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Abstract

Minimizing energy and power consumption in wireless sensor networks is
critical in extending the lifetime of the network. In this paper we consider
efficient power/rate allocation strategies with certain quality of service con-
straints. The transmission rate achieved and the power used are related by
a power-rate function for a given channel state. Specifically, two problems
are formulated, one seeking to minimize the average power consumption sub-
ject to an average rate constraint, while the other seeking to maximize the
average data rate subject to an average power constraint. We consider two
scenarios of power management of a wireless node/device. In the first case
the node always stays on thereby consuming power in circuitry as well as in
transmission/reception. In the second case the node turns its transceivers
off from time to time, and by doing so while avoiding circuitry power during
sleep periods, consumes power in switching from the off state to the on state.
For both problems stationary and deterministic policies are considered. We
first study the optimum power/rate allocation when the nodes are always
active and provide algorithms that produce optimal solutions to these two
problems. We then consider a two-state channel model and study optimal
joint power allocation and sleep scheduling for both problems.

1 Introduction

Energy and power efficiency is an essential factor in the design and operation of
wireless sensor networks, since many sensor devices are battery powered and thus
energy/power constrained. On the other hand, it is also desirable to be able to
satisfy certain performance guarantee when transmitting data over a wireless sensor
network, e.g., delay, throughput, loss requirements. How to meet such requirements
while limited by energy/power is the central focus of this paper.

Specifically, we consider the problems of optimally assigning power (rate) to
sensor nodes so as to minimize (maximize) the average power (rate) subject to an



average rate (power) constraint These two problems are considered together as they
share very similar structures and lead to similar solutions. The channel quality is
assumed to be time varying, modeled via a power-rate function for any given channel
state. Each point on the power-rate curve represents some combination of coding
and modulation schemed used for data transmission.

While there are many different power-save and power management schemes
given a particular sensor device platform, we will mainly consider two scenarios. In
the first scenario, the user/device is assumed to be always active (with transceivers
turned on), and thereby consuming energy in circuitry and data transmission. In
this case an optimal policy for the problems outlined above needs to decide on the
appropriate transmission power to be used in any given channel state. Within this
setting we will develop for both problems outlined above an algorithm that allocates
the rate/power optimally for concave power-rate functions.

In the second scenario, the user/device is assumed to alternate between an
active/on state and an inactive/off state in which the transceivers are turned off (the
duty cycling of the sensing element is left unspecified, and its energy consumption
is not considered in this paper). In this case the device is assumed not to consume
circuit power while it is asleep, but requires power in switching from the off state
to the on state. In this case a policy needs to determine not only the transmission
power, but also an appropriate sleep schedule (i.e., when to go to sleep and for how
long). For this scenario we will study the optimal joint power allocation and sleep
scheduling for both problems under the assumption of a two-state channel system
and geometrically distributed sleep durations.

In this paper we will use the terms user, node, and device interchangeably.
Efficient power allocation has been the subject of many recent studies in wireless

networks. In [1] the problem of joint routing, link scheduling and power control is
studied. The average power is minimized in order for the nodes to satisfy some
rate constraints. However, channel variation is not considered and the nodes are
assumed to be always active (i.e. no sleep scheduling). [2] studies the problem of
power control for the uplink in a single-cell and it is shown that the policy that
allocates the power to the user with the best channel maximizes the capacity. [3]
studied the stability of power allocation policies in a satellite network scenario. The
users are always active (no sleep schedule) and the goal is to schedule transmissions
in order to stabilize the queues.

Operating wireless sensor networks in low duty cycles has also be addressed in
a number of studies. Examples include efficient medium access schemes, e.g., S-
MAC [4], sleep scheduling to achieve coverage [5, 6], connectivity [7, 8], and general
system design that may involve a paging channel [9]. While relevant, these methods
are typically developed independent of power control, which is what we attempt to
achieve in this paper.

The rest of the paper is organized as follows. In the next section we explain
the system model we use in this paper and formulate the problem. In Section 3
we study the optimal policy where the nodes are always active and are not put
to sleep. In Section 4 we study joint power allocation and sleep scheduling for a
two state system. In Section 5 we discuss some possible extensions of the results
presented here and conclude the paper.
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2 System Description and Problem Formulation

Consider a channel that can be in any state from a finite set of states S =
{1, 2, · · · , S}. Time is slotted and the channel state changes from one slot to the
next according to a Markov process, given by the transition probabilities qij =
Pr[st+1 = sj|st = si], i, j ∈ S.

Consider a single user that always has data to transmit (i.e., an infinite source).
In each time slot the user can be in one of two modes: active/on or asleep/off. If the
user is active, it transmits data with a chosen transmission power. We assume that
the user knows the channel state if it is active, and decides on the transmission
power based on this knowledge. The transmission rate it achieves is given by a
power-rate function µ = fs(p) associated with state s. This fs() is assumed to be a
one-to-one, continuous, increasing, differentiable, and concave function of p. Thus
f−1

s (µ) is well-defined and is a one-to-one, continuous, increasing, differentiable,
and convex function of the transmission rate µ. There is a maximum transmission
power Pm that the user cannot exceed regardless of the channel state it is in.

Definition 1 We say that a state si is better than another state sj (in notation
si � sj), if we have fsi

(p) ≥ fsj
(p) for all 0 ≤ p ≤ Pm.

We assume that there is an ordering between the states and without loss of
generality we assume s1 � s2 � · · · � sS.

Problem P-1 (Optimal rate allocation): Determine the transmission rates
µ(t) at time t so as to minimize the average power consumption subject to an
average rate constraint µ̄:

minimize lim sup
T→∞

1

T

T
∑

t=1

f−1(µ)

s.t. lim inf
T→∞

1

T

T
∑

t=1

µ(t) ≥ µ̄ (1)

and 0 ≤ µ(t) ≤ fst
(Pm), ∀t

Problem P-2 (Optimal power allocation): Determine the transmission
power p(t) at time t so as to maximize the average data rate subject to an average
power constraint p̄:

maximize lim inf
T→∞

1

T

T
∑

t=1

fst
(p(t))

s.t. lim sup
T→∞

1

T

T
∑

t=1

p(t) ≤ p̄ (2)

and 0 ≤ pt ≤ Pm, ∀t

As we will see the structure of these two problems are very similar and they
lead to similar solutions. We will limit our attention to the set of stationary and
deterministic policies for the above optimization problems. Specifically, a policy π is
said to be stationary if the decision on the transmission rate (or power) only depends
on the current channel state. A policy is called deterministic if at each decision
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epoch only one action is taken with probability one. The set of all stationary and
deterministic policies is denoted by ΠSD.

Only transmission power is explicitly considered in the above formulation. Note
that when a node is always active, the circuit power can be easily incorporated
into this formulation. For example problem P-1 would remain the same when we
include the circuit power as it is a constant. In problem P-2, the constraint can be
changed to the average transmission power less a constant circuit power.

On the other hand, when a user alternates between the active and sleep modes,
then the circuit power is no longer a constant but a function of the sleep schedule.
Furthermore, we need to consider the switching power consumed between the off
and on modes. This will be discussed in more detail in Section 4. In the next
section we present algorithms for solving problems P-1 and P-2 presented above.

3 Optimal Power and Rate Allocation Policies

As mentioned before, for this section we will assume that the user is active at all
times, and thus ignore the circuit and switching power. Let qs be the steady-state
probability of the channel being in state s. A policy in ΠSD assigns a transmission
rate or power for each state s ∈ S, which we denote by ps and µs, respectively. In
this case the above optimizations reduce to the following.

Problem P-1: This problem can be written as

minimize
∑

s

qs · f
−1
s (µs) (3)

s.t.
∑

s

qs · µs ≥ µ̄

and 0 ≤ µs ≤ fs(Pm), ∀s .

Problem P-2: This problem can be written as

maximize
∑

s

qs · fs(ps)

s.t.
∑

s

ps · qs ≤ p̄ (4)

and 0 ≤ ps ≤ Pm, ∀t .

Below we study these problems through their dual problems.

3.1 Optimal rate allocation

Consider problem P-1 as formulated in (3) and define gs(µ) = f−1
s (µ) to be the

required power to transmit with rate µ in state s. The Lagrangian of the problem
is as follows:

L(µ, λ) =
∑

s

qs · gs(µs) + λ(µ̄−
∑

s

qs · µs) . (5)

Let D = {µ : 0 ≤ µs ≤ fs(Pm), ∀s ∈ S}, then the Lagrange dual function can be
written as follows:

L(λ) = inf
µ∈D
{
∑

s

qs · gs(µs) + λ(µ̄−
∑

s

qs · µs)} . (6)
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The dual objective is to maximize the dual function over λ ≥ 0. Since the value
function and the constraints are all convex, there is no duality gap and the primal
and dual optimal values are the same. Below we first look at the special case of
linear power-rate functions and then study the more general case of concave power-
rate functions.

3.1.1 Linear Power-Rate Functions

Suppose the power-rate functions are linear, i.e. fs(p) = as · p for some values as.
This is a reasonable assumption in the low SNR regime. Thus gs(µ) = µ

as
. In this

case Equation (6) becomes

L(λ) = inf
µ∈D
{
∑

s

1

as

qsµs + λ(µ̄−
∑

s

qs · µs)}

= inf
µ∈D
{
∑

s

qsµs(
1

as

− λ) + λµ̄} . (7)

The first term (linear in µs) states that as long as 1
as

< λ, the user should transmit
at the maximum rate allowed by the maximum power and the power-rate function
in state s . For all s ∈ S such that 1

as
> λ the rate should be zero. As we will show

in Section 3.1.2, the dual variable λ should be chosen so as to achieve equality in
the average rate constraint.

If follows that the optimal policy can be implemented as follows. Start from the
best state (i.e. largest as). Allocate power until the maximum power is reached or
the average rate criterion is satisfied. If the maximum power is reached and the
average rate criterion is not satisfied, go to the next best state and repeat the same
procedure.

3.1.2 Concave power-rate functions

In this part we consider general concave power-rate functions, i.e. f(p) is a concave
function. In this case g(µ) will be convex. Rearranging (6) we have

L(λ) = inf
µ∈D
{
∑

s

qs(gs(µs)− λµs)}+ λµ̄ . (8)

In order to minimize the first term with respect to µ we must have

g′
s(µs) = λ, ∀s ∈ S. (9)

This means that for all the states for which µs > 0 either µs = fs(Pm) or the
derivative of gs(.) with respect to µs has to be equal to λ (equal for all states with
µs > 0).

We now show that the value λ should be chosen to achieve equality in the
average rate constraint, i.e.

∑

s∈S qsµs = µ̄. Let λ∗ be the value of λ that satisfies
this constraint and let the corresponding transmission rates that satisfy (9) be µ∗

s.
Given that λ∗ is chosen to satisfy the average rate constraint we have that

L(λ∗) =
∑

s

qs · gs(µ
∗
s) .
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Lemma 1 For any value λ ≥ 0, we have L(λ) ≤ L(λ∗).

Proof - Let the corresponding rates for λ be denoted by µ, where these rates
satisfy (9). Using (8) we have the following:

L(λ)− L(λ∗) =
∑

s∈S

qs(gs(µs)− gs(µ
∗
s))− λ(

∑

s∈S

qsµs −
∑

s∈S

qsµ
∗
s)

=
∑

s∈S

qs(λ(µ∗
s − µs)− (gs(µ

∗
s)− gs(µs))) . (10)

Due to the convexity of gs(·) and noting that λ = g
′

s(µs), every term in the sum-
mation in the above expression is non-positive. Therefore we have L(λ) ≤ L(λ∗).

Using this lemma the following theorem directly follows.

Theorem 1 The value λ that maximizes Equation (8) is the value chosen to satisfy
the average rate constraint, i.e.

∑

s∈S qsµs = µ̄.

The following algorithm finds the optimal rate allocation.
—————————————————————–
- Choose a (small) step-size δ.
- Set µs = 0 for all s ∈ S.
- (*) For all s ∈ S: if µs ≥ gs(Pm)− δ, then S ← S − {s}

- Calculate dgs(µs)
dµs

for all s ∈ S.

- Choose s′ such that
dgs′(µs′ )

dµs′
≤ dgs(µs)

dµs
for all s ∈ S.

- µs′ ← µs′ + δ.
- If

∑

s qsµs = µ̄, then stop; else go to (*).
—————————————————————–

3.2 Optimal power allocation

We now consider problem P-2, which is very similar to problem P-1 and yields
similar results. In particular, the dual function of problem P-2 can be written as
follows:

L(γ) = sup
0≤ps≤Pm

{
∑

s

qs(fs(ps)− γps)}+ γp̄,

which has to be maximized over all values γ ≥ 0. It can be seen that the values
ps have to be chosen in order to satisfy f ′(ps) = γ. Similar to the argument we
had in Section 3.1.2, it can be shown that the value γ should be chosen to satisfy
the average power constraint, i.e. we must have

∑

s∈S qsps = p̄. The following
algorithm finds the optimal power allocation.

—————————————————————–
- Choose a (small) step-size δ.
- Set ps = 0 for all s ∈ S.
- (*) For all s ∈ S: if ps ≥ Pm − δ, then S ← S − {s}.

- Calculate dfs(ps)
dps

for all s ∈ S.

- Choose s′ such that
dfs′ (ps′ )

dps′
≥ dfs(ps)

dps
for all s ∈ S.

- ps′ ← ps′ + δ.
- If

∑

s qsps = p̄, then stop; else go to (*).
—————————————————————–
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q12

q21

q11 q22

Figure 1: Two state channel model

4 Optimal Sleeping Scheduling

In the previous section we assumed that the user always stays on and therefore the
decision is limited to selecting a transmission power ps when it is in channel state
s. In this section we study the case when the user can switch between on and off
states, and seek the optimal power/rate control as well as sleep scheduling in such
cases.

Formally, we will consider three types of powers consumed by the user, namely
the transmission power (given by the rate-power function g(µ) as shown earlier),
the circuit power denoted by pc, and the switching power denoted by psw. Under
our assumption, pc is applied whenever the user is active/on even if it decides not
to transmit, and the switching power psw is applied when the user transitions from
the sleep/off state to the active/on state. We also assume that when the user is
asleep its transceivers are turned off and therefore does not have channel state
information.

Within this context, a stationary and deterministic policy specifies whether the
user should transmit (and at what power level ps > 0) in state s or go to sleep,
and when the user should wake up while in the sleep state. In this section instead
of looking for an optimal stationary and deterministic policy, we will tackle the
simpler problem of optimizing the parameters of a more limited class of policies.

Specifically, we will only consider a two-state channel model where S = {s1, s2}
and s1 � s2. Consider a policy under which the user transmits with power p when
in state s1 and goes to sleep when in state s2. While asleep, the user will wake
up with probability 0 ≤ r ≤ 1 in each slot, i.e., the sleep duration is geometrically
distributed with parameter r, also called the sleep parameter. Our goal is to find
the transmission power/rate in state s1 and the sleep parameter r so as to solve
problem P-1/P-2 by replacing the transmission power p with a combination of
transmission, circuit and switching power as we show next. As we will see these
two parameters are closely related such that finding one leads to the other.

4.1 Sleep Scheduling and Rate Allocation

In this part we consider the problem of minimizing the average power consump-
tion subject to an average rate constraint using the policy outlined above. The
channel variation follows a Markov process (Figure 1) with the following transition
probability matrix:

P =

(

q11 q12

q21 q22

)

.

When the user transitions between on and off states, the system can be described
in a three-state Markov chain shown in Figure 2. The three states are:
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s1-on s1-off

s2-off

State - off

q11

q12

rq21

q12

(1-r)q21

(1-r)q11

rq11

q22

Figure 2: System states with the sleeping schedule

1. the user is on and the channel is in state s1 (state s1-on).
2. the user is off and the channel is in state s1 (state s1-off).
3. the user is off and the channel is in state s2 (state s2-off).
The transition probability matrix is as follows:

P̂ =





q11 0 q12

rq11 (1− r)q11 q12

rq21 (1− r)q21 q22



 .

We note that power is consumed only in state s1-on, and in transitions from the
two off states to state s1-on. Here we will adopt a simplification that when the user
wakes up in state s2, it will go back to sleep without incurring energy expenditure
in switching or sensing the channel state 1.

To calculate the average power consumption, we only need to know the average
amount of time spent in state s1-on. For this reason, we can combine the two
off states, s1-off and s2-off into one state (off) as shown in Figure 2. The state
transition probability matrix of the new two-state chain is given by:

P̃ =

(

q11 q12

r(q11 + q21) 1− r(q11 + q21)

)

.

The steady-state probability of being in state s1-on is therefore given by

q1 =
r(q11 + q21)

q12 + r(q11 + q21)
. (11)

In order to satisfy the average rate requirement we must have:

µ1q1 = µ̄⇒ r =
µ̄q12

(q11 + q21)(µ1 − µ̄)
. (12)

In order to minimize the average transmission power we need to minimize the
following as a function of µ1.

P (µ1) = q1(pc + g(µ1)) + (1− q1)r(q11 + q21)psw, (13)

where the first term corresponds to circuit plus transmission power and the second
term corresponds to the switching power. We can then find the optimum sleeping

1Note that the switching power consumed in waking up in state s2 and going back to sleep
can be easily incorporated, by separating the single transition from s2-off to itself into two dif-
ferent transitions, one with probability p22(1− r), which does not incur psw, and the other with
probability p22r, which incurs psw. However, we will not consider this further in our paper.
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schedule from (12). Using the fact that q1 = µ̄

µ1

and taking the derivative of P (µ1)
with respect to µ1 it can be seen that the optimal transmission rate µ∗

1 has to satisfy
the following:

µ∗
1g

′(µ∗
1)− g(µ∗

1)− q12psw − pc = 0. (14)

The above equation can be either solved analytically (if an explicit expression for
g(µ) is available or numerically (if an expression is not available for g(µ)). Note
that when pc ≤ q12psw − pc, then the power spent for switching is higher than the
circuit power for any value µ1 and therefore it is optimal not to put the node to
sleep. The optimal sleeping factor r∗ can be derived as follows.

r∗ =
µ̄q12

(q11 + q21)(µ∗
1 − µ)

. (15)

4.2 Sleep Scheduling and Power Allocation

In this part we adopt the same two-state channel model as in the previous subsec-
tion, and optimize the policy for maximizing the rate subject to an average power
constraint. The constraint can be written as follows.

q1(p1 + pc) + (1− q1)r(q11 + q21)psw = p̄⇒ q1 =
p̄

p1 + pc + q12psw

. (16)

Using Equation (11) to calculate r as a function of q1 and replacing in (16) we
have:

q1 =
p̄

p1 + pc + q12psw

(17)

We need to maximize the average rate q1f(p1) subject to (17). Replacing q1 with
(17) and taking the derivative with respect to p1 results in the following condition
for the optimal transmission power p∗

1:

(p∗1 + pc + q12psw)f ′(p∗1)− f(p∗1) = 0 . (18)

Again the above equation can be either solved by analysis, if the function f(p)
is in closed from, or numerically otherwise. After finding the optimal transmission
power, the corresponding steady-state probability in state s1, can be calculated
from Equation (17). Let q∗1 be this probability, then the optimal sleeping factor can
be calculated as following.

r∗ =
q∗1q12

(q11 + q21)(1− q∗1)

5 Conclusion

In this paper we studied two resource allocation problems concerning the energy
efficient operation of wireless devices used for data transmission. The first problem
aims at minimizing the average power consumption subject to an average data rate
constraint; the second problem aims at maximizing the average data rate subject
to an average power constraint. We first considered the case where the user/device
always stays on, and provided for both problems an algorithm that allocates the
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rate/power optimally for concave power-rate functions. We then considered the
case where the user/device can turn off its transceivers to conserve energy, and
studied the optimal joint power allocation and sleep scheduling for both problems
under the assumption of a two-state channel system and geometrically distributed
sleep durations.

The assumptions of continuity and differentiability of the power-rate functions
may not hold in some practical systems. Extending our results to such scenarios
is part of our future research. We would also like to include randomized policies
in our study. Another important extension is to extend the results of Section 4
to more than two states. Moreover, we have only calculated the optimal sleeping
factor for a given sleeping policy. Finding the optimal policy (i.e., in which states
to transmit or go to sleep) is part of our future research.
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