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Abstract

In this paper we consider the problem of joint optimal power and ad-
mission control for a single user queue. The user may be in a finite set of
channel fading states, each of which corresponds to a certain power-rate func-
tion. The user may choose a particular transmission power level and incur a
cost that increases with the power. Packets arrive at the queue as a Poisson
process with a constant rate. The user may choose a dropping probability
for the incoming packet, which incurs a cost that increases with the dropping
probability. Packets remaining in the queue also incur a holding cost. The
goal is for the user to choose optimally its transmission power/rate and its
admission rate so as to minimize the sum of the above costs. These costs
model the tradeoff between increasing transmission power, increasing packet
delay, and dropping a packet. In this paper we investigate a number of mono-
tonicity properties of the optimal solution to the above problem. Specifically
we prove the following results under an optimal strategy: (1) The output or
transmission rate of a queue does not decrease and the acceptance rate does
not increase as the queue size increases; (2) The output rate does not decrease
and the acceptance rate does not increase as the time horizon (or steps to
go) increases; (3) For a fixed transmission rate, we show that the acceptance
rate does not increase as the system enters a worse fading state; (4) Under
certain conditions on the arrival and maximum transmission rates, we show
that the output rate does not increase as the system enters a worse fading
state. These results provide good insight on the structure of the problem.

1 Introduction

As the use of wireless networks increases, the problem of optimally allocating avail-
able resources in order to enhance system efficiency becomes more challenging, due
to many trade-offs involved in the design. On the one hand, it is desirable to adapt
transmission power to channel variations to achieve better energy efficiency. On the
other hand, different applications impose different quality of service requirements,
e.g., packet loss and delay, on transmission strategies.

In this paper we study these trade-offs by imposing costs on the transmission
power, queueing and rejecting packets in a finite buffer. Specifically, a user queue



is sending packets in a time varying wireless channel. The fading state belongs to
a finite set and is assumed to be known. Packets arrive at the queue at random
with a constant rate. The queue controls the transmission power and admission
probability, which in turn determine the transmission/departure/output rate and
the effective admission/arrival rate of the queue, and it adapts these quantities
according to the fading state and the number of packets already in the queue. The
transmission cost is a non-decreasing and convex function of the transmission power
used, and the dropping cost is a non-decreasing and convex function of the packet
drop probability used. Queued packets also incur a holding cost which is a non-
decreasing and convex function of the queue size. The objective is to control the
transmission and admission rates as the channel state changes so as to minimize
the total cost over a finite or infinite horizon.

The problem of optimal rate allocation has been extensively studied in the
literature. For a good survey on control policies for queues see for example [1].
[2, 3] studied the problem of rate allocation in tandem queues where arrivals are not
controlled, and proved several monotonicity results on the optimal policy, including
that the service rate at each queue does not increase as a costumer leaves that
queue. [4] studied the problem of optimal routing and server allocation for two
queues and proved that the optimal policy is of the threshold type, under linear cost
functions and uncontrolled arrivals. Time varying channel was not considered in
these papers. [5, 6] considered the problem of power allocation in satellite networks
with varying channel condition when the total power is fixed. While their policy
does not necessarily minimize the queue size, they showed that it stabilizes the
system whenever the system can be stabilized. Also relevant are studies on dynamic
bandwidth allocation where a fixed amount of shared bandwidth is assigned to
multiple users so as to optimize certain performance objectives, see for example
[7, 8, 9, 10, 11]. In this paper we will instead focus on a single user with a fixed
bandwidth, and investigate the joint control of transmission and admission rates.

Compared to prior work, the problem considered in this paper has the following
distinct features: (1) We assume that both the output rate and input rate of the
user queue are controllable. This assumption is essential in allowing us to consider
systems with finite buffers. (2) We also consider a fading channel that is time
varying. We derive a number of monotonicity properties of an optimal solution to
the problem outlined above. In our proofs we extensively use the inductive method
established and used in earlier works such as [4, 12, 13, 14, 15] to show that certain
properties of the value function (cost to go) propagate with time.

The rest of the paper is organized as follows. In the next section we describe
our system and formulate the problem. In Sections 3, 4 and 5 we show that an
optimal policy has a monotone structure with respect to the queue size, the time
horizon, and the fading state, respectively. In Section 6 we extend our results to
the infinite horizon and Section 7 concludes the paper.

2 Problem Formulation

We consider a set of user queues transmitting to a single base station. Each queue
has a fixed amount of dedicated bandwidth and it controls its transmission power
and admission rate. The problem of optimal power and admission control can thus
be considered for each user independent of the others. Subsequently for the rest of



this paper we will limit our discussion to a single user.
We assume that the power can be controlled within a range [0, P̄ ]. Using a power

level p ∈ [0, P̄ ] incurs a cost u(p), assumed to be convex and charged continuously
over time. A channel fading state belongs to the finite set S = {′,∞,∈, · · · ,S}.
When in state s, if the user transmits with power level p, then a rate µ = Rs(p) can
be achieved, and the completion time for sending a single packet is exponentially
distributed with rate µ. Rs(·) is assumed to be concave, e.g., it can represent the
Shannon capacity of the channel. Alternatively it may be viewed that the queue
controls the transmission rate within the range [0, µ̄s], µ̄s = Rs(P̄ ), and selecting
rate µ incurs a cost hs(µ) = u(R−1

s (µ)), where R−1
s (·) is the inverse of Rs(·). By

concavity of Rs(·) and convexity of u(·), it follows that hs(µ) is a convex function
of µ. Let µ̄ = maxs{µ̄s}.

Packet arrival is assumed to be Poisson with a fixed rate λ̄. The queue controls
the drop probability q ∈ [0, 1], which incurs a cost v(q) that is charged continuously
over time, regardless of an actual arrival or not 1. The acceptance rate of the queue
is thus λ = (1− q)λ̄. Alternatively, if we define function g(λ) = v((λ̄ − λ)/λ̄), then
this may be viewed as the cost of selecting an admission rate λ ≤ λ̄.

We assume u(·) and v(·) are non-decreasing and convex, and it follows that
h(·) is non-decreasing and convex, and that g(·) is non-increasing and convex. We
further assume that both g and h are continuous but not necessarily differentiable.

In addition, a holding cost c(x(t)) is also charged, where x(t) denotes the number
of packets in the queue at time t. c(·) is assumed to be non-decreasing and convex.

The objective is to find a policy π that minimizes the following discounted cost:

Jπ
T = Eπ

∫ T

t=0

e−αt[c(x(t)) + (u(p(t)) + v(q(t)))]dt. (1)

We assume that when a user is in fading state s it remains in that state for
an exponentially distributed amount of time with rate τ and then enters any other
state r, r 6= s, with equal probability γ (independent of r and s). Note that γS = 1.
Let γ̄ = τ(1 + γ). If the system is observed at rate γ̄ then at the next observation
time it is equally likely for the queue to be in any of the fading states (i.e., the
queue will be in state s ∈ S with probability γ

1+γ
, with (S + 1) γ

1+γ
= 1 ).

The state of the system at time t is defined by the pair (x(t), s(t)), the queue size
and the fading state, respectively. Note that the assumption that the arrival rate
is Poisson, service completion time is exponential and the channel is memoryless
results in the following property of the optimal policy: the optimal transmission
and admission rates change their values only when the state of the system changes
(see [2, 13, 16, 17]).

Using the uniformization method introduced in [18, 19, 20] we “observe” the
system at potential times when the system state changes. This includes potential
departure and arrival times, the times when the fading state changes and null
events. Define Vn(x, s) to be the n-stage minimum cost to go starting from state
(x, s). Let Tn be the (random) time when the n-th event occurs, then Vn(x, s) is
the minimum over all policies of the cost function defined in (1) where T is replaced

1This assumption differs from some of the previous work that assumed a cost charged only
upon dropping a packet.



by Tn. Letting Λ = µ̄ + λ̄ + γ̄ and β = Λ
α+Λ

, we then have

Vn(x, s) = min
π

Eπ

∫ Tn

t=0

e−αt[c(x(t)) + (u(p(t)) + v(q(t)))]dt

=
1

α + Λ
min

π
Eπ[

n−1∑
k=0

βkc(x(k)) + u(p(k)) + v(q(k))], (2)

where x(k) = x(T−
k ). Without loss of generality we will assume that α + Λ = 1,

and the following dynamic program may be obtained (note that γ̄ γ

1+γ
= τγ):

Vn(x, s) = c(x) + { min
µ∈[0,µ̄s]

[hs(µ) + µVn−1(x − 1, s) + (µ̄ − µ)Vn−1(x, s)]

+ min
λ∈[0,λ̄]

[g(λ) + λVn−1(x + 1, s) + (λ̄ − λ)Vn−1(x, s)] + γ̄
γ

1 + γ

∑
r∈S

Vn−1(x, r)},

(3)

We will make the natural assumption that whenever the queue is empty the
control policy chooses zero power level. To avoid confusion, in subsequent sections
when there may be multiple minimizers in the above equation we will make the
following assumption 2.

Assumption 1 The control policy always chooses the highest transmission rate
and the lowest admission rate that minimize the terms in (3).

Note that as c(·), u(·) and v(·) (and thus h(·) and g(·)) are applied continuously
over time, strictly speaking these are the rates at which the cost is incurred rather
than the cost itself (see the integration in (1)). However, as the control does not
change between different system states, they are simply multiplied by the same
constant (mean of discounted time between state transition) in the discrete version
(see (2)). We will thus loosely refer to all these functions as cost functions.

The two functions c(·) and v(·) model the trade-off between holding a packet
(increasing delay) and dropping the packet (increasing loss). For applications that
are more delay sensitive, c(x) is large compared to v(q), so that the queue drops
more packets in order to keep the queue size small. For applications that are more
sensitive to packet losses, c(x) is small compared to v(q), so that more packets are
kept in the buffer instead of being dropped.

Also note that the above model can accommodate both infinite and finite buffers.
Let B be the buffer size. Then define c(x) = ∞ for all x such that x > B. Therefore
the optimal policy for the queue would be to set q = 1 (λ = 0) when x = B.

Definition 1 We say that state s is better than state r (in notation r ≺ s) if we
have Rr(p) ≤ Rs(p), ∀p ∈ [0, P̄ ].

In the next few sections we derive a number of monotonicity properties of the
optimal policy for the problem formulated above. Due to space limit, most of the
detailed proofs are not provided in this paper. Interested readers may find them in
[21].

2This assumption does not affect the monotonicity properties derived in this paper. It merely
specifies an explicit strategy when there are multiple minimizers.



3 Monotonicity With Respect To Queue Size

In this section we show the for a fixed channel fading state, the optimal policy is
monotone with respect to the queue size.

Definition 2 We define X to be the region where the cost is finite, i.e. X =
{x|c(x) < ∞}. By convexity of c(x) we have that if x − 1, x + 1 ∈ X then x ∈ X .

We say that a function f : X × S → R is convex on X if we have

2f(x + 1, s) ≤ f(x, s) + f(x + 2, s), ∀s ∈ S,∀x ∈ X . (4)

For a function f : X × S → R+, we define the following transformations:

T1(f(x, s)) = min
µ∈[0,µ̄s]

{hs(µ) + µf(x − 1, s) + (µ̄ − µ)f(x, s)}; (5)

T2(f(x, s)) = min
λ∈[0,λ̄]

{g(λ) + λf(x + 1, s) + (λ̄ − λ)f(x, s)}; (6)

T3(f(x, s)) = γ̄
γ

1 + γ

∑
r∈S

f(x, r), (7)

where it is understood that whenever x − 1 /∈ X and x ∈ X , then µ = 0 is the
minimizer in (5) (queue empty), and whenever x + 1 /∈ X and x ∈ X , then λ = 0 is
the minimizer in (6) (queue full). We want to show the following results for a fixed
channel fading state s: (1) The acceptance rate does not increase as the queue size
increases; (2) The output rate does not decrease as the queue size increases (note
that since in this case we are keeping the state fixed, if the rate is non-decreasing
then the power will also be non-decreasing). By looking at Equation (3) we see that
to establish these results, we first need to show that Vn(x, s) is a convex function
of x.

Lemma 1 Suppose f(x, s) is a convex function on X . Then T1(f), T2(f) and T3(f)
are convex functions on X .

Theorem 1 Vn(x, s) is convex on X for all n ≥ 0.

Definition 3 For a function f , define f ′
+(z) to be the derivative of the function

from above at point z and define f ′
−(z) to be the derivative from below at point z.

Theorem 2 Suppose that for 0 ≤ x < B the optimal policy in state (x, s) when
there are n + 1 steps to go (n ≥ 0) is (λ1, µ1) and let the optimal policy in state
(x + 1, s) when there are n + 1 steps to go be (λ2, µ2). Then we have:

µ2 ≥ µ1 and λ2 ≤ λ1 (8)

Proof: Using the optimality of (λ1, µ1) in state (x, s) and the fact that h is
convex and non-decreasing, and that g is convex and non-increasing, we have (by
considering the first two minimizers in Equation (3) respectively):

Vn(x, s) − Vn(x − 1, s) ≥ h′
s−(µ1) for x > 0,

Vn(x + 1, s) − Vn(x, s) ≥ −g′
+(λ1),



where the inequality is due to the fact that functions f and g are not necessarily
differentiable. By convexity of Vn, along with the above inequalities and Assumption
1, we obtain
Vn(x + 1, s)− Vn(x, s) ≥ Vn(x, s)− Vn(x− 1, s) ≥ h′

s−(µ1),→ µ2 ≥ µ1, 0 < x < B,
Vn(x + 2, s) − Vn(x + 1, s) ≥ Vn(x + 1, s) − Vn(x, s) ≥ −g′

+(λ1),→ λ2 ≤ λ1, 0 ≤
x < B − 1.
Also note that when x = 0, µ1 = 0, and when x = B − 1, λ2 = 0. Therefore for
0 ≤ x < B, we have λ2 ≤ λ1 and µ2 ≥ µ1.

4 Monotonicity With Respect To Time Horizon

In this section we show that for a fixed channel fading state, the optimal policy is
monotone with respect to time horizon.

Lemma 2 Suppose that functions fn and fn+1, both X × S → R+, satisfy

fn+1(x − 1, s) + fn(x, s) ≤ fn(x − 1, s) + fn+1(x, s). (9)

Then we have for k ∈ {1, 2, 3},

Tk(fn+1(x − 1, s)) + Tk(fn(x, s)) ≤ Tk(fn(x − 1, s)) + Tk(fn+1(x, s)). (10)

Theorem 3 For all n ≥ 0 we have:

Vn(x, s) − Vn(x − 1, s) ≤ Vn+1(x, s) − Vn+1(x − 1, s). (11)

Proof: We prove the theorem by induction. Note that the statement is true
for n = 0. Assume that the statement holds for n and we want to show that it also
holds for n + 1. Note that:

Vn+1(x, s) = c(x) + T1(Vn(x, s)) + T2(Vn(x, s)) + T3(Vn(x, s)),
Vn+2(x, s) = c(x) + T1(Vn+1(x, s)) + T2(Vn+1(x, s)) + T3(Vn+1(x, s)).
Using Lemma 2 we have

T1(Vn+1(x − 1, s)) + T1(Vn(x, s)) ≤ T1(Vn(x − 1, s)) + T1(Vn+1(x, s)),
T2(Vn+1(x − 1, s)) + T2(Vn(x, s)) ≤ T2(Vn(x − 1, s)) + T2(Vn+1(x, s)),
T3(Vn+1(x − 1, s)) + T3(Vn(x, s)) ≤ T3(Vn(x − 1, s)) + T3(Vn+1(x, s)).

Adding the above inequalities and rearranging, we get

Vn+1(x, s) − Vn+1(x − 1, s) ≤ Vn+2(x, s) − Vn+2(x − 1, s), (12)

completing the induction.

Theorem 4 Suppose the optimal policy in state (x, s) when there are n + 1 steps
to go is (λ1, µ1) and let the optimal policy for state (x, s) when there are n+2 steps
to go be (λ2, µ2). Then we have λ2 ≤ λ1 and µ2 ≥ µ1.

The proof uses inequality (11) proved in Theorem 3 and taking the same steps
used in the proof of Theorem 2.



5 Monotonicity With Respect To Channel State

5.1 Monotonicity of Admission Control - Fixed Transmis-

sion Power

In this subsection we assume that the transmission power is fixed at some Pc, so
for any state s we have µ(x, s) = µs = Rs(Pc). For states r and s such that
r ≺ s, we have µr ≤ µs. With this assumption we show below that the admission
probability does not increase if the state becomes worse. By examining Equation
(3) and using the same method used in Theorem 2 we see that it suffices to prove
that the following inequality holds for all n ≥ 0 and for any pair r ≺ s:

Vn(x + 1, s) − Vn(x, s) ≤ Vn(x + 1, r) − Vn(x, r). (13)

Lemma 3 Let f : X × S → R+ be a function that satisfies (13) with Vn replaced
by f and let f̂ = T2(f). Then f̂ also satisfies (13).

Lemma 4 Let f : X × S → R+ be a function that satisfies (13) with Vn replaced
by f and define f̂ as follows:

f̂(x, s) = u(Pc) + µsf(x − 1, s) + (µ̄ − µs)f(x, s), ∀s ∈ S.

Then f̂ also satisfies (13).

Theorem 5 Assume fixed transmission power. Suppose we have n + 1 steps to go.
Let λ1 be the optimal arrival rate when the state is (x, s) and let λ2 be the optimal
arrival rate when the state is (x, r) and r ≺ s. Then we have λ2 ≤ λ1.

It suffices to show that (13) holds. Note that V0(x, s) = 0 satisfies (13). Using
Lemmas 3 and 4 and inducting on n, we have that Vn(x, s) satisfies (13).

5.2 Monotonicity of Transmission Rate Control

In this subsection we show that the optimal transmission rate is monotone with
respect to the channel fading state under certain conditions on the cost functions.
We will assume that the maximum achievable rate in all fading states is the same,
instead of assuming a fixed maximum power. Note that when c(x) is bounded in X

we have the relation Vn(x, s)−Vn(x−1, s) ≤ maxx{c(x)−c(x−1)}
1−β

for all n. Therefore by

adding a linear section with slope greater than max{maxx{c(x)−c(x−1)}
1−β

, maxµ{h
′
s−(µ)}}

to the cost function hs(µ), the problem of fixed maximum power can be transformed
to the problem of fixed maximum rate (note that this section of rates is never opti-
mal). Also note results in previous sections hold under this alternative assumption.
We are interested in the following property concerning the monotonicity of the
optimal policy with respect to the fading state.
Property P-1: Consider n + 1 steps to go. Let µ1 be the optimal transmission
rate when the state is (x, s) and let µ2 be the optimal transmission rate when the
state is (x, r). The value function Vn(x, s) satisfies property P-1 if for r ≺ s we
have µ2 ≤ µ1.

For simplicity of subsequent expressions, let as(µ) = hs(µ)
µ

for µ > 0. In what
follows we identify conditions on the cost functions and show that these conditions
are sufficient for the optimal policy of our problem to have Property P-1.



Condition 1 For all r ≺ s, ar(µ) − as(µ) ≤ h′
r+(µ) − h′

s+(µ) for all µ.

Condition 2 For all r ≺ s, ar(µ) − as(µ) is a non-decreasing function of µ.

Condition 3 There exist ν1, ν2 > 0, 1
ν1

+ 1
ν2

= 1, such that µ̄ ≤ L
ν1(1+L)

and

λ̄ ≤ M
ν2(1+M)

, where L = minr≺s Ls,r, M = minr≺s Ms,r, and

Ls,r = inf
µ2≤µ1

ar(µ1) − as(µ1)

[(ar(µ1) − as(µ1)) − (ar(µ2) − as(µ2))]
(14)

Ms,r = inf
µ2≥µ1

ar(µ1) − as(µ1)

ar(µ2) − as(µ2)
(15)

Lemma 5 Let µ∗, µ∗∗ be the optimal transmission rates at states (x, s) and (x, r),
respectively, when there are n steps to go. Then under Condition 1, Vn−1(x, s)
satisfies property P-1, i.e., µ∗ ≤ µ∗∗ if for any state r ≺ s and any x ≥ 1 we have

Vn−1(x, r) − Vn−1(x − 1, r) − ar(µ
∗) ≤ Vn−1(x, s) − Vn−1(x − 1, s) − as(µ

∗). (16)

Lemma 6 Suppose that Vn is such that

Vn(x, r) − Vn(x − 1, r) − ar(µ1) ≤ Vn(x, s) − Vn(x − 1, s) − as(µ1), (17)

where µ1 is the optimal transmission rate in state (x, s) when there are n + 1 steps
to go. Let f̂ = T1(Vn) and µ∗ ≥ µ1. Then under Conditions 2 and 3, f̂ satisfies:

f̂(x, r) − f̂(x − 1, r) −
ar(µ

∗)

ν1

≤ f̂(x, s) − f̂(x − 1, s) −
as(µ

∗)

ν1

.

Lemma 7 Suppose Vn is such that

Vn(x, r) − Vn(x − 1, r) − ar(µ1) ≤ Vn(x, s) − Vn(x − 1, s) − as(µ1), (18)

where µ1 is the optimal transmission rate in state (x, s) when there are n + 1 steps
to go. Let f̂ = T2(f). Then under Conditions 2 and 3, f̂ satisfies the following:

f̂(x, r) − f̂(x − 1, r) −
ar(µ1)

ν2

≤ f̂(x, s) − f̂(x − 1, s) −
as(µ1)

ν2

.

Theorem 6 Under Conditions 1-3, value function Vn(x, s) satisfies property P-1.

6 Infinite Horizon

Recall that we have Vn(x, s) = minπ Eπ[
∑n−1

k=0 βkc(x(k)) + u(p(k)) + v(q(k))]. In
order to study the properties of the optimal policy as n → ∞ we define V∞(x, s)
to be V∞(x, s) = infπ Eπ[limn→∞

∑n−1
k=0 βkc(x(k)) + u(p(k)) + v(q(k))]. The proof

of following theorem can be found in [22], Chapter 5.4.

Theorem 7 If c(x) ≥ 0, then we have V∞(x, s) = limn→∞ Vn(x, s).

Using Theorem 7, we can extend the results proved for the finite horizon to the
case of an infinite horizon as stated in the following corollary. Note that in this
case we can limit ourselves to the set of stationary policies (see [23]).



Corollary 1 Consider an infinite horizon.
(a) Suppose for 0 ≤ x < B the optimal policy in state (x, s) and (x + 1, s) is

(λ1, µ1) and (λ2, µ2), respectively. Then we have λ1 ≥ λ2 and µ1 ≤ µ2.
(b) Fix the transmission power. Let λ1 and λ2 be the optimum arrival rates

when the state is (x, s) and (x, r), respectively. Then if r ≺ s, we have λ1 ≥ λ2.
(c) Under Assumptions 1-3, value function V∞(x, s) satisfies property P-1.

7 Conclusion

In this paper we considered the problem of optimal power allocation and admission
control for a single user with time varying fading channel. The objective is to
minimize the total cost over a finite or an infinite horizon. We showed that an
optimal policy has a number of monotonicity properties with respect to the queue
size, the time horizon, and the channel fading state.

We would also like to see how the acceptance rate changes for different states if
the output rate is controllable. In addition, results in Section 5.B may hold under
weaker conditions than the ones stated here; this is part of our current research.
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