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Abstract— Franceschetti et al. [1] have recently shown that
per-node throughput in an extended (i.e., geographically ex-
panding), ad hoc wireless network with ©(n) randomly dis-
tributed nodes and multihop routing can be increased from
the Q(flo —) scaling demonstrated in the seminal paper of
Gupta and Kumar [2] to ©(—=). The goal of the present paper
is to understand the dependence of this interesting result on the
principal new features it introduced relative to Gupta-Kumar:
(1) a capacity-based formula for link transmission bit-rates in
terms of received signal-to-interference-and-noise ratio (SINR),
instead of the threshold model that positive bit-ratelV is attain-
able when SINR lies above some threshold, and zero bit-rate
otherwise; (2) hierarchical routing from sources to destinations
through a system of communal highways, instead of individual
direct routes from each source to the corresponding destination;
and (3) cell-based routes constructed by percolation rather
than by simply interconnecting all cells touched by a straight-
line between two end points. The conclusion of the present
paper is that the improved throughput scaling is principally
due to the percolation-based routing, which enables shorter

transmission rate formula as a function of the received signal-
to-interference noise ratio (SINR), instead of the threshold-
based binary rate model used in [2], where a positive bit-rate
W is attainable when the SINR is above some threshold, and
zero otherwise. (The former requires coding at each hop,
while the latter does not.) The second is a routing hierarchy
for data delivery in which data from a source is first delivered
(via a single hop) onto a nearby highway — one of a system of
communal highways, each with a horizontal and a vertical
segment. The data is then multihopped along the highway
(horizontally then vertically), and finally delivered from the
highway to the destination in a single hop. By contrast, the
method used in [2] is a simple shortest path type of routing,
where a straight line is drawn connecting the source and the
destination, and nodes along this line are selected to relay the
data, forming an approximately straight line path. The third
difference introduced in [1] is the use of percolation theory to

hops and, consequently, less Interference This is established by construct the highways that serve as the main routing fabric

showing that throughput (—— —) can be attained by a system
that does not employ hlghways but instead uses percolation
to establish, for each source-destination pair, a set 0®(logn)
routes within a narrow routing corridor running from source to
destination. As a result, hlghways are not essential. In addition,
it is shown that throughput (—=) can be attained with the
original threshold transmission {t rate model, provided that
node transmission powers are permitted to grow withn. Thus,
the benefit of the capacity bit-rate model is simply to permit
the power to remain bounded, even as the network expands.

I. INTRODUCTION

in the network. Indeed, [1] is the first paper to use percolation
theory to establish network throughput results.

The primary interest of the present paper is to understand
which of the above contribute to the increase in per-node
throughput in a fundamental way, i.e., to understand the
dependence of this new result on the above new features. The
conclusion of this paper is that the improved throughput scal-
ing is principally due to the percolation-based routing, which
enables shorter hops and, consequently, less interference.
More precisely, the hops along the highways have bounded
lengths that do not increase as the network expands. This

The problem of asymptotic scalability of throughput inwould not have been possible if one were to use shortest path
wireless networks has been investigated extensively underuting, the existence of which then invokes a connectivity
different assumptions on the network models. The seminat¢quirement that would force the hop size to increase as the
work of Gupta and Kumar [2] demonstrated that per-nodeetwork expands.
throughput(2(1/v/nlnn) was achievable as the number of This conclusion is established by showing that throughput
nodes in the networky, goes to infinity. L) can be attained by a system that does not employ

Franceschetti et al [1] recently showed that this achmvabl’egmvays, but rather uses percolation to establish, for each
per-node throughput may be increased. Specifically, thespurce-destination (s-d) pair, a sett®flog n) disjoint routes
considered an extended (i.e., geographically expanding) n&tithin a narrow routing corridor running from source to
work with approximatelyr randomly distributed nodes and destination. Thus with this multipath routing structure, high-
multihop routing, and demonstrated that achievable per-noséays and routing hierarchy are not essential. In addition, it
throughput can be increased Sﬂ){in). is shown that throughpdﬂ(in) can be attained with the

Compared to [2], the construction used in [1] introducedriginal threshold transmission bit-rate model, provided the
several new features. The first is a capacity-based lirfkansmission powers of the nodes are permitted to grow with
n. Thus, the benefit of the capacity bit-rate model is simply
to permit the power to remain bounded, even as the network
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expands. [1l. MAIN RESULT
The remainder of the paper is organized as follows, Sec- In the following theorem, which is our main result, we

tion Il introduces the system and the transmission rate modg|§ monstrate the achievability &t(1/\/n) throughput for

we use. Section Il gives our main result and an overvieWuh transmission rate models, using a non-hierarchical rout-
of the proof. The formal proof follows in sections IV, V, VI ing strategy, i.e., without the use of highways.

and VII, which formalize the path construction, data rates,

loading factor and the system scheduling, respectively. Theorem 1:Under transmission Models A and B, a per-
node throughput of)(1/y/n) bits/sec is achievable in the
Il. SYSTEM MODEL random extended network. Under Model A the throughput

We consider the random extended network, which consisis @chievable with any constant finite pow#rat each node,
of a set of nodes distributed over a didk c R2 with radius whereas 'under ModeI.B 'the throughput is achievable only if
/i, called the network region. We construct the network bOWer P increases to infinity as — oo.
placing the nodes according to a Poisson point process of unitwe now give an overview of the proof, details of which
intensity overR? and focusing our attention to the networkare in subsequent sections. For each s-d pair we find with
region A,,. We denote the location of thgh node bys;.  high probability2(Inn) disjoint routes (i.e., a sequence of
Each nodes;, serves as a source of bits which it wishes thops from node to node) from source to destination such that
communicate to a destination, denoteddpywhich is chosen
randomly from the remaining nodes. Each node may serve
as a destination for more than one source. Communication
is done using a multihop relaying scheme under a slotted
time system. There is a transmitter and receiver at each
node. All transmitters use the same powe@r which we
get to choose and which may depend uponWe assume
that nodej receives the transmitted signal from nodeith
power Pn(d;;), wheren is a propagation model andi; is
the Euclidean distance between nodesnd j. We use the

propagation model introduced by Arpacioglu and Haas [3],
1 To make the analysis tractable, we then modify these paths

nd) = ——= (1) slightly in a way that preserves their distance properties,
(1+d) but does not necessarily preserve their disjointness. We then
where o > 2 is a constant depending upon the channedhow that for each s-d pair, a rate 0f(1/(y/nlnn)) is

1. each route consists ofdmaining hopfrom the source,
apathconsisting of a sequence of intermediate hops, and
a delivery hopending at the destination,

2. the first hop, i.e., the draining hop, has len@ttin n)

and extends from the source to the first node of the path,
3. the last hop, i.e. the delivery hop, has lengtfinn),

and extends from the last node of the path to the
destination.

4. all intermediate hops have lengths bounded by a
constant not depending on

conditions. sustainable on each hop of each of its modified paths. To
o do this, we show that the maximum number of source-
A. Transmission Rate Models destination paths on which an intermediate node can lie is

Let ¢t be a set of simultaneously transmitting nodes. The®(y/nInn). From ltem 4 above, the intermediate nodes, with
the SINR; (signal to interference and noise ratio) at ngde the exception of the delivery node, transmit over a bounded
when nodei is transmitting to it is given by distance. Theorem 3 of [1] showed that when transmitting
P(ds;) over a bounded distance, nodes can maintain a throughput of

& . (1). Thus for each s-d pair an intermediate node can sustain
No+ 2 ket Pi(dis) a throughput of2(1) x 1/0(y/ilnn) = Q(1/(y/nlnn)).

Next, using Theorem 3 of [1] again, we show that a source
can transmit data at raf®(1//n) in a way that will be
received by a node on each of th¥lnn) paths for the s-d
%air. Through this node, each path then takes a share of this
rate equal td2(1/(y/nlnn)). Therefore, the source is able to
drain onto a set of designated paths at ffé¢/(\/n1nn)).
Similarly, delivery nodes can deliver data to the destination
at a rate of2(1/(y/n1nn)).
whereW is the bandwidth and’ is length of the time slot. ~ Combining the above results we see that, for each source-

Model B In this model, which has been more commonlydestination pair we hav&(Inn) routes, each of which can
used in throughput analysis of wireless networks [2]-[4] theustain a rate d(1/(y/nInn)). Thus the per-node through-
transmission rate is put is given byQ(Inn) x Q(1/(vnlnn)) = Q(1/v/n).

R — B if SINR;; > 7 3) V. PATH CONSTRUCTION VIA PERCOLATION
K 0 else ’

SINR;; =

We use two different transmission rate models.

Model A In this model, which was used in [1], the
transmission rate is equal to the capacity of the wirele
channel. That is the rate (in bits/sec) at which nadsan
transmit to nodgj is

1
Rij = sWTn(1 + SINRy;) 2)

In this section we show that, with probability approaching
wherer is some pre-determined threshold a@fds a number 1 asn — oo, there existQ(Inn) suitable disjoint paths
less than channel capacity. for each source-destination pair. Here the probability is with



dimensions2y/n x v/2ck In \/\/;’c in R?, wherec, x > 0 are

S T constants to be chosen later.
e In V2 Tessellate this routing corridor with diamonds of sidas
CK Hﬁ . . . H
shown in Figure 1(a). Then for any given diamond,
Pr(diamond contains at least one node1 — e 2 D .

| |
\ 2y/n !
If a diamond contains at least one node, it is said tofen
(a) Tessellation of a rectangular routing corridor with diamonds andclosedotherwise. Draw horizontal edges across half the

of side lengthc. diamonds and vertical edges across the others in the manner
shown in Figure 1(b). An edge is consideregenif it lies
Fﬂ; in an open diamond, andlosed otherwise. Define a path

as a sequence of connected edges, horizontal or vertical. A
path is said to be open if it contains only open edges. We
will show that there ar€(Inn) disjoint open paths crossing
\@mln% the routing corridor lengthwise, i.e. beginning at the left and
J ending at the right side of the routing corridor.
Let I,, be the event that there exist at leastdisjoint
| 2/n | open paths that cross the routing corridor lengthwise.
The following lemma, whose proof can be found in the

(b) Paths crossing the routing corridor from left to right are proof of Theorem 5 of [1] is based on an important result
composed from horizontal and vertical edges, shown as dashed  frgm percolation theory
lines. '

Lemma 2: Given arbitrary constants, ¢ > 0, there exists
Fig. 1. Routing corridor setup for finding paths for a given s-d pair. a strictly positive constant = (¢, ) such that

4 a
_ _ _ Pr(l,) >1— = (7"2) )
respect to the Poisson point process for node locations and 3 \2c
the random destination assigned to each source node. WA NG 1 2
X s vherem = Bk ln Y= anda = = — ke +KkIn6 +1).
do this, we use the percolation approach that was used in b Vae 2 ((ﬂ ) )

[1] to establish the existence of suitable highways. Here we Theorem 2:Givenx > 0 andc > In6 +4/x, there exists

apply approach to find a set of suitable paths for each source-Strictly positive constang(c, ) such that if for everyn
destination pair. we are given at mos2zn] routing corridors of dimensions

Since we need to show the existence of paths for eveBy/n x V2ck ln% in R?, then with probability approaching

s-d pair, we first need to upper bound the number of nod@ge there existn = Bxln Y2 disjoint open lengthwise

2c

in the network region,,, which we denoteV,,. crossing paths within each of the routing corridors.

~ Lemma 1:The probability that the number of nodes,,, Observe that whem are large the routing corridors are
in the network regionA,, is less tharmn goes to 1 a1 guite narrow.

goes to infinity. ) ) ]
Proof: We prove this theorem using Lemma 2 and the union

Proof: The number of nodes in the network regioN,, pound. It suffices to assume that we hai#rn] routing
is a Poisson random variable with mean. Applying the corridors. Then

Chernoff bound gives,
Pr(all [27n] routing corridors haven disjoint open paths

=1 — Pr(at least one routing corridor has
less thatm disjoint open paths

for all s > 0. Choosings = 1 gives [27n]
>1— Z Pr(ith routing corridor has
=1

Pr(N, > 27n) < e 2™ E[e*Nn]

— s_
—e 2s7rn€7rn(e 1)

Pr(N, < 27n) > 1 — e~ 2™em(e=D)

=1—mB-e) less thann disjoint open paths
—lasn — oo . O > 1— [27wn] - Pr(a routing corridor pair has
Next we prove that for a given s-d pair, there &@nn) less thanm disjoint open paths
disjoint paths such that the distance to (from) each path =1-2mn](1 - Pr(l,))
from (to) the source (destination) @(Inn), and that every < 4/ n\e
intermediate hop along each path is of lengthl), i.e. its z1-8n- 3 (@)
length is upper bounded by a constant independent.of 32

To show this, we consider a rectangutanting corridor of - 3(202)an



‘ node Now, for every hop of every s-d path, if the node that

is to transmit is not the designated relay node for the square,
we replace it with the designated relay node. In this way
we obtain a set of2(Inn) paths for each s-d pair such that
each source (destination) is withifi(lnn) of each of its
paths. Note, however, that nhow the maximum intermediate
hop length has been increased (t¢5 + v/2)c. Moreover,

d the paths corresponding to one s-d pair might no longer be

disjoint. For example, in two originally disjoint paths there
might be a node in one path and a node in the other that are

4@ In Y2 contained in adjacent diamonds in the original tesselation of
the routing corridor, but are in the same square of the new
tesselation of the entire network region. In this case, the two
modified paths share a common relay node.

Fig. 2. For a given s-d pair the orientation of the routing corridor on the V. DATA RATES

network region. We begin this section by finding a lower bound on the

per-node transfer rate when for somie > 0 every node

where the first inequality follows from the union-bound and’@s to send data to all nodes within distarigeof itself.

expression goes to one astends to infinity ifa < —1. humber of simultaneous transmissions taking place, which

Givenk > 0 andc > In6 + 4/k, choosingB(c,x) = 1 — inturn limits the interference. Corollaries are then given for

(K16 +4)/(rkc?) > 0 results ina < —1. [ use in the proof of the Theorem 1.

For transmission rate Model A, Theorem 3 of [1] can be
) . o . used. The following extends this theorem to transmission rate

exists a strictly positive constafit(c, x) > 0 such that with

oy . S Model B.
probability approaching one there exigtln ) disjoint open
paths for each s-d pair such that the distance of any path fromTheorem 3:Given ¢ > 0, given a tessellation of the net-
the source and destination is less thdBcex In(y/n/v/2¢)  Work into squares with sides of lengthand given an integer
and every intermediate hop has length less thaa. d > 0 there exists a rat&(d) = Q(d~“"?) using Model A

Proof: E . d pai id i id .thand R(d) = Q(d~?) using Model B such that one node in
foot: or any given S-d pair, CONSICer a routing corndor withy, , ., square can successfully transfer data at Rat§ to

the aforementloqed _d|menS|0ns such tha_t It contains b.oﬁlny node located in any square within Manhattan distahce
source and destination and that the portion of the routin

he originatin re (i. r fewer horizontal and/or
corridor that intersects the network region is as high g;rttifalostgepg)t g square (i.el or fewer horizontal and/o
possible (see Figure 2). According to Lemma 2, with high : :
o L The asymptotic behavior of the rate under Model A can
probability there are)(Inn) disjoint open paths that cross ) ) o
. . . . be attained by any fixed finite power at each node. However
the routing corridor lengthwise. Now consider the part of th

. ; : o . . 0 achieve the rate under Model B we have to let power
routing corridor that lies within the network region. Since infinity asd tends 1o infinit
there areQ)(lnn) disjoint open paths that cross the routinggo to nfinity Y-
corridor lengthwise, there will b (In n) disjoint open paths Proof: For Model A the proof is given in [1, Theorem 3],
in the truncated region as well. Also, since the width of th@nd for the extension to Model B, we now make a similar
routing corridor isv/2ck In % , the minimum distances of construction. We consider a partition of the network region
each of these paths from'the source and the destinationiio super-squares, each composedkdfsmaller squares,

less tham/2ck In 2. Also, using a geometric argument, it for somek to be chosen later. We index the squares in
2C ) 1

is easy to see that any intermediate hop hasJ&&sor less. eaqh super-square starting in the lower Ieft. corner, moving
gronzontally in the bottom row from left to right, and then

Theorem 2 shows the existence of paths for a numb . .
of routing corridors no larger thaf2zn]. Using the above in the row above it fr02m left to right, apd S0 on. We set up
construction for every s-d pair and combining with the facf TDMA sche_dule ofs SIOtS S!“'Ch that in théth slot, from :
that the number of s-d pairs is less then with high every square indexed t_zy premsgly one pode can transmit.
Consider a transmitter-receiver pair separated &by

probability (Lemma 1) completes the proof of the corollary. )
[ squares. Choosing = z(d + 1), where

Corollary 1: Given x > 0 andc¢ > In6 + 4/x, there

As suggested earlier, for tractability we need to modify z = max(2, [(1677)*(1 + 1/(20))]) ,
the paths provided by the corollary. Ignoring the previous
tesselations of routing corridors, consider now a tessellatiand~y = >, (i — 1/2)~**!, we can see that the closest 8
of the entire network region into squares of sidéf a square interferers are at least(d + 1) — d squares away, the next
has multiple nodes in it, we designate one node asdlay closest 16 interferers are at le@st{d+ 1) — d squares away,
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Fig. 3. Construction for lower bound on SINR. The shaded square at

[e% —1
1 16y
14— .
*( +c(d+1>) )

It can be easily shown that the second term in the above
equation is less than/r. Choosing P large enough that
the sum of two terms still remains less thafr results in
SINR> . In this case according to Model B, one node in
each square can transmit at rate 1 in such a way that all
nodes within Manhattan distandewill successfully receive
the transmissions. Since each square is allowed to have a
transmitting node once evel? = x?(d + 1)? time slots,

to get the asymptotic behavior we need to divide the above
transfer rate byi?. Thus under Model BR(d) = Q(d~2?) is
attainable. O

We now give a corollary to the above theorem that will

the center is the actual signal, all other shaded squares are interferi@@ Used to show an achievable data delivery rate to the

transmitters. In the above figure= 1.

destination.
Corollary 2: Given ¢ > 0, given a tessellation of the

and so on (Figure 3). The power from interfering nodes caR€twork into squares with sides of length and given an

thus be upper bounded as

Py(d) < i 8iPy(c(iz(d+1) — d))

i=1
oo

8P = 2(i — 1/2)
I ; G—1/2) @
_ 6P = (Z _ 1/2)—a+1

~c(d+ 1)axe ‘
_ 16 P~
~co(d+ 1)

Il
_

integerd > 0 there exists a rat&’(d) = Q(d=>"2) for
Model A and R(d) = (d—2) for Model B such that one
node in each square can receive data at t€) from a
transmitter located in any square within Manhattan distance
d of the receiving square (i.el or fewer horizontal and/or
vertical steps).

Proof The proof is obtained by switching the role of trans-
mitters and receivers in the proof of the previous theorem.
(Il
We conclude this section with three corollaries that use
Theorem 3 to establish rates at which, respectively, draining,
delivery and transmission along the intermediate hops can
proceed.

Corollary 3: With probability approaching one, every
source node in the network can transmit to every one of
the Q(Inn) paths in its corresponding routing corridor at
a rate Q((Inn)~*~*) under transmission Model A, and
Q((Inn)~*) under Model B.

Proof: First, for Model A, consider the tessellation 4f, into

Next we lower bound the signal power at the receiver. Thgquares of side lengih Consider also any one source node.
Euclidean distance between the transmitter and receiver is&ifice the Manhattan distance from this source to each of its

mostc(d 4 1). Thus the signal power’s(d), satisfies

Ps(d) > Py(c(d +1))
P
(1+c(d+1))> "

paths is less tham In n, for some¢ > 0, if this node is the
only node within its square then Theorem 3 with= ¢ Inn
implies it can transmit data that is successfully received by
a node on each of its paths at rate

R(¢Inn) = Q((Inn)~*"2) .

Using the above two bounds we obtain a bound on the

SINR:
Ps(d)
Ny + P[(d)
P(l+ec(d+1))~@
~ Ny + 16Py(2¢)~ oz«

() +

SINR(d) =

It is therefore decided that nodes will transmit at rate
O((Inn)~*~3), and since each path takes responsibility for
relaying an equal share of this data, each path is responsible
to relay ©((Inn)~>~*). Whenn is large, with high proba-
bility the number of nodes in a square of sizés O(Inn)

[1, Lemma 1]. Every node can actually transmit data at rate
of O((Inn)~*~*). The proof for Model B follows similar
arguments. O



Corollary 4: With probability approaching one, every des-
tination node in the network can receive data from every one
of the Q(Inn) paths in its corresponding routing corridor at
a rateQ(Inn)~*=%) under Model A, and2((Inn)~?) under
Model B.

Proof: First, for Model A, consider a tessellation of,
into squares of side length Consider any one destination
node and one of the source nodes that corresponds to that
destination. Since the distance to the destination from each
of its paths is less thad Inn, for some¢ > 0, if this node

is the only node within its square then Corollary 3 implies
that data can be successfully received by the destination at
rate R(¢Inn) = Q((Inn)~*~2). It is therefore decided that
nodes delivering data to this destination will transmit at rat€ig. 4. Theith square lies on a s-d path only if the destination lies in the
O((Inn)~*~2). Using the Chernoff bound we can easily seétriped region.

that the number of sources that choose any given node as

its destination i<D(Inn) with high probability. Setting up a

i

. . . theith square intersects the s-d routing corridor it may have
TDMA scheme in which each epoch consistingff(In n)? . X .
P f(tnn)?) F]o service at most 9 paths corresponding to that s-d pair.

slots would allow the destination to receive from every pat
y P Therefore as an upper bound Iqn), we upper bound

of every source that selects the given node as its destinatitcb: number of s-d routin ridors that intersect anv given
at least once in every epoch. Thus a destination can receive ¢ humber ot s-d routing corridars that intersect any give

rateQ((Inn)®~*). Whenn is large with high probability the square and multiply that number by 9.

number of nodes in a square of sizés O(Inn) [1, Lemma Theorem 4:For a tessellation of the network region into
1]. Thus every node can receive data at @félnn)~~=°). squares of side, there exists a constantsuch that

The proof for Model B follows similar arguments. g Pr(L(n) < §y/nlnn) — 1 asn — oo .

Corollary 5: Givenc¢ > 0, and a tessellation ofl,, into
squares of side lengtk, one node in every square canPrOOf:
transmit to every node located within distan€g1), i.e., Pr(L(n) < §y/nlnn) = Pr(max L;(n) < dy/nlnn)
distance is upper bounded by a constant that does not depend ¢
uponn, at a constant rate that does not depend upon

M,
>1- ZPr(Li(n) > §y/nlnn)

Proof: First consider Model A. From Theorem 3 we know i=1
that one node in every square can achieve a rafi{éf *—2) )
while transmitting to every node located within Manhattannere M, ~ ™ is the number of squares in the network
distanced of the originating square. For transmissions ovefg .o e hai/eLZ- <9V A, whereA;; = 1 if the ith
distance that is upper bounded by a consta_nt not_ depend| &%are intersects the roﬂﬁng corridor corresponding to the
uponn, d would be a constant. Hence r&¥¢1) is achievable

tant dist h f for Model B foll ith s-d pair andA4;; = 0 otherwise. Note that for a given
oyer constant distance. € proot for Vode oflow i, A;1,Asn... are independent and identically distributed.
similar arguments.

However theL;’s are not identically distributed. Instedd
will generally have a higher value for squares near the center
of A,, than its boundary. The following lemma, which gives

The loading factor of a designated relay node is the@ uniform upper bound tp,; £ Pr(4;; = 1), will be used
number of s-d paths on which it lies. We also consider #0 find a lower bound to the terfir(L; > 6./nlnn) that
to be the loading factor of the square containing the relagPpears in (5).
node. In this section we find a probabilistic upper bound to Lemma 3:Given ¢ > 1//2 there exists: such that
the maximum loading factor among all squares, which then A ,
upper bounds the maximum loading factor of all relay nodes. Pni <pn = plnn/yvn, foralln,i. (6)

Let L;(n) represent the loading factor of thith square, Proof: We setup a polar coordinate system such that the
and letL(n) = max; L;(n). We observe that if an s-d pair origin lies at the center of the network region. As the
contributes a path or paths to tiig(n), then it must be that probability of intersection of a square by a random s-d pair
the corresponding routing corridor intersects itfe square. routing corridor is highest at the center, we considerithe
Now, we observe that if thé&h square intersects a given s-dsquare to lie at the center of the network region, i.e., to
routing corridor, it can, at most, intersect 9 diamonds of theontain the origin. Since such a square of sidecompletely
routing corridor tessellation. Recall that the tentative pathsontained in a circle of radius/+/2, we upper boung,, ; by
for a given s-d pair are disjoint, i.e. a diamond of the s-dhe probability of a random s-d routing corridor intersecting
routing corridor can lie on only one tentative path. Thus, if circle of radiusc/+/2 centered at the origin.

VI. LOADING FACTOR



For a source located &t ¢), the probability that square VIl. SYSTEM SCHEDULING

i is intersected by the s-d pair routing corridor is upper |n this section we explain a system protocol that achieves

bounded by the probability of the destination lying in they per-node throughput d2(1/+/n) and complete the proof
striped regions of Figure 4. Since the diameter of the netwol¢ Theorem 1.

region is2,/n, the area of the horizontally striped regions can gq every path corresponding to an s-d pair we designate
be upper bounded k- 2./n-v/2¢x In % Sincec > 1/v/2  the node on the path that is closest to the source (destination)
the upper bound can be relaxed 2¢/n - v2cxInn. Also, as the draining (delivery) node. We cycle among three
the area of the vertically striped portion%(r_k diffgrent categqries of time slots: draining, .relgying and
) r?=(c/V2) delivery. In draining slots, the source transmits its packets
v/n)*. Therefore to the designated draining nodes. In the relaying slots, the

Pr (s-d routing corridor intersects squate + (r,6)) relaying nodes transmit the data towards the destination.
1 if r<c Finally in the delivery slots, the delivery nodes transmits
< { 2vZke Inn VD __ +/D®  oiherwise the data to the destination.
TV fra_(¢/V/2)2 ™ Theorem 4 shows that the maximum number of s-d paths
Since the joint probability density of the polar coordinatdhat a relaying node may have to servelgy/nInn). Since
locations isp(r, §) = 2??% we have all relaying nodes can transmit at rats1) (Corollary 5),
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Applying the Chernoff bound [4, Lemma C3],
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which concludes the proof of Theorem 4. O



