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Abstract—In this paper we study a transmission power-
tune/control problem in the context of 802.11 Wireless Local Area
Networks (WLANs) with multiple (and possibly densely deployed)
access points (APs). Previous studies on power control tend to
focus on one aspect of the control, either its effect on transmission
capacity (PHY layer effect) assuming simultaneous transmissions,
or its effect on contention order (MAC layer effect) by maximizing
spatial reuse. We observe that power control has a dual effect: it
affects both spatial reuse and capacity of active transmission;
moreover, maximizing the two separately is not always aligned
in maximizing system throughput and can even point in opposite
directions. In this paper we introduce an optimization formulation
that takes into account this dual effect, by measuring the impact of
transmit power on system performance from both PHY and MAC
layers. We show that such an optimization problem is intractable
and develop an analytical framework to construct simple yet
efficient solutions. Through numerical results, we observe clear
benefits of this dual-effect model compared to solutions obtained
that try to maximize spatial reuse and transmission capacity
separately. This problem does not invoke cross-layer design, as
the only degree of freedom in design resides with transmission
power. It however highlights the complexity in tuning certain
design parameters, as the change may manifest itself differently
at different layers which may be at odds.

I. INTRODUCTION

Power-tune has emerged as an important issue in an IEEE
802.11 WLAN network of multiple interacting users (Access
Points, or APs). Earlier classical results with focus on power-
tune may be classified into the following two independent
approaches.

The first relies on a PHY-layer framework in interference-
bounded networks, i.e., the optimal power-tune problem is
defined with respect to the Signal-Noise-Ratio (SNR) of each
AP or the entire network. Within this framework, each AP’s
transmission power has two contradicting roles: The first is that
a higher transmission power will improve the noise resistance
capability for its own communication and thus potentially the
network capacity. The other role is the unavoidable interaction
with other APs. A higher transmission power will contribute
higher noise/interference to other APs using the same chan-
nel (we assume Orthogonal Frequency Division Multiplexing,
OFDM, at PHY layer and thus we will not consider intra-
channel interference). Many results have been established in

this framework with different techniques focusing on either
centralized or distributed solutions.

The second class of results stems from MAC layer techniques
by trying to reduce the level of contention within a network, or
improving spatial reuse order, as more generally referred to.
Specifically, when users fall into each other’s audible range,
transmission back-off under CSMA/CA is triggered to resolve
contention and enable sharing. Therefore, decreasing users’
transmission range helps improve spatial reuse of a given
channel. It follows that they are often modeled as congestion
games or other similar graph problems (more in Section VI).

Even though conceptually both frameworks aim at optimiz-
ing system performance, e.g., overall throughput, the technical
objectives and thus the net impact under the two are clearly
not always aligned, and in fact can be quite different and even
point in opposite directions. To illustrate, consider maximizing
users’ achievable throughput or capacity without considering
the induced spatial contention relationship; the resulting power-
tune can create areas of very high contention order. Thus, even
though a user’s (or the network’s) transmission capacity/rate
maybe maximized on a per transmission basis, significant
amount of air time may be spent in the back-off process instead
of data transmission, leading to wasted spectrum resources. The
opposite may also be true. If we simply control the contention
topology of the network, the transmission power settings may
be such that users do not have sufficient noise resistance
capability and thus fall short of the theoretically achievable
capacity. In this case, even though we may have successfully
reduced the contention and saved a lot of air time, the quality
of active transmissions (or on a per-transmission basis) may be
low.

In short, reducing transmission power has a dual effect on
the MAC and PHY layers: it can help increase spatial reuse
order under CSMA/CA, but can at the same time decrease
noise resistance capacity and therefore the transmission ca-
pacity. A desirable solution should thus take both effects into
consideration in determining the optimal power control. This is
strictly speaking not a cross-layer problem, as the only degree
of freedom in design resides with transmission power, i.e.,
there is no joint design or feedback between different layers.
This problem simply highlights the complexity in tuning certain
design parameters, as the change may manifest itself differently
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at different layers which could be self-defeating as illustrated
above.

In this study we approach this problem by introducing a
performance measure (or utility function) based on the power-
tune impact on both PHY and MAC layers simultaneously. An
interesting technical aspect of this formulation is the combina-
tion of both continuous (SNR and PHY) and discrete (MAC or
graph-based) elements in a single optimization problem. Not
surprisingly, this leads to an intractable optimization problem,
whose properties and structures we then investigate to help
construct good and efficient solution techniques. Extensive sim-
ulation is conducted to verify the effectiveness and performance
of our solution approach. An equally important aspect of our
study, besides solving the above optimization problem, is to
obtain insight into how the resulting power-tune differs from
the two approaches outlined earlier, each focusing on the effect
on a single layer, respectively.

Our formulation and solution are given within a centralized
framework. A natural next step is to examine distributed imple-
mentations of the solution, and similar optimization problems
when users are strategic. These remain interesting directions of
future research, but are out of the scope of the present paper.

The remainder of the paper is organized as follows. Section II
gives the system model and problem formulation, while Section
III characterizes the optimal solution. Section V provides
extensive numerical results to evaluate our approach. Section VI
presents a literature review most relevant to the present study
and Section VII concludes the paper.

II. SYSTEM MODEL

A. Preliminaries

Consider a WLAN network with N APs denoted by the
set Ω = {1, 2, ..., N}. Each AP is associated with a number
of stations with whom it communicates. Denote an AP’s
transmission power space (i.e., the set of power levels it may
employ) by Qi, i ∈ Ω. Different from many prior works, here
we do not assume any finiteness of Qi; instead, we will show
that the finiteness of the optimal power profile follows naturally
from our formulation. We will assume Qi, i ∈ Ω are all closed
and use Pi and Pi to denote the maximum and minimum value
in Qi, respectively. The transmission power profile of all users
is denoted by P = [P1,P2, ...,PN ].

Each AP also has a certain attempt rate for channel access
under IEEE 802.11, and these are denoted by the vector
p := [p1, p2, ..., pN ], also referred to as the attempt rate profile.
Channel gain (or path loss) from user i to j is denoted by hij .
We will assume hij , i, j ∈ Ω stay unchanged during a single
transmission; alternatively, we may view hij as the expectation
of channel dynamics. N0 denotes the average noise level, and
Pics denotes the carrier sensing (CS) threshold of the i−th AP.

For the rest of the paper we will use the terms AP and user
interchangeably.

B. Contention domain

Due to the fact that many hardware/circuits put a requirement
on CS signal’s strength, some CS signals cannot be correctly
decoded and the corresponding back-off actions will not be
triggered; only those with strength higher than the CS threshold
can be correctly identified. We thus define two notions of a
contention domain for user/AP i. The first one ∆r

i , the receive
contention domain, is the set of users/APs whose CS signals
can be correctly decoded by user i; while the other ∆t

i, the
transmit contention domain, is the set of users who can decode
user i’s CS signals correctly. Mathematically we have

∆r
i = {j : Pj · hji ≥ Pics, j ∈ Ω\{i}} (1)

∆t
i = {j : Pi · hij ≥ Pjcs, j ∈ Ω\{i}} (2)

By definition, contention domain is closely related to spatial
reuse. With a larger contention domain, the degree of spatial
reuse is potentially smaller around that user. Define ni(P) to be
the number of competing users of user i under power profile
P; i.e., ni(P) := |∆r

i |. This will also be referred to as the
contention order for user i.

C. Neighborhood reaching threshold

Consider AP i and the maximum (resp. minimum) transmis-
sion power it can use without reaching (resp. so that it can still
reach) another AP k, expressed as follows (assumed to exist):

P−ik : = max{Pi : Pi · hik < Pkcs,Pi ∈ Qi} (3)

P+
ik : = min{Pi : Pi · hik ≥ Pkcs,Pi ∈ Qi} . (4)

To make it complete for k = i we have

P−ii : = Pi,P+
ii := Pi (5)

Denote the set of these neighbors reaching thresholds for AP i
as

Q̃i = ∪k∈Ω{P−ik,P
+
ik}. (6)

Denote the neighbor reaching profile space for the whole
network as

Q̃ := Q̃1 × Q̃2 × ...× Q̃N . (7)

Since we are considering a finite size network (i.e., the number
of APs, N , is a finite positive integer), this profile space is
finite, i.e., |Q̃i| <∞,∀i ∈ Ω, and consequently |Q̃| <∞.

D. A performance measure/utility function

From AP i’s point of view, its transmission power setting
has the following implications:

I. Higher transmission power will increase AP i’s received
SNR (SNRi) by its associated stations.

II. Higher transmission power will cause higher interference
to APs outside ∆r

i ∪∆t
i.

III. Higher transmission power will add i to some other AP
j’s contention domain.
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As a result, AP i’s perceived performance, or utility Ui, as a
function of the transmission power profile P and attempt rate
profile p across all APs, may be captured by the following
expression:

Ui(P,p) = Si(P,p) · Ci(P,p), i ∈ Ω, (8)

where Si is the “sharing” function representing AP i’s share
of channel access under CSMA/CA-type of collision avoidance
mechanism, and Ci is the “capacity” function representing the
rate/quality of active transmissions under P and p.

Under 802.11, we can approximate Si using the probability
of successful channel reservation given by

∏
j∈∆r

i
(1 − pj)pi,

where the dependence on the transmission power profile P
is implicit through the contention domain ∆r

i = ∆r
i (P).

Assuming a fair WLAN network with 0 < p1 = p2 = ... =
pN = pc < 1, we then have the following form of the sharing
function:

Si(P,p) =
∏
j∈∆r

i

(1− pj)pi = (1− pc)ni(P)pc, (9)

which approximates the air time share of AP i within its
contention domain.
Ci is intended to capture the rate or capacity of active

transmission attained by AP i. To make this concrete, we will
focus on the downlink capacity from the AP to its associated
stations. As the stations’ locations can change dynamically and
are often unknown, we will not explicitly model this level of
detail and simply assume that the stations are sufficiently close
to their associated AP. Consequently, their capacity may be
approximated using the transmit power by the AP (rather than
the received power at a station) and the interference at the AP
(rather than at a station), in the standard Shannon formula:
(similar formulation can also be found in [8]):

Ci(P,p) = log(1 +
Pi

N0 +
∑
j∈∆̄r

i∩∆̄t
i
Sj(P,p) · Pj · hji

) ,

(10)

where ∆̄r
i (∆̄t

i) denotes the complement of AP i’s contention
domains, i.e., ∆̄r

i = Ω−i\∆r
i , reflecting the fact that the

interference comes primarily from APs outside the contention
domain as a result of the back-off mechanism of IEEE 802.11
collision avoidance.

III. THE OPTIMAL POWER-TUNE PROBLEM AND ITS
CHARACTERIZATION

In this section, we formally define our optimization problem
and do so in comparison with its single-layer counterparts, i.e.,
that aim at only the PHY or MAC layer effect, respectively.
We then characterize its features using a two-user example.

A. Considering only PHY layer effects

When we limit our attention to PHY layer effects of power
control, typically no contention is considered and parallel trans-
missions are implicitly assumed. Therefore each single user’s

transmissions will contribute to other users noise/interference.
Problems along this line have been well investigated in the
literature, see e.g., [2], [8]. Specifically these assumptions result
in the following optimization problem

(PPHY) max
∑
i∈Ω log(1 + Pi

N0+
∑
j 6=i Pj ·hji

)

s.t. Pj ∈ Qi,∀i ∈ Ω.

This rate maximization problem is in general hard to solve.
Previous work has focused on different approximation tech-
niques, see e.g., [8]. In order to obtain comparable results in
order to compare this with our optimization formulation, in our
numerical experiments (Section V) we shall use the following
simple approximation

log(1 +
Pi

N0 +
∑
j 6=i Pj · hji

) ≈ log(
Pi
N0

)−
∑
j 6=i Pj · hji
N0

(11)

Since both terms log( PiN0
) and −

∑
j 6=i Pj ·hji
N0

are concave, we
now have an approximate/relaxed optimization problem which
is convex:

(R-PPHY) max
∑
i∈Ω{log( PiN0

)−
∑
j 6=i Pj ·hji
N0

}
s.t. Pj ∈ Qi,∀i ∈ Ω.

This problem can be efficiently solved using classical convex
optimization techniques (assuming all Qi are convex or piece-
wise convex). These are used in our numerical results provided
later, and the algorithmic details are omitted for brevity.

B. Considering only MAC layer effects

We next limit our attention to MAC layer effects of power
control, in which case the objective is typically to minimize the
sum of contention orders over all users, given as follows:

min
∑
i∈Ω

ni(P) , (12)

see, e.g., a similar objective used in [10]. However, without any
constraint on P , the above minimization could lead to some-
what pathologic solutions, i.e., with very low power, we can
obtain

∑
i∈Ω ni(P) ≈ 0 thereby achieving the minimum value.

However, with very low transmission powers and relatively
constant background noise, each AP’s SNR is significantly im-
pacted leading to poor transmission performance. Consequently,
in order to make this model comparable with others considered
in our numerical experiments, we will instead consider a similar
optimization problem with an SNR constraint. Specifically,
we will try to minimize the total contention order within the
network, subject to a minimum requirement on each AP’s SNR,
as shown below:

(PMAC) min
∑
i∈Ω ni(P)

s.t. Pi
N0+

∑
j∈∆̄r

i
∩∆̄t

i
Sj(P,p)·Pj ·hji ≥ SNR0,

∀i ∈ Ω.

Here we use SNR0 to denote some baseline SNR that needs to
be met at each AP’s transmission.



4

The above problem has a mixture of a combinatorial term
and continuous term in the following sense: while the SNR is
continuous w.r.t. setting transmission power Pi, the contention
domains ∆is are discrete. Thus the problem is hard to solve in
general. We thus consider a relaxation of the above problem.
Since we have

Pj · hji < Pics,∀j ∈ ∆̄r
i ∩ ∆̄t

i , (13)

the inequality below holds immediately∑
j∈∆̄r

i∩∆̄t
i

Sj(P,p) · Pj · hji <
∑

j∈∆̄r
i∩∆̄t

i

Sj(P,p) · Pics (14)

Moreover, we have
Pi

N0 +
∑
j∈∆̄r

i∩∆̄t
i
Pj · hji

>
Pi

N0 +
∑
j∈∆̄r

i∩∆̄t
i
Sj(P,p) · Pics

.

(15)

Thus, we have the following relaxed problem that are solvable:

(R-PMAC) min
∑
i∈Ω ni(P)

s.t. Pi
N0+

∑
j∈∆̄r

i
∩∆̄t

i
Sj(P,p)·Pics

≥ SNR0,∀i ∈ Ω.

Theorem 3.1: In solving R-PMAC there is no loss of
optimality to limit our attention to the space Q̃, i.e., if an
optimal solution exists, we can always find an optimal solution
within the space Q̃.

Proof 1: Suppose there is an optimal power profile with some
element, say P∗j /∈ Q̃j . Then consider relaxing/increasing P∗j
to the nearest P−jk,∀k ∈ Ω. Note that such a change would not
modify the contention topology and thus all ni values remain
the same, without violating the corresponding SNR constraint.
Thus we have found an optimal solution within Q̃.

Remark 3.2: This theorem allows us to focus on a finite set
of solutions instead of all possible solutions.

C. Considering dual effects

We now formalize the optimal power-tune problem outlined
earlier that takes into account both the PHY and MAC layer
effects. Specifically, we will seek centralized solutions to the
following social welfare maximization problem:

(P) max U =
∑
i∈Ω Ui(P,p)

s.t. Pi ∈ Qi, i ∈ Ω.

As the power profile space Q := Q1 × Q2 × ... × QN is
potentially infinite, and U is in general a non-convex and non-
differentiable function w.r.t. P , the optimization problem is
NP-hard. To illustrate, Fig. 1 shows three examples of the
sum utility as a function of the power Pi of AP i, under
different parameter settings. As can be seen, there lack prop-
erties commonly used to derive efficient solution techniques
(e.g., differentiability, convexity). There are, however, some
interesting features such as the prominent step shape shown
in the result. This observation motivated key results in the
subsequent subsections.
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Fig. 1: Examples of U w.r.t. a specific Pi

D. An illustrative example: two-user case

Consider the special case with N = 2 and pc = 1
2 , i.e.,

a system of two users attempting to access the channel each
with probability 1/2. To gain some insight into the solution
to the corresponding optimization problem (P), we discuss the
following four cases.

CASE 1. P1 ≤ P−12,P2 ≤ P−21

In this case neither user is in the other’s CS range and thus
the objective function becomes

log(1 +
P1

N0 + 1
4 · P2 · h21

) + log(1 +
P2

N0 + 1
4 · P1 · h12

)

(16)

We first fix P2 and analyze the above function w.r.t. P1. Basic
algebraic calculation shows that the above objective function
is equivalent to (noting h12 = h21 and denote h := 1

4 · h12 =
1
4 · h21)

log

{
1 +

1

N0 + P2 · h
(P1 + P2/h+

N0 + P2 · h− P2 · N0/h

N0 + P1 · h
)

}
Due to the monotonicity of the log function, the optimization
problem is equivalent to maximizing

P1 + P2/h+
N0 + P2 · h− P2 · N0/h

N0 + P1 · h
. (17)

If N0 + P2 · h − P2 · N0/h < 0, then Eqn. (17) is strictly
increasing w.r.t. P1 and thus P∗1 = P−12. If N0 + P2 · h−P2 ·
N0/h ≥ 0, then Eqn. (17) is convex and the maximizer is an
end point, i.e., P∗1 ∈ {P1,P−12}. By symmetry we have similar
results for user 2.

CASE 2. P1 ≥ P+
12,P2 ≤ P−21

In this case user 1 is in user 2’s receive contention domain,
but not the other way round. It follows that the objective
function in this case reduces to the following:

log(1 +
P1

N0
) +

1

2
log(1 +

P2

N0
) (18)

Obviously this function is increasing w.r.t. P1 and P2 and
therefore we have P∗1 = P1,P∗2 = P−21.

CASE 3. P1 ≤ P−12,P2 ≥ P+
21

This is essentially the same as CASE 2 and thus omitted.
CASE 4. P1 ≥ P+

12,P2 ≥ P+
21
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In this case both users are in each other’s contention domain,
and the resulting objective function is

1

2
log(1 +

P1

N0
) +

1

2
log(1 +

P2

N0
). (19)

It is then straightforward to show that P∗1 = P1 and P∗2 = P2.
The above example aims at conveying the intuition that the

optimal power levels are likely to be at the neighborhood
reaching thresholds or the maximum power limit. The next
section shows that we can indeed restrict our attention to a
finite set of these thresholds in search of an optimal solution.

IV. SOLUTION APPROACH

A. A Lower bound problem

Recall that for j ∈ ∆̄r
i , we have Pj · hji < Pics, i.e., the

received signal strength is below the CS threshold. Thus

log(1 +
Pi

N0 +
∑
j∈∆̄r

i∩∆̄t
i
Sj(P,p) · Pj · hji

)

> log(1 +
Pi

N0 +
∑
j∈∆̄r

i∩∆̄t
i
Sj(P,p) · Pics

) . (20)

We use this relationship to form the following lower bound
problem.

(PL) max UL =
∑
i∈Ω(1− pc)ni(P)pc·

log(1 + Pi
N0+

∑
j∈∆̄r

i
∩∆̄t

i
Sj(P,p)·Pics

)

s.t. Pi ∈ Qi,∀i ∈ Ω.

Lemma 4.1: For an optimal solution P∗ to (PL), we have
P∗ ∈ Q̃. That is, there is no loss of optimality is restricting
the solution space to Q̃ in searching for an optimal solution.

Proof 2: For AP i, suppose there exists a P∗i 6∈ Q̃i. This
means one of the following must be true: (1) P+

ik < P∗i < P
−
ij

for some (k, j), (2) P∗i < P−ij for all j, and (3) P+
ik < P∗i

for all k. For the fist two cases, if we increase Pi from P∗i to
P−ij , the resulting contention topology remain unchanged, i.e.,
the terms Sj , nj(P),∀j ∈ Ω stay unchanged, but Pi is now
bigger and UL is strictly increasing in Pi. This contradicts the
optimality of P∗, so the first two cases cannot be true. If it’s
the third case and P+

ik < P∗i for all k, then increasing Pi from
P∗i to Pi results in the same argument as above, so (3) also
cannot be true, completing the proof.

Remark 4.2: When Pics is small or when the network is dense
and large (i.e., with a large N ), the lower bound problem will
provide a good approximation for the original problem.

B. An Upper bound problem

We similarly form an upper bound to the original objective
function:

log(1 +
Pi

N0 +
∑
j∈∆̄r

i∩∆̄t
i
Sj(P,p) · Pj · hji

)

≤ Pi
N0 +

∑
j∈∆̄r

i∩∆̄t
i
Sj(P,p) · Pj · hji

· log 2, (21)

and we have the following upper bound problem

(PU) max UU =
∑
i∈Ω(1− pc)ni(P)pc

· Pi
N0+

∑
j∈∆̄r

i
∩∆̄t

i
Sj(P,p)·Pj ·hji

s.t. Pi ∈ Qi,∀i ∈ Ω.

Lemma 4.3: UU is piece-wise convex w.r.t. each Pi, i ∈ Ω.
Proof 3: Consider Pi and fix the transmission power

of all other APs. Suppose Pi ∈ [P+
ik,P

−
ij ] for some

k, j. Within this range, the contention topology remains the
same, i.e., (1 − pc)

ni(P)pc is a constant for any value Pi
takes within this interval. Next consider the second term
in UU . Pi appears in this term in two forms: one as

Pi
N0+

∑
l∈∆̄r

i
∩∆̄t

i
Sl(P,p)·Pl·hli which is convex w.r.t. Pi, and the

other as Pl
N0+

∑
m∈∆̄r

l
∩∆̄t

l
Sm(P,p)·Pm·hml for some l such that

i ∈ ∆̄r
l ∩ ∆̄t

l , in the form of Si(P,p) · Pi · hil; these terms
are also convex w.r.t. Pi. As the sum of convex functions is
convex, we have established the convexity of UU .

When P+
ik < Pi for all k, UU is convex w.r.t. Pi over

the interval [maxP+
ik,Pi] using the same argument as above.

Similarly, when Pi < P−ik ,∀k 6= i UU is convex w.r.t. Pi over
the interval [Pi,minP−ik].

Lemma 4.4: Suppose P∗U is the optimal solution to (PU), we
have P∗U ∈ Q̃.

Proof 4: The result readily follows from Lemma 4.3 and the
fact that optimal solution over a closed interval for a convex
function is an end point.

Remark 4.5: Since the linear approximation would perform
better when Pi

N0+
∑
j∈∆̄r

i
∩∆̄t

i
Sj(P,p)·Pj ·hji is small, we know

when the network size is large (i.e., N is large) and dense,
the upper bound problem will provide a good approximation
for the original problem.

Remark 4.6: By finding the optimal solution for problems
(PL) and (PU), we have the bounds for the optimal solutions.

UL(P∗L) ≤ U(P∗) ≤ UU (P∗U ) (22)

Meanwhile we can use P∗L and P∗U as approximate strategies
for our original problem (P) with

U(P∗L) ≥ UL(P∗L), U(P∗U ) ≤ UU (P∗U ) (23)

In next section we will focus on solving (PL) and (PU) instead
of (P).

C. Greedy search

In solving (PL) and (PU) instead of the original (P), the
problem reduces to searching over a finite strategy space which
can be done within a finite number of steps dependent on the
size of the network. For the lower bound problem (PL), the
strategy space is on the order of O(NN ), while for the upper
bound problem (PU) the order is O((2N−1)N ). However with
a large scale WLAN network (referring to the number of APs in
the network), these could still be excessively large even though
finite. This is the classical rollout problem in combinatorial
optimization. Below we present a heuristic greedy approach,
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which is shown later through numerical experiment to provide
a near-optimal solution efficiently. The basic idea of a greedy
search method is to maximize the system’s total throughput
w.r.t. a single variable at each stage of the computation while
keeping the others fixed. The details of this approach is shown
in Algorithm 1, where the notation P−m denotes the power
profile for all but AP m, and the objective function U() denote
either UU or UL depending on which problem ((PU) vs. (PL))
we are trying to solve.

Set Pi(0) = Pi,∀i ∈ Ω.
temp = U(P(0)), ε = temp, n = 0.
while ε > 0 do
n := n+ 1;
m := n mod N ;
Pm(n) = argmaxPm∈Q̃m U(Pm,P−m(n− 1));
for j = 1 : N do

if j 6= m
Pj(n) = Pj(n− 1);

end for
ε = |U(P(n))− temp|;
temp = U(P(n));

end
Algorithm 1: Pseudocode for Greedy Search

Lemma 4.7: The above greedy search terminates within a
finite number of steps and reaches a local optimal solution to
(PL) and (PU).

D. Optimal search

In this part, we present a randomized search algorithm that
guarantees convergence to the optimal solution for (PL) and
(PU). The algorithm works in rounds starting from AP 1
and computes the power for one AP in each round. Denote
the state of the system at round n as G(n) and G(n) :=
[P1(n),P2(n), ...,PN (n)]. Suppose at round n AP i’s (i.e.,
i = n mod N ) power is being computed. Then AP i’s
next power level is updated using the following transition
probability:

P(G(n+ 1) = (Pi,G−i(n))|G(n))

=
eU(Pi,G−i(n))/τ(n)

eU(Pi,G−i(n))/τ(n) + eU(G(n))/τ(n)
· 1

Li
,

∀Pi ∈ Q̃i,Pi 6= Pi(n). (24)

with the probability of not changing the power level given as

P(G(n+ 1) = G(n)|G(n))

=
∑

Pi∈Q̃i,Pi 6=Pi(n)

eU(G(n))/τ(n)

eU(Pi,G−i(n))/τ(n) + eU(G(n))/τ(n)
· 1

Li
.

(25)

Here τ(n) := 1
n is a positive smoothing factor and Li is a

normalization factor for user i. This search algorithm will be
referred to as P RAND. As before, the function U() in the

above equation is the objective in problem (PL) (resp. (PU))
if the algorithm is used to search for an optimal solution to
problem (PL) (resp. (PU)).

Set Pi(0) = Pi,∀i ∈ Ω.
temp = U(P(0)), ε = temp, n = 0.
thrs = 10−4. (some small positive value)
// Tune starts here.
while ε > thrs do
n := n+ 1 ;
m := n mod N ;
Set Pm(n) = Pm with probability

eU(Pm,G−m(n))/τ(n)

eU(Pm,G−m(n))/τ(n)+eU(G(n))/τ(n)
· 1
Lm ,∀P

m ∈
Q̃m,Pm 6= Pm(n).
While Pm(n) stays unchanged with probability∑
Pm∈Q̃i,Pm 6=Pm(n)

eU(G(n))/τ(n)

eU(Pm,G−i(n))/τ(n)+eU(G(n))/τ(n)
·

1
Lm .
for j = 1 : N do

if j 6= m
Pj(n) = Pj(n− 1);

end for
ε = |U(P(n))− temp|;
temp = U(P(n));

end
Algorithm 2: Pseudocode for Randomized Search

Theorem 4.8: P RAND converges to the optimal solution to
the two approximate problems (PL) and (PU).

Proof 5: Due to the finiteness of the strategy spaces of
all APs, we can form an N -dimensional positive recurrent
Markov chain, with state at time n given by G(n); there exists
a stationary distribution of this Markov chain.

Now we show the following expression for π is exactly the
stationary distribution of this Markov Chain.

π(G) = T · eU(G)/τ(n),∀G ∈ Q̃ , (26)

where T is the normalization constant. As
∑
G∈Q̃ π(G) = 1

and we have T =
∑
G∈Q̃ e

U(G)/τ(n) , and thus

π(G) =
eU(G)/τ(n)∑
G∈Q̃ e

U(G)/τ(n)
,∀G ∈ Q̃ , (27)

To prove this consider the detailed balance equations. Specifi-
cally consider two states G1 and G2. Notice only when G1 and
G2 differ at one element, the transition probability is positive;
otherwise is zero. We would like to see the following holds

π(G1) · P(G2|G1) = π(G2) · P(G1|G2),∀G1,G2. (28)

When there is only one element difference between the two
states we know

P(G2|G1) = L · eU(G2/τ(n))

eU(G2/τ(n)) + eU(G1/τ(n))
(29)

P(G1|G2) = L · eU(G1/τ(n))

eU(G1/τ(n)) + eU(G2/τ(n))
(30)
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with L being some constant. Therefore we have (28) holds
immediately. And we proved π is indeed the stationary distri-
bution.

Denote G∗ = {P∗} as the set of global maximizers; i.e., the
set of power profiles that maximizes our objectives in (PL) and
(PU) respectively. Suppose there is a state G′ /∈ G∗. We have

π(G
′
) =

eU(G
′
)/τ(n)∑

G∈Q̃ e
U(G)/τ(n)

=
1∑

G∈Q̃ e
(U(G)−U(G′ ))/τ(n)

(31)

For G ∈ G∗ we have U(G)− U(G′) > 0 and

lim
n→∞

(U(G)− U(G
′
))/τ(n)→∞ (32)

and thus

lim
n→∞

π(G
′
) = 0 (33)

and hence by [1] we establish the following

lim
n→∞

π(G ∈ G∗) = 1 (34)

i.e., the Markovian chain converges to the maximization states
with probability 1.

V. NUMERICAL EXPERIMENTS

In this section, we provide simulation results to show system
performance under the greedy and randomized search algo-
rithms (denoted as “Greedy” and “P RAND” in the figures,
respectively). We further compare them with the maximum
transmission power strategy (“Max”), PPHY and PMAC re-
spectively. The WLAN network’s topology used in the experi-
ment is randomly generated, with 10 APs placed according to
a uniform distribution in a square area; this topology is shown
in Fig.2.
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Fig. 2: Topology of the AP Network

A. Optimization with dual effects

We begin by comparing the computed power levels and
the resulting system-wide throughput under the greedy and

randomized search algorithms and the fixed, maximum power
scheme.
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Fig. 3: Output power levels under Greedy Search & P RAND.
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Fig. 4: Comparison of system-wide throughput.

For the first set of results, we fix pc = 0.6 and a maximum
transmission power level of 15 for all APs. The resulting
optimal power profile is depicted in Fig.3. Here to get the
“optimal solution” we utilize P RAND to solve (PL) and (PU)
separately and then choose the one that gives us a better total
throughput. We see that in this case APs (8, 9, 10)’s power
levels are far short of the maximum level. This reflects the
need to avoid excessive interference with each other as they
are clustered in a relatively crowded neighborhood. APs (2, 4)
are sitting relatively “alone” and thus they could transmit at a
higher power. Similar observations can be made at each AP.

Next, the system performance is shown in Fig. 4 as a function
of the attempt rate pc. It is interesting to note the opposite
trends exhibited by using optimal power tuning vs. always using
maximum power levels as the attempt rate increases. As the
network gets busier (more congested with higher attempt rate),
the maximum power levels exacerbates the problem and the
system throughput degrades even though the APs are trying
harder. On the other hand, using optimal power-tune, as the
network becomes more congested, the APs react by decreasing
their transmission powers appropriately so that the system
throughput actually improves. By either the greedy search
or the randomized search algorithm, our optimal power-tune
problem helps achieve a significant throughput performance
improvement compared to the static maximum transmission
power scheme.

We end this part with a look into the convergence per-
formance of P RAND, shown in Fig.5. It is seen that our
randomized search algorithm converges quickly to the end
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solution; under the same simulation setting, the greedy policy
converges to a solution of system throughput at around 1.6.
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Fig. 5: Convergence of P RAND

B. Compare with PPHY
We next compare our optimization model with dual effect

to the model given by PPHY, which tries to maximize the
total rate at the physical layer without considering contention.
The achievable throughput at each AP node (under attempt rate
pc = 0.6 ) is shown in Fig. 6 while the transmission power
returned by PPHY vs. that by P RAND is shown in Fig. 7.
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Fig. 6: AP’s individual throughput

1 2 3 4 5 6 7 8 9 10
0

5

10

15

AP

Po
we

r L
ev

el

 

 

PPHY
P_RAND

Fig. 7: power-tune results

We see a clear difference in how power levels are tuned
and the resulting throughput across different AP nodes. The
reason is that under PPHY each AP treats all other APs
as noise resources. However, due to CSMA/CA, no parallel
transmission would be allowed for APs within the carrier
sensing range and thus the first-order noises (those from the
closest neighbors) could be removed. Therefore APs could
increase their power to some extent without contributing too

much to their neighbors’ noise level. This is why we observe a
few APs with much higher power under P RAND than under
PPHY. By contrast, with only PHY layer optimization APs
cannot take full advantages of the noise-free property of CSMA,
and therefore act conservatively.

To make our comparison complete we present the total
system throughput performance in Fig. 8. We see PPHY is
clearly out-performed by our optimization model especially
under higher attempt rate.
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Fig. 8: Comparison of network’s total throughput

C. Compare with PMAC
We perform a similar comparison with PMAC. We start

with a comparison of overall contention order under different
SNR constraints in Fig.9(under attempt rate pc = 0.6, same
for Fig.10). With a higher base SNR, the required transmis-
sion power is potentially higher under PMAC, and thus the
total contention order increases. The contention order under
P RAND on the other hand stays constant.
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Fig. 9: Contention order comparison

We see that in order to reduce the contention order the APs
again act rather conservatively in reducing their power levels.
This leads to a drop in noise resistance and the overall network
throughput, as shown in Fig.10 and Fig. 11, respectively.

VI. RELATED WORKS

There have been many classical PHY layer power-tune
studies using Shannon’s capacity formula. For example, Kim et
al. investigated a transmit power and carrier sensing threshold
tuning problem for improving spatial reuse in [3]. Chiang et
al. looked into the transmit power control problem through
management of interference, energy and connectivity in [2]. In
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Fig. 10: APs’ individual throughput
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Fig. 11: Comparison of network’s total throughput

[5], Phan et al. investigate distributed power control problem
on physical layer; a distributed algorithm is given and critical
performance criteria, such as convergence are analyzed. In [11],
Tan et al. analyze several multi-user spectrum management
problems with focus on power control.

More recently, power control problems have been analyzed
under game theoretical framework. Sharma et al. proposed a
game theoretical approach for decentralized power allocation
in [6]. In [9], a congestion game model is proposed to analyze
power control problem as a form of resource allocation. Equi-
librium strategies have been given under certain assumptions.
In [12], a power control problem is modeled as repeated
games with strategic users and intervention theory is proposed
to induce target strategy from users. Imperfect monitoring
repeated game model is analyzed in [13] with the assumption
of a Local Spectrum Server (LSS). In [10], Wan et al. consider
a power control problem w.r.t. reducing contention order on the
link layer while keeping the physical layer interference under
certain levels.

In terms of computation, for standard integer optimization (or
combinatorial optimization) problems researchers typically seek
relaxation to convert the problem into a continuous problem in
the hope it can be solved by standard LP or convex algorithms;
in [4], [7], [14], efficient search algorithms have been proposed
to tackle finite space optimization problems.

VII. CONCLUSION

With the proliferation of densely-deployed WLANs, power
tuning becomes a critical problem as it has major impacts on
SNR as well as contention levels in these networks. Prior works
mostly focused on one of these two issues in pursuit of either
higher throughput or lower contention level, but not both.

In this paper, we have investigated the network throughput
optimization problem by optimizing both spatial reuse (MAC)
and SNR (PHY) performance at the same time. We have
presented the complexity of solving the joint optimization
problem and derived approximations to make it tractable.
Then, by analyzing the problem structure, we have proposed
efficient and near-optimal solutions. In order to demonstrate
the effectiveness of our approach, we compared our results with
several models optimizing on only either PHY or MAC layer.
A clear advantage has been demonstrated for the cross-layer
appproach.
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