chips (for everything from microproces-
sors to asynchronous packet switches).
E-mail: mcauley@research.telcordia.com

Mingyan Liu received the B.S. degree in electrical
engineering from the Nanjing University of Aero.
and Astro., Nanjing, China, in 1995, and the M.S.
degree in systems engineering and Ph.D. degree in
electrical engineering from the University of Mary-
land, College Park, in 1997 and 2000, respectively.
She joined the University of Michigan, Ann Arbor,
in September 2000, and is currently an Assistant Pro-
fessor with the Department of Electrical Engineering
and Computer Science. Her research interests are in

the areas of performance modeling and analysis of hybrid communication
networks, network dimensioning, wireless and mobile ad hoc networks, and
communication protocol design and analysis.
E-mail: daphnel@isr.umd.edu


