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Abstract

We consider an online learning problem (classification or pre-
diction) involving disparate sources of sequentially arriving
data, whereby a user over time learns the best set of data
sources to use in constructing the classifier by exploiting their
similarity. We first show that, when (1) the similarity informa-
tion among data sources is known, and (2) data from different
sources can be acquired without cost, then a judicious selec-
tion of data from different sources can effectively enlarge the
training sample size compared to using a single data source,
thereby improving the rate and performance of learning; this
is achieved by bounding the classification error of the result-
ing classifier. We then relax assumption (1) and characterize
the loss in learning performance when the similarity infor-
mation must also be acquired through repeated sampling. We
further relax both (1) and (2) and present a cost-efficient al-
gorithm that identifies a best crowd from a potentially large
set of data sources in terms of both classifier performance and
data acquisition cost. This problem has various applications,
including online prediction systems with time series data of
various forms, such as financial markets, advertisement and
network measurement.

Introduction
The ability to learn (classify or predict) accurately with se-
quentially arriving data has many applications. Examples
include predicting future values on a prediction market,
weather forecasting, TV ratings, and ad placement by ob-
serving user behavior. The subject of learning in such con-
texts has been extensively studied. Past literature is heavily
focused on learning by treating each source or object’s his-
torical data separately, see e.g., [10, 13, 11] for single source
multi-armed bandit problems for learning the best options
of returned rewards, [9] for a support vector machine based
forecasting for financial time series data, [6] for a model pre-
dicting spammers using a network’s past statistics, and [8]
for forecasting stock price index, among other.

More recent development has increasingly been focusing
on improving learning through integrating data from mul-
tiple sources with similar statistics, see e.g., [7] for wind
power prediction using both temporal and spatial informa-
tion. The idea of increasing sample spaces by exploiting
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similarity proves to be helpful especially when the data ar-
rives slowly, e.g., weather reports generated a few times per
day. This idea naturally arises when different data sources
are physically correlated, e.g., wind turbines on the same
farm, or environmental monitoring sensors located within
close proximity. However, it also fits well in the emerg-
ing context of crowdsourcing, where different sources (e.g.,
Amazon Mechanical Turks) contribute to a common data
collection objective (e.g., labeling a set of images), and ex-
ploiting multiple data sources can improve the quality of
crowdsourced data. For instance the idea of aggregating se-
lectively data from a crowd to make prediction more accu-
rate is empirically demonstrated and referred to as finding a
“smaller but smarter crowd” in [4, 5].

In this paper we seek to make the notion of a “smarter”
crowd quantitatively precise and develop methods to sys-
tematically identify and utilize this crowd. Specifically, we
consider a problem involving K (potentially-)disparate data
sources, each of which may be associated with a user. A
given user can use its own data to achieve a certain learning
(prediction, classification) objective but is interested in im-
proving its performance by tapping into other data sources,
and can request data from other sources at a cost. Ac-
cordingly, decisions need to be made judiciously on which
sources of data should be used so as to optimize its learn-
ing accuracy. This implies two challenges: (1) we need to be
able to measure the similarity/disparity between two sources
in order to differentiate which sources are more useful to-
ward the learning objective, and (2) we need to be able to
determine the best set of sources given the measured simi-
larity. Prior work most relevant to the present study is [3],
where the problem of combining static IID data sources is
analyzed. There are however a number of key differences:
1) in [3] the similarity information is assumed known a pri-
ori and the cost of obtaining data is not considered. 2) The
results in [3] are established pre-collected IID data, while
we focus on an online learning setting with Markovian data
sources. In addition, the methodology we employ in this pa-
per is quite different from [3] which draws mainly from VC
theory [15], while our study is based on both VC theory and
the multi-armed bandit (MAB) literature [2].

We will start by establishing bounds on the expected
learning error under ideal conditions, including that (1) the
similarity information between data sources is known a pri-



ori, and (2) data from all sources are available for free. We
then relax assumption (1) and similarly establish the bounds
on the error when such similarity information needs to be
learned over time. We then relax both (1) and (2) and de-
sign an efficient online learning algorithm that simultane-
ously makes decisions on requesting and combining data for
the purpose of training the predictor, and learning the sim-
ilarity among data sources. We again show that this algo-
rithm achieves a guaranteed performance uniform in time,
and the additional cost with respect to the minimum cost re-
quired to achieve optimal learning rate diminishes in time.
Moreover, the obtained bounds show clearly the trade-off
between learning accuracy and the cost to obtain additional
data. This provides useful information for system designers
with different objectives. To our best knowledge this is the
first study on online learning by exploiting source similar-
ity with provable performance guarantees. Unless otherwise
specified, all proofs can be found in the Appendices con-
tained in supplementary materials.

Problem Formulation
Learning with multiple data sources
Consider K sources of data each associated with a unique
user, indexed by D = {1,2, · · · ,K}, which we also refer to
as the whole crowd of sources. The sources need not be
governed by identical probability distributions. Data sam-
ples arrive in discrete time to each user; the sample arriv-
ing at time t for user i is denoted by zi(t) = (xi(t),yi(t)),
t = 1,2, · · · , with xi(t) denoting the features and yi(t) denot-
ing the labels. At each time t, xi(t) is revealed first followed
by a prediction on yi(t) made by the user, after which yi(t)
is revealed and zi(t) is added to the training set. For sim-
plicity of exposition, we will assume xi(t) to be a scalar;
however our analysis easily extends to more complex forms
of data, including batch arrivals. The objective of each user
is to train a classifier to predict yi(t) using collected past
data, and after prediction at time t, yi(t) will be revealed
and can be used for training in the future steps. As a spe-
cial case, when the target is to predict for future, yi(t) can
be taken as xi(t + 1). For analytical tractability we will fur-
ther assume that the data arrival processes {xi(t)}t , ∀i, are
mutually independently (but not necessarily identical), and
each is given by a first order1 finite-state positive recurrent
Markov chain, with the corresponding transition probability
matrix denoted by Pi on the state space X i (|X i| < ∞). De-
note by Pi

x,y the transition probability from state x to y under
Pi, and by πi its stationary distribution on X i. For simplic-
ity we will assume that X 1 = X 2 = ... = X K = X , though
this assumption can be easily relaxed, albeit with more cum-
bersome notation. The motivation for such modeling choice
is by observing that for many applications the sequentially
arriving data does not follow IID distribution as has been
studied in the literature; consider e.g., weather conditions.
Suppose labels yi(t) ∈ Y i and again for simplicity let us
assume Y 1 = Y 2 = ... = Y K = Y , and |Y | < ∞. Denote
y∗ := maxy∈Y |y|.

1A high order extension is also straightforward.

For the classification job, a straightforward approach
would be for each user i to build a classifier/predictor
by using past observations of its own data up to time
t: {zi(1), ...,zi(t)}. Denote the classifier by fi for user i,
and a loss function L to measure the classification error.
For instance L can be taken as the squared loss function
L( fi,zi(t)) = [yi(t)− fi(xi(t))]2. With the definition of loss
function, the classification task for a user is to find the clas-
sifier that best fits its past observations:

fi(t) = argmin f∈F

t

∑
n=1

L( f ,zi(n)) , (1)

where we have used F to denote the set of all models of
classifier (hypothesis space). For example, F could contain
the classical linear regression models.

The idea we seek to explore in this paper is to construct
the classifier fi by utilizing similarity embedded among data
sources, i.e., we ask whether fi should be a function of all
sources’ past data and not just i’s own, and if so how should
such a classifier be constructed. Specifically, if we collect
data from a set Ωk of sources and use them as if they were
from a single source, then the best classifier is given by

fΩk(t) = argmin f∈F ∑
j∈Ωk

t

∑
n=1

L( f ,z j(n)) . (2)

It was shown in [3] that the expected error of the above clas-
sifier is bounded by a function of certain source similarity
measures; the higher the similarity the lower the error bound.

Our interest is in constructing the best classifier for any
given user i by utilizing other data sources. To do so we
will need to measure the similarity or discrepancy between
sources and to judiciously use data from the right set of
sources. We will accomplish this by decomposing the prob-
lem into two sub-problems, the first is to use a similarity
measure to determine a preferred set Ω∗k to use, and the sec-
ond is to construct the classifier using data from this set.

Pair-wise similarity between data sources
We first introduce the notion of cross-classification error,
which is the expected loss when using classifier f j (trained
using source j’s data) on user i’s data and can be formally
defined as ri( f j) = Ei[L( f j,zi)] where the expectation is
with respect to user i’s source data distribution. In princi-
ple, this could be used to measure the degree of similarity
between two data sources i and j. However, this definition
is not easy to work with as it involves a classifier that is
only implicitly given in (1). Instead, we introduce a notion
of similarity between two data sources i and j, that satisfies
the following two conditions: (1) it can be obtained from the
statistics of two respective data sources, and (2) it satisfies
the following bound:

ri( f j)≤ β1(1−Si, j)+β2 , (3)

where β1,β2 ≥ 0 are normalization constants and 0≤ Si, j ≤
1 denotes the similarity measure; the higher this value the
more similar two sources. The relationship captured in Eqn
(3) between the error function and similarity can also take



on alternate forms; we adopt this simple linear relationship
for simplicity of exposition. The following example shows
the existence of such a measure.

Suppose for each user i, corresponding to each
state/feature x ∈ X , labels y ∈ Y is generated according a
probability measure Qi

x and denote each probability as Qi
x,y

and ∑y∈Y Qi
x,y = 1. Consider the following example. Take L

as the squared loss and Si, j as:

Si, j = 1− max
x∈X ,y∈Y

|Qi
x,y−Q j

x,y|2 . (4)

Then we can show2 that, by setting β1 := 2∑y∈Y y2 and
β2 := 2∑x∈X πi

x ·∑y∈Y Qi
x,y ·(∑ŷ∈Y Qi

x,ŷŷ−y)2, i.e. two times
the intrinsic classification error with user i’s own (perfect)
data, which is independent with other sources j, the choice
of Si, j satisfies both conditions. We note that the choice of
such an S is not unique. For example, we could also take Si, j
to be

Si, j = 1− ∑
x∈X

π
i
x · ∑

y∈Y
|Qi

x,y−Q j
x,y|2 ,

while setting β1 := 2(y∗)2. Later we will argue that an S that
leads to a tighter bound can help achieve a better perfor-
mance in classification. As it shall become clearer later when
such similarity information needs to be estimated, the trade-
off between selecting a tighter and looser similarity measure
comes from the fact that tighter similarity may incur more
learning error as it requires the evaluation of more terms.

Without loss of generality, for the remainder of our dis-
cussion we will focus on user 1. We will also denote si :=
min{S1,i,Si,1},∀i. While the definition given in (4) is sym-
metric in i and j such that S1,i = Si,1, this needs not be true
in general under alternate definitions of similarity. Note that
s1 = 1. We will then relabel the users in decreasing order of
their similarity to user 1: 1 = s1 ≥ s2....≥ sK ≥ 0.

Solution with Complete Information
As mentioned earlier, the problem of finding the best set of
data sources to use and that of finding the best classifier
given this set are inherently coupled and strictly speaking
need to be jointly optimized, resulting in significant chal-
lenges. The approach we take in this paper is as follows. We
will first derive an upper bound on the error of the classifier
given in (2) when applied to user 1, for a set of k indepen-
dent Markov sources; this bound is shown to be a function
of k and their similarity with user 1. This bound is then op-
timized to obtain the best set. Below we derive this upper
bound assuming (1) the similarity information is known and
(2) data is free, i.e., at time t all past and present samples
from all sources are available to user 1.

Upper bounding the learning error
First notice we have the following convergence results for
positive recurrent Markov Chain we consider in the current
paper [14],

||π̃i(t)−π
i||TV ≤CMC · (λi

2)
t ,

2Please refer to supplementary materials.

where CMC is some positive constant, π̃i
x(t) is the expected

empirical distribution of state x for data source i’s Markov
chain upto time t for user i and πi

x denotes its stationary dis-
tribution, and 0 < λi

2 < 1 is the second largest eigenvalue
which specifies the mixing speed of the process. The total
variation distance ||p−q||TV between two probability mea-
sures p and q that are defined on X is defined as follows

||p−q||TV := max
S∈2X
|∑

x∈S
(p(x)−q(x))| . (5)

Denote ρk(t)(t) := maxL ·CMC
∑i∈k(t)(λ

i
2)

t

|k(t)| , where maxL is
the maximum value attained by the loss function. Through-
out the paper we denote [k] := {1,2, ...,k} as the ordered and
continuous set up to k, and k(t) for any other un-ordered set
invoked at time t and use |k(t)| to denote its size. For squared
loss function we have the following results:

Theorem 1. At time t, with probability at least 1−O( 1
t2 )

the error of a classifier f[k](t) constructed using data from k
sources of similarity si, i ∈ k(t) can be bounded as

r1( fk(t)(t))≤ 4min
f∈F

rIID
1 ( f )+6β2︸ ︷︷ ︸
Term 1

+6β1
∑i∈k(t)(1− si)

|k(t)|︸ ︷︷ ︸
Term 2

+ρk(t)(t)︸ ︷︷ ︸
Term 3

+8y∗(2
√

2d + y∗)

√
log |k(t)|t
|k(t)|t︸ ︷︷ ︸

Term 4

, (6)

where d is the VC dimension for F , and rIID
1 ( f ) is the ex-

pected prediction error when the data are generated accord-
ing to an IID process.

Denote the upper bound for r1(·) in Eqn. (6) with set k(t)
of data sources (after ordering based on their similarity with
user 1) at time t by Uk(t)(t). The results may be viewed as an
extension to the previous one from [3] where static and IID
data sources were considered. This upper bound can serve as
a good guide for the selection of such a set and in particular
the best choice of |k(t)| given estimated values of si’s. Note
that Terms 1 is independent of this selection and it is a func-
tion of the baseline error of the classification problem, Term
2 is due to the integration of disparate data sources, Term 3
comes from the mixing time of a Markov source, and Term 4
arises from imperfect estimation and decision using a finite
number of samples (|k(t)|t samples up to time t).

Below we first point out the key steps in the proof that
differ from that in [3] (full proof is in the supplementary
materials), and then highlight the properties of this bound.

Main steps in the proof Our analysis starts with connect-
ing Markovian data sources to IID sources so that the clas-
sical VC theory [15] and corresponding results can apply.
The idea is rather simple: by the ergodicity assumption on
the arrival process, the estimation error converges to that of
IID data sources as shown in [1]. In particular, we can bound
the difference in error when applying a predictor f ∈ F to
a Markovian vs. an IID source (with distribution being the



same as the steady state distribution of the Markov chain) at
time t, constructed with available data as follows:

|ri( f (t))− rIID
i ( f (t))|

= |∑
x∈X

π̃
i
xEy∼Y [L( f (t),(x,y))]− ∑

x∈X
π

i
xEy∼Y [L( f (t),(x,y))]|

≤maxL ·CMC(λ
i
2)

t .

We impose α-triangle inequality on the error function
∀i, j,k , of the corresponding data sources ri( f j) ≤ α ·
[ri( fk)+ rk( f j)], where α ≥ 1 is a constant. When L is the
squared loss function, we have α = 2, following Jensen’s
inequality. Then ∀ f

r1( f )
k
≤ α · [r1( fi)+ ri( f )]

k
.

Sum over all i ∈ k(t) we have

r1( f )≤ αβ1

|k(t)|
· ∑

i∈k(t)
(1− si)+αβ2 +α · r̄k(t)( f ) ,

where r̄k(t)( f ) = ∑i∈k(t) ri( f )
|k(t)| is the average regret by applying

f onto the |k(t)| data sources. Due to the bias of mixing time
for Markovian sources we have the following fact :

r̄k(t)( f )≤ r̄IID
k(t)( f )+ρk(t)(t).

The rest of the proof focuses on bounding r̄IID
k(t)( f ), i.e., the

expected prediction error on IID data sources, which is sim-
ilar in spirit to that presented in [3].

Properties of the error bound The upper bound Uk(t)(t)
has the following useful properties.
Proposition 2. For sources ordered in decreasing similarity

s1 ≥ s2 · · · , ∑
k
i=1 si
k is non-increasing in k.

This is straightforward to see by noting that

∑
k+1
i=1 si

k+1
−∑

k
i=1 si

k
=−

k

∑
i=1

si

k(k+1)
+

sk+1

k+1
=

k

∑
i=1

sk+1− si

k(k+1)
≤ 0 .

Terms 3 and 4 both decrease in time. While Term 4 con-
verges at the order of O(1/

√
t), Term 3 converges with ge-

ometric rate, which is much faster than Term 4 and can be
ignored for now. We then know because of the use of mul-
tiple sources, Term 4 decrease |k(t)| times faster, leading to
a better bound. This shows how the use of multiple sources
fundamentally changes the behavior of the error bound.

The upper bound also suggests that the optimal selection
is always to choose those with the highest similarity, which
leads to a linear search for the optimal number k. Based on
above discussions, the trade-off comes from the fact a larger
k returns a smaller average similarity term ∑

k
i=1 si/k (and

thus a larger ∑
k
i=1(1− si)/k ), while with more data we have

a faster convergence of Term 4. Define the optimal set of
sources at time t as the one minimizing the bound Uk(t)(t),
and denote it by k∗(t). We then have the following fact,
Proposition 3. When {si}i∈D is known, ∃ to, such that ∀t ≥
to, if i ∈ k∗(t) then i ∈ k∗(n),∀to ≤ n≤ t.

This implies that if a data source is similar enough to be
included at t, then it would have been included in previous
time steps as well except for a constant number of times.
This also motivates us to observe a threshold or phase tran-
sitioning phenomenon in selecting each user’s best crowd.
This result is also crucial in proving Theorem 6 where it
helps establish bounded number of missed sampling for an
optimal data source in an adaptive algorithm.

Proposition 4. A set of tighter similarity measures S returns
better worst case performance.

Consider two such similarity measures s′ and s with s′i≥ si
(with at least one strict inequality). Suppose at any time t and
optimal set of crowd for s is k(t), then simply by selecting
k(t) for s′ we achieve a better worst case performance (a
smaller ∑

k
i=1(1− si)/k in upper bound).

Overhead of Learning Similarity
As we show in the previous section, once the optimal set
of data sources is determined, the classification/prediction
performance is bounded. However in a real crowdsourcing
system, neither of the two assumptions may be valid. In this
section we relax the first assumption and consider a more re-
alistic setting where the similarity information remains un-
known a-priori and can only be learned through shared data.
In this regards we need to estimate the similarity information
{si}i6=1 while making decision of which set of data sources
to use.

The learning process works in the following way. At step
t, we first estimate similarity s̃i according to the following:

s̃i = 1− max
x∈X ,y∈Y

|Q̃i
x,y(t)− Q̃1

x,y(t)|2 ,

where Q̃i
x,y(t) := ni,x→y(t)

ni,x(t)
are the estimated transition proba-

bility matrices with ni,x(t) denoting the number of times user
i is sampled to be in state x ∈ X up to time t and ni,x→y(t)
denoting the number of observed samples from data source
i being in (x,y). Different from the previous Section, now
since {si}i6=1 is unknown, in order to select data sources, the
estimate of the upper bound Uk(t)(t) becomes a function of
{s̃i}: Uk(t)(t;{s̃i}i∈k(t)), which is obtained by simply substi-
tuting all s terms in Uk(t)(t) with s̃. Denote the terms that are
being affected by choosing set k(t) in Uk(t)(t;{s̃i}i∈k(t)) as
follows:

Ũtr
k(t)(t) = 6β1

∑i∈k(t)(1− s̃i)

k
+8y∗(2

√
2d + y∗)

√
log |k(t)|t
|k(t)|t

.

Note we are omitting ρk(t)(t) as it is on a much smaller order
and will not affect our results order-wise.

Then the learning algorithm first orders all data sources
according to {s̃i}. And then choses k̃∗(t) by a linear search
such that

k̃∗(t) = arg max
[k],1≤k≤K

Ũtr
[k](t) .

We have the following results.



Theorem 5. At time t, with probability at least 1−O( 1
t2 ) the

error of trained classifier fk̃∗(t)(t) using k̃∗(t) data sources
can be bounded as follows

r1( fk̃∗(t)(t))≤Uk∗(t)(t)+O(

√
log t

t
) . (7)

Clearly from above results we see there is an extra
O(
√

log t/t) term capturing the loss of learning the simi-
larity information.

A Cost-efficient Algorithm
Now we relax the second restriction on data acquisition. In
reality data acquisition from other sources are costly. In our
study, we explicitly model this aspect whereby at each time
step a user may request data from another user at a unit cost
of c. This modeling choice not only reflects reality, but also
allows us to examine the tradeoff between a user’s desire to
to keep its overall cost low while keeping its prediction per-
formance high. We present a cost-efficient algorithm with
performance guarantee. As one may expect, with less data
the prediction accuracy will degrade. But the number of un-
necessary data will also be bounded from above.

A cost-efficient online algorithm
Denote by ni(t) the number of collected samples from
source i up to time t and Nk(t)(t)=∑i∈k(t) ni(t). Notice in this
section ni(t) 6= t in general. Denote D(t) := O(tz); z will be
referred to as the exploration constant satisfying 0 < z < 1 .
Later we will show how z controls the trade-off between
data acquisition and classification accuracy. Again denote
by ni,x(t) the number of times user i is sampled to be in state
x ∈ X up to time t and construct the following set at each
time t :

O(t) = {i : i ∈D,∃ x ∈ X ,ni,x(t)< D(t)} .
We name the algorithm as K-Learning, which consists

mainly of the following two steps (run by user 1):
Exploration: At time t, if any data source has a state x

that has been observed (from requested data) for less than
D(t) times, i.e., if O(t) is non-empty, then the algorithm en-
ters an exploration phase and collects data from all sources
k2(t) = D and predicts via its own data k1(t) = {1}. The
prediction at exploration phase is conservative since with-
out enough sampling user 1 cannot be confident in calculat-
ing its optimal set of similar sources, in which case the user
would rather limit itself to its own data.

Exploitation: If O(t) is empty at time t then the algo-
rithm enters an exploitation phase, whereby it first esti-
mates similarity measures of all sources. For our analy-
sis we will use the same definition given earlier: s̃i(t) =
1−maxx∈X ,y∈Y |Q̃i

x,y(t)− Q̃1
x,y(t)|2. The algorithm then cal-

culates k1(t) using the estimated bound Ũtr
k1(t)

(t), and uses
data from this set k1(t) of sources for training the classifier,
while requesting data from set k2(t), where k2(t) is set to be:
k2(t) : = argmaxk′(t)⊆D{|k′(t)| :

Ũtr
k′(t)(t) ∈ [Ũtr

k1(t)
(t)−

√
log t

tz ,Ũtr
k1(t)

(t)+

√
log t

tz ]} .

Algorithm 1 K-Learning

1: Initialization:
2: Set t = 1 and similarity {s̃i(1)}i∈D to some value in

[0,1]; ni,x(t) = 1 for all i and x.
3: loop:
4: Calculate O(t).
5: if O(t) 6= /0 then
6: Explores, sets k1(t) = {1},k2(t) = D .
7: else
8: Exploit, orders data sources according to
{s̃i(t)}i∈D and computes k1(t) that minimizes
Ũtr

k1(t)
(t), which is solved using the linear search

property, and the current estimates {s̃i(t)}i∈D . Set
k2(t) as k2(t) := argmaxk′(t)⊆D{|k′(t)| : Ũtr

k′(t)(t) ∈

[Ũtr
k1(t)

(t)−
√

log t
tz ,Ũtr

k1(t)
(t)+

√
log t
tz ]}.

9: end if
10: Construct classifier fk1(t) using data collected from

sources in k1(t). Request data from k2(t).
11: t := t + 1 and update {ni,x(t)}i,x, {s̃i(t)}i∈D using col-

lected samples.
12: goto loop.

Notice when calculating k2(t) we set a tolerance region (due
to imperfect estimation of Ũtr

k1(t)
(t)) so that a sample data

from an optimal data source will not be missed with high
probability.

Performance of K-Learning
There are three types of error in the learning performance:
(1) Error due to exploration, in which case the error comes
from conservative training due to no enough sampling. Due
to technical difficulties, we approximate the error (compared
to the performance with optimal classifier) by the worst case
performance loss, that is the performance difference in up-
per bounds. (2) Prediction error associated with incorrect
computation of k1(t) (i.e., k1(t) 6= k∗(t)) in exploitation due
to imperfect estimates on {si}i 6=1. (3) Prediction error from
sub-sampling effects. This is because even though under the
case that k1(t) = k∗(t), i.e., k∗(t) is correctly identified, due
to incomplete sampling, ∃ i > 1,ni(t) < t, Ûk1(t) 6= Uk1(t),
where Ûk1(t) is the upper bound for the classification error
with collected data: this can be similarly derived following
the proof of Theorem 1 and results in [3]:

Ûk(t)(t) = 4min
f∈F

rĨID
1 ( f )+6β2 +6β1

∑i∈k(t) ni(t)(1− si)

Nk(t)(t)

+ ρ̃k(t)(t)+8y∗(2
√

2d + y∗) ·

√
logNk(t)(t)

Nk(t)(t)
,

where

ρ̃k(t) := maxL ·CMC
∑i∈k(t)(λ

i
2)

ni(t)

|k(t)|
,

and min f∈F rĨID
1 ( f ) is error rate over a biased data distri-

bution due to incomplete sampling, compared to the tar-



get IID distribution. We emphasize that the difference be-
tween Uk(t)(t;{s̃i}i∈k(t)) and Ûk(t)(t): Uk(t)(t;{s̃i}i∈k(t)) is
the estimation of upper bound Uk(t)(t) with estimated simi-
larity information s̃, while Ûk(t)(t) bounds actual error of the
learning task at each step. In Uk(t)(t) and Uk(t)(t;{s̃i}i∈k(t)),
full samples are assumed to have been collected for each
data source in k(t), i.e., ni(t) = t. However this is not true
for Ûk(t)(t), except for n1(t) the data source for user 1 it-
self. Also due to dis-continuous sampling for Markovian
data, the sampled data distribution is biased which results
in min f∈F rĨID

1 ( f ). The main gist of bounding this discrep-
ancy is that due to Proposition 3 we are able to bound the
missed samples for a data source appearing in the optimal
set.

A subtle difference between the results in this section and
the previous one is the performance of the classifier trained
during an exploration phase is simply the one using user 1’s
own data, which is bounded away from the optimal perfor-
mance bound (via data sources k∗(t)). Denote the worse case
performance loss (difference in performance upper bound)
in exploration phases upto time t as Re(t), that is

Re(t) =
t

∑
n=1

1O(n)6= /0 · |U[1](t)−Uk∗(t)(t)| . (8)

This is a quantity we are interested in determining for explo-
ration phases. For exploitation phases, we evaluate the pre-
diction/classification performance as the ones with classifier
fk1(t)(t).
Theorem 6. At time t,
• The number of exploration phases is bounded as follows,

E[
t

∑
n=1

1O(n)6= /0]≤ O(tz) .

Further the per round performance loss due to explo-
ration phases E[Re(t)]

t is bounded as follows: with prob-
ability being at least 1−O(e−Ctz

) where C > 0 is a con-
stant,

E[Re(t)]
t

≤ O(
√

z · log t · tz/2−1) .

• If t is an exploitation phase, with probability being at least
1−O( 1

t2 ) we bound the average prediction error for clas-
sifier fk1(t)(t) with data sources k1(t) as follows,

r1( fk1(t)(t))≤Uk∗(t)(t)+O(

√
log t

tz )+O(log t · t−2/3) .

Note on the bound:
• O(

√
z · log t · tz/2−1) is the average error invoked by ex-

ploration. This term is diminishing with t, that is the
average amount of exploration error is converging to 0.
O(
√

log t/tz) is the learning error incurred in exploitation
phases, which is in analogy to the O(

√
log t/t) term as

shown in the bound proved in Theorem 5. O(log t · t−2/3)

is also incurred in exploitation phases. This is a unique er-
ror term associated with sub-sampling of Markovian data:
due to (1) missed sampling and (2) discontinuous sam-
pling.

• It should be noted that the prediction error term
O(
√

log t/tz) decrease with z for 0 < z < 1. That is with
a higher z, a tighter bound can be achieved. With z→ 1
(number of samples cannot go beyond t at time t), we can
show the prediction error term converges to O(

√
log t/t),

which is consistent with the results we reported in last
section. Also it worths pointing out O(log t · t−2/3) is gen-
erally on a smaller order compared to O(

√
z · log t · tz/2−1)

and O(
√

log t/tz) : simply set z to be z > 2/3.
• This observation also sheds lights on establishing the

tightness of this bound for z close to 1, as O(
√

log t/t)
is the uniform convergence bound as proved in statistical
learning theory [15].

Cost analysis
To capture the effectiveness of cost saving, we define the
following difference in cost:

Cost measure : Rc(t) = c
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n) .

Rc(t) will be referred to as the cost measure, which quan-
tifies the amount of data requests from non-optimal data
sources. We have the following main results.
Theorem 7. At time t, we have

E[Rc(t)]≤ O(ctz) .

Notes on the bound:
• First of all note that E[Rc(t)] = o(t) when t < 1 and thus

E[Rc(t)]/t→ 0 as t→ ∞. This demonstrates the cost sav-
ing property of our algorithm as the average number of
redundant data request is converging to 0.

• Clearly z controls the trade-offs between prediction accu-
racy r1( fk1(t)(t)) and data acquisition cost regret E[Rc(t)].
A higher z leads to a more frequent sampling scheme and
thus higher cost regret, while with a small z the sampling
is conservative which leads to higher prediction error.
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Conclusion
In this paper we consider a problem of finding best set of
data for each user to enhance its online learning (be it a clas-
sification or prediction problem) performance when facing



disparate sources of sequentially arriving samples. We first
establish learning error when similarity information among
users are known and data can be collected without cost. We
then extend the results to the case when such information
is unknown a priori. Lastly we propose and analyze a cost-
efficient algorithm to help users adaptively distinguish be-
tween similar and dis-similar data sources. and aggregate
and request data appropriately for the purpose of training
predictor and saving budget. We establish its performance
guarantee and show the algorithm helps avoid requesting re-
dundant data from sources that are helpless (or even harm-
ful) and thus saves cost.
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Appendices

Example of S
We show Si, j = 1−maxx∈X ,y∈Y |Qi

x,y−Q j
x,y|2 while setting β1 := 2∑y∈Y y2 and β2 := 2∑x∈X πi

x ·∑y∈Y Qi
x,y · (∑ŷ∈Y Qi

x,ŷŷ− y)2

is a feasible similarity measure according to our definition. For squared loss the optimal predictor is given by the conditional
expectation; we thus have the following:

ri( f j) = ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Q j
x,ŷŷ− y)2

= ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Q j
x,ŷŷ− ∑

ŷ∈Y
Qi

x,ŷŷ+ ∑
ŷ∈Y

Qi
x,ŷŷ− y)2

≤ 2 ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Q j
x,ŷŷ− ∑

ŷ∈Y
Qi

x,ŷŷ)2

+2 ∑
x∈X

π
i
x · ∑

y∈Y
Qi

x,y · ( ∑
ŷ∈Y

Qi
x,ŷŷ− y)2

≤ 2 ∑
y∈Y

y2 · (1−Si, j)+β2 .

To complete proof of Theorem 1
As we already bind r1(·) with r̄IID

k(t)(·), we only need to bound r̄IID
k(t)(·) and consider the case with IID data and the expected pre-

diction error at time t when combine with data from sources k(t) for training. Denote R|k(t)|t(F ) as the Rademacher complexity
of space F with |k(t)|t samples and f ∗ the optimal classifier trained on the set of data. Since we only have finite number of
samples we first have the following lemma:
Lemma 8. With probability being at least 1− 2

(|k(t)|t)2 ,

r̄IID
k(t)( f ∗)≤min

f∈F
r̄IID

k(t)( f )+8y∗R|k(t)|t(F )+8(y∗)2

√
log(|k(t)|t)
|k(t)|t

.

The proof is standard following the VC theory and it can be derived from the results reported in [3]. Further we know from

[3], for squared loss function we have R|k(t)|t(F )≤ 2
√

2d
|k(t)|t · log( 2e|k(t)|t

d ). Therefore

r̄IID
k(t)( f ∗)≤min

f∈F
r̄IID

k(t)( f )+8(y∗)2

√
log(|k(t)|t)
|k(t)|t

+16y∗ ·

√
2d
|k(t)|t

· log(
2e|k(t)|t

d
)

≈min
f∈F

rIID
k(t)( f )+8y∗(2 ·

√
2d + y∗) ·

√
log(|k(t)|t)
|k(t)|t

,

when t is sufficiently large (to thus ignore the log2e in term
√

2d
|k(t)|t · log( 2e|k(t)|t

d )). Then

r̄IID
1 ( f ∗)≤ 2 ·min

f∈F
r̄IID

k(t)( f )+2β2 +
2β1

|k(t)|
· ∑

i∈k(t)
(1− si)

+8y∗(2 ·
√

2d + y∗) ·

√
log(|k(t)|t)
|k(t)|t

.

The last two terms are clear. In particular the 3rd term is a constant brought in by the disparities between data sources while the
4th term is the bias with finite number of samplings. Consider the 1st term we have,

min
f∈F

r̄IID
k(t)( f )≤min

f∈F

∑i∈k(t) α · [rIID
i ( f1)+ rIID

1 ( f )]
|k(t)|

≤ 2β1

|k(t)|
· ∑

i∈k(t)
(1− si)+2β2 + ·min

f∈F
rIID

1 ( f ) .



Plug back the results we establish the theorem.

Proof of Proposition 3
Suppose i ∈ k∗(t) and there exists a n < t such that i /∈ k∗(n). First consider the following fact: let 0 < δ < 1 we have

|
√

logδt
δt
−
√

log t
t
|= 1
√

log t +
√

log t+δ

δ

· |(1−1/δ) log t−δ|√
t

.

Easy to see the first term is strictly decreasing. For the second term since
√

t is of a higher order compared with log t we expect
this term to be decreasing when t passes certain threshold. Since i ∈ k∗(t) and i /∈ k∗(n) and the fact we proved earlier that the
optimal selection is always a continuous group we know |k∗(n)| < |k∗(t)| and denote δ := |k∗(n)|/|k∗(t)|. Therefore reducing

k∗(t) to k∗(n) will return a better strategy for time t : compared with time n, the loss from the term
√

log t
t to

√
logδ·t

δ·t is smaller,
while the gain in average similarity is the same. Similar arguments hold for the term (λi

2)
t , which is also strictly decreasing

with t. Proved.

Proof of Theorem 5
In order to prove the results, we analyze the error of mis-calculating k∗(t).

Error in ordering data sources
We have two steps towards calculating k∗(t) in our algorithm we first need to order data sources {1,2, ...,K} in their similarity
to user 1 to invoke the linear search. For simplicity of following analyses we assume s1 > s2 > ... > sK , and denote by
∆min = mini, j |si− s j| . The error of mis-ordering at time t is bounded by the following event

P(mis-ordering at time t)≤ P(ωm(t)) ,

where

ωm(t) = {∃i : |s̃i− si| ≥
∆min

2
} .

this is easy to verify : otherwise the inaccurate measurements are not enough to leverage a sub-optimal option.
Then

P(ωm(t))≤
K

∑
i=1

P(|s̃i− si| ≥
∆min

2
)

= ∑
i≤K

P(max
x,y
||Q̃i

x,y− Q̃1
x,y|2−|Qi

x,y−Q1
x,y|2| ≥

∆min

2
)

≤ ∑
i≤K

∑
x

∑
y

P(|Q̃i
x,y−Qi

x,y|+ |Q̃1
x,y−Q1

x,y| ≥
∆min

4
) ,

where the first inequality is due to union bound and the last inequality comes from the following fact∣∣∣∣|Q̃i
x,y− Q̃1

x,y|2−|Qi
x,y−Q1

x,y|2
∣∣∣∣

=

∣∣∣∣|Q̃i
x,y− Q̃1

x,y|+ |Qi
x,y−Q1

x,y|
∣∣∣∣ · ∣∣∣∣|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|
∣∣∣∣

≤ 2
∣∣∣∣|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|
∣∣∣∣ .

Consider
∣∣∣∣|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|
∣∣∣∣.
|Q̃i

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|

= |Q̃i
x,y−Qi

x,y +Qi
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|
≤ |Q̃i

x,y−Qi
x,y|+ |Qi

x,y− Q̃1
x,y|− |Qi

x,y−Q1
x,y|

≤ |Q̃i
x,y−Qi

x,y|+ |Qi
x,y− Q̃1

x,y−Qi
x,y +Q1

x,y|
= |Q̃i

x,y−Qi
x,y|+ |Q1

x,y− Q̃1
x,y| (9)



and moreover we have

|Q̃i
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|
= |Q̃i

x,y− Q̃1
x,y|− |Qi

x,y− Q̃1
x,y + Q̃1

x,y−Q1
x,y|

≥ |Q̃i
x,y− Q̃1

x,y|− |Qi
x,y− Q̃1

x,y|− |Q̃1
x,y−Q1

x,y|
≥ −|Q̃i

x,y− Q̃1
x,y−Qi

x,y + Q̃1
x,y|− |Q̃1

x,y−Q1
x,y|

=−|Q̃i
x,y−Qi

x,y|− |Q1
x,y− Q̃1

x,y| (10)

From above two inequality we know∣∣∣∣|Q̃i
x,y− Q̃1

x,y|− |Qi
x,y−Q1

x,y|
∣∣∣∣≤ |Q̃i

x,y−Qi
x,y|+ |Q̃1

x,y−Q1
x,y| (11)

Again via union bound we have

P(|Q̃i
x,y−Qi

x,y|+ |Q̃1
x,y−Q1

x,y| ≥
∆min

4
)

≤ P(|Q̃i
x,y−Qi

x,y| ≥
∆min

8
)+P(|Q̃1

x,y−Q1
x,y| ≥

∆min

8
) . (12)

Next we prove for each i ∈D , ni,x(t) = O(t) w.h.p. We invoke the following result, Theorem 3.3 from [12].

Lemma 9. For finite-state, irreducible Markov chain Xi(t), t = 1,2, ... with state space X i and transition probability Pi, initial
distribution qi and stationary distribution πi, denote Ni

q = ||(
qx
πx
)x||2. Let P̂i = Pi,T ·Pi be the multiplicative symmetrization of

Pi where Pi,T is the adjoint of Pi on l2(π). Let κ = 1−λ2 where λ2 is the second largest eigenvalue of the matrix P̂i. ε is often
referred to as the eigenvalue gap of P̂i. Let f : X i→ R be such that ∑y∈X i πi

y · f (y) = 0, || f ||∞ ≤ 1 and 0 < || f ||22 ≤ 1. For any
positive integer n and 0 < γ≤ 1 we have

P(
∑

n
t=1 f (Xi(t))

n
≥ γ)≤ Nq · e−

nγ2κ

28 . (13)

Let f (Xi(t)) =−1Xi(t)=x +πi
x. Not hard to verify such f satisfies all conditions required in Lemma 9. Then we have

P(ni,x(t)≤ (πi
x− γ)t)≤ Nq · e−

tγ2κ

28 , (14)

which holds specifically for a constant γ < πi
x.

With above (by Chernoff-Hoeffding bound),

P(|Q̃i
x,y−Qi

x,y|> 2
∆min

8
)≤ 2e−2

∆2
min
16 ·O(t) .

Thus

P(ωm(t))≤ O(e−Ct) , (15)

for a certain constant C.

Error in finding the best crowd
Denote the estimated error bound as Ũ(t):

Ũk(t)(t) := Uk(t)(t;{s̃i}i∈k(t)) ,

Now consider we are with correct ordering of all sources. We then further consider the following two events at step t:

ω1(t) = {∀k, |Ũ[k](t)−U[k](t)| ≤ O(

√
log t

t
)},

ω2(t) = {∃k, |Ũ[k](t)−U[k](t)|> O(

√
log t

t
)}.



ω1(t) is the event that estimation for U[k](t) is bounded by O(
√

log t
t ) from its true value for all k; while ω2(t) is its complement

set, i.e., we consider two cases regrading the estimation accuracy of the upper bound of prediction performance. Clearly ω1(t)∩
ω2(t) = /0 and ω1(t)∪ω2(t) = Ω. Then we have the following

r1( fk̃∗(t)(t)) =r1( fk̃∗(t)(t)|ω1(t))P(ω1(t))+ r1( fk̃∗(t)(t)|ω2(t))P(ω2(t)) .

We first bound P(ω2(t)). First via union bound we have

P({∃k,|Ũ[k](t)−U[k](t)|> O(

√
log t

t
)})

≤
K

∑
k=1

P(|Ũ[k](t)−U[k](t)|> O(

√
log t

t
)) .

Denote the mean of the top k similarities as s̄[k] := ∑
k
i=1 si
k and ˜̄s[k] as its estimated version. Consider each term in the summation

we have by Chernoff-Hoeffding inequality,

P(|Ũ[k](t)−U[k](t)|> O(

√
log t

t
))

= P(|˜̄s[k]− s̄[k]|> O(

√
log t

t
))

≤ ∑
i∈D

P(|s̃i− si|> O(

√
log t

t
))

≤ ∑
i∈D

(
P(|Q̃i

x,y−Qi
x,y| ≥ O(

√
log t

t
))+P(|Q̃1

x,y−Q1
x,y| ≥ O(

√
log t

t
))

)
,

as we have similarly argued in bounding ordering error. For each of the term above we have (again by Chernoff bound),

P(|Q̃i
x,y−Qi

x,y|> O(

√
log t

t
))≤ 2e−2O( log t

t )·ni,x(t) = O(
1
t2 ) ,

with appropriately chosen constants.
When ω1(t) happens we know that the regret from choosing the incorrect maximum U(t) is bounded at most by |Ũk̃∗(t)−

Uk∗(t)| ≤O(
√

log t
t ) since when a sub-optimal set is chosen, its regret is bounded away from its true value by at most O(

√
log t

t )

and so is the optimal set. We thus proved the theorem: to summarize with probability being at least

1−O(e−Ct)(mis-ordering)−O(
1
t2 )(ω2(t)) = 1−O(

1
t2 )

we have

r1( fk̃∗(t)(t)) = r1( fk̃∗(t)(t)|ω1(t),correct ordering)≤Uk∗(t)+O(

√
log t

t
) .

Proof of Theorem 6
Most of this Section’s proof is similarly to the ones in proving Theorem 5, but with limited number of sampling.

Bounding E[∑t
n=1 1O(n)6= /0] and exploration errors E[Re(t)]/t

We start with bound the exploration errors E[Re(t)]. In order to do so, we first establish the bounded number of exploration
phases. Specifically we prove E[∑t

n=1 1O(n)6= /0]≤ O(tz) w.h.p.. First notice at time t we have for each state i we have most D(t)
number of samples from exploration. Denote τi,x(n) as the length of regeneration cycle for n-th samples of each state x of user
i. Then we have

t

∑
n=1

1O(n)6= /0 ≤ ∑
i∈D

∑
x∈X

D(t)

∑
n=1

τi,x(n) . (16)



Consider each sum ∑
D(t)
n=1 τi,x(n). Notice {τi,x(n)}n forms an IID process due to the renewal properties of Markovian processes.

And it is known E[τi,x(n)] = 1
πi

x
. Then we have for any 0 < γ < 1

πi
x

we have by Chernoff-Hoeffding inequality that

P(
∑

D(t)
n=1 τi,x(n)

D(t)
− 1

πi
x
<−γ)≤ e−2γ2D(t) , (17)

which finishes the proof.
Notice with training with data k∗(t), compared to using only user 1’s own data, the benefits come from a faster converging

term
√

log t
t , then

|U[1](t)−Uk∗(t)(t)| ≤ O(

√
log t

t
) . (18)

We then have

E[Re(t)]≤
t

∑
n=1

IO(n)6= /0O(

√
logn

n
) . (19)

Since the number of explorations have been bounded at the order of O(tz) and combine this with the fact that
√

log t
t is a decay

function in t in general we have

E[Re(t)]≤
O(tz)

∑
n=1

O(

√
logn

n
)

≤ O(
√

log tz ·
O(tz)

∑
n=1

O(

√
1
n
)

≤ O(
√

z log t) ·O((tz)1−1/2)

= O(
√

z log t · tz/2) ,

which gives us

E[Re(t)]
t

≤ O(
√

z log t · tz/2−1) . (20)

Bounding exploitation error
Now consider the exploitation errors. Again we first separate our discussions according two events.

ω1(t) = {∀k, |Ũ[k](t)−U[k](t)| ≤ O(

√
log t

tz )},

ω2(t) = {∃k, |Ũ[k](t)−U[k](t)|> O(

√
log t

tz )} ,

and

r1( fk1(t)(t)) =r1( fk1(t)(t)|ω1(t))P(ω1(t))+ r1( fk1(t)(t)|ω2(t))P(ω2(t)) .

Similarly we could prove that with O(log t · tz) number of samples

P(ω2(t))≤ ∑
1≤k≤K

P(|Ũ[k](t)−U[k](t)|> O(
1

tz/2 ))

≤ ∑
i∈[k]

∑
x∈X ,y∈Y s

P(|Q̃i
x,y−Qi

x,y|> O(

√
log t

tz ))

≤ 2e−2O( log t
tz )·D(t) = O(

1
t2 ) ,

with appropriately selected constants.



Now we can focus on r1( fk1(t)(t)|ω1(t)). When ω1(t) happens we know that the regret from choosing the incorrect set of

data sources is bounded at most by |Ũk(t)− Ũk∗(t)| ≤ O(
√

log t
tz ) since when a sub-optimal set is chosen, its regret is bounded

away from its true value by at most O(
√

log t
tz ) and so is the optimal set, i.e.,

|Uk1(t)(t)−Uk∗(t)(t)| ≤ O(

√
log t

tz ) .

This observations leads to:

r1( fk1(t)(t)|ω1(t))≤Uk∗(t)(t)+O(

√
log t

tz )+ |E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t)]| , (21)

where

E[Ûk1(t)(t)|ω1(t)]≤ E[Ūk1(t)(t)|ω1(t)]+E[e(t)||ω1(t)] , (22)

and

Ūk1(t)(t) = 4min
f∈F

rIID
1 ( f )+6β2 +6β1

∑i∈k1(t) ni(t)(1− si)

Nk1(t)(t)

+ ρ̃k1(t)(t)+8y∗(2
√

2d + y∗) ·

√
logNk1(t)(t)

Nk1(t)(t)
. (23)

Notice the subtle difference between Ûk1(t)(t) and Uk1(t)(t). Ûk1(t)(t) is further bounded by two terms: one is Ūk1(t)(t), the
error bound with sub-sampled data and the other term e(t) corresponds to the effects of dis-continuous samplings.

To make it more clear, we start the discussion by noticing that an incorrect calculation of k1(t) not only has effects on the
prediction at time t, but also affects the learning process in all following steps due to this potential miss of collecting data.
For details please refer to the difference between Ūk(t)(T ) and Uk(t)(t): when a wrong decision is made at time t and data
from the optimal sources have not been collected, the performance of the prediction for all following stages will suffer from
sub-sampling. Denote n̄i(t) as the number of missed data up to time t for i ∈ k1(t) and we first address two questions with sub-
sampling for sequentially arriving Markovian data : 1). Under ω1(t), is n̄i(t) bounded above and how? (which affects Ūk1(t)(t))
2). due to the dis-continuous sampling, there will be extra bias incurred for the distribution of sampled Markovian data. How to
quantify this bias? (which affects e(t)).

In the rest of the proof, we show the following.

E[Ūk1(t)(t)−Uk1(t)(t)|ω1(t)]≤ O(log t · t−2/3), E[e(t)||ω1(t)]≤ O(t−2/3) . (24)

Under ω1(t), we further consider two events defined as follows.

ω3(t) = {∀i ∈ k1(t) : n̄i(t)< tθ)} , (25)

ω4(t) = {∃i ∈ k1(t) : n̄i(t)≥ tθ)} , (26)

for a tunable constant 0 < θ < 1. Again ω3(t)∩ω4(t) = /0 and ω3(T )∩ω4(t) = Ω. Again we have

E[Ūk1(t)(t)|ω1(t)] = E[Ūk1(t)(t)|ω1(t),ω3(t)]P(ω3(t))+E[Ūk1(t)(t)|ω1(t),ω4(t)]P(ω4(t)).

We first prove the boundedness of ω4(t). Since at any time t, for i∈ k∗(t), we know we have i∈ k∗(n),n< t except for a constant
based on Proposition 3, this is true for all i ∈ k∗(t) and is also true for i ∈ k′(t) such that having estimated learning error bound

Ũk′(t)(t) within [Ũk∗(t)−
√

log t
tz ,Ũk∗(t)+

√
log t
tz ]. Since as can be similarly argued in Proposition 3, if i ∈ k′(t) then i ∈ k′(n) for

n≤ t. Then due to the construction of k2(t) and under ω1(t)(with appropriately selected constant), we know this also holds for
k1(t). Denote the constant as C. That suggests the fact as long as ω2(n) is NOT true, a data sources in the optimal set k1(n) will
not be missed, which suggests the following

E[n̄i(t)]≤ E[
t

∑
n=1

1ω2(n)]+C

≤
t

∑
n=1

P(ω2(n)+C

≤
t

∑
n=1

O(
1
n2 )+C

≤C‘ +C.



Next we prove E[n̄2
i (t)] is also bounded above.

E[n̄2
i (t)]≤ E[(

t

∑
n=1

1ω2(n)+C)2]

= E[(
t

∑
n=1

1ω2(n))
2]+2CE[

t

∑
n=1

1ω2(n)]+C2

≤ E[
t

∑
n=1

12
ω2(n)

]+2CC
′
+C2 .

Now consider the square term. First notice

E[1ω2(t1)1ω2(t2)]≤ E[1ω2(max{t1,t2})] .

We then have

E[(
t

∑
n=1

1ω2(n))
2]≤ 2E[

t

∑
n=1

n1ω2(n)]

≤ 2
t

∑
n=1

nO(
1
n2 )

≤ O(log t) .

Therefore we know var(n̄i(t))≤ O(log t). Then via Chernoff bound we know

P(ni(t)≤ t− tθ) = P(n̄i(t)≥ tθ)≤ O(
log t
t2θ

) .

Now we analyze |E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]|. As argued earlier we have

|E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤ |E[Ūk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]|+E[e(t)|ω1(t),ω3(t)] . (27)

Notice

|E[Ūk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤ E
[

6β1 ∑
i∈k∗(t)

(1− si)|
ni(t)

Nk∗(t)(t)
− 1

k
|︸ ︷︷ ︸

D1(t)

+ |ρ̃k∗(t)(t)−ρk∗(t)(t)|︸ ︷︷ ︸
D2(t)

+ |8y∗(2
√

2d + y∗) · |

√
log |k∗(t)|t
|k∗(t)|t

−

√
logNk∗(t)(t)

Nk∗(t)(t)
|︸ ︷︷ ︸

D3(t)

∣∣∣∣ω1(t),ω3(t)] ,

We have the following lemma.
Lemma 10. We have

• E[D1(t)|ω1(t),ω3(t)]≤ O( 1
t1−θ

).

• E[D2(t)|ω1(t),ω3(t)] decays exponentially fast.

• E[D3(t)|ω1(t),ω3(t)]≤ O(
√

log t
t3/2−θ

).

• E[e(t)|ω1(t),ω3(t)]≤ O( 1
t1−θ

).

Adding up the terms we have

|E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤ O(
log t
t2θ

)+O(
1

t1−θ
)+O(

√
log t

t3/2−θ
) ,

and the optimal upper bound occurs when 2θ = 1−θ which gives us θ∗ = 1/3 and the optimal bound follows as

|E[Ûk1(t)(t)−Uk1(t)(t)|ω1(t),ω3(t)]| ≤ O(
log t
t2/3 ) .



Proof for Lemma 10
Bound on E[D1(t)|ω1(t),ω3(t)]
Shorthand |k∗(t)| as k. Take the difference between the coefficients for each term 1− s1 satisfies the following,

t
Nk∗(t)(t)

− 1
k
=

kt−Nk∗(t)(t)
k ·Nk∗(t)(t)

≥ 0 .

For all others i 6= 1, we have

ni(t)
Nk∗(t)(t)

− 1
k
=

kni(t)−Nk∗(t)(t)
k ·Nk∗(t)(t)

.

Therefore we have

|∑i ni(t) · (1− si)

Nk∗(t)(t)
− ∑i(1− si)

k
| ≤

kT −Nk∗(t)(t)
k ·Nk∗(t)(t)

· (1− s1)

+∑
i≥2
|
kni(t)−Nk∗(t)(t)

k ·Nk∗(t)(t)
| · (1− si) . (28)

Notice under ω3(t), Nk∗(t)(t)≥ kt− k · tθ and we know

kt−Nk∗(t)(t)
k ·Nk∗(t)(t)

· (1− s1)≤
ktz

k(kt− k · tθ)
· (1− s1)

=
tθ

k(t− tθ)
· (1− s1) , (29)

and moreover

|
kni(t)−Nk∗(t)(t)

k ·Nk∗(t)(t)
| · (1− si)

≤∑
j

|ni(t)−n j(t)|
k(kt− k · tθ)

· (1− si)

≤ k · tθ

k(kt− k · tθ)
· (1− si)

=
tθ

kt− k · tθ
· (1− si) = O(

1
t1−θ

) (30)

here we have used the fact that if t − tθ ≤ ni(t) ≤ t and t − tθ ≤ n j(t) ≤ T we must also have |ni(t)− n j(t)| ≤ tθ. So is the
expectation bounded. Proved .

Bound on E[D2(t)|ω1(t),ω3(t)]
This one is fairly simple to prove. Consider each of the difference term.

|(λi
2)

t − (λi
2)

ni(t)| ≤ |(λi
2)

ni(t)| ,

since ni(t)≤ t. However

|(λi
2)

ni(t)| ≤ (λi
2)

t−tθ

,

as ni(t)≥ t− tθ. Proved.

Bound on E[D3(t)|ω1(t),ω3(t)]

Denote function g(x) :=
√

logx
x and by mean-value theorem we have

|g(x−δ)−g(x)| ≤ |δ| · max
y∈[x−δ,x]

∂g(y)
∂y

.



Notice

∂g(x)
∂x

=
1
2
· 1√

logx
x

· |1− logx
x2 | .

For x≥ 3 we have

∂g(x)
∂x
≈ 1

2e
· 1√

logx
x

· logx
x2 =

1
2e
·
√

logx
x3 ,

Since
√

logx
x3 is a strictly decreasing function when x≥ 3, we have (under ω3(t)) the worst case bound is given by

|

√
log(kt− (k−1) · tθ)

kt− (k−1) · tθ
−
√

logkt
kt
|

≤ (k−1) · tθ · 1
2e
·

√
log(kt− (k−1) · tθ)

(kt− (k−1) · tθ)3 ,

which is decreasing sub-linearly as long as θ < 1. Moreover when t is large enough we have√
log(kt− (k−1) · tθ)

(kt− (k−1) · tθ)3 ≤
√

log t
t3 ,

which leads us to the fact that

|

√
log(kt− (k−1) · tθ)

kt− (k−1) · tθ
−
√

logkt
kt
| ≤ O(

√
log t

t3/2−θ
) .

So is the expectation bounded. Proved.

Bound on E[e(t)|ω1(t),ω3(t)]

Due to discontinous sampling of Markovian data (the fact that ni,x(t) > 0) the resultant data collection, in the form of its
empirical distributions π̃i

x will be biased. To see this more clearly. Suppose f̃ is trained on a dataset D̃ and f is on D, where D̃
is a biased version of D. Then we have E[e(t)|ω1(t),ω3(t)] bounded as follows (we omit the conditioning on ω1(t),ω3(t) for
brevity)

Ez∼D[L( f̃ ,z)]−Ez∼D[L( f ,z) = Ez∼D̃[L( f̃ ,z)]−Ez∼D̃[L( f ,z)]

+(Ez∼D[L( f̃ ,z)]−Ez∼D̃[L( f̃ ,z)])+(Ez∼D[L( f ,z)]−Ez∼D̃[L( f ,z)])

By definition of f̃ (also optimality) we know Ez∼D̃[L( f̃ ,z)]−Ez∼D̃[L( f ,z)]≤ 0. For Ez∼D[L( f̃ ,z)]−Ez∼D̃[L( f̃ ,z)] we have

|Ez∼D[L( f̃ ,z)]−Ez∼D̃[L( f̃ ,z)]| ≤maxL · ∑
x∈X

E[|π̃i
x−π

i
x|] .

Notice under ω3(t),

E[|π̃i
x−π

i
x|]≤ O(

tθ

t− tθ
) = O(

1
t1−θ

) ,

where the upper bound comes from the extreme cases all missed samples are from one specific state transition. Therefore we
proved

|Ez∼D[L( f̃ ,z)]−Ez∼D̃[L( f̃ ,z)]| ≤ O(
1

t1−θ
) ,

and similar analysis applies to (Ez∼D[L( f ,z)]−Ez∼D̃[L( f ,z)]). Proved.



Proof of Theorem 7
We now analyze the difference in cost for requesting additional data. There are mainly two sources for this extra cost : 1). first
of all, we know the there is unnecessary cost for exploration phases. This is the cost mainly for requesting enough samples to
train or learn the similarity information between user 1 and any other users. 2). second is the unnecessary cost at exploitation
phases when bad decisions are made (requesting data from a source that is outside the optimal set). More rigorously we have

E[Rc(t)] = cE[
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n)]

= cE[
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1O(n)6= /0]

+ cE[
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1
c
O(n)6= /0

]

Consider the first term above we have

E[
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1O(n)6= /0]≤ KE[
t

∑
n=1

K

∑
i=1

1c
O(n)6= /0

]≤ O(ctz) .

The last inequality is due to the fact number of exploration rounds are bounded above by O(tz).
Now consider the second term. For exploitation phases, consider the possibility of requesting redundant samples. We again

decompose our discussion into the cases corresponding to events ω1(t) and ω2(t) (as defined in the proof for Theorem 6). Then

E[
t

∑
n=1

K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1
c
O(n)6= /0

]

=
t

∑
n=1

E[
K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1
c
O(n)6= /0

|ω1(n)]P(ω1(n))]

+
t

∑
n=1

E[
K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1
c
O(n)6= /0

|ω2(n)]P(ω2(n))] .

As we showed probability for cases ω2(t) is bounded above and the cost regret associated with the case is also bounded
above:

t

∑
n=1

E[
K

∑
i=1

1i/∈k∗(n),i∈k2(n) ·1
c
O(n)6= /0

|ω2(n)]P(ω2(n))]

≤
t

∑
n=1

K ·O(
1
n2 ) = O(1) .

Now consider the case with ω1(t). Clearly at time t, if k2(t)⊆ k∗(t) there would be no extra cost for redundant data. Consider
the case k∗(t)⊂ k2(t). Based on our sampling policy, with bounded probability as long as we have

Uk2(t) > Uk∗(t)+O(

√
log t

tz ) , (31)

there will be no error in requesting data from users in the set k2(t) by observing the following fact

Ũk2(t) > Uk2(t)−O(

√
log t

tz )> Uk∗(t)+O(

√
log t

tz )−O(

√
log t

tz )

= Uk∗(t)+O(

√
log t

tz )≥ Ũk∗(t)+

√
log t

tz ,

with appropriately chosen constants. So is

Ũtr
k2(t)

> Ũtr
k∗(t)+

√
log t

tz .

Since ∑
k2(t)
i=1 si
|k2(t)|

<
∑

k∗(t)
i=1 si
|k∗(t)| as k∗(t)⊂ k2(t), there exists a constant T0 such that the Eqn.(31) holds (the gain in Term 4 becomes less

than the loss in similarity Term 2.). Therefore the cost regret with over-sampling is bounded up by cKT0 . Again summing up
all above we have the bounds for E[Rc(T )]. Proved.


