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Abstract The study of cyber-insurance, both as a method for transferring residual
cyber-security risks, and as an incentive mechanism for internalizing the external-
ities of security investments in interdependent systems, has received considerable
attention in the literature. On one hand, it has been shown that competitive insur-
ance markets, even though ensuring user participation, fail to improve the overall
network security. On the other hand, existing literature illustrates how a monopo-
list insurer can induce socially optimal behavior (under a binary decision model).
Nevertheless, participation in the latter market is assumed to be mandatory. In this
work, we ask the question of whether socially optimal security investments can be
incentivized through non-compulsory insurance. To do so, we will not consider the
competitive market model due to its inefficiencies, and focus instead on the role of a
monopolist profit-neutral insurer acting as a regulator in implementing the socially
optimal investment profile. We first propose an insurance design mechanism that
allows a continuous decision model, and then study users’ participation incentives.
We show that due to the non-excludable nature of security, there may exist scenarios
in which it is impossible to guarantee that users voluntarily purchase insurance. We
discuss the implication of this impossibility and possible ways to circumvent it.

1 Introduction

The use of insurance, or more precisely cyber-insurance as it is referred to in the
realm of computer security, as a means of mitigating cyber-attack losses and en-
hancing the reliability of computer systems has been receiving increasd attention
both in the literature, as well as in practice, as suggested by the growing market for
cyber-insurance contracts.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
e-mail: {naghizad,mingyan}@umich.edu

1



2 Parinaz Naghizadeh and Mingyan Liu

There are currently over 30 insurance carriers offering cyber-insurance contracts
in the US [2, 19]. Many insurers have reported growths of 10-25% in premiums in
a 2012 survey of the market [2], with some carriers reporting even higher rates. For
example, one carrier reports an increase of 33% from 2011 to 2012 in the number
of clients purchasing their contracts [16]. The total amount of premiums written are
estimated to be between $500M and $1bn [19]. Typical premiums are estimated to
start from $10k -$25k and go as high as $50M [2, 19]. These contracts are reported
to have an average of $16.8M limits [16], with some coverage limits up to $200M-
$300M [19]. We refer the interested reader to [1,2,19] for additional information on
both the US and the UK insurance markets, as well as common types of coverage
offered through these policies, and the typical exclusions.

Aside from the use of cyber-insurance as a risk transfer mechanism, i.e., as a
means of managing residual security risks, insurance has been considered as a po-
tential solution to the problem of under-investment in security in interdependent
systems.

1.1 Sub-optimality of security investments

In general, the effort exerted by a user, entity, or network, to secure its system, not
only protects that user from security breaches, but also improves the security pos-
ture of other users connected to it, by decreasing the likelihood of an indirect attack
originating from the former entity. Accordingly, users’ investments in security in
such systems are often viewed as a public good with positive externalities. Within
this context, a strategic user out of self-interest may not only choose to ignore the
externality of its actions on others, but can further choose to free-ride on others’ ef-
forts, resulting in an overall under-investment in security, which then leads to lower
overall levels of security.

The problem of (under-)investment in security by an interconnected group of
strategic users, both in general as well as in the context of computer security, has
been extensively studied in the framework of game theory, see e.g. [5,8,11–13,23],
and is often formulated as an Interdependent Security (IDS) game. In the majority
of the literature, under-investment in security is verified by finding the levels of
effort exerted in a Nash equilibrium of the IDS game, and comparing them with the
socially optimal levels of investment.

This under-investment problem motivates the study of mechanisms for improv-
ing network security, and ideally, driving the system to its socially optimal state
(see [12] for a recent survey). Below we briefly summarize the literature on cyber-
insurance as a potential method for enhancing a system’s security by incentivizing
user cooperation.
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1.2 Cyber-insurance as an incentive mechanism

The study of cyber-insurance both as a method for mitigating cyber-security risks
and as an incentive mechanism for internalizing the externalities of security invest-
ments has received considerable attention, see e.g. [3, 4, 6, 10–12, 14, 15, 18, 22].
In addition to the classic insurance problems of adverse selection (higher risk
users seek more protection) and moral hazard (users lower their investment in self-
protection after being insured), the design of cyber-insurance contracts is further
complicated by the risk interdependencies and the possibility of correlated damages
in an interconnected system.

The literature on cyber-insurance has mainly focused on one of the two mar-
ket environments of competitive or monopolistic insurers. On one hand, it can be
shown that in competitive insurance markets, the introduction of insurance con-
tracts not only fails to improve, but can further worsen network security relative to
a no-insurance scenario [18, 22]. This is because contracts offered in such markets
are optimal from the viewpoint of individual users, whereas socially optimal con-
tracts should be designed by keeping social welfare in mind. On the other hand, it
is shown that by engaging in premium discrimination, a monopolistic profit-neutral
cyber-insurer can induce socially optimal security investments in an interdependent
system where security decisions are binary [6, 15, 18].1

Despite the shortcomings of competitive markets in implementing socially op-
timal solutions, a competitive approach to insurance contract design provides the
benefit that the participation of users in the market will be guaranteed, as their self-
interest is satisfied. In contrast, although [6, 15, 18] implement the socially optimal
solution in the binary decision framework, participation is assumed to be mandatory,
e.g., users are enforced through policy mandates to purchase insurance.

In the remainder of this chapter, we ask the question of whether socially opti-
mal security efforts can be incentivized through non-compulsory insurance? That
is, we take on the latter viewpoint on insurance markets, focusing on implementing
the socially optimal investment profile in an IDS game by considering a monopo-
list profit-neutral insurer, i.e., an insurance regulator, and study users’ participation
incentives in these markets.

1.3 Main contributions

In this chapter, we take a mechanism design approach to the security investment
problem, and present a message exchange process through which users converge to
an equilibrium where they make the socially optimal levels of investment in security.

1 We note that the term “monopolistic” generally implies the use of exclusive market power for
profit maximization, while in our model this monopolistic insurer is profit-neutral, essentially act-
ing as a regulator through insurance means [3]. This use of the term however is consistent with
literature in this area, see e.g., [6, 15, 18]. For this reason we will henceforth use the terms “insur-
ance regulator” and “monopolistic insurer” interchangeably.
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The proposed method, which is adapted from the externality mechanism proposed
by Hurwicz in [7], is applicable to a general model of interdependence, and captures
heterogeneity in users’ preferences, costs, and their importance to the system. In
particular, this model allows for continuous levels of effort. Therefore, our work
complements the existing results in [6, 15, 18], by introducing a mechanism that
achieves similar benefits in a non-binary setting.

More importantly, our other goal in this paper is to elucidate the nature of par-
ticipation incentives in the insurance market with security interdependencies. We
show that with a general model of interdependencies and as a result of the non-
excludable nature of security as a public good, the insurance regulator may not be
able to guarantee that users voluntarily purchase protection form the market. These
constraints have not been specifically addressed in the literature on monopolistic
cyber-insurance [6, 15, 18]. Therefore, to the best of our knowledge, this is the first
work to study users’ voluntary participation in cyber-insurance markets.

1.4 Chapter organization

The rest of this chapter is organized as follows. We present our model and main as-
sumptions in Section 2, and introduce our proposed insurance mechanism in Section
3. Further illustration using two numerical simulations in provided in Section 4. We
discuss users’ participation incentives in Section 5, followed by further interpreta-
tion of our observations and possible remedies in Section 6. Section 7 concludes the
chapter.

2 Model and Preliminaries

Consider a collection of N users, referred to as the system. Each user i can choose a
non-negative level of investment on security measures or protection, denoted by xi,
and incur a cost of hi(xi). We assume hi : R→ R+ is differentiable, strictly increas-
ing, and strictly convex, for all i. Intuitively, this means that security measures get
increasingly costly as their effectiveness increases.

Let x := (x1,x2, . . . ,xN) denote the profile of users’ security investments. We
denote user i’s security risk function by fi(x). The security risk function models
the probability that a successful security attack on a particular user occurs, and may
vary among different users depending on their security interdependencies.

Let Li denote user i’s losses in case a security breach occurs. Note that users may
be able to decrease their potential losses by investing in self-insurance measures
(e.g. data backup) [5, 9]. If such options are available to users, Li will denote the
residual losses of user i, i.e., losses that can not be mitigated through self-insurance
alone. The expected losses of an individual in the system is therefore given by
Li fi(x).
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We assume fi :RN→R+ is differentiable, strictly decreasing in all x j, and strictly
convex in all x j, for all i, j. This assumption states that the security risk decreases
as the investment in security increases. In particular, ∂ fi/∂x j < 0, j 6= i models the
positive externality of security investments. The assumption of convexity means that
while initial investment in security offers considerable protection, the rate of risk
reduction slows down at higher investment levels, as there is no security measure
that could fully prevent malicious activities [8, 12].

The utility function of user i is thus given by:

ui(x) =−Li fi(x)−hi(xi) . (1)

The strategic game ({1,2, . . . ,N},{xi≥ 0},{ui(·)}) among the N utility-maximizing
users will be referred to as the Interdependent Security (IDS) game.

The Nash equilibria (NE) of IDS games have been extensively studied in the lit-
erature. These studies often point out to the inefficiency of these NE as compared to
the socially optimal (SO) levels of investment in security. The socially optimal pro-
file of security investments x∗ is the profile of investments that maximizes the social
welfare, and is determined by the solution to the following centralized optimization
problem:

max
x�0

N

∑
i=1

ui(x) . (2)

Given the model assumptions, our IDS game has a unique socially optimal solution.
Our goal in Section 3 is to design insurance contracts, the purchase of which will
induce this socially optimal investments by the users without directly solving the
above centralized problem.

To do so, we will focus on an insurance regulator who offers insurance contracts
(ρi, Ii) where the two elements are interpreted as follows: ρi is the premium paid
by user i, and Ii the indemnification payment or coverage provided to user i if an
incident occurs. The utility of a user i when purchasing insurance is thus given by:

ui(x,ρi, Ii) =−(Li− Ii) fi(x)−hi(xi)−ρi . (3)

We note that the insurer may offer partial coverage (Ii < Li), full coverage (Ii = Li),
or additional compensation (Ii > Li) in case of a loss. In the latter case, a negative
Li− Ii implies an additional reward to user i.

We should emphasize that the assumption of a monopolist insurer is key in our
setting. Our focus is on implementing the socially optimal investment profile in an
IDS game; we thus do not consider a competitive market model due to its inefficien-
cies and instead investigate the role of a monopolist insurer. It should be noted that a
contract may include additional terms such as deductible, premium discount for be-
ing incident-free, separate coverage for catastrophic events, etc. However, we shall
show that an insurer can implement the socially optimal solution using the most
simple contracts consisting only of a premium and a coverage level. The potential
benefits of introducing additional dimensions is discussed in Section 6.
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The expected profit of the insurer offering a set of contracts {(ρi, Ii)}N
i=1 is given

by:

P = ∑
i

ρi−∑
i

Ii fi(x) . (4)

We will further assume that the insurer is profit neutral. This assumption is com-
mon in the mechanism design literature, often referred to as the budget balance
condition in mechanisms that use monetary taxation.2 In our context the role of the
monopolist insurer may very well be played by a government agency, in which case
profit-neutrality becomes a natural assumption. Consequently, we are interested in
insurance contracts satisfying ∑i ρi = ∑i Ii fi(x). Given this, the socially optimal so-
lution to (2) is the same whether we input (1) or (3) as users’ utility functions.

3 Insurance Contract Design

In this section, we present a mechanism that can achieve the socially optimal solu-
tion to (2). A decentralized mechanism is specified by a game form (M ,g).

• The message space M := Π N
i=1Mi specifies the set of permissible messages Mi

for each user i.
• The outcome function g : M →A determines the outcome of the game based on

the users’ messages. Here, A is the space of all security investment, premium,
and coverage profiles, i.e., (x,ρρρ,I).

The game form, together with the utility functions (3), define a game, given by
(M ,g(·),{ui(·)}). We will henceforth refer to this as the regulated IDS game or
the IDS game induced by the mechanism. We say the message profile m∗ is a Nash
equilibrium of this game, if

ui(g(m∗i ,m
∗
−i))≥ ui(g(mi,m∗−i)), ∀mi, ∀i . (5)

The components of our mechanism are as follows.
Each user i provides a message mi := (xi,πππ i) to the insurer. xi ∈RN denotes user

i’s proposal on the public good, i.e., it proposes the amount of security investment
to be made by everyone in the system, referred to as an investment profile. πππ i ∈
RN
+ denotes a pricing profile which suggests the equivalent amount to be paid by

everyone. As illustrated below, this is used by the insurer to determine the insurance
contracts of all users. Therefore, the pricing profile is user i’s proposal on the private
good.

2 In fact, it is easy to see that a profit making monopolist insurer can only make the voluntary
participation constraints even harder to satisfy, as this profit could have been used to incentivize
user cooperation. As we aim to understand participation incentive in this study, we will adopt the
profit neutrality assumption.
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The outcome function g(·) takes the message profiles m := {m1,m2, . . . ,mN}
as input, and determines the security investment profile x̂ and an intermediate net
payment profile t̂ as follows:

x̂(m) =
1
N

N

∑
i=1

xi , (6)

t̂i(m) = (πππ i+1−πππ i+2)
T x̂(m)

+(xi−xi+1)
T diag(πππ i)(xi−xi+1)

− (xi+1−xi+2)
T diag(πππ i+1)(xi+1−xi+2),∀i. (7)

In (7), for simplicity N + 1 and N + 2 are treated as 1 and 2, respectively. Once
the net payment profile t̂ is calculated, the insurer determines the optimal contracts
{(ρ̂i, Îi)}N

i=1 based on the following equations:

ρ̂i− Îi fi(x̂) = t̂i , ∀i . (8)

The choice of the term “net payment” should now be clear from (8): it determines
the difference between premium payed and expected coverage received. Notice also
that by (7), we have ∑i t̂i = 0. Together with (4), this implies that the profit-neutrality
condition of the insurer is automatically satisfied through this construction. What
this means is that the insurer will not be spending resources or making profit, as
the users whose net payment t̂i is positive will be financing the insurance coverage
for those who have negative net payments. The above equations may have many
solutions, each of which results in an optimal contract. The choice lies with the
insurer, e.g., it may offer full coverage in return for a high premium, or a lower-
premium contract with partial coverage. Note that users are not able to change either
their premium or their coverage level directly, but can potentially alter their net
payment t̂i through their message.

It is worthwhile to highlight an alternative interpretation for the intermediate
net payment profile t̂. Even though the profile t̂ has been used as a stepping stone
in finding the optimal insurance contracts in our proposed mechanism, one could
simply view this profile as a monetary taxation/reward to incentivize optimal user
behavior. Our previous work on the proposed mechanism in the context of IDS
games [17], as well as similar decentralized mechanisms proposed in [7, 21], are
based on this interpretation.

3.1 An intuitive explanation

Intuitively, the above mechanism operates as follows. The investment profile x̂ gives
the levels of investment suggested by the insurer for each player. This vector is
derived by taking the average of all users’ proposals for the public good. To ensure
that these proposals are consistent, and eventually match the socially optimal levels
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of investment, the insurer designs the insurance contracts according to (7) and (8).
To highlight this feature, we consider the three terms in (7) separately.

First, we note that a user i can only affect the first term (πππ i+1−πππ i+2)
T x̂(m) in its

net payment by altering its proposal on the investment profile. We will illustrate the
role of this term shortly. The second term in (7) is included to punish discrepancies
among users’ proposals on the investment profile by increasing their net payment in
case of disagreement. Lastly, the third term, which is independent of user i’s mes-
sage, is included to satisfy the profit-neutral constraint of the insurer. As discussed
in the proof of Theorem 1, the last two terms will be zero at an equilibrium of the
regulated IDS game. Nevertheless, the inclusion of these terms is required to ensure
convergence to the socially optimal solution, and also for balancing the insurer’s
budget.

We now highlight the role of the first term in (7), and its close relation to the
positive externality effects of users’ actions. As shown in the proof of Theorem 1, at
the equilibrium m∗ of the regulated IDS game, the net payment of a user i reduces to
t̂i = l∗i

T x̂(m∗), where l∗i := πππ∗i+1−πππ∗i+2. If net payments are determined according
to these prices, the socially optimal investments x̂(m∗) will be individually optimal
as well, i.e.,3

x̂(m∗) = argmin
x�0

Li fi(x)+hi(xi)+ l∗i
T x . (9)

As a result, for all i, and all j for which x̂ j 6= 0, the Karush-Kuhn-Tucker (KKT)
conditions on (9) yield:

l∗i j =−Li
∂ fi

∂x j
(x̂(m∗)) . (10)

The interpretation is that by implementing this mechanism, each user i will be fi-
nancing part of user j 6= i’s insurance contract. According to (10), this amount is
proportional to the positive externality of j’s investment on user i’s utility.

3.2 Analysis of the insurance mechanism

We close this section by establishing the optimality of our proposed mechanism.
Note that to prove this optimality, we first need to show that a profile
(x̂(m∗), ρ̂ρρ(m∗), Î(m∗)), derived at the NE m∗ of the regulated IDS game, is the
socially optimal solution to the centralized problem (2). Furthermore, as the proce-
dure for convergence to NE is not specified, we need to verify that the optimality
property holds for all Nash equilibrium of the message exchange process. This guar-
antees that the outcome will converge to the socially optimal solution regardless of
the realized NE. These two requirements are established in Theorem 1 below.

3 See proof of Theorem 1 presented later in this section for the derivation of this result.
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Theorem 1. Let (x̂(m∗), ρ̂ρρ(m∗), Î(m∗)) be the investment, premium, and cover-
age profiles obtained at the Nash equilibrium m∗ of the regulated IDS game
(M ,g(·),{ui(·)}). Then, x̂ is the optimal solution to the centralized problem (2).
Furthermore, if m̄ is any other Nash equilibrium of the proposed game, then
x̂(m̄) = x̂(m∗).

Proof: Let m∗ be a Nash equilibrium of the message exchange process, resulting
in an allocation (x̂, ρ̂ρρ, Î). Assume user i updates its message from m∗i = (πππ∗i ,x∗i ) to
mi = (πππ i,x∗i ), that is, it only updates the pricing vector proposal. Therefore, accord-
ing to (6), x̂ will remain fixed, while based on (7), the second term in t̂i will change.
The change of this term can in turn affect the choice of either ρ̂i, Îi, or both. First
note that a user i’s utility (3) can be re-written as follows:

ui(x,ρi, Ii) = −Li fi(x)−hi(xi)− (ρi− Ii fi(x))
= −Li fi(x)−hi(xi)− ti . (11)

Using (11) and the fact that if m∗ is an NE, unilateral deviations are not profitable,
we have:

(x∗i −x∗i+1)
T diag(πππ∗i )(x

∗
i −x∗i+1)

≤ (x∗i −x∗i+1)
T diag(πππ i)(x∗i −x∗i+1), ∀πππ i � 0. (12)

Hence, from (12) we conclude that for all i:

x∗i = x∗i+1 or πππ
∗
i = 0 . (13)

Using (13) together with (7) we conclude that at equilibrium, the second and third
terms of a user’s net payment vanish. Denoting l∗i := πππ∗i+1−πππ∗i+2, we get:

t̂i(m∗) = l∗i
T x̂(m∗) . (14)

Now consider users’ utility functions at the NE m∗. Since unilateral deviations
are not profitable, a user’s utility (11) should be maximized at the NE, i.e., for any
choice of xi and πππ i � 0:

Li fi(x̂(m∗))+hi(x̂i(m∗))+ l∗i
T x̂(m∗)

≤ Li fi(
xi +∑ j 6=i x∗j

N
)+hi(

xii +∑ j 6=i x∗ji
N

)+ l∗i
T xi +∑ j 6=i x∗j

N
+ (xi−x∗i+1)

T diag(πππ i)(xi−x∗i+1) . (15)

If we choose πππ i = 0 and let xi = N · x−∑ j 6=i x∗j , where x is any vector of security
investments, we get:

Li fi(x̂(m∗))+hi(x̂i(m∗))+ l∗i
T x̂(m∗)≤ Li fi(x)+hi(xi)+ l∗i

T x, ∀x . (16)
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To show that the Nash equilibrium m∗ results in a socially optimal allocation, we
sum up (16) over all i, and use the fact that ∑i l∗i = 0 to get:

N

∑
i=1

ui(x̂(m∗))≥
N

∑
i=1

ui(x), ∀x . (17)

Therefore, x̂(m∗) is the optimal solution to problem (2). Furthermore, any insurance
contract determined using (8) and the intermediate net payment profile t̂(m∗) can
be chosen as the insurance contract in the optimal solution. Finally, since our choice
of the NE m∗ has been arbitrary, the same proof holds for any other NE, and thus
all NE of the mechanism result in the optimal solution to problem (2). �

We next establish the converse of the above theorem in Theorem 2, i.e., given an
optimal investment profile, there exists an NE of the proposed game which imple-
ments this solution; the proof is given in the appendix.

Theorem 2. Let x∗ be the optimal investment profile in the solution to the central-
ized problem (2). Then, there exists at least one Nash equilibrium m∗ of the regulated
IDS game (M ,g(·),{ui(·)}) such that x̂(m∗) = x∗.

4 Numerical Examples

In this section we present two numerical examples to illustrate how the proposed
insurance contracts affect users’ actions, security risks, costs, and ultimately, the
security and societal costs of the interconnected system. In particular, this is done
under two different risk models. Throughout this section, for consistency and ease of
presentation, we assume users’ costs are linear in their investment, i.e., hi(xi) = cixi,
where ci > 0 is the unit cost of investment. Users will be indexed according to their
costs, such that c1 < c2 < .. . < cN .

4.1 Example 1: a weighted total effort model

We first assume users’ risk functions are given by a weighted total effort model
[12, 23],

fi(x) = exp(−
N

∑
j=1

ai jx j), (18)

where ai j determines the degree of externality of user j’s investment on user i’s
security risks. Let A := [ai j] denote the interdependence matrix containing these
weights. Under these assumptions, a user i’s utility function is given by:
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ui(x, Ii,ρi) =−(Li− Ii)exp(−
N

∑
j=1

ai jx j)− cixi−ρi .

The simulations are based on an instance of this problem with the following
parameters. Consider a collection of N = 10 users. Assume that the unit costs of
investment for the firms are generated randomly, such that c1 < c2 < .. . < cN . We
let Li = L = $50M, ∀i, that is, we assume all firms are subject to a similar maximum
loss of $50M in case of a security breach. Finally, we generate the interdependence
matrix A at random, with the only constraint that aii > ai j, ∀i, j 6= i. This implies that
a user’s security is primarily affected by its own expenditure in security measures.

Figure 1 illustrates the expected losses Li fi(x) of user i under both the Nash
equilibrium and the socially optimal outcome. In this example, we see that imple-
menting the proposed insurance contracts not only leads to risk transfer, but it also
incentivizes risk reduction.4 Figure 2 shows the change in users’ expenditure in se-
curity after the contracts are purchased. It can be seen that as expected, the socially
optimal solution requires users with lower cost in security improvement to make
higher investments.

As the insurer is profit-neutral, this higher effort by the main investors is com-
pensated by other users’ premium payments. Indeed, as illustrated in Figure 3, the
net payment of the main investors 1 and 2 are negative, to be covered by the positive
net payment of the remaining users. In essence, the social optimality derives from
the fact that users that are more effective and efficient in their security spending are
being paid by less efficient users to do so on their behalf. The insurer in this context
serves as a coordinator or facilitator.

Interestingly, the net payment of several users are negligible. This is consistent
with our observations in Figures 1 and 2, where the expected loss and expenditures
of these users are also negligible at the socially optimal outcome. As a result, the in-
surance contracts for these users are the degenerate contracts with zero premium and
coverage. Similarly, based on Figure 1, the probability of large losses are negligible
for users 1 and 2. In this case, offering an indemnification payment to these users is
unnecessary. The insurer can in turn allocate the premium surplus from other users
to the main investors as additional funds to be spent in security. Finally, the insurer
can offer full coverage to users 5 and 7 (i.e. Ii = L = $50M), in return for premiums
of $4.7M and $7M, respectively.

Overall, the introduction of the proposed insurance contracts reduces the costs
of all users in security, as illustrated in Figure 4, where costs are given by −ui(x∗)
for user i. This figure illustrates a component-wise improvement in users’ costs as a
result of implementing the proposed mechanism. This means that the profit-neutral
insurer does not necessarily need to make some users worse off in order to improve
social welfare. Figure 5 illustrates the improvement in social welfare following the
implementation of insurance. Numerically, as a result of risk reduction following
the purchase of insurance contracts, we see savings of close to $40M in social costs.

4 It is worth mentioning that this is not necessarily the case when a system moves from the Nash
equilibrium to the socially optimal solution. A socially optimal solution is meant to minimize social
costs, and therefore it may result in higher risks/losses for some users.
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4.2 Example 2: a weakest link model

We now assume users’ risk functions are determined by the weakest link model
fi(x) = exp(−min j x j) [12, 23]. Intuitively, this model states that an attacker can
compromise the security of an interconnected system by taking over the least
protected machine. To use this model in our proposed framework, we need a
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Fig. 4 Expected Costs - Weighted Total Effort
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Fig. 5 Social Costs - Weighted Total Effort

continuous, differentiable approximation of the minimum function. Let min j x j ≈
− 1

γ
log∑ j exp(−γx j), where the accuracy of the approximation is increasing in the

constant γ > 0. User i’s utility function is thus given by:

ui(x, Ii,ρi) =−(Li− Ii)(
N

∑
j=1

exp(−γx j))
1/γ − cixi−ρi .

The simulations are based on an instance of this problem with the following
parameters. We again consider N = 10 users, with unit costs of investment generated
randomly, such that c1 < c2 < .. . < cN . Also, Li = L = $50M, ∀i. We note that the
weakest link game has multiple Nash equilibrium, in which all users invest in the
same (sub-optimal) amount in security. We pick the NE with investment levels at
the mean of all these possible NE.

Figure 6 illustrates the expected losses Li fi(x) of users i. Again, we see that im-
plementing the proposed insurance contracts has incentivized risk reduction. Figure
7 shows the change in users’ expenditure in security after the contracts are pur-
chased. Note that at an equilibrium of the weakest-link game, all users exert an
identical level of effort [23]. Therefore, to arrive at this same optimal level of in-
vestment, users with higher costs are required to spend more in security measures.
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As a result, one expects the users with lower costs to aid this transition. Indeed, as
illustrated in Figure 8, the net payment of the higher cost users are negative, to be
covered by the positive net payment of the lower cost users. Users’ insurance con-
tracts can now be determined according to their net payments. For example, user 3
will be receiving full coverage I3 = $50M in return for a $2M premium, while user
7 receives full coverage I7 = $50M, but pays a zero premium.

We again observe a component-wise reduction in users’ costs, as illustrated in
Figure 9, along with improvement in social welfare leading to savings of close to
$35M in social costs, Figure 10.
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Fig. 6 Expected Losses - Weakest Link
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Fig. 7 Security Expenditure - Weakest Link

5 On Voluntary Participation

The message exchange process proposed in Section 3, as well as the mechanisms
proposed in [6,15,18], take users’ participation in the insurance market for granted.
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Fig. 10 Social Costs - Weakest Link

While this could be ensured through certain external incentive mechanisms, e.g.,
a government agency could make participation in cyber-insurance a prerequisite to
receiving funding or business opportunities, it is generally more desirable to make
this incentive to participate a built-in property of the mechanism itself. If this can be
accomplished then the mechanism not only induces socially optimal resource allo-
cation, but offers incentive for each individual user to participate in the mechanism.
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Within this context there are two desirable conditions/constraints that we would like
a mechanism to satisfy. The first is the commonly studied individual rationality (IR)
condition which states that users should prefer the existence of the mechanism to the
previous state of anarchy. The second is the less frequently invoked voluntary par-
ticipation (VP) condition referred to by [20], which states that a user should prefer
participation in the mechanism to staying out, given everyone else in the environ-
ment participates.

Satisfying individual rationality in the current context, although desirable, does
not guarantee the implementation of the insurance contracts, as voluntary participa-
tion of users in the insurance market needs to be ensured as well. In this section, we
further illustrate the difference of the two constraints in the current setting, and study
the voluntary participation constraint of the users under the insurance mechanism.

5.1 The non-excludable public good

Strategic users’ decisions regarding participation in a given mechanism is influenced
not only by the structure of the induced game form, but also by the actions available
to them when opting out. A common assumption in the majority of public good and
resource allocation problems, including those on decentralized mechanisms similar
to the one presented in Section 3 [7, 21], is that users get a zero share (of the public
good or allotted resources) when opting out. Following this assumption, the indi-
vidual rationality and voluntary participation constraints of such mechanisms are
equivalent, and are rather trivially satisfied.

However, a similar line of reasoning is not applicable to our problem. This is be-
cause at issue is the provision of a non-excludable public good: in an inter-connected
system, an individual benefits from improved security of its neighbors (the positive
externality) regardless of its own decision on whether to adopt a certain measure.
Specifically in the context of an IDS game, even when opting out, a user can still
enjoy the positive externalities of other users’ investments (although these may be
lower as the mechanism has now only partial coverage), choose its optimal action
accordingly, and possibly avoid spending resources on insurance. Thus to ensure
voluntary participation in this regulated IDS game is not as trivial as in previous
studies.

Indeed, we next present a counter-example which shows that there may exist
users to whom the benefits of staying out exceeds that of participation. Thus such a
user is better off acting as a “loner”, who refuses to participate in the mechanism,
and later best-responds to the socially optimal strategy of the remaining N−1 users
who did participate. It would be natural to expect these N− 1 users to also revise
their strategy (investments) in response to this loner’s best response, resulting in a
game between the loner and the remaining N − 1 users. In this example we will
compare the loner’s utility in the socially optimal solution when participating in the
mechanism, versus the utility it gains as the outcome of the game described above.
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5.2 A negative example

Consider a collection of N users. The cost function of each user i is given by a linear
function hi(xi) = cixi, where ci > 0 is the unit cost of investment. Choose c1 < c2 <
.. . < cN . Assume the risk function of user i is given by fi(x) = exp(−∑

N
j=1 x j) (an

instance of the total effort model [23]). Finally, for simplicity, let Li = 1, ∀i. The
utility function of a user i purchasing the insurance contract (ρi, Ii) is therefore given
by:

ui(x,ρi, Ii) =−(1− Ii)exp(−
N

∑
j=1

x j)− cixi−ρi . (19)

It is easy to show [17, 23] that with a total effort model, the user with the smallest
cost will exert all the effort, while all other users will free-ride on the positive exter-
nality of this investment. Therefore, we can find the equilibrium of the game under
different conditions as follows.

Socially optimal outcome: When all N users participate in the mechanism, it is
clear that under the optimal solution to problem (2) user 1 will exert all the effort.
The first order optimality condition suggests that this optimal investment is given
by the solution to the equation:

N exp(−x∗1)− c1 = 0 =⇒ exp(−x∗1) =
c1

N
.

Intuitively, user 1’s investment in this case corresponds to the amount it would make
if it were the only user in the system with a unit cost c1

N . This will thus be referred to
as user 1’s equivalent cost in this N-player total effort game. Therefore, the socially
optimal profile of investments x∗ is such that:

exp(−x∗1) =
c1

N
, x∗j = 0, ∀ j > 1 .

User 1’s VP condition: If user 1 chooses to stay out, user 2 will be the player
with the lowest cost in the N−1 player game, investing according to the equivalent
cost of c2

N−1 . Whether user 1 will invest in security or free-ride on the externalities
depends on user 2’s level of investment. When c1 >

c2
N−1 , user 1 will have a higher

cost, and thus will prefer to free-ride on user 2’s investment. The equilibrium levels
of investment x̂ of this game will thus be:

exp(−x̂2) =
c2

N−1
, x̂ j = 0, ∀ j 6= 2 .

User k’s VP condition, for k ≥ 2: Finally, if any user other than 1 decides to
stay out, user 1 will continue exerting all the effort, but the level of security will be
determined according to the higher equivalent cost of c1

N−1 . The equilibrium levels
of security x̃ will decrease such that:
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exp(−x̃1) =
c1

N−1
, x̃ j = 0, ∀ j > 1 .

We can now use the above analysis to determine the voluntary participation con-
ditions of all users. For user 1 to voluntarily participate in the mechanism, we need
u1(x∗,ρ∗1 , I

∗
1 )≥ u1(x̂). This in turn leads to:

−exp(−x∗1)− c1x∗1−ρ
∗
1 + I∗1 exp(−x∗1)≥−exp(−x̂2) .

Rearranging, we see that user 1’s insurance contract should satisfy:

−ρ
∗
1 + I∗1

c1

N
≥ c1(

1
N
− ln

c1

N
)− c2

N−1
. (20)

For any other user k ≥ 2, the voluntary participation condition is:

−exp(−x∗1)−ρ
∗
k + I∗k exp(−x∗1)≥−exp(−x̃1) .

Rearranging, we conclude that user k’s insurance contracts, which in fact requires
these users to finance the insurance contract for user 1, should be worth the extra
security:

ρ
∗
k − I∗k

c1

N
≤ c1

N(N−1)
. (21)

To satisfy the insurer’s profit-neutral constraint, we need ∑ j ρ∗j =
c1
N ∑ j I∗j , which

can be written as −ρ∗1 + I∗1
c1
N = ∑

N
j=2 ρ∗j − I∗j

c1
N . Using this, together with (21), we

conclude:

−ρ
∗
1 + I∗1

c1

N
≤ c1

N
. (22)

For (20) and (22) to be consistent, we need to satisfy the following condition:

c1(
1
N
− ln

c1

N
)− c2

N−1
≤ c1

N
.

Choose any c1 < c2 < 1 and c1 >
c2

N−1 . If N ≥ 3, then c1 ln( c1
N )+ c2

N−1 < 0, which
means that the VP conditions for user 1 and users k ≥ 2 cannot be simultaneously
satisfied.

6 Discussion

We have thus found an example where not all users will voluntarily participate in
the insurance mechanism. Note that the existence of the counter example in Section
5.2 does not depend on how the insurance contracts are designed; it is simply a
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consequence of not being able to simultaneously satisfy individuals’ self-interest,
social optimality, and the insurer’s profit-neutrality.5

Intuitively, this impossibility arises from the fact that to achieve socially optimal
investments, one (or more) of the users is required to increase its investment level,
thus demanding compensation in the form of insurance coverage. Nevertheless, the
added security is not enough to incentivize the remaining users to finance this cover-
age, especially as they are able to free-ride on a slightly lower security level if they
opt out. Conversely, the main investor may prefer to opt out of the mechanism if the
compensation offered to them is not high enough. In this case, this user may choose
to free-ride on the externality of the (lower) security by the next main investor.

6.1 A numerical example

The following numerical example highlights both of these possible complications
under our proposed mechanism. Again assume users’ risk functions are given by
the weighted total effort model, fi(x) = exp(−∑

N
j=1 ai jx j). Let A := [ai j] denote the

randomly generated interdependence matrix containing the weights ai j.
The simulations are based on an instance of this problem with the following

parameters. Consider a collection of N = 5 users. Assume that the unit costs of
investment for the users are generated randomly, such that c1 < c2 < .. . < cN . We
let Li = L, ∀i, that is, we assume all users are subject to a similar maximum loss in
case of a security breach.

Figure 11 illustrates the investments of users in security measures with and with-
out insurance contracts. It is easy to see that users 2, 3, and 5 are the main investors
in the mechanism, while users 1 and 4 are the free-riders. Users’ costs when pur-
chasing insurance and acting as loners is illustrated in Figure 12. Notice that in this
problem instance, user 2 is motivated to contribute as a main investor, while users 3
and 5 are not compensated enough to do so. Similarly, free-rider 4 is willing to pay
a high premium in return for the added protection, while free-rider 1 would rather
stay out and benefit from the positive externalities from the improved security of the
remaining 4 users.

5 Our approach in deriving this result is similar to that in [20, Section 2], in which the authors
present a counter-example to show the impossibility of achieving voluntary participation in Lindahl
mechanisms for provision of a public good with a constant return to scale technology. The authors
then establish a more rigorous proof of the impossibility, by showing the inconsistency in the set
of problem constraints [20, Section 4]. It would be interesting to establish the impossibility result
in the current IDS problem using a similar approach.
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Fig. 11 Users’ investments in security with or without insurance
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Fig. 12 Users’ costs when participating vs acting as loners

6.2 A positive example

We next identify a family of problem instances in which the insurance mechanism
of Section 3 does satisfy the voluntary participation constraints of users.

Consider the same interdependency model detailed in the counter-example in
Section 5.2. As mentioned, since users with utility functions given by (19) are sub-
ject to similar losses, only the user with the smallest cost will invest in security,
while the remaining users free-ride. We want to ensure that all users, i.e. both the
main security investor and the free-riders, prefer participating in the proposed mech-
anism to unilaterally staying out.

First note that the net payments of users in our proposed mechanism can be
determined according to (10), and are given by:

t∗i =−∑
j

x∗j
∂ fi

∂x j
(x∗)− cix∗i .

Substituting fi(x) =−exp(−∑ j x j), the utility of users when all N participate in the
mechanism will reduce to:
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ui(x∗,ρ∗i , I
∗
i ) =−

c1

N
(1+ x∗1),∀i .

Users’ VP constraints: Using the analysis from the previous section, for a user
j ≥ 2 to voluntarily participate in the mechanism, we need u j(x∗,ρ∗j , I∗j ) > u j(x̂),
which yields:

c1

N
(1+ x∗1)<

c1

N−1
⇒ ln

N
c1

<
1

N−1
(VPj) .

On the other hand, when user 1 steps out, one of the following outcomes is real-
ized:

a. If c1 < c2
N−1 , user 1 will continue investing in security, with an investment

given by exp(−x̄1) = c1. User 1’s VP constraint in this case is:

c1

N
(1+ x∗1)< c1(1+ x̄1)⇒ lnc1 < 1− lnN

N−1
(VP1a).

b. If c2
N−1 < c1 < c2, user 2 will invest in security, while all other users, including

user 1, free-ride. The level of security provided is given by exp(−x̂2) =
c2

N−1 , leading
to the following VP condition for user 1:

c1

N
(1+ x∗1)<

c2

N−1
(VP1b) .

Ensuring voluntary participation: For voluntary participation to hold in a prob-
lem instance, we need to have (VPj), and either (VP1a) or (VP1b) satisfied.

(VPj) and (VP1a) hold simultaneously if and only if:

N = 2,
2
e
< c1 <

e
2
, c2 > c1 .

(VPj) and (VP1b) hold if and only if N,c1,c2 satisfy:

c1 > N exp(− 1
N−1

), c1 < c2 < (N−1)c1 .

6.3 Potential solutions

As shown in the previous positive example, we may identify classes of problems
in which the mechanism in Section 3 satisfies users’ voluntary participation con-
straints. In general, it may be possible to alleviate the participation issues by in-
jecting external resources into the system (i.e. relaxing the insurer’s budget balance
condition), implementing a sub-optimal equilibrium (i.e. relaxing the social opti-
mality condition), restricting the space of utility functions (i.e. designing separate
contracts for different classes of risk functions), or settling for a mechanism with
partial coverage. These remain interesting directions of future research.
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If the above alternatives are not desirable, and voluntary participation cannot be
guaranteed, one may also resort to policy mandate to induce users to purchase in-
surance in order to achieve social optimality. It should be noted that policy mandate
is different from existing mechanisms that dictate users’ investments [12], in that
even under mandate, constant enforcement of users’ actions is not needed, as it is
individually optimal for users to exert the socially optimal effort once contracts are
purchased.

An alternative to policy mandate is in the form of other financial incentives, in-
cluding those already mentioned such as business opportunities or tax credits. It is
also conceivable for the monopolist insurer (especially if played by a government
agency) to guarantee the VP condition by offering separate coverage for rare but
catastrophic security losses. As this type of coverage (acting in much the same way
as relief for loss due to war or natural disasters) would be otherwise unavailable, it
provides additional incentive for a user who might otherwise consider opting out.

7 Conclusion

We have considered the issue of users’ voluntary participation in mechanisms
achieving socially optimal solutions in IDS games using insurance contracts con-
sisting of premiums and coverage levels, or equivalently, using monetary taxa-
tion/rewards. We argue that with positive externalities, the incentive to stay out
and free-ride on others’ investments can make users’ participation incentives much
harder to satisfy when designing contracts. We further discuss the implication of
this result and possible remedies.

It remains an interesting question whether there are more sophisticated forms of
the contracts (e.g., with additional dimensions such as deductibles, maximum cov-
erage, premium discounts for incident-free users) which might satisfy all require-
ments, or whether this is a more fundamental challenge in designing mechanisms
involving positive externalities.
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Appendix

Proof of Theorem 2: This proof is technically similar to those presented in [7,21].
Consider the optimal security investment profile x∗ in the solution to the centralized
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problem (2). Our goal is to show that there indeed exists a Nash equilibrium m∗ of
the mechanism for which x̂(m∗) = x∗.

Let Ci(x) := Li fi(x)+hi(xi) denote the costs associated with the security invest-
ment and expected losses of user i. We start by showing that given the investment
profile x∗, it is possible to find a vector of personalized prices l∗i , for each i, such
that,

argmin
x�0

Ci(x)+ l∗i
T x = x∗ . (23)

First, note that since x∗ is the optimal solution to (2), it should satisfy the follow-
ing KKT conditions, where λλλ i ∈ RN

+, ∀i:

N

∑
i=1

(∇Ci(x∗)−λλλ
T
i ) = 0 ,

λλλ
T
i x∗ = 0 ∀i . (24)

Choose l∗i =−∇Ci(x∗)+λλλ
T
i . Then,

l∗i +∇Ci(x∗)−λλλ
T
i = 0 . (25)

Equations (24) and (25) together are the KKT conditions for the convex optimization
problem:

min
x�0

Ci(x)+ l∗i
T x . (26)

The KKT conditions are necessary and sufficient for finding the optimal solution
to the convex optimization problem (26), and thus we have found the personalized
prices satisfying (23).

We now proceed to finding a Nash equilibrium m∗ resulting in the socially op-
timal solution x∗. Consider the message profiles m∗i = (πππ∗i ,x∗i ), for which x∗i = x∗,
and the price vector proposals πππ∗i are found from the recursive equations:

πππ
∗
i+1−πππ

∗
i+2 = l∗i , ∀i . (27)

Here, l∗i are the personalized prices defined at the beginning of the proof. The set of
equations (27) always has a non-negative set of solutions πππ∗i � 0, ∀i. This is because
starting with a large enough πππ∗1, the remaining πππ∗i can be determined using:6

πππ
∗
i = πππ

∗
i−1− l∗i−2, ∀i≥ 2 . (28)

Now, first note that by (26), for all choices of x� 0, and all users i, we have:

Ci(x∗)+ l∗i
T x∗ ≤Ci(x)+ l∗i

T x . (29)

6 In (28), l∗0 is interpreted as l∗N .
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Particularly, if we pick x =
xi+∑ j 6=i x∗j

N ,

Ci(x∗)+ l∗i
T x∗ ≤Ci(

xi +∑ j 6=i x∗j
N

)+ l∗i
T xi +∑ j 6=i x∗j

N
. (30)

Also, since by construction x∗i = x∗i+1, ∀i, the inequality is preserved for any choice
of πππ i � 0, when the two remaining net payment terms from (7) are added in as
follows:

Ci(x∗)+ l∗i
T x∗+(x∗i −x∗i+1)

T diag(πππ∗i )(x
∗
i −x∗i+1)

−(x∗i+1−x∗i+2)
T diag(πππ∗i+1)(x

∗
i+1−x∗i+2)

≤ Ci(
xi +∑ j 6=i x∗j

N
)+ l∗i

T xi +∑ j 6=i x∗j
N

+(xi−x∗i+1)
T diag(πππ i)(xi−x∗i+1)

−(x∗i+1−x∗i+2)
T diag(πππ∗i+1)(x

∗
i+1−x∗i+2). (31)

Equation (31) can be more concisely written as:

ui(g(m∗i ,m
∗
−i))≥ ui(g(mi,m∗−i)) , ∀mi = (πππ i,xi), ∀i . (32)

We conclude that the messages m∗i = (πππ∗i ,x∗) constitute an NE of the proposed
mechanism. In other words, the message exchange process will indeed have an NE
which implements the socially optimal solution of problem (2). �
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3. R. Böhme and G. Schwartz. Modeling cyber-insurance: Towards a unifying framework. In

WEIS, 2010.
4. L. A. Gordon, M. P. Loeb, and T. Sohail. A framework for using insurance for cyber-risk

management. Communications of the ACM, 46(3):81–85, 2003.
5. J. Grossklags, N. Christin, and J. Chuang. Secure or insure?: a game-theoretic analysis of

information security games. In Proceedings of the 17th international conference on World
Wide Web, pages 209–218. ACM, 2008.

6. A. Hofmann. Internalizing externalities of loss prevention through insurance monopoly: an
analysis of interdependent risks. The GENEVA Risk and Insurance Review, 32(1):91–111,
2007.

7. L. Hurwicz. Outcome functions yielding walrasian and lindahl allocations at nash equilibrium
points. The Review of Economic Studies, 46(2):217–225, 1979.

8. L. Jiang, V. Anantharam, and J. Walrand. How bad are selfish investments in network security?
IEEE/ACM Transactions on Networking, 19(2):549–560, 2011.

9. B. Johnson, R. Böhme, and J. Grossklags. Security games with market insurance. In Decision
and Game Theory for Security, pages 117–130. Springer, 2011.

10. J. P. Kesan, R. P. Majuca, and W. J. Yurcik. The economic case for cyberinsurance. 2004.
11. H. Kunreuther and G. Heal. Interdependent security. Journal of Risk and Uncertainty, 26(2-

3):231–249, 2003.
12. A. Laszka, M. Felegyhazi, and L. Buttyán. A survey of interdependent security games.

CRYSYS, 2, 2012.



Voluntary Participation in Cyber-insurance Markets 25

13. M. Lelarge. Economics of malware: Epidemic risks model, network externalities and incen-
tives. In 47th Annual Allerton Conference on Communication, Control, and Computing, pages
1353–1360. IEEE, 2009.

14. M. Lelarge and J. Bolot. Cyber insurance as an incentive for internet security. WEIS, 2008.
15. M. Lelarge and J. Bolot. Economic incentives to increase security in the internet: The case for

insurance. In INFOCOM 2009, IEEE, pages 1494–1502. IEEE, 2009.
16. Marsh. Benchmarking trends: More companies purchasing cyber insuracne. March 2013.
17. P. Naghizadeh and M. Liu. Closing the price of anarchy gap in the interdependent security

game. Information Theory and Applications Workshop (ITA), 2013.
18. R. Pal, L. Golubchik, K. Psounis, and P. Hui. Will cyber-insurance improve network security:

A market analysis. In IEEE INFOCOM, 2014.
19. S. Romanosky. Comments to the department of commerce on incentives to adopt improved

cybersecurity practices. April 2013.
20. T. Saijo and T. Yamato. Fundamental impossibility theorems on voluntary participation in the

provision of non-excludable public goods. Review of Economic Design, 14(1-2):51–73, 2010.
21. S. Sharma and D. Teneketzis. A game-theoretic approach to decentralized optimal power

allocation for cellular networks. Telecommunication Systems, 47(1-2):65–80, 2011.
22. N. Shetty, G. Schwartz, M. Felegyhazi, and J. Walrand. Competitive cyber-insurance and

internet security. In Economics of Information Security and Privacy, pages 229–247. Springer,
2010.

23. H. Varian. System reliability and free riding. Economics of information security, pages 1–15,
2004.


