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Abstract—We revisit the jamming defense problem in a multi-
channel wireless system, using a general formulation of online
learning against an adversary via repeated game-playing. We
provide the explicit form of the worst-case optimal channel-
hopping strategy of a legitimate user in a multi-stage interaction
with a resource-replenishing jamming attacker. Interestingly,
we show that the worst imaginary enemy can be given as an
adversary who behaves in an i.i.d. manner in this multi-stage
interaction, and the optimal strategy of the user is determined by
the induced random walk of the adversarial behavior. In addition
to the jamming defense, our framework is also applicable to other
competitive game problems with finite action spaces.

I. INTRODUCTION

In this paper, we revisit the extensively studied jamming de-

fense problem, using a general formulation of online learning

against an adversary via repeated game-playing. In particular,

we consider the channel-hopping decisions of a legitimate

user evading a jamming attacker in a multi-channel system,

where the jammer (interchangeably attacker or adversary) is

subject to a resource (e.g. power) constraint with possibly

a replenishment process, and meanwhile, no prior statistical

information on the attacking pattern is known to the user.

We consider the minimax optimal strategy of the user in a

multi-stage interaction, i.e., the “worst-case” optimality result,

and we provide the explicit characterization. This leads to a

repeated zero-sum game theoretical framework as our main

solution technique; however, this framework does not originate

from the assumption on the rationality of the jammer or its

motivating payoff, but rather the learner’s (user’s) objective of

optimizing achievable payoff unilaterally.

A big part of the literature on jamming focuses on spe-

cific attack and defense mechanisms, see e.g., [1], [2] for a

collection of jamming attacks and anti-jamming measures. Ex-

amples also include using stronger error detection, correction,

and spreading codes at the physical layer [3], [4], [5], [6],

exploring the vulnerability in the rate adaptation mechanism

of IEEE 802.11 [7], and multi-channel jamming using a single

cognitive ratio [8]. Interestingly, jamming can also be used

by legitimate users to achieve physical layer security in the

presence of an eavesdropper, see e.g., [9], [10], [11].

The interaction between a jammer and a user/defender is

often modeled as a strategic game, and this interaction can

be in terms of respective power control or channel selection

strategies. Examples include a non-zero-sum game formulation

when transmission costs are incurred to both the jammer and

the user [12], a random access game [13], a differential game

between a mobile jammer and mobile users [14], a Stackelberg

game [15] and a zero-sum game [16]. We note that existing

results in general focus on analyzing the one-stage game, while

the multi-stage or the repeated case is often elusive in analysis

and replaced with various approximated problems, e.g. [17].

In this work, we directly analyze a multi-stage jamming

defense problem, and our formulation is applicable in a general

learning context. There has been extensive research in optimal

decision in an adversarial environment in the learning theory

community, e.g. [18], [19], [20] to name a few. Of these

the one closest to our work is [20], where the minimax

optimal strategy is constructively obtained against a budget-

constrained adversary; this can be reduced to a special case

in our formulation as shown in the later sections. Unlike

the model in [20], where the game terminates whenever the

adversary exhausts its budget, the interaction between the

user and the adversary under our formulation continues over

an arbitrary horizon with resource replenishment. Moreover,

the action space of the adversary can be time-varying given

different resource levels over time, which makes the reasoning

process of the user potentially more challenging. In summary,

our contribution is twofold:

• We present a general online learning framework against

a resource-replenishing adversary, which is applicable

to jamming defense as well as other competitive game

problems.

• We explicitly characterize the minimax optimal strategy

for the legitimate user in repeated interactions with the

jammer. Interestingly, we show that the worst adversary

can be one who behaves in an i.i.d. fashion in this multi-

stage interaction, and the optimal strategy of the user is

determined by the induced random walk of the adversarial

behavior.

Explicit characterization of jamming defense strategies from a

dynamic game perspective can also be found in some existing

literature, with distinct system models and behavioral con-

straints as compared to this work (see e.g., [21], [22]). In this

regard, our paper can be viewed as a progression in this line

of work. The remainder of the paper is organized as follows.

Section II formulates the problem, followed by the main results

and analysis in Section III. Section IV discusses extension and

open problems based on this work, and Section V concludes

the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a sequential decision problem of a user against

a jamming attacker (which will be mainly called the adversary



in the rest of this section) in a multi-channel system. We use

[n] := {1, 2, . . . , n} to denote the action space of the user (i.e.,

the indexed set of channels), and [n]0 := {0, 1, . . . , n} the

action space of the adversary, where 0 is the null action (i.e.,

initiating no attack). Assume that the adversary has a finite

amount of resource st at time (or round, used interchangeably)

t, and any non-null action by the adversary consumes a certain

amount of resource; it also obtains replenishment after a round.

In particular, given st and jt which denotes the action taken by

the adversary at t, the resource of the adversary at t+1 is given

by st+1 = ft(st, jt), where ft is a mapping summarizing the

consumption and the replenishment process depending on the

application scenario. An adversarial action jt is feasible at

time t given st if the causality condition ft(st, jt) ≥ 0 holds.

We denote by Ft(st) = {j ∈ [n]0 : ft(st, j) ≥ 0} the feasible

action set of the adversary at t. Let St := {s : Ft(s) = [n]0},

i.e., St is the set of all resource levels such that all actions

in [n] are feasible for the adversary. Let M̂ ∈ R
n×n
+ be a

loss matrix and M =
[

0 M̂
]

an augmented loss matrix,

where 0 is the zero column vector of length n. These matrices

are explained shortly. We denote by ∆n and ∆0
n the spaces

of probability distributions on [n] and [n]0. Given any vector

v = (v1, v2, . . . , vm), define supp(v) = {i : vi > 0}. Define

then ∆0
n(s, t) = {u ∈ ∆0

n : supp(u) ⊆ Ft(s)}, which is the

set of distributions over feasible actions in [n]0. The interaction

between the user and the attacker is then given as follows.

Initialization: The adversary has a finite amount of initial

resource s1. T is a finite time horizon.

For t = 1, 2, . . . , T :

1) The user chooses a distribution wt ∈ ∆n, and an action

it ∈ [n] is realized per wt independently in this round.

2) The adversary chooses a distribution ut ∈ ∆0
n(st, t)

based on its resource st, and an adversarial action jt ∈
[n]0 is realized per ut independently in this round. After

consumption and replenishment, its available resource

for the next round is given by st+1 = ft(st, jt).
3) The user observes jt and suffers a loss given by Mitjt ,

which is the (it, jt)-th entry of M .

Throughout this paper, we make the following assumption.

Assumption 1:

1) The user has perfect recall of all its past actions and the

observed adversarial actions.

2) The user knows the initial budget s1 of the adversary

and the resource dynamics ft for t = 1, 2, . . . , T .

The goal of the user is to choose wt for each round so as

to minimize the expected total loss against all distributions

over adversarial actions in a certain space, which we shall

specify shortly. The strategy of the user can be made either

online or offline, and in general it can be summarized by a

contingency plan described as follows. At time t, the history

of the above game consists of all past actions taken by the

user and the attacker before time t, and the resource levels

up to time t. Let a realization of the history at t be ht =
〈s1, i1, j1, s2, i2, j2, . . . , st−1, it−1, jt−1, st〉 with h1 = s1,

and we denote the set of all possible realizations of the history

by H. Then, the user’s strategy can be given by a mapping

w : H → ∆n, and we denote the space of all such mappings

as A. We adopt the following notion of a (strong) adversary.

It chooses the distribution of adversarial actions following a

mapping u : H → ∆0
n such that u(ht) ∈ ∆0

n(st, t) given the

realization of history ht up to time t; we denote the space of

all such mappings as A0. The user’s objective is to minimize

the worst-case loss:

min
w∈A

max
u∈A0

E

{

T
∑

t=1

w(ht)
⊤Mu(ht)

}

. (1)

Note that we could also consider a weaker adversary, who

chooses adversarial actions according to a mapping u : R ×
N → ∆0

n such that u(st, t) ∈ ∆0
n(st, t) given the resource

level st at time t. As we show later, this weak adversary can

be as capable as a strong adversary in the context of the above

decision problem for the user.

While we have not explicitly stated whether the adversary

is strategic, the minimax formulation means that the user

shall treat the adversary as strategic. More specifically, let

W (w, u) = −E

{

∑T
t=1 w(ht)

⊤Mu(ht)
}

= −U(w, u), and

consider a zero-sum strategic game G where the two players

are respectively given the strategy spaces A and A0 with

the payoff functions W , U . Then, a Nash equilibrium (NE)

strategy for player 1 (the user) in G is exactly a minimaximizer

of (1). The above game theoretical interpretation of (1) regards

the entire rounds of interaction as a one-shot game. On the

other hand, the sequential interaction between the two players

results in an extensive game Γ with simultaneous moves,

where any realization of the history labels a particular node

in the game tree. There exists at least one subgame perfect

equilibrium (SPE) for Γ [23], which is also a NE of G. Hence,

the minimaximizer of (1) exists. We denote by (w∗, u∗) a pair

of SPE (or simply equilibrium when there is no ambiguity)

strategies for the user and the attacker, and this pair will

also be called an optimal solution to (1); in particular w∗

is a minimaximizer to (1) and u∗ a corresponding maximizer

given w∗. Also, note that the pair (u∗, w∗) is a solution to the

problem

max
u∈A0

min
w∈A

E

{

T
∑

t=1

w(ht)
⊤Mu(ht)

}

. (2)

For technical reasons, we will consider a slightly perturbed

version of problem (1) as an intermediate step in our analysis.

Let ǫ : R → R+ be a strictly increasing function parameterized

by ǫmax, such that ǫ(s) ≤ ǫmax for all s ∈ R+, where ǫmax

is a predetermined constant. The perturbed problem is then

given by

min
w∈A

max
u∈A0

E

{

T
∑

t=1

w(ht)
⊤Mu(ht) + ǫ(sT )

}

. (3)

With a similar argument used for (1), we can show an

minimax-optimal solution exists for (3), which coincides with



the SPE of the extensive game induced by (3). For the

perturbed problem, we will inherit all the notation from (1),

e.g., w∗ is an optimal solution to (3). We note that if (w∗, u∗)
is a solution to (3), the resulting loss in (1) is at most ǫmax

more than the optimal minimax loss, and a similar result holds

for (2), as shown in the following lemma. Due to the limit of

space, proofs for the preliminary results in this section are

omitted.

Lemma 1: Let

ℓ(w) := max
u∈A0

E

{

T
∑

t=1

w(ht)
⊤Mu(ht)

}

and

g(u) := min
w∈A

E

{

T
∑

t=1

w(ht)
⊤Mu(ht)

}

.

If ŵ∗ and û∗ are respective optimal solutions to (1) and (2),

then ℓ(w∗) ≤ ℓ(ŵ∗) + ǫmax and g(u∗) ≥ g(û∗)− ǫmax.

We proceed with the following assumptions.

Assumption 2:

1) ft is strictly increasing in the first argument.

2) ft(s, 0) > ft(s, i) for all i ∈ [n] and s ≥ 0.

Our first result states in searching for the optimal strategy of

the user we can limit our attention to a space smaller than A;

similarly, we can reduce the search space for the adversary’s

strategy. In fact, it can be reduced to that of a weak adversary

as defined earlier. Let Ã := {w ∈ A : w(ht) = w(h′
t), if st =

s′t, ∀t} and let Ãt := {w ∈ A : w(hτ ) = w(h′
τ ), if sτ =

s′τ , ∀τ ≥ t}, hence Ã = Ã1. Similarly, we define Ã0 as a

subset of A0 and Ã0
t .

Lemma 2:

min
w∈A

max
u∈A0

E

{

T
∑

t=1

w(ht)
⊤Mu(ht) + ǫ(sT )

}

= min
w∈Ã

max
u∈Ã0

E

{

T
∑

t=1

w(ht)
⊤Mu(ht) + ǫ(sT )

}

.

This result shows that actions in an optimal strategy can be

identical for any two nodes in the game tree labeled by ht

and h′
t as long as st = s′t (i.e., Markovian in terms of st).

Hence, we can reduce the representation of the label of node

from the full history ht to a two-tuple (st, t). With slight abuse

of notation, we denote w(ht) as w(st, t) for all w ∈ Ã, and

denote by (w∗, u∗) ∈ Ã × Ã0 an optimal solution to (3). We

will refer to a subgame rooted at a node labeled by (st, t) as a

subgame (st, t), and we define the payoff of a subgame (st, t)
for the adversary using u∗ provided w∗ as

U∗
t (st) := E

{

T
∑

τ=t

w∗(sτ )
⊤Mu∗(st) + ǫ(sT )

∣

∣

∣

∣

st

}

= max
u∈Ã0

min
w∈Ã

E

{

T
∑

τ=t

w(sτ )
⊤Mu(st) + ǫ(sT )

∣

∣

∣

∣

st

}

.

Using the perturbation term, we next show the monotonicity

of U∗
t .

Lemma 3: U∗
t (st) is strictly increasing in st for all t.

With the above preliminary results, we proceed in the next

section showing our main optimality results.

III. OPTIMALITY RESULTS: DIAGONAL M̂

In this section, we assume M̂ = diag(c1, c2, . . . , cn). This

corresponds to the loss induced by a binary collision model,

and the generalization is discussed in Section IV. We present

the following main results.

Theorem 1:

1) The optimal strategy of the user in problem (3) is to

optimally respond to an attacker, who (a) either takes

the null action with probability one or takes action i
with probability qi := 1/ci∑

n
j=1

1/cj
for all i ∈ [n] when

st ∈ St, and (b) takes the null action with probability

one when st /∈ St.

2) Under certain conditions on the resource dynamics

ft, t = 1, 2, . . . , T , the optimal strategy of the user in

problem (1) is to optimally respond to an adversary,

who (a) randomizes independently and identically at

each round and takes action i with probability qi when

st ∈ St, and (b) takes the null action with probability

one when st /∈ St.

We will refer to the first part of the above theorem as the

basic characterization, and the second part as the characteri-

zation with structure on the replenishment. We also study the

asymptotic average worst-case cost of the user applying the

optimal strategy at the end of this section.

A. Basic characterization

We proceed with a series of characterization on the optimal

strategy as shown in the following lemmas.

Lemma 4: Any SPE strategy u∗ ∈ Ã0 for the adversary is

such that either u∗
0(st, t) = 1 or supp(u∗(st, t)) ⊇ [n].

Proof: Let (w∗, u∗) ∈ Ã×Ã0 be a pair of SPE strategies.

Assume that u∗
0(st, t) < 1, and let N := [n]−supp(u∗(st, t)).

If N 6= ∅, then supp(w∗(st, t)) ⊆ N , i.e., supp(w∗(st, t)) ∩
supp(u∗(st, t)) = ∅. Otherwise, the payoff of any subgame

(st, t) for the user using w∗ provided u∗, which is given by

W ∗
t (st) := E

{

−
T
∑

τ=t

w∗(sτ , τ)
⊤Mu∗(sτ , τ)− ǫ(sT )

∣

∣

∣

∣

st

}

=
n
∑

i=1

w∗
i (st, t)(−u∗

i (st, t)ci +
n
∑

j=0

u∗
j (st, t)W

∗
t+1(ft(st, j)))

= −
n
∑

i=1

w∗
i (st, t)u

∗
i (st, t)ci +

n
∑

j=0

u∗
j(st, t)W

∗
t+1(ft(st, j)),

(4)

can be strictly improved by reallocating the probability mass

on any action i ∈ supp(u∗(st, t)) to an action j ∈ N .

Then, we have

U∗
t (st) = u∗

0(st, t)U
∗
t+1(ft(st, 0))+

+

n
∑

i=1

u∗
i (st, t)(w

∗
i (st, t)ci + U∗

t+1(ft(st, i))) (5)



=
∑

i∈supp(u∗(st,t))

u∗
i (st, t)U

∗
t+1(ft(st, i))

< U∗
t+1(ft(st, 0)),

where the last inequality is due to Assumption 2 and Lemma 3.

Hence, the payoff of the adversary can be strictly improved

by choosing the null action with probability one, which

contradicts the fact that u∗ is a SPE strategy. Therefore,

supp(u∗(st)) ⊇ [n].

Lemma 5: For a pair of SPE strategies (w∗, u∗), if

supp(u∗(st, t)) ⊇ [n], then supp(w∗(st, t)) = [n].

Proof: Without loss of generality, assume that ft(st, i) ≥
ft(st, j) for any i ≥ j > 0. Assume that there exists i1 ∈
[n] such that i1 /∈ supp(w∗(st, t)). Since U∗

t+1(ft(st, 0)) >
U∗
t+1(ft(st, i1)), by reallocatng the probability mass to the

null action, the adversary can strictly improve its payoff of

any subgame (st, t), thus resulting in a contradiction.

Lemma 6: Given any pair of SPE strategies (w∗, u∗), then

u∗
i (st, t) = qi(1− u∗

0(st, t))

for all i ∈ [n], and when u∗
0(st, t) < 1,

w∗
i (st, t) =

U∗
t (st)− U∗

t+1(ft(st, i))

ci
.

Proof: For u∗, the result is trivial when u∗
0(st, t) = 1.

Assuming u∗
0(st, t) < 1, we then have supp(u∗(st, t)) ⊇ [n]

by Lemma 4, and thus supp(w∗(st, t)) = [n] by Lemma 5.

Hence, referring to (4) by the indifference condition of equi-

librium points, we have

u∗
i (st, t)ci = u∗

j(st, t)cj

for all i, j ∈ [n]. Therefore, u∗
i (st, t) = qi(1 − u∗

0(st, t)). For

w∗, referring to to (5), we have

w∗
i (st, t)ci + U∗

t+1(ft(st, i)) = U∗
t (st),

for all i ∈ [n], and the result follows.

Lemma 7: Let (w∗, u∗) be a pair of SPE strategies. If 0 <
u∗
0(s, t) < 1 for some s ∈ St and t, then there exists a strategy

ũ such that ũ0(s, t) = 0 for all s ∈ St and t, and (w∗, ũ) is

a pair of SPE strategies. The space of such strategies will be

denoted by A†.

Proof: Assume that 0 < u∗
0(st, t) < 1 for some st ∈

St and t. Then, by Lemma 6 we have supp(u∗) ⊇ [n] and

u∗
i (st, t) =

1/ci∑
n
j=1

1/cj
(1− u∗

0(st, t)) for all i ∈ [n]. Also,

U∗
t (st) = w∗

i ci + U∗
t+1(ft(st, i))

for all i ∈ [n], where U∗
t+1(ft(st, i)) only depends on u∗(·, τ)

and w∗(·, τ) for all τ > t. Consider an alternative strategy

for the adversary such that ũ = u∗ except ũ0(st, t) = 0

and ũi(st, t) =
1/ci∑

n
j=1

1/cj
. Referring to (4), we note that the

continuation part (i.e., the second term) of the user’s payoff

of the subgame rooted at (st, t) is independent of the user’s

action at t, and note also the values of ũi(st, t)ci are equal

among all i ∈ [n]. Hence, given ũ, the user has no incentive

to deviate from w∗. On the other hand, the adversary’s payoff

of the subgame rooted at (st, t) using ũ given w∗ is

n
∑

i=1

ũi(st, t)(w
∗
i ci + U∗

t+1(ft(st, i))) = U∗
t (st).

Therefore, (w∗, ũ) is a pair of SPE strategies. Repeating this

argument on ũ whenever necessary, we can obtain a SPE

strategy of the attacker as described in the lemma.

The above results are summarized in the first part of

Theorem 1, which we reproduce in the following theorem.

Theorem 2: The optimal strategy of the user for the prob-

lem (3) is to optimally respond to an attacker, who (a) either

takes the null action with probability one or takes action i with

probability qi when st ∈ St, and (b) takes the null action with

probability one when st /∈ St.

In some application instances, we can reason that the

adversary would not use the null action in the perturbed

problem and extend this conclusion to the original one, and

hence obtain an explicit form of the user’s optimal strategy.

Example. Assume that ft(s, i) < s for all i ∈ [n], and

ft(s, 0) = s. Let δmin := infs≥0,i∈[n](s − ft(s, i)), and

assume that δmin > 0. Let T > s1
δmin

. Note that whenever

u0(st, t) = 1, the game is equivalently shortened by one time

step. Hence, we can reduce the strategy space of the adversary

to the set of strategies such that u0(st, t) = 0 for all t when-

ever st ∈ St. Then, we have u∗
i (st, t) = qi for all t whenever

st ∈ St. Hence, the adversary’s equilibrium strategy is to

identically and independently randomize before exhausting the

resource. Note that u∗ we obtained is independent from the

perturbation parameter ǫmax, and moreover, using Lemma 1

we have g(u∗) ≥ g(û∗) − ǫmax for any ǫmax > 0, where

g(û∗) is the optimal value of (2). Hence, u∗ is an optimal

solution to (2), and an optimal strategy of the user in (1) is to

optimally respond to this belief on the adversarial behavior. In

particular, it has the structure shown in Lemma 6 by setting

the perturbation term to zero. Let T (st) be the minimum time

τ such that sτ /∈ Sτ given the resource level st at t, when the

action iτ taken by the adversary at each round τ ≥ t is i.i.d.

with the distribution q = (qi, i ∈ [n]). Note that

ET (st) = E

{

T
∑

τ=t

1(sτ ∈ Sτ )

∣

∣

∣

∣

st

}

,

and

E{w∗
iτ (sτ , τ)ciτ | st}

= E{w∗
iτ (sτ , τ)ciτ | sτ ∈ Sτ , st} · P(sτ ∈ Sτ | st)

=
1

∑

j=1 1/cj
E{1(sτ ∈ Sτ ) | st}.

Then,

U∗
t (st) = E

{

T
∑

τ=t

w∗
iτ (sτ , τ)ciτ

∣

∣

∣

∣

st

}

=
1

∑

j=1 1/cj
E

{

T
∑

τ=t

1(sτ ∈ Sτ )

∣

∣

∣

∣

st

}



=
1

∑

j=1 1/cj
ET (st),

and the optimal strategy of the user is given by

w∗
i (st, t) =

U∗
t (st)− U∗

t+1(ft(st, i))

ci

=
1

∑

j=1 1/cj

ET (st)− ET (ft(st, i))

ci

before T (st). In fact, this is the optimal strategy found by

Abernethy and Warmuth constructively in [20].

B. Characterization with structure on the replenishment

The difficulty of applying Theorem 2 is that we have to

determine whether the adversary chooses the null action with

probability one even when all non-null actions are feasible.

Intuitively, the only incentive for the adversary to take the

null action in such cases is to save resources for a rainy day.

However, this incentive goes away if it eventually takes a non-

null action and the resource dynamics from that point on is

the same had it switched the order of these two actions. This

intuitive argument suggests that with more structure imposed

on the resource dynamics ft, t = 1, 2, . . . , T , we may be able

to conclude a more explicit form on the user’s optimal strategy

as shown in the above example. Indeed, we make the following

assumption on the structure of the resource dynamics, and

justify our previous conjecture in Lemma 8.

Assumption 3:

1) ft+1(ft(s, i), j) = ft+1(ft(s, j), i) for any i, j ∈ [n]
and all t .

2) For any s ∈ St and t < T , ft(s, 0) ∈ St+1 and there

exists i ∈ [n] such that ft(s, i) ∈ St+1.

Let v be the value of a stage game when all non-null

actions are feasbile, i.e., v := minw∈∆n
maxu∈∆0

n
w⊤Mu =

1∑
n
j=1

1/cj
, and let qmin := mini∈[n] qi. Set ǫmax < qminv.

Lemma 8: If (w∗, u∗) is a pair of SPE strategies and u∗ ∈
A†, then u∗

0(s, t) = 0 for any s ∈ St and all t.

For the sake of readability, the lengthy proof of the above

lemma is placed in the appendix, and it proves the second part

of Theorem 1, which is repeated in the following theorem.

Theorem 3: The user’s optimal strategy in (1) is to opti-

mally respond to an adversary, who (a) randomizes indepen-

dently and identically at each round and takes action i with

probability qi when st ∈ St, and (b) takes the null action with

probability one when st /∈ St.

Proof: Lemma 8 directly proves the above claim for the

perturbed problem (3). Using the same argument as shown in

the example after Theorem 2, we conclude that the described

adversarial strategy is also an equilibrium strategy in the

original problem (1), and the result follows.

The optimal strategy of the user is then given as in

Lemma 6, where U∗ can be similarly estimated using Monte-

Carlo method as in [20].

C. Asymptotics

We next consider the average worst-case cost κ using the

minimax optimal strategy, which is given by

κ := lim sup
T→∞

min
w∈A

max
u∈A0

E

{

1

T

T
∑

t=1

w(ht)
⊤Mu(ht)

}

. (6)

In this part, we assume a stationary and linear resource

replenishment process, that is,

ft(s, i) = f(s, i) = s− di + γ

for all i ∈ [n]0, where di is the resource cost of action i and

γ is the resource replenishment rate. We assume d0 = 0 and

without loss of generality, suppose 0 = d0 ≤ d1 ≤ . . . ≤ dn.

We also assume that γ ≥ d1. Hence, f satisfies Assumption 2

and 3. Let sth = min{dn − γ, 0}, and then St = [sth,∞).
Consequently, using Theorem 3, we can regard the attacker

as behaving randomly and taking action from [n] with the

probability distribution q whenever s ≥ sth, and choosing the

null action with probability one if short of resource. Let St

be the random process of the attacker’s resource level. Let

Xt := 1(St ≥ sth). Let Ct ∈ {c1, . . . , cn} be an i.i.d. process

with P(Ct = ci) = qi for all i, and similarly we define a

process Dt ∈ {d1, . . . , dn}. Moreover, we assume that Ct and

Dt are respectively independent from all Xs with s < t. Then,

the resource dynamics can be written as

St+1 = St −DtXt + γ,

and the average cost of the user is given by

κ = lim sup
T→∞

E

{

1

T

T
∑

t=1

CtXt

}

= lim sup
T→∞

1

T

T
∑

t=1

ECtEXt

= ECt · ρ =
n

∑n
j=1 1/ci

· ρ,

where ρ := lim sup
T→∞

E

{

1
T

∑T
t=1 Xt

}

. Note that St admits a

stationary distribution (i.e. stable) if and only if EDt > γ.

Indeed, consider the two auxiliary queues S′
t and S′′

t that

are given by S′
t+1 = S′

t − Dt + γ, and S′′
t+1 = max{S′′

t −
Dt, sth} + γ. Then, S′

t ≤ St ≤ S′′
t and the two auxiliary

queues are positive recurrent if and only if EDt > γ. When

St is stable, we have

0 = lim
T→∞

1

T

(

Tγ −
T
∑

i=1

E[DtXt]

)

= lim
T→∞

(

γ − EDt · E

{

1

T

T
∑

t=1

Xt

})

= γ − EDt · ρ.

Hence, when St is stable, ρ = γ
EDt

=
γ
∑

n
j=1

1/cj∑
n
i=1

di/ci
< 1 and

κ =
γ

1
n

∑n
i=1 di/ci

=
γ

α
,

where α := 1
n

∑n
i=1 di/ci can be interpreted as the average

cost-gain ratio of adversarial actions. When EDt < γ, St



grows unbounded and we have ρ = 1. Thus, κ = n∑
n
j=1

1/cj

in this case, the harmonic mean of ci’s.

IV. EXTENSION AND OPEN PROBLEMS

In the previous section, we presented the minimax optimal

strategy of the user when the cost matrix is assumed to be

diagonal, which models binary collision. There are a number

of open problems arising from this work.

A. Non-negative M̂

Moving from the binary collision model to a more general

interference model, we will need to revisit our problem with an

arbitrary non-negative cost matrix. We observe that the theory

we developed so far for the diagonal M̂ applies trivially to

the case when M̂ = D+ c11⊤, when D is a diagonal matrix,

i.e., M̂ij is a constant c for all off-diagonal entries, by simply

noting that w⊤M̂u = w⊤(D+ c11⊤)u = w⊤Du+ c. A more

interesting case that can be reduced to a diagonal one is when

M̂ is a multiple of a doubly-stochastic matrix Q, i.e., M̂ = zQ
for some z > 0. We proceed with the following fact.

Lemma 9 ([24]): If each row sum of a non-singular matrix

is a constant z, then each row sum of its inverse matrix is 1/z.

The same applies to the column sums.

Hence, M̂−11 = 1⊤M̂−1 = 1/z. Consider then the

following construction. Let D̂ = diag−1(1⊤M̂−1) = zI , and

let D =
[

0 D̂
]

. For any û ∈ ∆0
n, let u = Kû where K :=

[

1

M̂−1D̂

]

. Then, Mu =
[

0 M̂
]

[

1

M̂−1D̂

]

û = Dû.

Let Θ = {Kû | û ∈ ∆0
n}. Note that û = K−1u ∈ ∆0

n

for any u ∈ ∆0
n. Hence, Θ ⊇ ∆0

n. Consider a mapping

u : H → Θ, and denote the space of all such mappings as

AΘ. Let V (w, u) := E

{

∑T
t=1 w(ht)

⊤Mu(ht)
}

. Then,

max
u∈A

min
w∈A

V (w, u) ≤ max
u∈AΘ

min
w∈A

V (w, u) = max
û∈A

min
w∈A

V (w, u).

For the problem on the right-hand side, our previous result

implies that û∗
i (ht) = qi(1 − û∗

0(ht)) = 1
n (1 − û∗

0(ht)).
Interestingly, u(ht) = Kû∗(ht) is in fact equal to û∗(ht).
Hence, we obtain an optimal solution to the problem on the

left-hand side. However, a natural interference model may not

be captured by a doubly stochastic structure.

B. Conversion to a gain formulation

In this work, we focused on the loss formulation for the user

instead of a gain perspective. The problem could be revisited

with a gain matrix for the user, and the role of min-max would

be exchanged for the user and the attacker. Unlike the loss for-

mulation, we could have developed a theory of the adversarial

channel capacity in the presence of a jammer, which would be

in parallel to the asymptotic result presented in the previous

section. The two formulations are intuitively equivalent in the

sense that a gain formulation can always be converted to a

loss one by setting the gain matrix as the difference between

a multiple of the all-one matrix and a loss matrix. However, the

solution technique requires the full characterization of optimal

strategies with an arbitrary non-negative loss matrix, as stated

in the first open problem. Moreover, we note a fundamental

difference can be found in the rationale of decision for the

user between the two formulations, which in turn suggests

that the user’s optimal strategy may be considerably different

even for other categories of loss matrices compared to the

results for diagonal-related ones. As shown before, the user

would strictly prefer a channel that is not in the support of the

attacker’s strategy in the loss setting, so as to incur no cost.

However, the user would prefer to risk using a channel on

which the attacker puts positive probability mass, if the gain

of this action is much higher than that of a jamming-free one,

thus favorable in expectation.

V. CONCLUDING REMARK

We presented the optimal strategy of the user to suffer

the least worst-case cost from jamming attacks. The diagonal

(i.e. binary collision) cost structure played a pivotal role in

our techniques, and meanwhile we noticed they may not

be directly applicable for an arbitrary interference model. A

possibly different rationale in reasoning would be necessary

to accommodate this further generalization as well as the

promising notion of adversarial channel capacity, as shown in

our previous discussion. Instead of considering the worst-case

optimality, using the typical regret measure and investigating

no-regret strategies is also an interesting direction of future

research.
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APPENDIX

Proof of Lemma 8: Assume that there exist s and t such

that s ∈ St and u∗
0(s, t) = 1. Then, there exists σ and τ such

that σ ∈ Sτ , t ≤ τ < T , u∗
0(σ, τ) = 1 and u∗

0(s
′, t′) = 0 for

all s′ ∈ St′ for all t′ > τ ; otherwise, u∗
0(s

′′, T ) = 1 for some

s′′ ∈ ST , which is clearly not an equilibrium strategy for the

adversary. If τ = T − 1, then

U∗
T−1(σ) = U∗

T (fT−1(σ, 0))

=
n
∑

i=1

qiw
∗
i (fT−1(σ, 0), T )ci + ǫ(fT−1(σ, 0)) ≤ v + ǫmax.

Consider an alternative strategy ũ such that ũ = u∗ except

that ũi(σ, T − 1) = qi. Then,

ŨT−1(σ) :=
n
∑

i=1

qi(w
∗
i (σ, T − 1)ci + U∗

T (fT−1(σ, i)))

= v +

n
∑

i=1

qiU
∗
T (fT−1(σ, i)).

Let k ∈ [n] be such that fT−1(σ, k) ∈ ST . Then ŨT−1(σ) ≥
v + qkv ≥ v + qminv. Hence ŨT−1(σ) > U∗

T−1(σ), which

contradicts the fact that u∗ is a SPE strategy. Thus, τ < T −1.

Now consider a particular subgame with the full label hσ
τ such

that sτ = σ. We will alternate u∗ and construct inductively

a sequence of strategies that only differ from u∗ within this

subgame. These alternative strategies will be in A0−Ã0, i.e.,

it can depend on the past actions instead of only the resource

level, and we will show that the last strategy of this sequence

strictly improves the payoff of the adversary. To make the

dependency on the full history explicit, we use the notation

Ut(w, u, ht) := E

{

T
∑

r=t

w(hr)
⊤Mu(hr) + ǫ(sT )

∣

∣

∣

∣

ht

}

for the value of the subgame labeled by ht, and denote u(ht)
as the strategy of the adversary at the node ht of the game

tree. To simplify our notation, since w∗ ∈ A† ⊆ Ã, we will

keep write w∗(s, t) as the strategy of the user at some node

ht such that st = s. Note that

U∗
τ (h

σ
τ ) := Uτ (w

∗, u∗, hσ
τ )

=

n
∑

i=1

w∗
i (σ, τ)U

∗
τ+1

(

〈hσ
τ , i, 0, fτ(σ, 0)〉

)

= v +

n
∑

i=1

w∗
i (σ, τ)

n
∑

l=1

n
∑

j=1

w∗
l (fτ (σ, 0), τ + 1)qj ·

· U∗
τ+2

(

〈hσ
τ , i, 0, fτ(σ, 0), l, j, fτ+1(fτ (σ, 0), j)〉

)

.

and U∗
τ+2

(

〈hσ
τ , i, 0, fτ(σ, 0), l, j, fτ+1(fτ (σ, 0), j)〉

)

only de-

pends on fτ+1(fτ (σ, 0), j) since w∗, u∗ ∈ Ãτ+2. Denote then

this number by Vτ+2(fτ+1(fτ (σ, 0), j)). Hence,

U∗
τ (h

σ
τ ) = v +

n
∑

i=1

w∗
i (σ, τ)

n
∑

j=1

qjVτ+2(fτ+1(fτ (σ, 0), j)).

Let i1 and j1 be such that i1 ∈ supp(w∗(σ, τ)) and

fτ (σ, j1) ∈ Sτ+1, where j1 exists due to our assump-

tion. Consider an alternative strategy u(1) such that u(1) =

u∗ except that u
(1)
i (hσ

τ ) = qi for all i ∈ [n] and

u
(1)
0 (〈hσ

τ , i, j, fτ(σ, j)〉) = 1 for all i, j ∈ [n]. Then,

U (1)
τ (hσ

τ ) := Uτ (w
∗, u(1), hσ

τ ) =

n
∑

i=1

qiw
∗
i (σ, τ)ci+

+

n
∑

i=1

n
∑

j=1

w∗
i (σ, τ)qjU

(1)
τ+1

(

〈hσ
τ , i, j, fτ (σ, j)〉

)

= v +

n
∑

i=1

w∗
i (σ, τ)

n
∑

j=1

qjU
(1)
τ+1

(

〈hσ
τ , i, j, fτ(σ, j)〉

)

(9)

= v +

n
∑

i=1

w∗
i (σ, τ)

n
∑

j=1

qj

n
∑

l=1

w∗
l (fτ (σ, j), τ + 1)·

· U
(1)
τ+2

(

〈hσ
τ , i, j, fτ (σ, j), l, 0, fτ+1(fτ (σ, j), 0)〉

)

= v +

n
∑

i=1

w∗
i (σ, τ)

n
∑

j=1

qj

n
∑

l=1

w∗
l (fτ (σ, j), τ + 1)·

· U
(1)
τ+2

(

〈hσ
τ , i, j, fτ (σ, j), l, 0, fτ+1(fτ (σ, 0), j)〉

)

U
(1)
τ+2

(

〈hσ
τ , i, j, fτ (σ, j), l, 0, fτ+1(fτ (σ, 0), j)〉

)

only depends

on fτ+1(fτ (σ, 0), j) and is equal to Vτ+2(fτ+1(fτ (σ, 0), j))
by noting that u(1) ∈ Ãτ+2 and u(1) = u∗ at any node ht

with t ≥ τ + 2 by construction, so we have

U (1)
τ (hσ

τ ) = v +

n
∑

i=1

w∗
i (σ, τ)

n
∑

j=1

qjVτ+2(fτ+1(fτ (σ, 0), j))



U
(k)
τ+k(h

σ
τ+k) =

n
∑

i=1

w∗
i (σ

(k), τ + k)U
(k)
τ+k+1

(

〈hσ
τ+k, i, 0, fτ+k(σ

(k), 0)〉
)

(7)

= v +
n
∑

i=1

w∗
i (σ

(k), τ + k) ·
n
∑

l=1

n
∑

j=1

w∗
l (fτ+k(σ

(k), 0), τ + k + 1)qj ·

· U
(k)
τ+k+2

(

〈hσ
τ+k, i, 0, fτ+k(σ, 0), l, j, fτ+k+1(fτ+k(σ

(k), 0), j)〉
)

= v +
n
∑

i=1

w∗
i (σ

(k), τ + k)
n
∑

j=1

qjVτ+k+2(fτ+k+1(fτ+k(σ
(k), 0), j)),

U
(k+1)
τ+k (hσ

τ+k) =

n
∑

i=1

qiw
∗
i (σ

(k), τ + k)ci +

n
∑

i=1

n
∑

j=1

w∗
i (σ

(k), τ + k)qjU
(k+1)
τ+k+1

(

〈hσ
τ+k, i, j, fτ+k(σ

(k), j)〉
)

(8)

= v +

n
∑

i=1

w∗
i (σ

(k), τ + k)

n
∑

j=1

qj

n
∑

l=1

w∗
l (fτ+k(σ

(k), j), τ + k + 1)·

· U
(k+1)
τ+k+2

(

〈hσ
τ+k, i, j, fτ+k(σ

(k), j), l, 0, fτ+k+1(fτ+k(σ
(k), j), 0)〉

)

= v +

n
∑

i=1

w∗
i (σ

(k), τ + k)

n
∑

j=1

qj

n
∑

l=1

w∗(fτ+k+1(σ
(k), 0), τ + k + 1)·

· U
(k+1)
τ+k+2

(

〈hσ
τ+k, i, j, fτ+k(σ

(k), j), l, 0, fτ+k+1(fτ+k(σ
(k), 0), j)〉

)

= v +
n
∑

i=1

w∗
i (σ

(k), τ + k)
n
∑

j=1

qjVτ+k+2(fτ+k+1(fτ+k(σ
(k), 0), j)) = U

(k)
τ+k(h

σ
τ+k).

= U∗
τ (h

σ
τ ),

i.e., u(1) does not change the value of the subgame labeled

by hσ
τ , and also by (9), for each i ∈ supp(w∗(σ, τ)), the

subgame labeled by 〈hσ
τ , i, j, fτ(σ, j)〉 can be reached with

positive probability under the strategy w∗ and u(1), and

hence U
(1)
τ+1

(

〈hσ
τ , i, j, fτ (σ, j)〉

)

has a positive weight in the

evaluation of U
(1)
τ (hσ

τ ) as well U∗
τ (h

σ
τ ) for all i ∈ [n].

Let fτ,τ+k−1(σ, j1, . . . , jk)

:= fτ+k−1(fτ,τ+k−2(σ, j1, . . . , jk−1), jk),

where fτ,τ(σ, j1) := fτ (σ, j1), and fτ,τ−1(σ) := σ, and let

σ(k) := fτ,τ+k−1(σ, j1, . . . , jk). That is, σ(k) is the resource

level at τ+k when the resource level at τ is σ and the actions

taken by the adversary from τ to τ + k − 1 are given by

j1, j2, . . . , jk. Also, let hσ
τ+k := 〈hσ

τ+k−1, ik, jk, σ
(k)〉, where

ir and jr are chosen such that ir ∈ supp(w∗(σ(r−1), τ+r−1))
and σ(r) ∈ Sτ+r for all r = 1, 2, . . . , k − 1, which is feasible

by our assumption.

Suppose that we have constructed a sequence of strate-

gies u(r) based on u(r−1) for r = 1, 2, . . . , k, such that

u(r) = u(r−1) except that in the subgame labeled by

hσ
τ+r−1 we set u

(r)
i (hσ

τ+r−1) = qi for all i ∈ [n] and

u
(r)
0 (〈hσ

τ+r−1, i, j, fτ+r−1(σ
(r−1), j)〉) = 1 for all i, j ∈ [n],

which implies that u(r) ∈ Ãτ+r+1 and u(r) = u(r−1) at

all nodes ht with t ≥ τ + r + 1. Suppose the constructed

strategies satisfy that U
(r)
τ+r−1(h

σ
τ+r−1) = U

(r−1)
τ+r−1(h

σ
τ+r−1)

where U
(r)
τ+r−1(h

σ
τ+r−1) := Uτ+r−1(w

∗, u(r), hσ
τ+r−1) and

U
(0)
τ := U∗

τ for all r, which implies U
(k)
τ (hσ

τ ) = U∗
τ (h

σ
τ ).

Also, suppose each subgame labeled by hσ
τ+r can be reached

with positive probability under w∗ and u(r) for all r =

1, 2, . . . , k, which implies that U
(k)
τ+k(h

σ
τ+k) has a positive

weight in in the evaluation of U
(k)
τ (hσ

τ ).
Consider then a strategy u(k+1) such that u(k+1) =

u(k) except that in the subgame labeled by hσ
τ+k

we set u
(k+1)
i (hσ

τ+k) = qi for all i ∈ [n] and

u
(k+1)
0 (〈hσ

τ+k, i, j, fτ+k(σ
(τ+k))〉) = 1 for all i, j ∈ [n].

Then, u(k+1) ∈ Ãτ+k+2 and u(k+1) = u(k) at all nodes

ht with t ≥ τ + k + 2. Consequently, we have (7), where

Vτ+k+2(fτ+k+1(fτ+k(σ
(k), 0), j)) is some number that only

depends on fτ+k+1(fτ+k(σ
(k), 0), j); on the other hand,

we have (8). Hence, U
(k)
τ (hσ

τ ) = U∗
τ (h

σ
τ ). Also, by (8),

U
(k+1)
τ+k+1(h

σ
τ+k+1) has a positive weight in in the evaluation

of U
(k)
τ (hσ

τ ), which completes our induction.

This inductive construction can proceed until τ + k =

T − 1, and we have u
(T−1−τ)
0 (hσ

T−1) = 1 where σT−1−τ ∈
ST−1. However, by further modifying u(T−1−τ) as shown

in the beginning of this proof, we can strictly improve

U
(T−1−τ)
T−1 (hσ

T−1), thus increasing U
(T−1−τ)
τ (hσ

τ ) so as to be

greater than U∗
τ (h

σ
τ ), which is a contradiction to the fact that

u∗ is a SPE strategy.


