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Learning in Hide-and-Seek
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Abstract—Existing work on pursuit-evasion problems typically
either assumes stationary or heuristic behavior of one side and
examines countermeasures of the other, or assumes both sides
to be strategic which leads to a game theoretical framework.
Results from the former often lack robustness against changes in
the adversarial behavior, while those from the second category,
typically as equilibrium solution concepts, may be difficult to
justify: either due to the implied knowledge of other players’
actions/beliefs and knowledge of their knowledge, or due to a
lack of efficient dynamics to achieve such equilibria. In this
paper, we take a different approach by assuming an intelligent
pursuer/evader that is adaptive to the information available to it
and is capable of learning over time with performance guarantee.
Within this context we investigate two cases. In the first case we
assume either the evader or the pursuer is aware of the type
of learning algorithm used by the opponent, while in the second
case neither side has such information and thus must try to learn.
We show that the optimal policies in the first case have a greedy
nature. This result is then used to assess the performance of the
learning algorithms that both sides employ in the second case,
which is shown to be mutually optimal and there is no loss for
either side compared to the case when it knows perfectly the
adaptive pattern used by the adversary and responses optimally.
We further extend our model to study the application of jamming
defense.

Index Terms—pursuit and evasion, adversarial learning, two-
player game, jamming defense

I. INTRODUCTION

THE pursuit-evasion (or hide-and-seek) problem arises in a
variety of applications and has been extensively studied.

For instance, it models the pursuit of a moving target by a radar
or an unmanned vehicle [2], or a radio performing channel
switching in an attempt to hide from a jammer [3].

Existing work in this area typically falls into two categories.
The first considers stationary or heuristic behavior of one side
and examines corresponding countermeasures of the other.
Examples include [4]–[7] and the references therein, which
assume a stationary target (the evader) hiding in any of a set of
locations with known prior probabilities. Variants of this model
include, e.g., [8] that uses a random prior probability of hiding
in a given location, and [9] where the detection probability
is random with known distribution. Search problems with a
moving evader have also been extensively studied. However,
the evasion is typically either independent of the pursuer’s
activity, or heuristically given without clearly defined rationale
or performance guarantee, see e.g. [10], where the evader’s
motion is given by a discrete-time Markov chain independent
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of the pursuer’s activity, and [11] for a similar, continuous-
time formulation. The second category assumes both sides
to be strategic, leading to a game theoretical framework. A
typical method is to use differential games [12] to capture
the continuous evolution; in fact, the pursuit-evasion problem
bears the genesis of differential games. See also [13]–[15] for
texts and examples of differential games and their application
in the pursuit-evasion problem. We note that results from the
first category often lack robustness against changes in the
adversarial behavior, while those from the second category,
typically in the form of equilibrium solution concepts, may be
difficult to justify: either due to the implied knowledge of other
players’ actions or beliefs, and knowledge of other players’
knowledge, both of which may be limited in practice, or due
to a lack of efficient dynamics to achieve such equilibria.

In this paper, we take a different approach by assuming an
adaptive pursuer or evader that is simply capable of learning
over time, and investigate the resulting decision problem. In
other words we assume the pursuer is able to adapt over time
using observations of the evader’s behavior; it need not possess
all the information available to the evader nor does it presume
that the evader is rational. The same applies to the evader.

To model the adaptive behavior of the pursuer or the evader,
we shall employ online learning algorithms developed for
the class of adversarial or non-stochastic multi-armed bandit
problems [24], [25], which provide robust and considerable
performance guarantee, without assuming any probabilistic
model of the underlying reward process. We then investigate
two cases. In the first case we assume either the evader or
the pursuer is aware of the type of learning algorithm used by
the opponent, while in the second case we consider the more
realistic scenario when neither side has such information and
thus both must try to learn. We show that the optimal policies
in the first case have a greedy nature, hiding/seeking in the
location least/most likely searched/used by the opponent. We
also examine the use of a decoy by the evader to sufficiently
mislead the pursuer’s learning process. These results are then
used to assess the performance of the learning algorithms that
both sides employ in the second case, which is shown to be
mutually optimal. Furthermore, we show that in this case there
is no loss for either side compared to when it knows the
adaptive pattern of the adversary and responses optimally.

While the above pursuit-evasion model applies to a variety
of scenarios as mentioned, in this study we will primarily focus
on the application of jamming defense. Existing literature
on jamming tends to heavily focus on specific attack and
defense mechanisms. For instance, [16] and [17] introduce
a collection of jamming attacks and anti-jamming measures;
examples also include using stronger error detection, correc-
tion, and spreading codes at the physical layer [18]–[21],
exploring the vulnerability in the rate adaptation mechanism of
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IEEE 802.11 [22], and multi-channel jamming using a single
cognitive ratio [23]. The approach presented in this paper
explores an alternate dimension and thus complements existing
methods. By putting the jamming defense in a pursuit-evasion
framework with adaptive players, our approach sheds light on
the optimal decision a legitimate user should adopt to counter
a strong learning attacker with a known learning rationale, and
shows how the learning technique can itself be considered a
countermeasure when there is no such prior information. To
better model jamming defense, we extend the basic pursuit-
evasion model to allow heterogeneous payoffs associated with
different pursuit/evasion actions, which captures the diversity
in wireless spectrum quality and transmission conditions. We
note that the model adopted in this paper is limited to the
medium access control of the user while assuming constant
packet arrival from upper layers. As a result, it does not
capture the impact of jamming on the user’s upper-layer
control mechanisms such as TCP; this remains an interesting
direction of future studies.

Our main contributions are summarized as follows:
• We formulate the pursuit-evasion problem from an on-

line learning perspective, and show the optimal evading
and pursuing polices with respect to different levels of
knowledge of the opponent’s behavioral pattern.

• We show the effects of information asymmetry in the
pursuit-evasion problem: when the asymmetry is given
by different levels of knowledge of the opponent, the
side with more information does not necessarily hold
advantage in the long run.

• On the other hand, when the information asymmetry
stems from one’s ability to distinguish between the actual
opponent and a decoy device, it can be pivotal in deciding
the long-term outcome of the interactions. In particular,
it leads to an interesting decoy lemma inherent in all no-
regret learning algorithms.

• We generalize the pursuit-evasion model to the appli-
cation of jamming defense, by explicitly modeling the
spectrum diversity.

• We also formulate two related families of problems within
the same framework, namely the rendezvous and the
collision problems, and discuss to what extent our results
can be generalized to these two problems as well as open
questions.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model and the problem formu-
lation, followed by detailed analysis in Sections III-V, and
application to jamming defense in Section VI. Section VII
discusses the rendezvous and the collision problems and
Section VIII concludes the paper. All missing proofs of our
results can be found in the appendix unless otherwise noted.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Consider the repeated hide-and-seek interaction between a
pursuer and an evader in discrete time. At each time step t,
the evader selects one of m locations, indexed by the set
C = {1, 2, . . . ,m}, to hide in, while the pursuer searches

possibly multiple locations simultaneously. The evader’s and
the pursuer’s behaviors are generally described by their re-
spective sets of marginal probabilities τ(t) = (τk(t))k∈C and
α(t) = (αk(t))k∈C , where τk(t) and αk(t) are the respective
probabilities that the k-th location is chosen by the evader
and the pursuer at time t; we shall also call τ(t) and α(t) the
adversarial behavior with respect to one’s opponent at time
t. There are two interpretations of τ(t) and α(t): they can
describe randomized strategies of the players, or a probabilistic
belief held by one side about the likelihood of an action by the
other side. In the following, we shall also introduce a number
of other notation for formal presentation. A summary of our
main notation can be found in Table I at the end of this section.

The evader’s objective is to maximize its total number of
successful evasion, while the pursuer aims to maximize its
total number of successful pursuits. Within this context we
investigate two case. In the first case, we assume either the
evader or the pursuer knows the type of learning algorithm or
decision process used by its opponent (Section III and IV),
while in the second case both sides have no such information
(Section V). This leads to different perceptions one side has
on the other as we elaborate below.

We define two sets of variables zk(t) and xk(t) such that
zk(t) = 1 if the pursuer does not search location k at time t,
and zk(t) = 0 otherwise, while xk(t) = 1 if the evader hides
at location k at time t, and xk(t) = 0 otherwise. When the
evader (or the pursuer) knows the type of algorithm/reasoning
the pursuer (resp. the evader) uses, it may regard zk(t)
(resp. xk(t)) as stochastic, i.e., assuming its opponent behaves
probabilistically according to P(zk(t) = 0) = αk(t) (resp.
P(xk(t) = 1) = τk(t)), though the value of this probability
may be unknown to the evader (resp. the pursuer). When the
evader (or the pursuer) has no such information, it may regard
zk(t) (or xk(t)) as a predetermined but unknown number.

B. Formulation: against known adaptive search/evasion

In Sections III and IV, we assume either the evader or the
pursuer knows the type of adaptive algorithm used by the
other, and seeks to make optimal location selections so as
to maximally evade/discover the opponent in repeated interac-
tion. For simplicity of presentation, in the following we assume
the evader is the party with the knowledge as in Section III; the
other case can be formulated similarly. Specifically, the evader
assumes the pursuer behaves probabilistically as the latter
indeed does, and knows the value of the adversarial behavior
α(t) at the beginning of the time step t. α(t) as a vector of
probability distribution will be referred to as the state of the
system at t and may be random itself. We describe the pursuit
pattern in detail in Section III-A. Thus, the evader perceives
the pursuer activity zk(t) as stochastic. Results obtained in
this section are then used as benchmarks when we examine
the more realistic situation where both sides do not presume
to know the other’s adaptive behavior.

We assume that the evader has perfect recall of all past
states and control actions, though later (c.f. the remarks
after Theorem 3) it is shown that this assumption can be
significantly weakened. At time t, the evader decides the
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control action π(t) ∈ C, i.e., the location to hide in, as a
function of the history of system states, past control actions,
and a private randomization device that is independent from
any activity of the pursuer (to allow randomized strategies):

π(t) = γt(α
[t], π[t−1], ω(t)),

where α[t] := (α(1), . . . , α(t)) with π[t−1] similarly defined,
and (ω(t), t = 1, 2, . . .) denotes the private randomization
device. The control policy is given by γ = (γt, t = 1, 2, . . .)
and Γ denotes the policy space. Given a location selection
sequence π = (π(1), π(2), . . .) under policy γ, the evader
receives an expected reward rπ(t) = 1 − απ(t)(t) at time t,
which is the mean number of successful evasions at the chosen
location. Note that in this setup the reward is independent
of the location in the sense that a successful evasion in any
location amounts to one unit of reward. We also consider
the case with location-dependent reward for the application
of jamming defense in Section VI. The evader then considers
the following two reward maximization problems,

maximize
γ∈Γ

E

{
T∑
t=1

rπ(t)

}
, (1)

and

maximize
γ∈Γ

lim inf
T→∞

E

{
1

T

T∑
t=1

rπ(t)

}
, (2)

where the expectation is with respect to (w.r.t.) the randomness
of system states and the private randomization device.

For the case when the pursuer holds the knowledge of the
evader, we shall denote the pursuer’s control rule and control
policy by λt and λ, respectively, with Λ being the policy space,
and θ(t) its private randomization device. We also denote by
ξ = (ξ(1), ξ(2), . . .) the induced location selection sequence,
and by bξ(t) = τξ(t)(t) the expected reward of the pursuer at
time t. Similar problems can then be formulated in parallel:

max
λ∈Λ

E

{
T∑
t=1

bξ(t)

}
, and max

λ∈Λ
lim inf
T→∞

E

{
1

T

T∑
t=1

bξ(t)

}
.

C. Formulation: against unknown adversarial behavior

In Section V, we consider the more realistic scenario where
neither side has information on the adaptive behavior of
the opponent. Both sides hence regard zk(t) and xk(t) as
predetermined but unknown numbers, respectively. We assume
the evader can observe the value of zk(t) of the selected
location after the action at time t, so can the pursuer for the
value of xk(t). We also assume both sides have perfect recall
of past observations and control actions, and the resulting
control actions are given by

π(t) = γt(z
[t−1]
π , π[t−1], ω(t)),

and
ξ(t) = λt(x

[t−1]
ξ , ξ[t−1], θ(t)),

where z
[t−1]
π := (zπ(1)(1), . . . , zπ(t−1)(t − 1)) with x

[t−1]
ξ

similarly defined. We define the control policies γ and λ, and
the policy spaces Γ and Λ in parallel. The evader receives a

reward rπ(t) = zπ(t)(t) at each time t; the pursuer receives
bξ(t) = xξ(t)(t).

In principle, both sides can consider the same reward maxi-
mization problems as in the previous case, by imposing an ar-
bitrary belief on the adversarial behavior (i.e., associating with
zk(t) and xk(t) probabilistic models), which however renders
nonsensical notion of optimality. The optimal control in this
setting is then typically addressed in the framework of non-
stochastic online learning, where existing literature focuses on
minimizing the (weak) regret of a strategy compared to a best
single-action strategy for any given realization (sample path)
of the adversarial behavior. These online learning techniques
are employed as our main model for the adaptive behavior of
either side.

TABLE I
SUMMARY OF MAIN NOTATION.

τk(t)/αk(t) (marginal) probability that the evader hides in/the pursuer
searches location k at time t

xk(t)/zk(t) indicator variable of whether the evader hides in/the
pursuer searches location k at time t

π(t)/ξ(t) index of the location where the evader hides/the pursuer
searches at time t

r(t)/b(t) single-step reward of the evader/pursuer at time t
ω(t)/θ(t) private randomization device of the evader/pursuer
γt/λt control policy of the evader/pursuer
T finite time horizon
m total number of locations
C index set of locations
M number of locations that can be simultaneously searched

by the pursuer

III. OPTIMAL EVASION AGAINST ADAPTIVE PURSUIT

A. Against single-location pursuit
We start by considering a pursuer who is only capable of

searching one location at a time. Both sides decide which
location to use (for hiding or searching) at the beginning of
a time step and cannot change their mind till the next step.
Both sides also receive feedback by the end of a step: the
evader finds out whether it has been discovered by the pursuer,
while the pursuer finds out which location the evader has been
hiding. In other words, we assume the pursuer could scan
through the locations to find out after the fact the evader’s
action, although it needs to make the right decision a priori
in order to make the pursuit effective (e.g., to have the right
resources in place).

The pursuer is not assumed to know the evader’s decision
making rationale, and thus regards the evader activity variable
xk(t) as deterministic but unknown. Given the full information
on past activity in all locations to the pursuer, we assume it
adopts the Hedge algorithm presented in [24] by Auer et al.;
this is a variant of the original Hedge algorithm (or exponential
weights algorithm) introduced by Freund and Schapire [26],
within the line of work on multiplicative weights learning [27]
(see [28] for an in-depth survey). Hedge is an online learning
algorithm in the adversarial multi-arm bandit setting [24], [25],
which presumes no probabilistic behavior of the opponent (in
our case, the evader). It is shown to guarantee an order-optimal
sublinear weak regret1, which in our context translates into

1An algorithm with a sublinear weak regret is also often called no-regret.
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sublinear “missing” of discovery opportunities compared to
always searching the most active/used location (in hindsight)
under an arbitrary evasion policy.

Formally, let x(t) := (xk(t),∀k ∈ C) for t =
1, · · · , T over a finite horizon T . For any search sequence
ξ = (ξ(1), ξ(2), . . .) and a fixed sequence of evasion
(x(1), x(2), . . .), the total reward of the pursuer at T , denoted
by Gξ(T ), is given by

Gξ(T ) =

T∑
t=1

bξ(t) =

T∑
t=1

xξ(t)(t),

while the maximum reward from consistently searching the
most evader-active location is

Gmax(T ) = max
k∈C

T∑
t=1

xk(t).

Hedge aims to minimize the gap (i.e., regret) between its total
reward GHedge and Gmax, by selecting locations randomly
using an adaptive probability distribution based on past evader
activities: it selects the most rewarding (evader-active) location
seen in the past with the highest probability. The algorithm is
shown below.
Hedge
Parameter: A real number a > 1.
Initialization: Set Gk(0) := 0 for all k ∈ C.
Repeat for t = 1, 2, . . . , T

1) Choose location kt according to the distribution α(t) =
(α1(t), α2(t), . . . , αm(t)) on C, where

αk(t) =
aGk(t−1)∑m
j=1 a

Gj(t−1)

2) Observe (reward) vector (x1(t), x2(t), . . . , xm(t)).
3) Set Gk(t) = Gk(t− 1) + xk(t) for all k ∈ C.

The performance of Hedge is formally characterized by the
following theorem from [24].

Theorem 1: If a = 1 +
√

2 ln(m)/T , then EGHedge(T ) ≥
Gmax(T ) −

√
2T lnm, where the expectation is w.r.t. the

randomness in the actions taken by Hedge.
Under our assumption, the evader knows the fact that the

pursuer is using Hedge and its initial condition2. Due to
its perfect recall of past actions, it maintains the correct
belief about the evolution of the adversarial behavior απ(t)
determined by Hedge. In principle, the finite-horizon problem
(1) can be solved backwards using dynamic programming.
However, we shall first try to argue intuitively what the optimal
policy should behave like. Since Hedge has a sublinear regret
for the pursuer, if the evader favors one location, the pursuer
will eventually identify this most evader-active location and
search it at a rate linear in T and miss it at a rate no more
than sublinear in T . It follows that the best strategy for the
evader is to use each location equally, either deterministically
or stochastically. This intuition indeed provides the precise

2This is to simplify the presentation; it is possible for the evader to estimate
the initial condition of Hedge. The resulting policy however is much more
complex than the greedy one derived here. The impact of acquiring estimates
can become non-negligible for a finite-horizon problem.

solution to the infinite-horizon problem (2) as shown below.
Let r∞ := lim infT→∞ E{ 1

T

∑T
t=1 r

π(t)}. Denote by g the
location selection sequence of the greedy policy γgreedy, where
g(t) ∈ arg mink∈C α

g
k(t) for all t. Note that the greedy

policy can be deterministic, i.e., independent of the private
randomization device ω(t) or in the case of ω(t) being a
constant.

Theorem 2: r∞ ≤ m−1
m for any policy γ, and the greedy

policy achieves this upper bound.
Proof: Note that

EGπHedge(T ) = E

{
T∑
t=1

xπξ(t)(t)

}
=

T∑
t=1

m∑
k=1

xπk (t)απk (t)

=

T∑
t=1

αππ(t)(t) = T −
T∑
t=1

rπ(t)

for any realization of π. Therefore,

r∞ = 1− lim sup
T→∞

E
{

1

T
EGπHedge(T )

}
≤ 1− lim sup

T→∞
E
{

1

T
(Gπmax(T )−

√
2T lnm)

}
= 1− lim sup

T→∞
E
{

1

T
Gπmax(T )

}
≤ m− 1

m
,

for all γ, where the outer expectation is over the randomness
of the private randomization device, and the last inequality is
due to the fact Gπmax(T ) ≥ T

m for any π.
Under the greedy policy we have αgg(t)(t) ≤

1
m and hence

rg(t) ≥ m−1
m for any t, which implies that using γgreedy, r∞ ≥

m−1
m , i.e., the greedy policy is optimal.
Note that the above argument does not invoke any property

of Hedge other than the sublinear-regret guarantee, thus the op-
timality of the greedy policy holds as a countermeasure against
the entire family of no-regret algorithms. In particular, there
exist no-regret algorithms with less stringent assumptions on
the feedback to the pursuer than the assumed perfect posterior
observation of the evader’s action. For example, only partial
observation of the location(s) searched would be assumed if
the Exp3 algorithm [25] is used. No-regret algorithms for
noisy feedback given by a probabilistic model can also be
adapted based on Hedge or other similar algorithms using the
one-sample estimate of reward, which is the technique Exp3
utilizes for partial observation, see e.g. [29]. Learning with
sublinear regret for delayed feedback has also been recently
proposed [30].

The same argument also suggests that some other evading
strategies that possess the equal-occupancy property, i.e., long-
term, equal amount of presence in each location, can be
optimal for the infinite-horizon problem; examples include
uniformly and randomly choosing a location in each time
step. The same argument, however, may not hold for a finite-
horizon problem. This is because the no-regret property is
only achieved asymptotically; as we elaborate at the end of
this subsection, an equal-occupancy policy is not necessarily
optimal for the finite-horizon problem posed in (1). However,
the greedy policy is optimal in the finite-horizon case as we
show next. It should be noted that this is not an entirely
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intuitive result. This is because given the limited horizon, the
evader could decide to first manipulate the location weights
in the pursuer’s learning process (by persistent presence in a
few selected locations and sacrificing payoff in the short term)
and then take advantage of the skewed weights by hiding in
other locations. When the weights regain balance the evader
can repeat this process. It is not immediately clear whether
the greedy policy is necessarily better than this policy. Below
we examine this in detail.

Without loss of generality, we shall assume under the
greedy policy ties are broken in favor of the lowest-indexed
location. Note that since the greedy policy always selects the
location least likely to be searched, it eventually (in finite time)
leads to equal weights over all locations even if the initial
weights under Hedge is unequal. Once the weights are equal,
the evader’s action is a simple round robin, using locations
in the order 1, 2, · · · ,m. Below we prove the finite-horizon
optimality of the greedy policy for a two-location scenario so
as to avoid letting technicalities obscure the main idea. The
general case is stated in a theorem. For simplicity we drop the
superscript π when this dependence is clear from the context.

Lemma 1: In a two-location scenario, the optimal finite-
horizon policy yields π(t) ∈ arg mink=1,2 αk(t).

Proof: For any policy, let ∆(t) := |G1(t) − G2(t)|;
this is the difference between the number of times that
locations 1 and 2 have been used by the end of step t. Thus
|∆(t+ 1)−∆(t)| = 1 for all t. An example of ∆(t) up to T
is shown in Figure 1: an edge connecting two adjacent time
points represents a particular location selection, a down edge
indicating the selection of a currently under-utilized location.
At t we have

r(t) =

{
a∆(t−1)

1+a∆(t−1) , ∆(t) < ∆(t− 1)
1

1+a∆(t−1) , ∆(t) > ∆(t− 1)
.

Suppose along any trajectory of ∆(t) there exists a point
∆(t) = d ≥ 2 such that either of the following cases is true:
(C1) d − 1 = ∆(t − 1) = ∆(t + 1) < ∆(t), t < T ; or
(C2) ∆(T − 1) < ∆(T ). Then consider a change of policy by
“folding” the point at t down in (C1) and the point at T in
(C2), as shown by the dashed line in the figure. Clearly, we
would only change the reward collected at time t and t + 1
for the case (C1) and the reward at time T for (C2). Let r′

denote the reward of this alternate policy. For (C1) we have

r′(t) + r′(t+ 1)− r(t)− r(t+ 1)

=
ad−1

1 + ad−1
+

1

1 + ad−2
− 1

1 + ad−1
− ad

1 + ad

=
1

1 + ad
+

1

1 + ad−2
− 2

1 + ad−1
> 0

as 1
1+ax is strictly convex in x for x > 0. It is clear the reward

also increases in (C2) with this change. Thus the reward can
always be increased by folding down such “peaks” if they
exist. This eventually leads us to the greedy policy where
∆(t) ≤ 1 at all times.

Theorem 3: The greedy policy is optimal for the finite-
horizon problem (1).

t t+ 1t - 1

(C1) (C2)
TT

· · · · · · · · ·

- 1

Fig. 1. The change of policy in two cases.

Note that α(t) can be recursively updated as follows:

απk (t+ 1) =
απk (t)aI(π(t)=k)∑
j∈C α

π
j (t)aI(π(t)=j)

,

with I(·) being the indicator function. It is therefore only
necessary for the evader to recall/store the last control action
and the last system state. Note also that the above sequential
change-of-policy argument essentially shows the uniqueness
of the greedy policy as the optimal policy; thus the policy
given earlier for illustration purposes, whereby the evader
intentionally skews the weights of locations to take advantage
later, is strictly suboptimal. The same result can also be
extended to the case where the evader is able to hide and
perform its operation in multiple locations simultaneously.

In Figure 2 we plot the finite-horizon (expected) average
reward for the greedy and a randomized uniform policy that
selects either location with equal probability in a two-location
scenario. Our infinite-horizon proof suggests that this latter
policy is asymptotically optimal; it is however clearly not
optimal for the finite-horizon problem. Based on the proof
of Theorem 2, analytically the finite-horizon average reward
rT := 1

T

∑T
t=1 r(t) of the greedy policy is given by

rT =
1

T

bT/mc m∑
j=1

r(j) +

(T mod m)∑
j=1

r(j)


where r(j) = 1− 1

ja+(m−j) , while the expected average reward
of the uniform policy is simply m−1

m . Note that in this two-
location example, the zigzag in the reward of the greedy policy
when T is small is due to the fact that the single-step reward
at an even step is higher than an odd step.
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Fig. 2. The finite-horizon (expected) average reward of the greed policy and
the uniform policy in a two-location example.

We conclude this part by noting that our formulation im-
plicitly assumes zero detection error when the pursuer selects
the right location; similar results can be obtained for the more
general case of positive detection error.
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B. Against multi-location pursuit

We next consider a pursuer capable of searching M > 1
locations simultaneously, with all other assumptions being the
same. Accordingly, we assume the pursuer employs the follow-
ing multiple-play (search) extension of the Hedge algorithm
called Hedge-M 3.
Hedge-M
Parameter: A real number a > 1.
Initialization: Set wk(1) := 1 for all k ∈ C.
Repeat for t = 1, 2, . . . , T

1) If maxk∈C
wk(t)∑m
j=1 wj(t)

> 1
M , compute v(t) such that

v(t)∑
k:wk(t)≥v(t) v(t) +

∑
k:wk(t)<v(t) wk(t)

=
1

M
,

and set C0(t) := {k : wk(t) ≥ v(t)}. Otherwise, set
C0(t) := ∅.

2) Set

w′k(t) =

{
v(t), k ∈ C0(t)

wk(t), k ∈ C \ C0(t)
.

3) Let α(t) = (α1(t), α2(t), . . . , αm(t)) where

αk(t) = M
w′k(t)∑m
j=1 w

′
j(t)

,

and choose M locations with the marginal distribution
α, using a subroutine Dependent Rounding that returns
the set C1(t) of locations selected.

4) Observe (reward) vector (x1(t), x2(t), . . . , xm(t)).
5) Set

wk(t+ 1) =

{
wk(t), k ∈ C0(t)

wk(t)axk(t), k ∈ C \ C0(t)
.

Note that αk(t) is the marginal probability that location
k is searched at time t in this case for each k, and their
sum is the total number of locations that can be searched,
i.e. M . For this reason, Hedge-M generates αk(t) as in Step
3, after it re-scales the ratios of weights in Step 1 to maintain
a probability measure. To compute v(t) in Step 1, one can
perform a line search by starting from v(t) = maxk∈C wk(t),
and decreasing the value of v(t) until the equality is achieved.
The subroutine Dependent Rounding [32] draws M out of
m items with the given marginal distribution, and can be
found in the appendix. For any arbitrary searching strategy
A = (CM (1), CM (2), . . .), where CM (t) is the set of M
locations searched at time t, the total reward of the pursuer
is given by GA(T ) =

∑T
t=1

∑
k∈CM (t) xk(t). The maximum

reward Gmax of searching the M most evader-active locations
is similarly re-defined. The following result shows that Hedge-
M also has a sublinear regret w.r.t. consistently searching the
M most evader-active locations (in hindsight); the proof is
based on that of Hedge [24] and Exp3.M [31].

Theorem 4: If a = 1 +
√

2 ln(m/M)/(MT ), then
EGHedge-M(T ) ≥ Gmax(T ) −

√
2 ln(m/M)MT , where the

3Hedge-M is reverse-engineered from the algorithm Exp3.M [31], which is
a multiple-play algorithm with partial information (the pursuer only observes
activities in locations it searched).

expectation is w.r.t. the randomness in the actions taken by
Hedge-M.

We first show the optimality of the greedy policy for the
infinite-horizon problem. Using the same argument as in the
proof of Theorem 2, we have

r∞ ≤ 1− lim sup
T→∞

E
{

1

T
Gπmax(T )

}
≤ m−M

m

for any policy, since Gπmax(T ) > TM
m for any π in the

multiple-search case. On the other hand, the greedy policy
yields αgg(t) ≤

M
m and hence rg(t) ≥ m−M

m for any t.
Therefore, using γgreedy, we have r∞ ≥ m−M

m , which shows
the optimality of the greedy policy. With a bit more effort
compared to the single-location pursuit case, we can also
obtain the optimality result for the finite-horizon problem. The
proof is based on reducing this case to that proved in Theorem
3, and is omitted for brevity.

Theorem 5: The greedy policy is optimal for both the finite-
and infinite-horizon problems under the multi-location pursuit.

C. Using a decoy

We now consider the effect of using a decoy by the evader,
a device capable of performing similar operations as the
evader, and indistinguishable to the pursuer (i.e., a double)4.
Intuitively, the introduction of a decoy can artificially create
the impression of a “most evader-active” location so as to
attract a majority of the searches, thereby allowing the evader
to perform “under the radar” in a location less likely to be
searched.

Indeed, this idea can be immediately verified in the infinite-
horizon problem, assuming the pursuer is only capable of
single-location pursuit. Define a greedy decoy (GD) policy
by letting the decoy and the evader respectively select the
locations with the highest and the lowest probabilities (the
worst and the best locations) to be searched. This policy causes
the decoy to persistently transmit in one location, and the
evader to use other locations in a round-robin fashion. With a
similar argument:

r(t) ≥ 1− adt/(m−1)e

at + (m− 1)abt/(m−1)c → 1

as t→∞. Hence,

r∞ = lim
T→∞

1

T

T∑
t=1

rg(t) = lim
t→∞

rg(t) = 1.

This asymptotic performance is asymptotically optimal and
less careful schemes can result in much inferior gain. For
example, if the evader and the decoy respectively select the
best and the second best locations in each time step (referred
to as the doubly greedy (G2) policy), we have

r∞ = lim
T→∞

2

m

m/2−1∑
j=0

m− 2j − 1 + 2ja

m− 2j + 2ja
=
m− 1

m
,

4In the jamming application, the decoy can be a regular but much cheaper
transceiver, one without the ability to receive or perform channel switching.
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assuming m even for simplicity. In Figure 3, we plot the finite-
horizon average reward for the greedy decoy (GD) policy,
the doubly greedy (G2) policy, and the original greedy policy
without a decoy (GwoD) as a baseline. As can be seen, GD
significantly outperforms the others.
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Fig. 3. The finite-horizon average reward of the greedy decoy (GD) policy, the
doubly greedy (G2) policy, and the greedy policy without the decoy (GwoD)
in a system of four locations.

We now show that GD is also optimal for the finite-horizon
problem (1). Note that Hedge can start from any (non-zero)
initial condition without affecting the scaling of the regret w.r.t.
the horizon. Given any set of the exponents of weights at t,
i.e., (Gk(t − 1))k∈C , let L(t) = arg maxk∈C Gk(t − 1). The
optimality result is then established using the following two
lemmas.

Lemma 2: For any given horizon T and any initial condition,
an optimal policy is such that the decoy always uses a location
from L(t) before the horizon and the evader from C \ L(t).

Lemma 3: Given the decoy always uses the worst location,
it is optimal for the evader to select the best location.

Combining these lemmas we have the following result.
Theorem 6: The greedy decoy policy is optimal for the

finite-horizon problem, i.e., it is optimal to let the decoy and
the evader respectively select the worst and the best locations
in each time step.

The above result can be readily extended to the case
when the pursuer is capable of searching multiple locations
simultaneously, with the evader deploying multiple decoys at
or exceeding the number of locations the pursuer is capable
of searching.

We can obtain the same asymptotic performance as using
a single decoy against single-location pursuit. In essence, the
use of decoys cancels out or neutralizes the adversarial effect5.
Conversely, the pursuer can increase the number of locations
it searches (if it has the resources) to counter the effect of
decoys. However, the mere possibility of using a decoy can
create interesting and difficult dilemmas for the pursuer as we
elaborate in Section V-B.

IV. OPTIMAL PURSUIT AGAINST ADAPTIVE EVASION

We next consider the parallel problem for the pursuer
when the evader hides adaptively. We now have the opposite

5This greedy decoy policy can also be shown to be optimal over a finite
horizon against multi-location pursuit; the technical detail is omitted for
brevity.

situation: the evader does not know the decision process of
the pursuer, and regards its action zk(t) as a deterministic but
unknown value. Both sides receives feedback after a decision:
the pursuer on whether the search is successful, and the evader
on which location is searched regardless of its success. The
evader adopts the Hedge algorithm given its full information
on the pursuer’s action after the fact, and the pursuer is aware
of the evader’s using Hedge.

Due to the symmetry between this and the previous sections,
most results can be readily obtained along similar reasoning.
For this reason we only highlight the main difference and will
limit our attention to the single-location pursuit. To avoid am-
biguity, we separately introduce the notation for the evader’s
version of Hedge. Denote by Rk(t) the exponent of the weight
assigned to location k at time t, and Rk(t) = Rk(t−1)+zk(t).
The probability that the evader chooses location k is then
given by τk(t) = aRk(t−1)∑

j∈C a
Rj(t−1) . Denote by RHedge(T ) the

total reward of the evader at a horizon T under Hedge and by
Rmax(T ) the total reward from consistently hiding in the least
searched location in hindsight. Recall that ξ = (ξ(1), ξ(2), . . .)
denotes the search sequence of a policy λ by the pursuer, and
bξ(t) its expected reward at time t. Observe that

ERξHedge = E

{
T∑
t=1

zξπ(t)(t)

}
=

T∑
t=1

m∑
k=1

zξk(t)τ ξk (t)

=

T∑
t=1

∑
k 6=ξ(t)

τ ξk (t) = T −
T∑
t=1

bξ(t)

Let b∞ := lim infT→∞ E{ 1
T

∑T
t=1 b

ξ(t)}. Using a similar
argument as for the evader, we can obtain

b∞ ≤ 1− lim sup
T→∞

E
{

1

T
Rmax(T )

}
≤ 1

m

since Rmax(T ) ≥ T m−1
m for any ξ. Define a greedy policy

λgreedy, of which the search sequence is given by g̃(t) ∈
arg maxk∈C τ

g̃
k (t). It is clear that bg̃(t) ≥ 1

m , implying the
optimality of λgreedy for the infinite-horizon problem. The same
can be established for the finite-horizon problem. Consider the
two-location scenario in Section III as an example, and define
∆̃(t) := |R1(t)−R2(t)|. One can similarly find that

b(t) =

{
a∆̃(t−1)

1+a∆̃(t−1)
, ∆̃(t) < ∆̃(t− 1)

1
1+a∆̃(t−1)

, ∆̃(t) > ∆̃(t− 1)
.

Hence using the same argument, the optimality of λgreedy can
be shown.

Theorem 7: The greedy policy is optimal for the pursuer in
both the infinite- and finite-horizon problems when the evader
adopts Hedge.

V. AGAINST UNKNOWN ADVERSARIAL BEHAVIOR

We now turn to the more realistic case where both sides
presume no knowledge of the reasoning used by the opponent,
and accordingly employ their respective learning techniques.
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A. Hiding versus multi-location seeking

We first consider the case when each side has full posterior
information on its adversary’s action, and thus respectively
adopts Hedge and Hedge-M as the hiding and seeking strate-
gies, though this fact is unknown to the other side. Note that
our pursuit-evasion game is constant-sum with a location-
independent reward (cf. Section VI where the reward is
location-dependent). From known results on the convergence
of no-regret learning algorithms to Nash equilibrium (NE) in
constant-sum games [33, Chapter 4], it immediately follows
that Hedge and Hedge-M are mutually best responses for the
infinite-horizon problem, up to a diminishing term over a finite
horizon.6 Also note that the above results suggest that Hedge
results in the same average reward for the evader compared
to the case when it knows that the pursuer is using Hedge-
M and responds optimally (Section III-B). This shows that
there is no loss of optimality when using online learning
techniques against an unknown pursuer who is also an online
learner with sublinear regret guarantee. On the other hand, this
result also indicates that the information asymmetry between
the two interacting players, which is given by the different
levels of knowledge on the learning rationale of the opponent,
does not yield advantage to the one that possesses additional
information (which is the evader in this setup). Nevertheless, as
we shall see in the next subsection, the information asymmetry
caused by different abilities to distinguish between the actual
opponent and a decoy device can be a determining factor of
the long term outcome.

Moreover, the above conclusion holds when the evader only
gets to find out whether a search is conducted in the location it
happens to be hiding, but not otherwise (as opposed to finding
out after the fact the set of locations searched, as we have
previously assumed). This results in partial information for
the evader (or called the bandit setup for the evader), and
for this reason it can no longer use Hedge. In this case its
partial information counterpart Exp3 [24], [25] can be used to
update its probability τk(t) of choosing location k at t. Then,
the mutual optimality between Exp3 and Hedge-M is also
implied by the aforementioned general learning convergence
result, and for the same reason the mutual optimality in fact
holds for any pair of no-regret algorithms for our hide-and-
seek problem.

B. Using a decoy

We re-examine the idea where the evader employs a decoy
but assumes no knowledge on the pursuer, which makes using
the decoy as a camouflage more difficult. Toward this end
we make the important observation that if the most evader-
active location is unique and dominant, that is, there exists
a unique location k, such that for any subsequence of time
{ti}I(T )

i=1 ⊆ {1, 2, . . . , T} with I(T ) of the order of Θ(T ),

lim inf
T→∞

1

I(T )

I(T )∑
i=1

xk(ti) > lim sup
T→∞

1

I(T )

I(T )∑
i=1

xj(ti)

6In our setup of the pursuit-evasion problem, the underlying constant-sum
game is of the type of the matching-pennies games, and has a unique NE.

for any j 6= k, then the pursuer can guarantee sublinear
weak regret (uniformly or asymptotically) if and only if all
suboptimal locations are searched with time sublinear in T
asymptotically. In other words, a strategy that guarantees
sublinear weak regret for the pursuer must ultimately identify
and aim for the dominantly evader-active location if any.
Therefore, the evader can always use the decoy to “create” this
dominant location while performing operations in a virtually
search-free environment, by letting the decoy reside in one
location and using an algorithm like Exp3 on the rest m− 1
locations. This will result in an asymptotic average reward of
1, the same as in the case when the adversarial behavior is
known.

Embedded in this observation is an interesting dilemma that
the pursuer faces in the presence of the possibility of a decoy
that it cannot distinguish. On one hand, if the pursuer adopts
a no-regret algorithm like Hedge (or Hedge-M), arguably
the best class of algorithms to use under uncertainty, then
it is setting itself up for a very effective decoy defense by
the evader, so much so that its search is rendered useless
(asymptotically). This is the point illustrated above. On the
other hand, if for this reason the pursuer decides not to
use such algorithms, then it may face a worse outcome as
the alternative algorithm may provide no performance/regret
guarantee. In this sense the mere possibility or threat of using
a decoy may be viewed as effective defense.

VI. APPLICATION TO JAMMING DEFENSE: AGAINST
ADAPTIVE ADVERSARY WITH HETEROGENEOUS REWARDS

In the context of jamming defense in a multi-channel
communication system, the evader and the pursuer respectively
model a legitimate user that attempts data transmission and a
jamming attacker, and each location represents one channel. In
this section, we consider the case when the reward associated
with each successful evasion (data transmission) or pursuit
(jamming attack) is location-dependent, which models the
variable amount of deliverable data of a transmission as the
result of the dynamic channel bandwidth (data rates) with
spectral diversity. We denote the bandwidth by µk for each
channel k ∈ C, the value of which we assume is known to
both the user and the attacker, and we accordingly re-define
the reward that the user obtains from using channel π(t)
as rπ(t) = µπ(t)(1 − απ(t)(t)) or µπ(t)zπ(t)(t), depending
on the knowledge of the user on the attacker’s behavior.
We also re-define the reward of attacking channel ξ(t) as
bξ(t) = µξ(t)xξ(t)(t) when the attacker has no information on
the reasoning used by the user, which is assumed throughout
this section. We will focus on the single-attack case (i.e.,
single-location pursuit), and we show optimality results for the
infinite-horizon problem. Also, we change our terminology in
accordance to the context of application.

A. Against known attack pattern

In this part, we consider the problem in parallel to that
presented in Section III. We assume the attacker adopts the
Hedge algorithm, which is known to the user, and the step of
updating weights in Hedge (step 3)) is accordingly Gk(t) =

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2412946

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

Gk(t− 1) +µkxk(t) for all k ∈ C. Without loss of generality,
we assume that µ1 ≥ µ2 ≥ . . . ≥ µm. Given any sequence of
channel selection π, we have

1

T

T∑
t=1

µπ(t) =
1

T

m∑
k=1

`πk (T )µk =

m∑
k=1

aπk (T )µk

where `πk (T ) = |{t ≤ T : π(t) = k}| and aπk (T ) = `πk (T )/T .
Using a similar argument as before, the average gain of the
attacker when using Hedge is given by

EGπHedge(T ) =

T∑
t=1

µπ(t) −
T∑
t=1

rπ(t)

for any realization of π, and thus,

1

T

T∑
t=1

rπ(t) =
1

T

T∑
t=1

µπ(t) −
1

T
EGπHedge(T )

≤
m∑
k=1

aπk (T )µk −
1

T
(Gπmax(T )−

√
2T lnm)

=

m∑
k=1

aπk (T )µk −max
k∈C

aπk (T )µk +
√

2 lnm/T ,

where Gπmax(T ) = maxk∈C `
π
k (T )µk by definition. Hence,

r∞ ≤ lim inf
T→∞

E

{
m∑
k=1

aπk (T )µk −max
k∈C

aπk (T )µk

}
for any γ. Consider the following optimization problem

maximize
a∈∆m

m∑
k=1

akµk −max
k∈C

akµk, (3)

where ∆m is the set of distributions over C and a = (ak, k ∈
C). We denote an optimal solution by a?, and we then have

r∞ ≤
m∑
k=1

a?kµk −max
k∈C

a?kµk,

for any policy γ. Let supp(a) = {k ∈ C : ak > 0} for any
feasible solution a, and let K? = |supp(a?)|.

Lemma 4: For any optimal solution a?, 1) a?kµk = a?jµj for
any k, j ∈ supp(a?), and 2) supp(a?) consists of the indices
of channels with the K? highest bandwidth.

Without loss of generality, we assume that supp(a?) =

{1, 2, . . . ,K?}. Hence, a?k = 1/µk∑K?

j=1 1/µj
for all k ≤ K?. The

optimal value of the problem (3) is then given by (K? −
1)/
∑K?

k=1 1/µk. Note that Γ(K) := (K − 1)/
∑K
k=1 1/µk is

an increasing function of K for K = 1, 2, . . . ,m. Hence,
the optimal value as well as K? can also be readily obtained
without solving (3). Using the above lemma, we obtain

r∞ ≤
K? − 1∑K?

k=1 1/µk
,

for any policy in Γ. Given the value of K? as in Lemma 4,
consider now the greedy policy γgreedy with the channel
selection sequence g, where g(t) ∈ arg mink≤K? αgk(t) =
arg mink≤K? Gk(t), and we have the following result.

Theorem 8: The greedy policy is optimal.

Proof: Using the greedy policy, we have αgg(t)(t) ≤
1
K?

for all t and thus

rg(t) ≥ µg(t)
(

1− 1

K?

)
=
K? − 1

K?
µg(t).

Therefore,

r∞ ≥
K? − 1

K?
lim inf
T→∞

E

{
1

T

T∑
t=1

µg(t)

}

=
K? − 1

K?
lim inf
T→∞

E

{
m∑
k=1

agk(T )µk

}

≥ K? − 1

K?
E

{
lim inf
T→∞

m∑
k=1

agk(T )µk

}
,

where the expectation is taken w.r.t. the private randomization
device, and the last inequality is due to Fatou’s lemma. Fix
any realization of g. Since

|Ggk(t)−Ggj (t)| ≤ max
l≤K?

µl = µ1

for any k, j ≤ K? due to the greedy nature of the policy, and
ak(T )µk = Gk(T )/T for any k, we have

lim
T→∞

|agk(T )µk − agj (T )µj | = 0,

for any k, j ≤ K?, which implies

lim inf
T→∞

agk(T )µk = lim inf
T→∞

agj (T )µj ,

for any k, j ≤ K?, and that if {Tl}∞l=1 is a subsequence of
time that achieves the limit inferior of agk(Tl)µk, it is also
a subsequence that achieves the limit inferior of agj (Tl)µj .
Combining the above implications, we have

lim inf
T→∞

m∑
k=1

agk(T )µk = K? lim inf
T→∞

agk(T )µk = K?agkµk,

for some agk > 0 for each k ≤ K?, and moreover
∑K?

k=1 a
g
k =

1. Finally, agkµk = 1∑K?

j=1 1/µj
for all k ∈ supp, and we have

r∞ ≥
K? − 1∑K?

k=1 1/µk
,

which establishes the optimality of the greedy policy.

B. Against unknown attack pattern

Given the location-dependent reward, the underlying
pursuit-evasion game is no longer constant-sum, and the
known learning convergence result is not directly applicable.
Nonetheless, we provide a simple proof below to show the
mutual optimality between a pair of no-regret learning algo-
rithms similarly holds. We assume the attacker and the user
respectively adopt randomized learning algorithms λ and γ
with sublinear weak regret, which is unknown to the other
side. Given the no-regret feature of λ, the average reward of
the user is upper bounded by the optimal solution to (3) as
shown before. Let the total reward of the user be Rγ , and then

ERγ(T ) ≥ Rmax(T )− o(T ),
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where the expectation is taken w.r.t. the private randomness in
γ, which is independent from any attacker’s behavior. Let ξ =
(ξ(1), ξ(2), . . . , ξ(T )) be an arbitrary jamming sequence of the
attacker, where ξ(t) ∈ C, and set `ξk(T ) = |{t ≤ T : ξ(t) =

k}| and ck(T ) = `ξk(T )/T . Since Rmax(T ) = maxk∈C(T −
`ξk(T ))µk, we have the average reward of the user using a
no-regret γ is lower bounded as

r∞ ≥ lim inf
T→∞

E
{

max
k∈C

(1− ck(T ))µk

}
.

Consider the optimization problem

minimize
c∈∆m

max
k∈C

(1− ck)µk, (4)

and denote its optimal rl, which is thus a lower bound of r∞.
In fact, we have rl = K?−1∑K?

k=1 1/µk
.

Lemma 5: Problem (4) has the same optimal value as (3).
Proof: Reformulate the problem (3) and problem (4)

respectively as follows:

max

m∑
k=1

akµk − b s.t. akµk ≤ b, ak ≥ 0,∀k,
m∑
k=1

ak = 1,

(5)

and

min d s.t. (1− ck)µk ≤ d, ck ≥ 0,∀k,
m∑
k=1

ck = 1. (6)

It can be shown that the problem (5) is equivalent to the dual
problem of (6), and the result then follows.

The above results show that any pair of policies γ and λ
with sublinear weak regret are mutually best responses, as in
the formulation with homogeneous reward for both sides.

VII. RENDEZVOUS AND COLLISION PROBLEMS

In this section, we present a unified framework that extends
our formulation of the pursuit-evasion problem to two other
important families of problems, namely the rendezvous and the
collision problems. The rendezvous problem arises in commu-
nication systems using dynamic spectrum access [34] where
two radio transceivers attempt to meet in a common channel to
communicate, or autonomous robotic systems [35] where two
robots attempt to come within the range of each other. The
collision problem arises in various resource sharing scenarios
in wireless networks, where different radio transceivers try to
switch to different channels in order to minimize interference,
see e.g., [36]. We start by describing the unified formulation,
and show to what extent the results obtained under the pursuit-
evasion model extends to these two problems. We then discuss
in detail the associated open problems.

A. A unified framework for the three problems

Given two interacting players, each player takes an action
ai(t) at time t from the action space Ai where i = 1 or 2,
and respectively receives a reward ri(t) := ri(a1(t), a2(t)) as
a function of their actions. Denote by Ii(t) the informational
state of player i at time t, which consists of all information
available to the player for decision-making, and by git the

decision rule at time t, that is, ai(t) = git(Ii(t)). Denote by
gi = (gi1, g

i
2, . . .) the decision policy, which is the collection

of decision rules, and let the space of all policies be G. Given
a probabilistic belief on the other player’s strategy, each player
can then consider the optimization problems

max
g∈G

E

{
T∑
t=1

ri(t)

}
, and max

g∈G
lim inf
T→∞

E

{
1

T

T∑
t=1

ri(t)

}
,

where T is a finite time horizon, and the expectation is taken
w.r.t. any randomness involved in the evaluation of the reward.
Depending on the nature of the payoff, three families of
problems are given as follows:

1) Pursuit-Evasion problem. Assume that player 1 is the
pursuer and player 2 is the evader. We have r1(a1, a2) =
h1(a2)·I(a1 = a2) and r2(a1, a2) = h2(a2)·I(a1 6= a2),
where hit is some bounded mapping from Ai to R+. In
our previous study, we had h(a2) = 1 or µa2 .

2) Rendezvous problem. ri(a1, a2) = hi(ai) · I(a1 = a2)
for i = 1, 2.

3) Collision problem. ri(a1, a2) = hi(ai) · I(a1 6= a2) for
i = 1, 2.

B. Generalization

Following our framework for the pursuit-evasion problem,
we discuss the rendezvous and the collision problems using a
similar structure. We assume player 2 has no knowledge of the
(algorithmic) reasoning of player 1 as we did for the pursuer in
the pursuit-evasion problem. We again consider two versions
of either problem, depending on player 1’s knowledge, which
we shall refer to as the “known” case and the “unknown”
case with a bit abuse of language. In the following, we briefly
formulate the rendezvous problem, while the collision problem
can be understood from the context (c.f. Section VII-A).
Our notation is reproduced (and re-defined when necessary)
from previous sections. Let xk(t) and zk(t) be the variables
indicating respectively the activities of players 1 and 2, with
xk(t) = 1 (zk(t) = 1) if player 1 (resp. 2) is at location k at
time t and xk(t) = 0 (zk(t = 0)) otherwise.

Given a selection sequence π under a policy γ, of which
the re-definition is standard and thus omitted, when player 1
regards zk(t) as stochastic with P (zk(t) = 1) = α(t) (i.e.,
the known case), it has a mean reward rπ(t) = απ(t)(t)
at time t; when zk(t) is considered non-stochastic (i.e., the
unknown case), we have rπ(t) = zπ(t)(t). As for player 2, it
regards xk(t) as non-stochastic and receives bξ(t) = xξ(t)(t)
when using the search sequence ξ. We assume both sides have
feedback on the other’s action at the end of an interacting
round, and player 2 employs online technique as its strategy
for location selection, in particular the Hedge algorithm.

For the known case, the analysis of the optimal policy is
nothing but the parallel adaption of what we have developed
for the pursuit-evasion problem, and the optimality of the
greedy policy follows. The greedy policy for the rendezvous
and the collision problem will be respectively to choose the
location with the maximum and the minimum probability
αk(t) of player 2’s occurrence; in words, it is simply to stay
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in the same location for both problem, e.g., “be there or be
square” for rendezvous.

C. Open problems

Interestingly, for the unknown case when both sides adopt
no-regret learning, the previous analysis from the pursuit-
evasion problem fails to provide a sharp characterization of
the performance (e.g. the asymptotic mutual optimality of
strategies). Given the constant-sum nature of the pursuit-
evasion problem, the no-regret property of learning techniques
provides either player tight lower (performance guarantee for
one player) and upper (performance guarantee for its opponen-
t) reward bounds, thus establishing the convergence of learning
limits, as we have seen from the existing analysis on the
connection between no-regret learning and minimax theorem
in constant-sum games [33]. Applying the same argument
in the rendezvous and the collision problems, however, one
only obtains lower bounds for both players, which is distinct
from the optimal solution for both sides. For example, in a
two-location scenario of seeking rendezvous, the no-regret
property only provides a lower bound 1/2 on the average
reward for each player, while the optimal reward would be
1 for both players when they manage to only disagree on
the location a sublinear number of times. We note that the
rendezvous and collision problems have pure NEs (in a game-
theoretical sense) as optimal solutions for both players, while
the pursuit-evasion problem possesses no pure NE, and hence
results on the convergence of learning limits for general-sum
games (that are not necessarily of constant sums, including
the rendezvous and the collision problem) and their relation
to game-theoretical solution concepts, if exist, will be a key
to solving the unknown case.

This subject has been an active research field, and it has
been shown no-regret dynamics may not converge to NE in
general games [37]. The generic characterization of the learn-
ing limit using no-regret algorithms is concerned with weaker
notions of equilibria than NE [38] [39]. As to the convergence
of learning to NEs, there are a few affirmative results in special
cases [40], [41], while none of them addresses the rendezvous
and the collision problems that we have posed in this section.

VIII. CONCLUDING REMARK

Modeling individual behavior from a learning perspective
as shown in this paper typically requires weaker knowl-
edge assumptions than a game theoretical framework does.
Interestingly, the convergence of these learning algorithms
has been shown to be closely related to game theoretical
solution concepts. The learning perspective thus provides a
different and possibly more natural angle in interpreting certain
game-theoretic results. Extending the “two-player” scenario
investigated in this paper to groups of evaders and pursuers is
an interesting direction of future research. From an application
viewpoint, incorporating temporal variation in the reward
process and the impact of attacks on the upper-layer control
mechanism, e.g. TCP, are also important open issues.

APPENDIX A
PROOFS

Proof of Theorem 3: Define ∆ij(t) := Gi(t) − Gj(t).
Then,

αk(t) =
1∑m

j=1 a
∆jk(t−1)

,

and

rπ(t) =

∑
j 6=π(t) a

∆jπ(t)(t−1)

1 +
∑
j 6=π(t) a

∆jπ(t)(t−1)
.

Let K(t) = arg mink∈C Gk(t), and define T = {t ≤ T :
maxk/∈K(t) ∆k,j(t) ≥ 2, j ∈ K(t)}. Suppose that T 6= ∅, and
let t0 = min T . Then, either (C1) there exists some time t1
with t0 < t1 ≤ T when some location j ∈ K(t0) is selected
for the first time after t0 by the evader or (C2) any location
j ∈ K(t0) is never selected by the horizon T .

Consider first the case (C1). Without loss of generality,
assume that the location selected at t1−1 is 2 and 1 is chosen
at t1. Let ∆ij(t1 − 1) = dij . Then,
• ∆ij(t1) = ∆ij(t1 + 1) = dij for all i, j ≥ 3;
• ∆1j(t1) = d1j for all j ≥ 3, ∆12(t1) = d12−1, ∆1j(t1+

1) = d1j + 1 for all j ≥ 3, and ∆12(t1) = d12;
• ∆2j(t1) = d2j + 1 for all j 6= 2, ∆2j(t1 + 1) = d2j + 1

for all j ≥ 3, and ∆21(t1 + 1) = d21.
Consider now a change of policy by selecting location 1 at
t1 − 1 and location 2 at t1. Denote ∆ under this new policy
by ∆′. Then,
• ∆′ij(t1) = ∆′ij(t1 + 1) = dij for all i, j ≥ 3.
• ∆′1j(t1) = d1j + 1 for all j ≥ 2, ∆′1j(t1 + 1) = d1j + 1

for all j ≥ 3, and ∆′12(t1) = d12;
• ∆′2j(t1) = d2j for all j ≥ 3, ∆′21(t1) = d21−1, ∆′2j(t1+

1) = d2j + 1 for all j ≥ 3, and ∆′21(t1 + 1) = d21.
Hence, this change of policy only affects the reward of the
evader collected at t1 − 1 and t1. Denote by r′ the reward
under this alternative policy, and we have

r′(t1 − 1) + r′(t1)− r(t1 − 1)− r(t1)

=

∑
k≥3 a

dk1 + ad21

1 +
∑
k≥3 a

dk1 + ad21
+

∑
k≥3 a

dk2 + ad12+1

1 +
∑
k≥3 a

dk2 + ad12+1

−
∑
k≥3 a

dk2 + ad12

1 +
∑
k≥3 a

dk2 + ad12
−

∑
k≥3 a

dk1 + ad21+1

1 +
∑
k≥3 a

dk1 + ad21+1

=
1

1 + C + ad21+1
+

1

1 +D + ad12

− 1

1 + C + ad21
− 1

1 +D + ad12+1
,

where C =
∑
k≥3 a

dk1 and D =
∑
k≥3 a

dk2 . Note that C =

Dad21 and d12 = −d21. Set d = d21, and we obtain

r′(t1 − 1) + r′(t1)− r(t1 − 1)− r(t1)

=
1

1 +Dad + ad+1
+

1

1 +D + a−d
− 1

1 +Dad + ad
−

− 1

1 +D + a−d+1

=
(a2d−1 − ad−1)(a− 1)2

(1 +Dad + ad+1)(1 +Dad + ad)(1 +Dad−1 + ad−1)

> 0.
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For (C2), it is clear that alternatively selecting location 1 at T
results in a higher reward.

Therefore, the optimal policy would never allow the differ-
ence between the times that any two locations are selected
to be greater than 2. In other word, the optimal policy
always selects the most under-utilized location. When there
are multiple locations with the same lowest number of times
of the evader’s presence, the evader would be indifferent in
selecting any location between/among them, since locations
are symmetric (and the reward is only related to the relative
difference between the numbers of location usage).

Proof of Theorem 4: Let Wt :=
∑m
k=1 wk(t) and W ′t :=∑m

k=1 w
′
k(t), and let a = 1 + θ for some θ > 0. Denote

C \ C0(t) by Cc0. Then, for any t ≤ T ,

Wt+1

Wt
=

∑
k∈Cc0(t)

wk(t+ 1)

Wt
+

∑
k∈C0(t)

wk(t+ 1)

Wt

=
∑

k∈Cc0(t)

wk(t)

Wt
(1 + θ)xk(t) +

∑
k∈C0(t)

wk(t)

Wt

≤
∑

k∈Cc0(t)

wk(t)

Wt
(1 + θxk(t)) +

∑
k∈C0(t)

wk(t)

Wt

= 1 + θ
∑

k∈Cc0(t)

wk(t)

Wt
xk(t) = 1 + θ

W ′t
Wt

∑
k∈Cc0(t)

w′k(t)

W ′t
xk(t)

≤ 1 + θ
∑

k∈Cc0(t)

αk(t)xk(t),

where the first inequality is due to the fact that xk(t) ∈ {0, 1}.
Therefore,

ln
WT+1

W1
=

T∑
t=1

ln
Wt+1

Wt
≤

T∑
t=1

ln

1 + θ
∑

k∈Cc0(t)

αk(t)xk(t)


≤ θ

T∑
t=1

∑
k∈Cc0(t)

αk(t)xk(t) (7)

where the last inequality is due to ln(1 + x) ≥ x. On the
other hand, let A∗ ⊂ C be the set of locations with the top M
highest total rewards, and then we have

ln
WT+1

W1
≥ ln

∑
k∈A∗ wk(T + 1)

W1

≥
∑
k∈A∗ lnwk(T + 1)

M
− ln

m

M

= ln(1 + θ)
∑
k∈A∗

∑
t:k∈Cc0(t)

xk(t)− ln
m

M
(8)

where the second inequality is due to the inequality of arith-

metic and geometric means, 1
M

∑M
j=1 aj ≥

(∏M
j=1 aj

) 1
M

.
Note that∑

k∈A∗

∑
t:k∈C0(t)

xk(t) ≤
∑
t=1

∑
k∈C0(t)

xk(t)

=
∑
t=1

∑
k∈C0(t)

αk(t)xk(t). (9)

Combining (7) (8) and (9), we obtain

EGHedge-M =

T∑
t=1

∑
k∈C

αk(t)xk(t)

≥ ln(1 + θ)

θ

∑
k∈A∗

T∑
t=1

xk(t)− ln(m/M)

θ

=
ln(1 + θ)

θ
Gmax −

ln(m/M)

θ

≥ Gmax −
θ

2
Gmax −

ln(m/M)

θ
≥ Gmax −

√
2MT ln

m

M

when θ =
√

2 ln(m/M)/(MT ), where the third inequality is
due to ln(1 + x) ≥ x(1− x/2), and the last inequality is due
to the fact that Gmax ≤MT .

Proof of Theorem 5: Note that for an optimal policy of
the evader, any location in C0(t) is never selected. Consider
the set Γ0 of policies that never choose from C0(t) at each
time. For any γ ∈ Γ0, we have w′π(t)(t) = wπ(t)(t). Let

βk(t) := M
wk(t)∑m
j=1 wj(t)

and let r̃π(t) := 1− βπ(t)(t). We then have

rπ(t) = 1− απ(t)(t) = 1−M wk(t)∑m
j=1 w

′
j(t)

≤ 1−M wk(t)∑m
j=1 wj(t)

= 1− βπ(t)(t) = r̃π(t).

Hence,
∑T
t=1 r

π(t) ≤
∑T
t=1 r̃

π(t) for any γ ∈ Γ0.
Consider now the finite-horizon reward maximization prob-

lem with the reward function given by r̃ within the policy
space Γ0. Note also that for any γ ∈ Γ0, the exponent
of wk(t) always is given by

∑t
s=1 xk(s). Using then the

same argument as the single-play case, it can be shown that
the greedy policy maximizes E{

∑T
t=1 r̃

π(t)}. On the other
hand,

∑T
t=1 r

π(t) =
∑T
t=1 r̃

π(t) for the greedy policy since
C0(t) = ∅ for all t. 7 Therefore, the greedy policy is also
optimal for the original finite-horizon reward maximization
problem.

Proof of Lemma 2: Given any initial condition
(Gk(0))k∈C , we can relabel locations so that 1 ∈
arg maxk∈C Gk(0). Since the choice of the decoy at T does
not affect the reward of the evader, we assume it always
selects from L(T ) for simplicity. We then prove by induction.
For T = 1, the claim is clearly true. Assume that the claim
holds for T = 1, 2, . . . , t′. For T = t′ + 1. At the first time
step, suppose that using an optimal policy the decoy node
selects some location i such that Gi(0) < G1(0), and the
evader selects location j. If Gj(0) > Gi(0), we can always
swap the choice of the decoy and the evader to obtain a
higher reward of the evader, and hence Gj(0) ≤ Gi(0). Thus,
1 ∈ arg maxk∈C Gk(1). Then, the rest t′ steps until reaching
the horizon can be thought as using Hedge with the initial
condition (Gk(1))k∈C . Hence, by the induction hypothesis, the

7To be rigorous, this holds when T ≥ 2. To avoid triviality, we assume so
in this paper.
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decoy always selects a location from L(t) from t = 2. It can be
easily seen that some location in L(t) is then always selected
by the decoy until the horizon. Without loss of generality,
we assume that the decoy always selects location 1. We also
denote the location chosen by the evader at time t by kt. Set
dij(t) := Gi(t − 1) − Gj(t − 1) for this optimal policy. At
each time t > 1, we have

r(t) =

∑
l 6=kt,1,i a

dlkt (t) + ad1kt (t) + adikt (t)

1 +
∑
l 6=kt,1,i a

dlkt (t) + ad1kt (t) + adikt (t)
.

Consider now a change of policy by letting the decoy select
location 1 at the first step, and keeping the choice of the evader
unchanged. The reward of the evader at each time t > 1
becomes

r′(t) =

∑
l 6=kt,1,i a

dlkt (t) + ad1kt (t)+1 + adikt (t)−1

1 +
∑
l 6=kt,1,i a

dlkt (t) + ad1kt (t)+1 + adikt (t)−1

> r(t),

since d1kt(t) ≥ dikt(t) for all t and a > 1, which is a
contradiction of the optimality, and the proof is then complete.

Proof of Lemma 3: The proof is similar to that of
Theorem 3, and we use the same notation without repeated
definition whenever there is no ambiguity. Consider the case
(C1), and as in the proof of Theorem 3 we assume without loss
of generality that 1 ∈ K(t0) is chosen at t1 and the location
selected by the evader at t1 − 1 is 2. Furthermore, suppose
that the decoy node selects channel 3 at t1− 1, and hence the
decoy node also selects channel 3 at t1. Consider a change of
policy of the user by selecting channel 1 at t1−1 and channel
2 at t1. We then have

r′(t1 − 1) + r′(t1)− r(t1 − 1)− r(t1)

=

∑
k≥4 a

dk1 + ad21 + ad31

1 +
∑
k≥4 a

dk1 + ad21 + ad31
+

+

∑
k≥4 a

dk2 + ad12+1 + ad32+1

1 +
∑
k≥4 a

dk2 + ad12+1 + ad32+1
−

−
∑
k≥4 a

dk2 + ad12 + ad32

1 +
∑
k≥4 a

dk2 + ad12 + ad32
−

−
∑
k≥4 a

dk1 + ad21+1 + ad31+1

1 +
∑
k≥4 a

dk1 + ad21+1 + ad31+1

=
1

1 + C + ad21+1 + ad31+1
+

1

1 +D + ad12 + ad32
−

− 1

1 + C + ad21 + ad31
− 1

1 +D + ad12+1 + ad32+1
,

where C =
∑
k≥4 a

dk1 and D =
∑
k≥4 a

dk2 . Set d = d12 and
d′ = d31, and we obtain

r′(t1 − 1) + r′(t1)− r(t1 − 1)− r(t1)

=
1

1 +Dad + ad+1 + ad′+1
+

1

1 +D + a−d + ad′−d
−

− 1

1 +Dad + ad + ad′
− 1

1 +D + a−d+1 + ad′−d+1
,

= ((a2d−1 − ad−1)(a− 1)2 + (ad
′
− ad

′−1)(Da2d+

+ a2d+1 + ad
′+d+1 −Dad − a− ad

′+1))/Den > 0,

where Den = (1+Dad+ad+1+ad
′+1)(1+Dad+ad+ad

′
)(1+

Dad−1 + ad−1 + ad
′
). For (C2), it is clear that alternatively

selecting channel results in a higher reward for the user. With
the same conclusion as the proof of Theorem 3, the result
follows.

Proof of Lemma 4: 1) Note that problem (3) is equivalent
to

max
a∈∆m

min
b∈∆m

(

m∑
k=1

akµk − ajµj)bj , (10)

or compactly,

max
a∈∆m

min
b∈∆m

a>Hb, (11)

where > denotes the transpose, and

H =


0 µ1 · · · µ1

µ2 0 · · · µ2

...
. . .

...
µm µm · · · 0

 .
Consider now a zero-sum game with the payoff matrices for
the row and the column players being H and −H , who choose
a and b, respectively. Any optimal solution a? to problem (3)
is a Nash equilibrium strategy for the row player, and by the
indifference condition, we obtain for any j ∈ supp(a?),∑

k 6=j
k∈supp(a?)

a?kµk = Const.,

which implies a?kµk = a?jµj for any k, j ∈ supp(a?).
2) Assume for contradiction that there exist i ∈ supp(a?)

and j ∈ C \ supp(a?) such that µj > µi. Let c be the constant
such that c = a?kµk for any k ∈ supp(a?). Consider then a
feasible solution a, where ak = 0 for all k ∈ ((C \supp(a?))\
{j})∪{i}, and ak = c+εµk for all k ∈ (supp(a?)\{i})∪{j},
with ε = a?i (1− µi/µj)/K?, which yields a higher objective
value.

APPENDIX B
THE DEPENDENT ROUNDING ALGORITHM

Dependent Rounding
Input: A marginal distribution (αk, k ∈ C) and a natural
number M < |C| such that

∑
k∈C αk = M .

Output: A subset C1 of C such that |C1| = M .
Initialization: pk = αk for all k ∈ C.
While {k ∈ C : 0 < pk < 1} 6= ∅ do

1) Choose distinct i and j with 0 < pi < 1 and 0 < pj < 1.
2) Set a = min{1− pi, pj} and b = min{pi, 1− pj}.
3) Update pi and pj as

(pi, pj) =

{
(pi + a, pj − a), w.p. b

a+b

(pi − b, pj + b), w.p. a
a+b

Return {k ∈ C : pk = 1}.
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