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Abstract—We consider a crowd-sourcing problem where in
the process of labeling massive datasets, multiple labelers with
unknown annotation quality must be selected to perform the
labeling task for each incoming data sample or task, with the
results aggregated using for example simple or weighted majority
voting rule. In this paper we approach this labeler selection
problem in an online learning framework, whereby the quality
of the labeling outcome by a specific set of labelers is estimated
so that the learning algorithm over time learns to use the most
effective combinations of labelers. This type of online learning in
some sense falls under the family of multi-armed bandit (MAB)
problems, but with a distinct feature not commonly seen: since
the data is unlabeled to begin with and the labelers’ quality
is unknown, their labeling outcome (or reward in the MAB
context) has no way to be verified; thus it can only be estimated
against the crowd and known probabilistically. We design an
efficient online algorithm LS OL using a simple majority voting
rule that can differentiate high and low quality labelers over
time, and is shown to have a regret (w.r.t. always using the
optimal set of labelers) of O(log2 T ) uniformly in time under
mild assumptions on the collective quality of the crowd, thus
regret free in the average sense. We discuss further performance
improvement by using a more sophisticated majority voting rule,
and show how to detect and filter out “bad” (dishonest, malicious
or very incompetent) labelers to further enhance the quality of
crowd-sourcing. Extension to the case when a labeler’s quality is
task-type dependent is also discussed using techniques from the
literature on continuous arms. We establish a lower bound on
the order of O(logT D2(T )), where D2(T ) is an arbitrary function
such that D2(T ) > O(1). We further provide a matching upper
bound by a minor modification of the algorithm we proposed
and studied earlier on. We present numerical results using both
simulation and a real dataset on a set of images labeled by
Amazon Mechanic Turks (AMT).

I. INTRODUCTION

Machine learning techniques often rely on correctly labeled
data for purposes such as building classifiers; this is partic-
ularly true for supervised discriminative learning. As shown
in [21], [25], the quality of labels can significantly impact
the quality of the trained classifier and in turn the system
performance. Semi-supervised learning methods, e.g. [5], [15],
[30] have been proposed to circumvent the need for labeled
data or lower the requirement on the size of labeled data;
nonetheless, many state-of-the-art machine learning systems
such as those used for pattern recognition continue to rely
heavily on supervised learning, which necessitates cleanly
labeled data. At the same time, frameworks like participatory
sensing rush in enormous quantities of unlabeled data.

An earlier version of this paper appeared at ACM SIGMETRICS’15.

Against this backdrop, crowd-sourcing has emerged as a
viable and often favored solution as evidenced by the popu-
larity of the Amazon Mechanical Turk (AMT) system. Prime
examples include a number of recent efforts on collecting
large scale labeled image datasets, such as ImageNet [8] and
LabelMe [24]. The concept of crowd-sourcing has also been
studied in contexts other than processing large amounts of
unlabeled data, see e.g., user-generated map [10], opinion
diffusion [17], and event monitoring [6] in large, decentralized
systems.

Its many advantages notwithstanding, the biggest problem
with crowd-sourcing is quality control: as shown in several
previous studies [12], [25], if labelers (e.g., AMTs) are not
selected carefully the resulting labels can be very noisy, due
to reasons such as varying degrees of competence, individual
difference, and sometimes irresponsible behavior. At the same
time, the cost for having large amount of data labeled (payment
to the labelers) is non-trivial. This makes it important to look
into ways of improving the quality of the crowd-sourcing
process and the quality of the results generated by the labelers.

In this chapter we approach the labeler selection problem in
an online learning framework, whereby the labeling quality of
the labelers is estimated as tasks are assigned and performed,
so that an algorithm over time learns to use the more effective
combinations of labelers for arriving tasks. This problem in
some sense can be cast as multi-armed bandit (MAB) problem,
see e.g., [3], [16], [26]. Within such a framework, the objective
is to select the best of a set of choices (or “arms”) by repeat-
edly sampling different choices (referred to as exploration)
and their empirical quality is subsequently used to control how
often a choice is used (referred to as exploitation). However,
there are two distinct features that set our problem apart from
the existing literature in bandit problems. Firstly, since the data
is unlabeled to begin with and the labelers’ quality is also
unknown, a particular choice of labelers leads to unknown
quality of their labeling outcome (mapped to the “reward”
of selecting a choice in the MAB context). Whereas this
reward is assumed to be known instantaneously following a
selection in the MAB problem, in our model this remains
unknown and at best can only be estimated with a certain
error probability. This poses significant technical challenge
compared to a standard MAB problem. Secondly, to avoid
having to deal with a combinatorial number of arms, it is
desirable to learn and estimate each individual labeler’s quality
separately (as opposed to estimating the quality of different
combinations of labelers). The optimal selection of labelers



then depends on individual qualities as well as how the
labeling outcome is computed using individual labels. In this
study we will consider both a simple as well as a weighted
majority voting rule and derive the respective optimal selection
of labelers given their estimated quality.

Due to its online nature, our algorithm can be used in
real time, processing tasks as they arrive. Our algorithm
thus has the advantage of performing quality assessment and
adapting to better labeler selections as tasks arrive. This is
a desirable feature because generating and processing large
datasets can incur significant cost and delay, so the ability to
improve labeler selection on the fly (rather than waiting till the
end) can result in substantial cost savings and improvement
in processing quality. Below we review the literature most
relevant to the study presented in this paper in addition to the
MAB literature cited above.

Within the context of learning and differentiating labelers’
expertise in crowd-sourcing systems, a number of studies have
looked into offline algorithms. For instance, in [9], methods
are proposed to eliminate irrelevant users from a set of user-
generated dataset; in this case the elimination is done as post-
processing to clean up the data since the data has already
been labeled by the labelers (tasks have been performed).
Another example is the family of matrix factorization or
matrix completion based methods, see e.g., [29], where labeler
selection is implicitly done through the numerical process of
finding the best recommendation for a participant. Again this
is done after the labeling has already been done for all data by
all (or almost all) labelers. This type of approaches is more
appropriate when used in a recommendation system where
data and user-generated labels already exist in large quantities.

Recent studies [13], [14] have examined the fundamental
trade-off between labeling accuracy and redundancy in task
assignment in crowd-sourcing systems. In particular, it is
shown in [14] that a labeling accuracy of 1− ε for each task
can be achieved with a per-task assignment redundancy no
more than O(K/q · log(K/ε)); thus more redundancy can be
traded for more accurate outcome. In [14] the task assignment
is done in a one-shot fashion (thus non-adaptive) rather than
sequentially with each task arrival as considered in our paper,
thus the result is more applicable to offline settings similar
to those cited in the previous paragraph. In [13] an iterative
algorithm is proposed for deciding tasks assignment and it is
shown to outperform majority voting. Again the approach here
is one-shot where all questions are asked simultaneously and
the allocation rule is non-adaptive.

Within online solutions, the concept of active learning
has been quite intensively studied, where the labelers are
guided to make the labeling process more efficient. Examples
include [12], which uses a Bayesian framework to actively
assign unlabeled data based on past observations on labeling
outcomes, and [19], which uses a probabilistic model to esti-
mate the labelers’ expertise. However, most studies on active
learning require either an oracle to verify the correctness of
the finished tasks which in practice does not exist, or ground-
truth feedback from indirect but relevant experiments (see
e.g., [12]). Similarly, existing work on using online learning
for task assignment also typically assumes the availability of

ground-truth (as in MAB problems). For instance, in [11]
online learning is applied to sequential task assignment but
ground-truth of the task performance is used to estimate the
performer’s quality. In [20], a Bayes update aided online
solution was proposed to minimize the regret in a problem
of disseminating news to a crowd of users. The performance
of the developed algorithm was shown to be better than
Thompson Sampling based solutions. However, again, for the
setting considered in the above paper, ground-truth signals
indicating whether the user likes or dis-likes pushed news are
revealed immediately after each dissemination. In this sense,
our results cannot be compared directly to those cited above.

Our work differs from the above as we do not require
oracle or the availability of immediate ground-truth; we instead
impose a mild assumption on the collective quality of the
crowd (without which crowdsourcing would be useless and
would not have existed), so an estimated or imperfect ground-
truth can be inferred. Secondly, our framework allows us to
obtain performance bounds on the proposed algorithm in the
form of regret with respect to the optimal strategy that always
uses the best set of labelers; this type of performance guarantee
is lacking in most of the work cited above. Last but not
least, our algorithm is very broadly applicable to a generic
crowd-sourcing task assignment rather than being designed for
specific type of tasks or data.

Our main contributions are summarized as follows. (1) We
design an online learning algorithm to estimate the quality
of labelers in a crowd-sourcing setting without ground-truth
information but with mild assumptions on the quality of the
crowd as a whole, and show that it is able to learn the optimal
set of labelers under both simple and weighted majority vot-
ing rules and attains no-regret performance guarantees (w.r.t.
always using the optimal set of labelers). (2) We similarly
provide regret bounds on the cost of this learning algorithm
w.r.t. always using the optimal set of labelers. (3) We show
how our model and results can be extended to the case
where the quality of a labeler may be task-type dependent,
as well as a simple procedure to quickly detect and filter
out “bad” (dishonest, malicious or incompetent) labelers to
further enhance the quality of crowd-sourcing. (3) We establish
a lower bound on the learning regret for our online labeler
selection problem and refine our algorithm to match this lower
bound. (4) Our validation includes both simulation and the use
of a real-world AMT dataset.

The remainder of this paper is organized as follows. We
formulate our problem in Section II. In Sections III and IV
we introduce our learning algorithm along with regret analysis
under a simple majority and weighted majority voting rule,
respectively. Lower bound results on our learning algorithm
is presented in Section V, as well as we provide a matching
and refined upper bound. Numerical results are presented in
Section VI. Section VIII concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The crowd-sourcing model

We begin by introducing the following major components
of the crowd-sourcing system.



User. There is a single user with a sequence of tasks
(unlabeled data) to be performed/labeled. Our proposed on-line
learning algorithm is to be employed by the user in making
labeler selections. Throughout our discussion the terms task
and unlabeled data will be used interchangeably.

Labeler. There are a total of M labelers, each may be
selected to perform a labeling task for a piece of unlabeled
data. The set of labelers is denoted by M = {1,2, ...,M}1.
A labeler i produces the true label with probability pi inde-
pendent of the task, and independent of each other2; a more
sophisticated task-dependent version is discussed in Section
III. This will also be referred to as the quality or accuracy of
this labeler. We will assume no two labelers are exactly the
same, i.e., pi 6= p j,∀i 6= j and 0 < pi < 1,∀i. These quantities
are unknown to the user a priori. We will also assume that the
accuracy of the collection of labelers satisfies ∑

M
i=1

pi
M > 1

2 . The
justification and implication of this assumption are discussed
in more detail in Section II-C.

Our learning system works in discrete time steps t =
1,2, ...,T . At time t, a task k ∈K arrives to be labeled, where
K could be either a finite or infinite set. For simplicity of
presentation, we will assume that a single task arrives at each
time, and that the labeling outcome is binary: 1 or 0; however,
both assumptions can be fairly easily relaxed3. For task k, the
user selects a subset St ⊆M to label it. The label generated
by labeler i ∈ St for data k at time t is denoted by Li(t).

The set of labels {Li(t)}i∈St generated by the selected
labelers then need to be combined to produce a single label
for the data; this is often referred to as the information
aggregation phase. Since we have no prior knowledge on the
labelers’ accuracy, we will apply the simple majority voting
rule over the set of labels; later we will also examine a more
sophisticated weighted majority voting rule. Mathematically,
the majority voting rule at time t leads to the following
output: L∗(t) = argmaxl∈{0,1}∑i∈St 1{Li(t) = l} , with ties (i.e.,
∑i∈St 1{Li(t) = 0}= ∑i∈St 1{Li(t) = 1}) broken randomly.

Denote by π(St) the probability of correct labeling outcome
following the simple majority rule above, and we have:

π(St) = ∑
S:S⊆St ,|S|≥d |St |+1

2 e
∏
i∈S

pi · ∏
j∈St\S

(1− p j)

︸ ︷︷ ︸
Majority wins

+
∑S:S⊆St ,|S|= |St |

2
∏i∈S pi ·∏ j∈St\S(1− p j)

2︸ ︷︷ ︸
Ties broken equally likely

. (1)

Denote by ci a normalized cost/payment per sample for labeler
i and consider the following linear cost function

C (S) = ∑
i∈S

ci, S⊆M . (2)

Denote S∗= argmaxS⊆M π(S), thus S∗ is the optimal selection
of labelers given each individual’s accuracy. We also refer

1We could also model M types of workers, each arriving in sequence.
2Assumption of independence is made to simplify the analysis. In practice,

when labelers are correlated, tools from correlated MAB can be used.
3Indeed in our experiment shown later in Section VI, our algorithm is

applied to a non-binary multi-label case.

to π(S) as the utility for selecting the set of labelers S and
denote it equivalently as U(S). C (S∗) will be referred to as
the necessary cost per task.

The design of a good online algorithm may require tradeoff
between the labeling accuracy and labeling cost. They can be
combined into the same objective by properly weighing the
two, e.g., in a linear combination shown below:

Uη(S) := π(S)−η ·C (S), (3)

where η ≥ 0 is a constant trading-off the labeling accu-
racy and the total budget. Define the optimal target set as
S∗η = argmaxS⊆M Uη(S). When η = 0 the above reduce to
simply the labeling accuracy U(S) and set S∗, respectively,
and we will thus use these and Uη=0(·),S∗η=0 interchangeably.
While our analysis primarily focuses on learning S∗ by treating
accuracy and cost separately, it extends to S∗

η>0 in a fairly
straightforward manner and thus our main result is for the
general case of Uη(·) and S∗η .

B. Offline optimal selection of labelers

Before addressing the learning problem, we will first take
a look at how to efficiently derive the optimal selection S∗

given accuracy probabilities {pi}i∈M . This will be a crucial
step repeatedly invoked by the learning procedure we develop
next, to determine the set of labelers to use given a set of
estimated accuracy probabilities.

The optimal selection is a function of the values {pi}i∈M ,
the aggregation rule used to compute the final label, and
the unit cost ci’s. While there is a combinatorial number of
possible worker selections, the next two results combined lead
to a simple and linear-complexity procedure in finding the S∗η ,
when η = 0, the accuracy and cost are evaluated separately;
or η > 0 and ci ≡ c that workers have the same cost. Note
we do not need ci ≡ c & η = 0; and assuming ci ≡ c is not
entirely a simplification – on popular crowdsourcing markets,
e.g. AMT, workers are typically paid an equal amount for the
same task; and such an assumption has been widely adopted
in crowdsourcing studies [7], [28]. It is also worth noting
that in practice the payment is set by the user who does not
differentiate price when assigning the tasks because the quality
or experience of the labelers are unknown a priori. .

Theorem 1: Under the simple majority vote rule, the optimal
number of labelers s∗η = |S∗η | must be an odd number.

Theorem 2: The optimal set S∗η is monotonic, i.e., if we
have i ∈ S∗η and j 6∈ S∗η then we must have pi > p j.
Proofs of the above two theorems can be found in [18]. Based
on above results given a set of accuracy probabilities, the
optimal selection under the majority vote rule consists of the
top s∗η (an odd number) labelers with the highest quality; we
only need to compute s∗η , which has a linear complexity of
O(M/2). A set that consists of the highest m labelers will be
referred to as a m-monotonic set, and denoted as Sm ⊆M .

When η > 0 and cis differ, the optimal set can be very
different and is subject to further study. 4

4This does not affect the learning structure we study later. However, in this
case the offline optimal solution will lose the clear structural property, which
then requires the learning to be more fine grained in order to differentiate all
possible combinations of labelers; this in turn will lead to higher regret.



C. The lack of ground-truth

As mentioned, a key difference between our model and
many other studies on crowdsourcing as well as the basic
framework of MAB problems is that we lack ground-truth
in our system; we elaborate on this below. In a standard
MAB setting, when a player (the user in our scenario) selects
a set of arms (labelers) to activate, she immediately finds
out the rewards associated with those selected arms. This
information allows the player to collect statistics on each arm
(e.g., sample mean rewards) which is then used in her future
selection decisions. In our scenario, the user sees the labels
generated by each selected labeler, but does not know which
ones are true. In this sense the user does not find out about
her reward immediately after a decision; she can only do
so probabilistically over a period of time through additional
estimation devices. This constitutes the main conceptual and
technical difference between our problem and standard MAB.

Given the lack of ground-truth, the crowdsourcing system is
only useful if the average labeler is more or less trustworthy.
For instance, if a majority of the labelers produce the wrong
label most of the time, unbeknownst to the user, then the
system is effectively useless, i.e., the user has no way to tell
whether she could trust the outcome so she might as well
abandon the system. It is therefore reasonable to have some
trustworthiness assumption in place. Accordingly, we shall
assume that p̄ := ∑

M
i=1 pi/M > 1/2, i.e., the average labeling

quality is higher than 0.5; this is a common assumption in
the crowd-sourcing literature (see e.g., [9]). Note that this is a
fairly mild assumption: not all labelers need to have accuracy
pi > 0.5 or near 0.5; some labeler may have arbitrarily
low quality (∼ 0) as long as it is in the minority. When
p̄≤ 1/2, which is often referred to as the case when majority
people are wrong [22], it is possible to apply certain machine
learning approach on the set of collected labels to determine
whether evidence exists indicating the crowd is on the whole
misleading. More advanced and formal reporting mechanisms
have been developed to elicit the true answer, see e.g., the
well known Bayesian Truth Serum (BTS) algorithm (again see
[22]). However, such mechanisms usually require reporting
more information besides the label output. In this study we
shall limit ourselves to the simpler case p̄ > 0.5 whereby
only label output needs to be reported; similar problems for
the case p̄ < 0.5 warrants a separate study. Denote by Xi a
binomial random variable with parameter pi to model labeler
i’s outcome on a given task: Xi = 1 if her label is correct and
0 otherwise. Using Chernoff Hoeffding’s inequality we have

P(
∑

M
i=1 Xi

M
> 1/2) = 1−P(

∑
M
i=1 Xi

M
≤ 1/2)≥ 1− e−2M·(p̄−1/2)2

.

Define amin := P(∑
M
i=1 Xi
M > 1/2); note this is the probability

that a simple majority vote over the M labelers is correct.
Therefore, if p̄ > 1/2 and further M > log2

2(p̄−1/2)2 , then 1−
e−2M·(p̄−1/2)2

> 1/2, meaning a simple majority vote would be
correct most of the time. Throughout the paper we will assume
both these conditions are true. We will also have the following
fact: P(∑i∈S∗ Xi

|S∗| > 1/2)≥ P(∑
M
i=1 Xi
M > 1/2); the inequality is due

to the definition of the optimal set S∗.

III. LEARNING THE OPTIMAL LABELER SELECTION

In this section we present an online learning algorithm
LS OL that over time learns each labeler’s accuracy, which
it then uses to compute an estimated optimal set of labelers
using the properties given in the previous section.

A. An online learning algorithm LS OL

The algorithm consists of two types of time steps, ex-
ploration and exploitation, as is common to online learning.
However, the exploration step design is complicated by the
additional estimation due to the lack of ground truth revelation.
Specifically, a set of tasks will be designated as “testers” and
may be repeatedly assigned to the same labeler in order to
obtain sufficient results used for estimating her label quality.
This can be done in one of two ways depending on the nature
of the tasks. For tasks like survey questions (with binary
answers), a labeler may indeed be prompted to answer the
same question (or equivalent variants with alternative wording)
multiple times, usually not in succession, during the survey
process. This is a common technique used by survey designers
for quality control by testing whether a participant answers
questions randomly or consistently, whether a participant is
losing attention over time, and so on, see e.g., [23]. For tasks
like labeling images, a labeler may be given identical images
repeatedly or each time with added small iid noise.

With the above in mind, the algorithm conceptually pro-
ceeds as follows. A condition is checked to determine whether
the algorithm should explore or exploit in a given time step.
If it is to exploit, then the algorithm selects the best set of
labelers based on current quality estimates to label the arriving
task. If it is to explore, then the algorithm will either assign
an old task (an existing tester) or the new arriving task (which
then becomes a tester) to the set of labelers M depending on
whether all existing testers have been labeled enough number
of times. Because of the need to repeatedly assign an old
task, some new tasks will not be immediately assigned (those
arriving during an exploration step while an old task remains
under-sampled). These tasks will simply be given a random
label (with error probability 1/2) but their numbers are limited
by the frequency of an exploration step (∼ log2 T ).

Before proceeding to a more precise description of the
algorithm, a few additional notions are in order. Denote
the n-th label outcome (via majority vote over M labelers
in exploration) for task k by yk(n). Denote by y∗k(N) the
label obtained using majority rule over the N label outcomes
yk(1),yk(2), · · · ,yk(N), and 1{·} as the indicator function:

y∗k(N) =

{
1, ∑

N
n=1 1{yk(n) = 1}/N > 0.5

0, otherwise
, (4)

with ties broken randomly. It is this majority label after N
tests on a tester task k that will be used to analyze different
labeler’s performance. As we show later in algorithm design,
a tester task is always assigned to all labelers for labeling.
Therefore these repeated outcomes yk(1),yk(2), · · · ,yk(N) are
of the same statistical quality. We will additionally impose the
assumption that these outcomes are also independent.



Denote by E(t) the set of tasks assigned to the M labelers
during explorations up to time t. For each task k ∈ E(t) denote
by N̂k(t) the number of times k has been assigned. Consider
the following random variable defined at each time t:

O(t) = 1{|E(t)| ≤ D1(t) or ∃k ∈ E(t) s.t. N̂k(t)≤ D2(t)} ,

where D1(t) = [(
1

maxm:m odd m ·n(Sm)
−α) · εη ]

−2 · log t ,

D2(t) = (amin−0.5)−2 · log t ,

and n(Sm) is the number of all possible majority subsets
(for example when |Sm| = 5, n(Sm) is the number of all
possible subset of size being at least 3 of Sm, εη a bounded
constant that depends on η5, and α a positive constant such
that α < 1

maxm:m odd m·n(Sm) . Note that O(t) captures the event
whether an insufficient number of tasks have been assigned
under exploration or whether any task has been assigned
insufficient number of times in exploration. We provide some

Online Labeler Selection: LS OL

1: Initialization at t = 0: Initialize the estimated accuracy
{p̃i}i∈M to some value in [0,1]; denote the initialization
task as k, set E(t) = {k} and N̂k(t) = 1.

2: At time t a new task arrives: If O(t) = 1 (η = 0), the
algorithm explores.

2.1: If there is no task k ∈ E(t) such that N̂k(t)≤D2(t),
then assign the new task to M and update E(t) to
include it and denote it by k; if there is such a task,
randomly select one of them, denoted by k, to M .
N̂k(t) := N̂k(t)+1; obtain the label yk(N̂k(t));

2.2: Update y∗k(N̂k(t)) (using the alternate indicator func-

tion I(·)): y∗k(N̂k(t)) = 1{∑
N̂k(t)
t̂=1 yk(t̂)

N̂k(t)
> 0.5} .

2.3: Update labelers’ accuracy estimate ∀i ∈M :

p̃i =
∑k∈E(t),k arrives at time t̂ 1{Li(t̂) = y∗k(N̂k(t))}

|E(t)|
.

3: Else if O(t) = 0, the algorithm exploits and computes:
St = argmaxm Ũ(Sm) which is solved using the linear
search property, but with the current estimates { p̃i}
rather than the true quantities {pi}, resulting in estimated
utility Ũ() and π̃(). Assign the new task to those in St .

4: Set t = t +1 and go to Step 2.

Fig. 1: Description of LS OL

intuitions on the above parameter setting. In inspecting the
terms that make up D1(t), we note that ε is used to bound
the gap between the optimal and sub-optimal utility values,
while ε/maxm:m odd m · n(Sm) gives an upper bound on the
error in estimating each pi in each majority voting term. The
α fraction of loss in the gap is due to the noisy inference of
the ground-truth label. The selection of D2(t) is to make sure
the aggregated labels returned by the re-exploration/test phases

5We will similarly use ε to denote εη=0

is sufficiently accurate. This quantity depends heavily on the
average accuracy of the entire crowd quantified by amin−1/2.

Our online algorithm for labeler selection is formally shown
in Fig. 1, for the case of η = 0. This can be easily adapted to
the general case by changing Step 3 to St = argmaxm Ũη(Sm).

The above algorithm can either go on indefinitely or ter-
minate at some time T . As we show below the performance
bound on this algorithm holds uniformly in time so it does not
matter when it terminates. Note the search complexity at each
step t is simply O(N), following the optimality of linear search
established in Theorem 2. The computational complexity for
computing π(S) for each S is combinatorial in |S|.

B. Main results

The standard metric for evaluating an online algorithm in
the MAB literature is regret, the difference between the perfor-
mance of an algorithm and that of a reference algorithm which
often assumes foresight or hindsight. The most commonly used
is the weak regret measure with respect to the best single-
action policy assuming a priori knowledge of the underlying
statistics. In our problem context, this means to compare our
algorithm to the one that always uses the optimal selection S∗.
It follows that this weak regret, up to time T , is given by

Rη(T ) = T ·U(S∗η)−E[
T

∑
t=1

U(St)] ,

RC (T ) = E[
T

∑
t=1

C (St)]−T ·C (S∗) ,

where St is the selection made at time t by our algorithm; if
t happens to be an exploration then St = M . Rη(T ) captures
the regret for the learning algorithm while RC (T ) is the one
for cost. Define: ∆max = maxSm 6=S∗U(S∗)−U(Sm), δmax =
maxi 6= j |pi − p j|, ∆min = minSm 6=S∗U(S∗) −U(Sm), δmin =

mini6= j |pi− p j|. ε is a constant such that ε < min{∆min
2 , δmin

2 }.
Similarly for η > 0 define ∆max,η := maxSm 6=S∗η Uη(S∗η) −
U(Sm),∆min,η := minSm 6=S∗η U(S∗η)−U(Sm), and define ε <

min{∆min,η
2 , δmin

2 } For analysis we assume U(Si) 6= U(S j) if
i 6= j. Define the sequence {βn}: βn = ∑

∞
t=1

1
tn . Our main

theorem is stated as follows, when η = 0 or η > 0 & ci ≡ c:
Theorem 3: The regrets can be bounded uniformly in time:

Rη(T )≤
Uη(S∗η) · log2(T )

( 1
maxm:m odd m·n(Sm) −α)2 · ε2

η · (amin−0.5)2

+∆max,η(2
M

∑
m=1,m odd

m ·n(Sm)+M) · (2β2 +
β2−z

α · εη

) , (5)

RC (T )≤
∑i∈M ci · log2(T )

( 1
maxm:m odd m·n(Sm) −α)2 · ε2 · (amin−0.5)2

+
∑i/∈S∗ ci · logT

( 1
maxm:m odd m·n(Sm) −α)2 · ε2

+(M−|S∗|) · (2
M

∑
m=1,m odd

m ·n(Sm)+M) · (2β2 +
β2−z

α · ε
) , (6)



where 0 < z < 1 is a positive constant.
Again, when η = 0 the above are bounds on accuracy and

cost separately. First note that the regret is nearly logarithmic
in T and therefore it has zero average regret as T → ∞; such
an algorithm is often referred to as a zero-regret algorithm.
Secondly the regret bound is inversely related to the minimum
accuracy of the crowd (through amin). This is to be expected:
with higher accuracy (a larger amin) of the crowd, crowd-
sourcing generates ground-truth outputs with higher proba-
bility, and hence the learning process could be accelerated.
Finally, the bound also depends on maxm m · n(Sm) which is
roughly on the order of O( 2m√m√

2π
).

C. Regret analysis of LS OL

We now outline key steps in the proof of the above
theorem. This involves a sequence of lemmas; the proofs of
most can be found in the appendix. There are a few that we
omit for brevity; in those cases sketches are provided. As can
be seen from the proof, the two cases η = 0 and η > 0 are
conceptually the same. Thus for simplicity of presentation
our analysis will first focus on the case of η = 0, and then
illustrate how the results can generalize to a combined utility
function with η > 0 and ci ≡ c.

Step 1: We begin by noting that the regret consists of that
arising from the exploration phase and from the exploitation
phase, denoted by Re(T ) and Rx(T ), respectively:

R(T ) = E[Re(T )]+E[Rx(T )] .

The following result bounds the first element of the regret.
Lemma 1: The regret up to time T from the exploration

phase can be bounded as follows:

E[Re(T )]≤U(S∗) · (D1(T ) ·D2(T )) . (7)

We see the regret depends on the exploration parameters
as product. This is because for tasks arriving in exploration
steps, we assign it at least D2(T ) times to the labelers; each
time when re-assignment occurs, a new arriving task is given
a random label while under an optimal scheme each missed
new task means a utility of U(S∗).

Step 2: We now bound the regret arising from the exploitation
phase as a function of the number of times the algorithm uses
a sub-optimal selection when the ordering of the labelers is
correct, and the number of times the estimates of the labelers’
accuracy result in a wrong ordering. The proof of the lemma
below is omitted as it is fairly straightforward.

Lemma 2: For the regret from exploitation we have:

E[Rx(T )]≤ ∆max

(
E[

T

∑
t=1

(E1(t)+E2(t))]
)

. (8)

Here E1(t) = ISt 6=S∗ , conditioned on correct ordering of label-
ers, records whether the a sub-optimal section (other than S∗)
was used at time t based on the current estimates { p̃i}. E2(t)
records whether at time t the set M is sorted in the wrong
order because of erroneous estimates { p̃i}.

Step 3: We proceed to bound the two terms in (8) separately.
In this part of the analysis we only consider those times t
when the algorithm exploits.

Lemma 3: At time t we have:

E[E1(t)]≤
M

∑
m=1,m odd

m ·n(Sm) · ( 2
t2 +

1
α · ε · t2−z ) (9)

The idea behind the above lemma is to use a union bound
over all possible events where the wrong set is chosen when
the ordering of the labelers is correct according to their true
accuracy.

Lemma 4: At time t we have: E[E2(t)]≤M( 2
t2 +

1
α·ε·t2−z )

Step 4: Summing up all results and rearranging terms lead to
the theorem. Specifically,

E[Rx(T )]≤ ∆max

M

∑
m=1

m odd

2
T

∑
t=1

m ·n(Sm) · ( 2
t2 +

1
α · ε · t2−z )

+∆max ·M ·
T

∑
t=1

(
2
t2 +

1
α · ε · t2−z )

≤ ∆max(2 ·
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε
β2−z) .

Since β2−z < ∞ for z < 1, we have bounded the exploitation
regret by a constant. This result also implies that if the number
of assignments is not a concern (i.e., we can afford to assign
tasks to all labelers each time), we will be able to bound the
regret on labeling accuracy up to a constant.
Step 5: Summing over all terms in E[Re(T )] and E[Rx(T )] we
obtain the main theorem. We now argue that bounding for the
general case η (Rη(T ), but with ci≡ c when η > 0) follows the
same line of proof, due to the fact that the estimation error
for the combined utility function for each set S is exactly
the same as the estimation error for the labeling accuracy:
Ũη(S)−Uη(S) = π̃(S)−π(S), which is independent of η . This
allows us to first establish the bound in the case of η = 0
(R(T )), and the extension to Rη(T ) follows straight-forwardly;
the proof is thus omitted.

D. Cost analysis of LS OL

We now analyze the cost regret. Following similar analysis
we first note that it can be calculated separately for the
exploration and exploitation steps. For exploration steps we
know the cost regret is bounded by

∑
i/∈S∗

ci ·D1(T )+ ∑
i∈M

ci ·D1(T ) · (D2(T )−1)

where the second term is due to the fact for all costs associated
with task re-assignments are treated as additional costs.

For exploitation the additional cost is upper-bounded by

(M−|S∗|) ·E[
T

∑
t=1

(E1(t)+E2(t))] .

Based on previous results we know the cost regret RC (T )
will look similar to R(T ) with both terms bounded by either
a log term or a constant. Plug in D1(T ),D2(T ),E[∑T

t=1(E2(t)]
, E[∑T

t=1 E2(t)] we establish the regret for RC (T ) as claimed
in our main result.



E. Discussion

We end this section with a discussion on how to relax a
number of assumptions adopted in our analytical framework.

IID re-assignments: The first concerns the re-assignment
of the same task (or iid copies of the same task) and the
assumption that the labeling outcome each time is independent.
In the case where iid copies are available, this assumption is
justified. In the case when the exact same task must be re-
assigned, enforcing a delay between successive re-assignments
can make this assumption more realistic. Suppose the algo-
rithm imposes a random delay τk, a positive random variable
uniformly upper-bounded by τk ≤ τmax,∀k. Then following
similar analysis we can show the upper bound for regret is at
most τmax times larger, i.e., it can be bounded by τmax ·R(T ),
where R(T ) is as defined in Eqn. (5).

Prior knowledge of several constants: The second assump-
tion concern the selection of constant ε by the algorithm and
the analysis which requires knowledge on ∆min and δmin. This
assumption however can be removed by using a decreasing
sequence εt . This is a standard technique that has been
commonly used in the online learning literature, see e.g., [26].
Specifically, let εt =

1
logη (t) , for some η > 0. Replace log(t)

with log1+2η(t) in D1(t) and D2(t) it can be shown that there
exists T0 s.t. εT0 < ε . Thus the regret associated with using an
imperfect εt is bounded by ∑

T0
t=1

2
logη t =CT0 , a constant.

Labelers with different types of tasks: We now discuss an
extension where labelers’ difference in their quality in labeling
varies according to different types of data samples/tasks. For
example, some are more proficient with labeling image data
while some may be better at annotating audio data. In this case
we can use contextual information to capture these differences,
where a specific context refers to a different data/task type.
There are two cases of interest from a technical point of view:
when the space of all context information is finite, and when
this space is infinite. We will denote a specific context by w
and the set of all contexts as W .

In the case of discrete context information, |W |<∞ and we
can apply the same algorithm to learn, for each combination
{i,w}i∈M ,w∈W , the pairwise labeler-context accuracy. This ex-
tension is rather straightforward except for a longer exploration
phase. In fact, since exploration is needed for each labeler i
under each possible context w, we may expect the regret to be
|W | times larger compared to the previous R(T ). This indeed
can be more precisely established using the same methodology.

The case of continuous context information is more chal-
lenging, but can be dealt with using the technique introduced
in [2] for bandit problems with a continuum of arms. The
main idea is to divide the infinite context information space
into a finite but increasing number of subsets. For instance,
if we model the context information space as W = [0,1]
then we can divide this unit interval into v(t) sub-intervals:
[0, 1

v(t) ], ..., [
v(t)−1

v(t) ,1] , with v(t) being an increasing sequence
w.r.t. t. Denote these intervals as Bi(t), i = 1,2...,v(t), which
become more and more fine-grained with increasing t and
increasing v(t).

Given these intervals the learning algorithm works as fol-
lows. At time t, for each interval Bi(t) we compute the

estimated optimal set of labelers by calculating the estimated
utility of all subsets of labelers, and this is done over the entire
interval Bi(t) (contexts within Bi(t) are viewed as a bundle).
If at time t we have context wi ∈ Bi(t) then this estimated
optimal set is used. The regret of this procedure consists of
two parts. The first part is due to selecting a sub-optimal set of
labelers for Bi(t) (owing to incorrect estimates of the labelers’
accuracy). This part of the regret is bounded by O(1/t2). The
second part of the regret arises from the fact that even if
we compute the correct optimal set for interval Bi(t), it may
not be optimal for the specific context wt ∈ Bi(t). However,
when Bi(t) becomes sufficiently small, and under a uniform
Lipschitz condition we can bound this regret as well.

Taken together, if we revise the condition for entering the
exploration phase (constants D1(t) and D2(t)) to grow on the
order of O(tz log t) instead of log t, for some constant 0< z< 1,
then the regret R(T ) in this case is on the order of T z logT ;
thus it remains sub-linear and therefore has a zero average
regret, but this is worse than the log bound we can obtain in
other cases.

We omit all technical details since they are rather direct
extensions combining our previously derived results with the
literatures on continuous arms.

IV. WEIGHTED MAJORITY VOTING AND ITS REGRET

The labeling performance could be further improved by
employing more sophisticated majority voting mechanism.
Specifically, under our online learning algorithm LS OL,
statistics over each labeler’s expertise could be collected with
significant confidence; this enables a weighted majority voting
mechanism. In this section we analyze the regret of a similar
learning algorithm using weighted majority voting.

A. Weighted Majority Voting

We start with defining the weights. At time t, after observing
labels produced by the labelers, we can optimally (a posteri-
ori) determine the mostly likely label of the task by solving
the following:

argmaxl∈{0,1}P(L∗(t) = l|L1(t), ...,LM(t)) . (10)

Suppose at time t the true label for task k is 1. Then we have,

P(L∗(t) = 1|L1(t), ...,LM(t)) =
P(L1(t), ...,LM(t),L∗(t) = 1)

P((L1(t), ...,LM(t))

=
P(L1(t), ...,LM(t)|L∗(t) = 1) ·P(L∗(t) = 1)

P((L1(t), ...,LM(t))

=
P(L∗(t) = 1)

P((L1(t), ...,LM(t))
· ∏

i:Li(t)=1
pi · ∏

i:Li(t)=0
(1− pi) .

And similarly we have

P(L∗(t) = 0|L1(t), ...,LM(t))

=
P(L∗(t) = 0)

P((L1(t), ...,LM(t))
· ∏

i:Li(t)=0
pi · ∏

i:Li(t)=1
(1− pi) .



Following standard hypothesis testing procedure and assuming
equal priors P(L∗(t) = 1) = P(L∗(t) = 0), a true label of 1 can
be correctly produced if

∏
i:Li(t)=1

pi · ∏
i:Li(t)=0

(1− pi)> ∏
i:Li(t)=0

pi · ∏
i:Li(t)=1

(1− pi) .

with ties broken randomly and equally likely. Take log(·) on
both sides and the above condition reduces to

∑
i:Li(t)=1

log
pi

1− pi
> ∑

j:L j(t)=0
log

p j

1− p j
.

Indeed if p1 = ...= pM the above reduces to |{i : Li(t) = 1}|>
|{i : Li(t) = 0}| which is exactly the simple majority voting.
Under the weighted majority voting, each labeler i’s decision
is modulated by weight log pi

1−pi
. When pi > 0.5, the weight

log pi
1−pi

> 0, which may be viewed as an opinion that adds
value; when pi < 0.5, the weight log pi

1−pi
< 0, an opinion that

actually hurts; when pi = 0.5 the weight is zero, an opinion
that does not count as it mounts to a random guess. The above
constitutes the weighted majority voting rule we shall use in a
revised learning algorithm and the regret analysis that follow.

Before proceeding to the regret analysis, we again first
characterize the optimal labeler set selection assuming known
labelers’ accuracy. In this case the odd-number selection
property no longer holds, but thanks to the monotonicity of
log pi

1−pi
in pi we have the same monotonicity property in the

optimal set and a linear-complexity solution space, when η = 0
or η > 0 & ci ≡ c.

Theorem 4: Under the weighted majority voting and assum-
ing pi ≥ 0.5,∀i, the optimal set S∗η is monotonic, i.e., if we
have i ∈ S∗η and j 6∈ S∗η then we must have pi > p j.
The assumption that all pi ≥ 0.5 is for simplicity in pre-
sentation without losing generality. This is because a labeler
with pi < 0.5 is equivalent to another with pi := 1− pi by
flipping its label (assuming the average labeling quality is
higher than 0.5). The above result is trivial when the objective
consists purely of labeling accuracy (η = 0): all workers
are selected. In the case of η > 0, the implication is more
complex. On one hand, the above lemma can significantly
reduce the search complexity in this case. On the other
hand, in order to select and compute π(S) (to then compute
Uη(S)), determining the majority winning set is non-trivial;
here the majority winning set refers to a subset Swin ⊆ S
such that ∑i∈Swin

pi
1−pi
≥ ∑ j∈S\Swin

p j
1−p j

. This requires another
level of search. Different from simple majority where the
computation is over all subsets of size d(|S|+1)/2e (winning
is entirely determined by size), here the search can be more
exhaustive. A simple heuristic can help reduce the complexity:
first order all labelers in each selected S (to compute Uη(S))
in descending order of their pi, then for each possible winning
set size 1,2, ..., |S|, determine the majority winning set by
sequentially adding labelers from the top to bottom, and stop
when including a labeler of a rank leads to a non-winning set.

B. Main results

We now analyze the performance of a similar learning algo-
rithm using weighted majority voting. The algorithm LS OL

is modified as follows. Denote by W (S) = ∑i∈S log pi
1−pi

, ∀S⊆
M , and W̃ its estimated version when using estimated
accuracies p̃i. Denote by

δ
W
min = min

S 6=S′,W (S)6=W (S′)
|W (S)−W (S′)|

and let εη :< min{εη ,δ
W
min/2}6, where the εη on the RHS

is similarly defined as in simple majority voting case. At
time t (suppose at exploitation phase), the algorithm selects
the estimated optimal set St . These labelers then return their
labels that divide them into two subsets, say S (with one
label) and its complement St\S (with the other label). If
W̃ (S)≥ W̃ (St\S)+εη , we will call S the majority set and take
its label as the voting outcome. If |W̃ (S)−W̃ (St\S)|< εη , we
will call them equal sets and randomly select one of the labels
as the voting outcome. Intuitively εη serves as a tolerance that
helps to remove the error due to inaccurate estimations. In
addition, the constant D1(t) is revised to the follow:

D1(t) = log t/(
1

maxm max{4C ·m,m ·n(Sm)}
−α)2 · ε2

η ,

where C is a constant satisfying

C > max
i

max{1+ ε/4
pi

,
1− ε/4
1− pi

,
ε/4
pi

,
ε/4

1− pi
} .

With above modifications in mind, we omit the detailed
algorithm description for a concise presentation. We have
the following theorem on the regret of this revised algorithm
(again RC (T ) possesses a similar format we omit its detail),
when η = 0 or η > 0 & ci ≡ c.

Theorem 5: The regret under weighted majority voting can
be bounded uniformly in time:

Rη(T )≤
Uη(S∗η) · log2 T

( 1
maxm max{4C·m,m·n(Sm)} −α)2 · ε2

η · (amin−0.5)2

+∆max,η(2 ·
M

∑
m=1

m ·n(Sm)+M+
M2

2
) · (2β2 +

1
α · εη

β2−z) .

Again the regret is on the order of O(log2 T ) in time. It has
a potentially larger constant compared to that under simple
majority voting7. However, the weighted majority voting has a
better optimal solution, i.e., we are converging slightly slower
to a however better target.

The proof of this theorem is omitted for brevity and because
most of it parallels with the case of simple majority voting.
There is however a main difference: under the weighted
majority voting there is additional error in computing the
weighted majority vote. Whereas under simple majority we
simply find the majority set by counting the number of votes,
under weighted majority the calculation of the majority set
is dependent on the estimated weights log p̃i

1−p̃i
which inherits

errors in { p̃i}. This additional error, in particular associated
with bounding the error of getting

W̃ (Ŝ)−W̃ (S\Ŝ)< εη , when W (Ŝ)>W (S/Ŝ)

W̃ (Ŝ)−W̃ (S\Ŝ)≥ εη , when W (Ŝ) =W (S\Ŝ),

6We use :< to define a smaller term than the RHS.
7This argument is based on comparing the upper bounds. A numerical

comparison of the convergence is provided in Section VI.



for set Ŝ⊆ S⊆M , could be separately bounded using similar
methods as shown in the simple majority voting case (bound-
ing estimation error with large enough number of samples)
and can again be factored into the overall bound. This is
summarized in the following lemma.

Lemma 5: At time t, ∀Ŝ⊆ S⊆M and its complement S\Ŝ,
if W (Ŝ)>W (S\Ŝ), then ∀t at exploitation phases ∀ 0 < z < 1,

P(W̃ (Ŝ)−W̃ (S\Ŝ)< εη)≤ |S| · (
2
t2 +

1
α · εη · t2−z ) .

Moreover, if W (Ŝ) =W (S\Ŝ)

P(|W̃ (Ŝ)−W̃ (S\Ŝ)|> εη)≤ |S| · (
2
t2 +

1
α · εη · t2−z ) .

V. A LOWER BOUND ON THE REGRET

In this section we establish a lower bound on the regret of
our online labeler selection problem. We present the results
for simple majority voting with η = 0.8

A. O(1) reassignment leads to unbounded regret

We first show that a constant number of re-assignments
will lead to unbounded regret. Below we establish this by
contradiction. Recall that we have used D2(t) to determine
when reassignment is made, and in our algorithm we have
used D2(t) = O(log t). Suppose instead, D2(t) is given by
T0, a bounded constant. Let’s consider one task with label
θ ∈ {0,1}. Denote the test outcomes by x(1), ...,x(T0) (as
given by the simple majority voting from all labelers). There
are two hypotheses based on x(τ),τ = 1, ...,T0:

H0 : The label is 1, θ = 1; H1 : The label is 0, θ = 0.

Denote by I(θ1,θ0) the Kullback-Leibler (KL) divergence
between two distributions fX (x;θ = 1) and fX (x;θ = 0), where
fX (x;θ) denotes the sample distribution with parameter θ ,
which in our case is the ground-truth label. Denote the vector
[1, ..., t] by [t]. The next lemma is a well established result:

Lemma 6 (Theorem 2.2, Tsybakov [27], 2009): The error
probability Pe of the above hypothesis test up to time t is

lower-bounded by Pe ≥ e−I(P[t]
H0

,P[t]
H1

)
/2 .

Note that in our case

I(P[t]
H0
,P[t]

H1
) = EH0

[
log

fX (x(1);θ = 1)
fX (x(1);θ = 0)

· · · fX (x(T0);θ = 1)
fX (x(T0);θ = 0)

]
= EH0

[ T0

∑
t=1

log
fX (x(1);θ = 1)
fX (x(1);θ = 0)

]
= I(θ1,θ0)T0 .

Since T0 is bounded from above, Pe > 0, meaning that there
is always a positive probability of making the wrong labeling
decision. What this further means is that one can always find
problem parameters whereby an algorithm will reach incorrect
estimates of labelers’ qualities which leads to “permanently”
sub-optimal selection of labelers, resulting in unbounded re-
gret. This is demonstrated using a counter example shown
below.

8Again the analysis for η > 0 & ci ≡ c can be done similarly.

Suppose we have three labelers with labeling qualities being
p1 = 1

2 + δ , p2 = 1
2 + ξ , p3 = 1

2 + ξ − o(1), where o(1) is an
arbitrarily small quantity, and δ ,ξ satisfies 0 < ξ < δ < 1

2 .
This setting satisfies the assumptions we made throughout
the paper: (1) p1 > p2 > p3. (2) 0 < pi < 1, i = 1,2,3. (3)
p1+p2+p3

3 > 1/2. Moreover the labeling accuracy using simple
majority voting is as follows:

π(p1, p2, p3)≥
1
2
+

δ

2
+ξ −2δξ

2 > 1/2.

For this 3-labeler problem we have the following proposition.
Proposition 6: With Pe > 0, we can always find a δ such

that in the above example, the regret of any online learning
algorithm is on the order of O(T ).

a) D2(t)> O(1): : Now consider the case with D2(t)>
O(1). Using Chernoff bound we know the following holds

P(
∑

D2(t)
τ=1 x(τ)
D2(t)

> 1/2) = 1−P(
∑

D2(t)
τ=1 x(τ)
D2(t)

≤ 1/2)

= 1−P(
∑

D2(t)
τ=1 x(τ)
D2(t)

− p̄≤ 1/2− p̄)≥ 1− e2(p̄−1/2)2D2(t) .

Notice we have used p̄ to denote the average labeling accuracy,
which is strictly larger than 1/2. Thus Pe≤ e2(p̄−1/2)2D2(t)→ 0.
We have the following proposition.

Proposition 7: With D2(t)> O(1) we have

R(T )≥ O(
logT ·D2(t)

I(p1, p2)− C1
(C2+δ )2 δe

) , (11)

where C1,C2 > 0 are constants and δe =
Pe

1−Pe
.

Also from above results we see when D2(t) = O(1), it cannot
be guaranteed that I(p1, p2)− C1

(C2+δe)2 δe > 0, under which case
the bound becomes meaningless. This is another implication
why we need D2(t)> O(1).

B. A refined upper bound to match

We refine our algorithm and relax the requirement on setting
D2(t) := O(log t) to any D2(t)> O(1). We have the following
results to match this lower bound. In particular we prove the
following results.

Theorem 8: We can refine the upper bound of LS OL to
the following. R(T )≤ O(logT D2(T )) .

Tightness of O(log2 T ) for a type of policies: Note we
previously had a O(log2 T ) upper bound. We show this bound
is tight for a certain category of policies. We first define poly-
nomially converging policy for our labeler selection problem.

Definition 9: A polynomially converging policy is a policy
that there exists a z> 0 such that Pe is decreasing polynomially
Pe ≤ O(t−z) .

For polynomially converging policy, intuitively we need
exp(−2(p̄ − 1/2)2D2(t)) = O(t−z) , and again following
Lemma 6, we could successfully show that the number of re-
assignments needs to satisfy that D2(t)≥ log t. Then O(log t2)
is tight for polynomially decreasing policies.

VI. EXPERIMENT RESULTS

In this section we validate the proposed algorithms with a
few examples using both simulated and real data.



A. Simulation study

Our first setup consists of M = 5 labelers, whose quality
{pi} are randomly and uniformly generated to satisfy a preset
amin as follows: select {pi} randomly between [amin,1]. Note
that this is a simplification because not all {pi} need to be
above amin for the requirement to hold. An example of these
are shown in Table I (for amin = 0.6) but remain unknown to
the labelers. A task arrives at each time t. We assume a unit

L1 L2 L3 L4 L5

pi 0.763 0.781 0.625 0.783 0.727

TABLE I: Sample of simulation setup

labeling cost c = 0.02 (lablers have the same cost), and η = 1
when a linearly combined objective is used. The experiments
are run for a period of T = 2,000 time units (2,000 tasks in
total). The results shown below are the average over 100 runs.
Denote by G1,G2 the exploration constants concerning the two
constants (in D1(t) and D2(t)) that control the exploration part
of the learning. G1,G2 are set to be sufficiently large based
on the other parameters:

(G1,G2) = (
1

( 1
maxm:m odd m·n(Sm) −α)2 · ε2

,
1

(amin−0.5)2 ) .
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Fig. 2: Regret of the LS OL algorithm.

We first show the accumulative and average regret under the
simple majority voting rule in Fig. 2. From the set of figures
we observe a logarithmic increase of accumulated regret and
correspondingly a sub-linear decrease for its average quantity.
The cost regret RC (T ) has a very similar trend as mentioned
earlier (recall the regret terms of RC (T ) align well with the
those in R(T )) and is thus not show here. We then compare
the performance with labeler selection to the naive crowd-
sourcing algorithm, by taking a simple majority vote over
the whole set of labelers each time. This is plotted in Fig.
3 in terms of the average reward at each t. There is a clear
performance improvement after an initialization period (where
training happens).

In addition to the logarithmic growth, we are interested in
knowing how the performance is affected by the inaccuracy
of the crowd expertise. These results are shown in Fig. 4. We
observe the effect of different choices of amin = 0.6,0.7,0.8.
To make the comparison clear, we use the average error rate
defined as ∑

t
n=1 1(S(t) 6= S∗)/t. As expected, we see when

amin is small, the verification process of the labels takes more
samples to become accurate. Therefore in the process more
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Fig. 3: Performance comparison: labeler selection v.s. full
crowd-sourcing (majority voting)

error is introduced in the estimation of the labelers’ qualities,
which results in slower convergence.
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Fig. 4: Effect of amin: higher amin leads to much better
performance.

We next compare the performance between simple majority
voting and weighted majority voting (both with LS OL). One
example trace of accumulated reward comparison is shown in
Fig. 5; the advantage of weighted majority voting can be seen
clearly. We then repeat the set of experiments and average
the results over 500 runs; the comparison is shown in Table
II under different number of candidate labelers (all of their
labeling qualities are uniformly generated).

Despite the superior performance of weighted majority
voting, the convergence (to S∗) may be slower, due to the
additional error in vote counting as mentioned in Section IV.
We use the linearly combined utility function defined in Eqn.
(3) with η = 1, and again compare the average error rate. This
comparison is shown in Fig. 6.
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Fig. 5: Comparing weighted and simple majority voting within
LS OL: accumulated reward. η = 1.

B. Study on a real AMT dataset

We also apply our algorithm to a dataset shared at [1]. This
dataset contains 1,000 images each labeled by the same set of
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Fig. 6: Comparing weighted and simple majority voting within
LS OL: convergence of normalized regret. η = 1.

Average reward/ M := 5 10 15 20
Full crowd-sourcing (majority voting) 0.5154 0.5686 0.7000 0.7997

Simple majority voting w/ LS OL 0.8320 0.9186 0.9434 0.9820
Weighted majority voting w/ LS OL 0.8726 0.9393 0.9641 0.9890

TABLE II: Performance comparison. There is a clear gap be-
tween crowd-sourcing results with and without using LS OL.

5 AMTs. The labels are on the scale from 0 to 4 indicating how
many scenes are seen from each image, such as filed, airport,
animal, etc. A label of 0 implies no scene can be discerned.
Besides the ratings from the AMTs, there is a second dataset
from [1] summarizing keywords for scenes of each image.
We also analyze this second dataset and count the number of
unique descriptors for each image and use this count as the
ground-truth or gold standard, to which the results from AMT
are compared.

We start with showing the number of disagreements each
AMT has with the group over the 1000 images. The total
numbers of disagreement of the 5 AMTs are shown in Table
III, while Fig. 7 shows the cumulative disagreement over
the set of images ordered by their numerical indices in the
database. It is quite clear that AMT 5 shows significant and
consistent disagreement with the rest. AMT 3 comes next
while AMTs 1, 2, and 4 are clearly more in general agreement.

AMT1 AMT2 AMT3 AMT4 AMT5
# of disagree 348 353 376 338 441

TABLE III: Total number of disagreement each AMT has
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Fig. 7: Cumulated number of disagreements.

The images are not in sequential order, as the original
experiment was not done in an online fashion. To test our
algorithm, we will continue to use their numerical indices to
order them as if they arrived sequentially in time and feed
them into our algorithm. By doing so we essentially test the

performance of conducting this type of labeling tasks online
whereby the administrator of the tasks can dynamically alter
task assignments to obtain better results. In this experiment we
use LS OL with simple majority voting and weighted majority
voting, respectively, and with the addition of the detection
and filtering procedure discussed in Section III-E, which is
specified to eliminate the worst labeler after a certain number
of steps such that the error in the rank ordering is less than 0.1.
The algorithm otherwise runs as described earlier. Indeed we
see this happen around step 90, as highlighted in Fig. 8 along
with a comparison to using the full crowd-sourcing method
with majority voting.
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Fig. 8: Performance comparison: an online view. η = 0.

The algorithm also eventually correctly estimates the best
set to consist of AMTs 1, 2, and 4. The average error (compare
to the best combination in hindsight) in selecting the labelers
is shown in Fig. 99.
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Fig. 9: Average error in labeler selection
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Fig. 10: Performance comparison: a summery. η = 0.

All images’ labeling error as compared to the ground truth
at the end of this process is shown as a CDF (error distribution
over the images) in Fig. 10; note the errors are discrete due

9For our AMT studies, we focus on labeling accuracy so we set η = 0
in our objective. As we mentioned earlier, when η = 0 the optimal set of
labelers under WMV is the full set. So there is no regret in labeler selection
for WMV.



to the discrete labels. It is also worth noting that under our
algorithm the cost is much lower because AMT 5 was quickly
eliminated, while AMT 4 was only used very infrequently once
the optimal set has been accurately inferred. The difference
between simple majority voting and weighted majority voting
is very marginal. This is mainly due to the fact labeler 1,2,4’s
performances (accuracy level) are similar to each other, which
leads to similar weights, and thus similar predictions.

VII. FUTURE WORKS

Currently we are working on the case when there is partial
and delayed feedback (ground-truth) for each task. This is
different from the setting in the current paper as our inference
on labeling quality is purely based on the crowd-sourced
results, without any additional information. This may be made
true by observing recent advances in active learning research
that the quality of labels can be inferred from followed-by
machine learning tasks. A preliminary analysis indicates with
such assumption the regret order can be brought back to
O(logT ) instead of being O(logT 2).

Another immediate extension of our works is to consider the
labeling quality control problem in adversarial settings where
labelers’ outcomes form non-stochastic bandits, compared to
the current stochastic setting. We feel the non-stochastic model
may be a better justification for human behaviors.

VIII. CONCLUSION

To our best knowledge, this is the first work formalizing
and addressing the issue of labeler quality in an online fashion
for the crowd-sourcing problem and proposing solutions with
performance guarantee. We developed and analyzed an online
learning algorithm that can differentiate between high and
low quality labelers over time and select the best set for
labeling tasks with O(logT ·D2(T )) regret uniform in time,
where D2(T ) is an arbitrary function with D2(T )> O(1). We
also provided an order-matching lower bound. In addition,
we showed how performance could be further improved by
utilizing more sophisticated voting techniques. We discussed
the applicability of our algorithm to more general cases when
labelers’ quality varies with contextually different tasks and
discuss how to detect and remove malicious labelers when
there is a lack of ground-truth. We validated our results via
both synthetic and real world AMT data, alongside numerous
observations and discussions.
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PROOF OF LEMMA 3

Firstly notice via union bound we have ∀t:

E[E1(t)]≤
M

∑
m=1

m odd

P(Ũ(Sm)≥ Ũ(S∗)) . (12)

Now consider each term in the above summation P(Ũ(Sm)≥
Ũ(S∗)). We will use the following fact to bound it.

Lemma 7: The probability of using a sub-optimal selection
Sm is bounded as follows,

P(Ũ(Sm)≥Ũ(S∗))≤ P(Ũ(Sm)>U(Sm)+ ε)

+P(Ũ(S∗)<U(S∗)− ε) , (13)

and for S ∈ {Sm,S∗} we have

P(|Ũ(S)−U(S)|> ε)≤ n(S) ·∑
i∈S

P(|p̃i− pi|>
ε

n(S) · |S|
) .

We shall use the above lemma; its own proof is given in [18].
Consider each term P(|p̃i− pi|> ε

n(S)·|S| ) in the lemma

P(|p̃i− pi|>
ε

n(S) · |S|
)

= P(|p̃i− pi|>
ε

n(S) · |S|
|

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

≤ α · ε
tz )︸ ︷︷ ︸

Term 1

·P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
≤ α · ε

tz )

+P(|p̃i− pi|>
ε

n(S) · |S|
|

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

>
α · ε

tz )

·P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
>

α · ε
tz )︸ ︷︷ ︸

Term 2

, (14)

where 0 < z < 1 is a constant. This is different from the
classical learning problem in the sense we need to deal with
extra errors associated with imperfect feedbacks. The first term
takes care of the event when the sum of error is lower than
certain threshold while the second term captures the other case.

For Term 1 the conditional probability is bounded as:

P(|p̃i− pi|>
ε

n(S) · |S|
|

∑k:k∈E(t) 1{y∗k = 0}
|E(t)|

≤ α · ε
tz )

≤ P(|p̃i− pi|> (
1

n(S) · |S|
− α

tz ) · ε)

≤ 2 · e−2(( 1
n(S)·|S|−

α

tz )·ε)
2·D1(t) ≤ 2

t2 , (15)

since D1(t) = 1
( 1

n(S)·|S|−α)2·ε2 · log t. Consider Term 2,

P(
∑k:k∈E(t) 1{y∗k = 0}

|E(t)|
>

α · ε
tz )

≤
E[∑k:k∈E(t) 1{y∗k=0}]

|E(t)|
α·ε
tz

=

∑k:k∈E(t) E[1{y∗k=0}]
|E(t)|
α·ε
tz

, (16)

by the Markov inequality. Note more strict bound could be
obtained via other bounding techniques. Consider each term
in the summation

E[1{y∗k = 0}] = P(y∗k = 0) = P(
N̂k(t)

∑
n=1

1{yk(n)}> 0.5 · N̂k(t))

≤ e−2(amin−0.5)2·N̂k(t) ≤ 1
t2 ,

where N̂k(t) is the number of feedbacks received for task k
upto time t; the inequality is due to the fact that N̂k(t) ≥
D2(t)≥ 1/(amin−0.5)2 log t. This means that for each labeler,
it has performed on at least D1(T ) tasks, and each task must
have at least D2(T ) testing results available.

Consequently we have

P(
∑k∈E(t) I{y∗k = 0}

|E(t)|
>

α · ε
tz )≤ 1/t2

α · ε/tz =
1

α · ε · t2−z .

The other two terms in the summation are bounded by 1 since
they are probability measures. Summing up, we have

P(|Ũ(S)−U(S)|> ε)≤ n(S) · |S| · ( 2
t2 +

1
α · ε · t2−z ) . (17)

Summing over Sm,m odd completes the proof.

PROOF FOR PROPOSITION 6
Let’s ignore the o(1) quantity for now: as we could easily

show π(·) is linear in each pi so the o(1) change in each pi
will only result in a o(1) change in π(·). First

π(
1
2
+δe,

1
2
+ ε,

1
2
+ ε) =

1
2
+

δe

2
+ ε−2δeε

2 .

Compare with 1−δe we know we can find a (δe,ε) such that

1
2
+

δe

2
+ ε−2δeε

2 <
1
2
+δe⇔ ε <

δe

2
+2δeε

2 .

Now with error probability Pe we have the change in
perception for each labelers’ accuracy as follows

p̃1 = (
1
2
+δe)(1−Pe)+(

1
2
−δe)Pe =

1
2
+δe(1−2Pe) ,

p̃2 = (
1
2
+ ε)(1−Pe)+(

1
2
− ε)Pe =

1
2
+ ε(1−2Pe) ,

p̃3 = (
1
2
+ ε)(1−Pe)+(

1
2
− ε)Pe =

1
2
+ ε(1−2Pe) .

First of all when Pe > 1
2 , we know p̃2 > p̃1, which will

lead to the case that optimal set of labelers will be different
from the case with p1, p2, p3. When Pe = 1

2 , we will have
p̃1 = p̃2 = p̃3 =

1
2 . So the optimal solution does not equal to

selecting labeler 1, which again leads to unbounded regrets.
Now consider the case with Pe <

1
2 :

π(p̃1, p̃2, p̃3) =
1
2
+

δe(1−2Pe)

2
+δe(1−2Pe)

−2δe(1−2Pe)(ε(1−2Pe))
2 .

Compare it with 1
2 +δe(1−2Pe) we know

1
2
+

δe(1−2Pe)

2
+δe(1−2Pe)−2δe(1−2Pe)(ε(1−2Pe))

2

>
1
2
+δe(1−2Pe)⇔ ε >

δe

2
+2δeε

2(1−2Pe)
2 .



Depending on different Pe we know we could choose a pair
of (ε,δe) such that ε < δe

2 +2δeε2, ε > δe
2 +2δeε2(1−2Pe)

2 ,
as above functions are all continuous in (ε,δe). So for any Pe
we can find an example that based on p̃1, p̃2, p̃3 the optimal
solution set will be different from the one with p1, p2, p3. Then
following classical MAB results we will know the learning
will converge to the sub-optimal solution which will make the
learning regret being at the order of O(T ).

PROOF FOR PROPOSITION 7

Now at each time t consider the hypothesis testing on
whether a sub-optimal labeler is better than an optimal one,
based on collected samples. Upto time t the number of making
a wrong decision for above hypothesis is lower bounded by
the summation of the event when a wrong ordering of the
labelers occurs; as in cases with the top labeler being the
optimal selection, a wrong ordering leads to a wrong selection.

Consider the following example with two hypothesis with
parameters drawing from parameter space Θ. (Hypothesis Hi
corresponds to parameter space θi.) Particularly suppose

θ0 = {p1, p2, p3 : p1 > p2 > p3} ,
θ1 = {p′1, p2, p3 : p2 > p′1 > p3} .

That is H0 believes p1 > p2 while H1 represents the hypothesis
p2 > p1.

Denote by T (t) as the number of sub-optimal arm selection
upto time t. Then we have

sup
θ

Eθ [T (t)] = sup
θ

t

∑
τ=1

Pθ (S(τ) 6= S∗)

≥
t

∑
τ=1

Pθ0(S(τ) 6= S∗)+Pθ1(S(τ) 6= S∗)
2

≥
t

∑
τ=1

e−I(Pτ
H0

,Pτ
H1

)

4
.

Denote the observation sequence as X1, ...,Xt . Now consider
each term in the summation

I(Pτ
H0
,Pτ

H1
) = Eθ0

(
log(

f̃ (X1, p1)

f̃ (X1, p′1)
f̃ (X2, p1)

f̃ (X2, p′1)
· · ·

f̃ (XT (τ), p′1)

f̃ (XT (τ), p′1)
)

)

= Eθ0 [
T (τ)

∑
t=1

log
f̃ (X1, p1)

f̃ (X1, p′1)
] = Ĩ(p1, p′1)Eθ [T (τ)] .

Notice each distribution we have used f̃ to denote this is rather
a noisy observation.

There we have (as similarly argued in [4])

St ≥
1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)Eθ0 [T (τ)]

≥ 1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)supθ Eθ [T (τ)]

=
1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)Sτ ≥ 1
4
·

t

∑
τ=1

e−Ĩ(p1,p′1)St

=
t
4

e−Ĩ(p1,p′1)St .

Take log on both sides and rearrange we know

St ≥
log t

Ĩ(p1, p′1)
+o(

log t
Ĩ(p1, p′1)

) . (18)

Now consider supPe
St and we start with bounding Ĩ(p1, p′1).

Consider the following fact.

Ĩ(p1, p′1) = Eθ0(log
f̃ (x, p1)

f̃ (x, p′1)
)

= Eθ0(log
f (x, p1)(1−Pe)+(1− f (x, p1))Pe

f (x, p′1)(1−Pe)+(1− f (x, p′1))Pe
)

= Eθ0(log
f (x, p1)+

Pe
1−2Pe

f (x, p′1)+
Pe

1−2Pe

)

For each x ∈ {0,1}, consider each function log
f (x,p1)+

Pe
1−2Pe

f (x,p′1)+
Pe

1−2Pe
.

Denote δe =
Pe

1−2Pe
and

g(δe) = log
f (x, p1)+δe

f (x, p′1)+δe
,δe ≥ 0. (19)

By checking the second order derivative we can easily show
that when f (x, p1)≥ f (x, p′1), g(δe) is convex in δe while when
f (x, p1)< f (x, p′1), g(δe) is concave. Therefore we have when
f (x, p1)≥ f (x, p′1),

g(δe)≥ g(0)+g′(0)δe = log
f (x, p1)

f (x, p′1)
+

f (x, p1)− f (x, p′1)
f (x, p1) f (x, p′1)

δe .

While when f (x, p1)< f (x, p′1),

g(δe)≥ g(0)−g′(δe)(−δe)

= log
f (x, p1)

f (x, p′1)
+

f (x, p1)− f (x, p′1)
( f (x, p1)+δe)( f (x, p′1)+δe)

δe .

Denote −C1 = minx f (x, p1) − f (x, p′1), and C2 =
minx,θ f (x,θ) . Since we cannot have a probability measure
being strictly larger than another on each outcome and for
two different measures we know C1 > 0,C2 > 0. Then

g(δe)≥ g(0)− C1

(C2 +δe)2 δe. (20)

Then

Eθ0(log
f (x, p1)+

Pe
1−2Pe

f (x, p′1)+
Pe

1−2Pe

)≥ Eθ0(log
f (x, p1)

f (x, p′1)
)− C1

(C2 +δe)2 δe.

That is

Ĩ(p1, p′1)≥ I(p1, p′1)−
C1

(C2 +δe)2 δe .

Then

St ≥
log t

I(p1, p′1)−
C1

(C2+δe)2 δe
. (21)

We now see since δe =
Pe

1−2Pe
, when Pe→ 0, δe→ 0 and so

is C1
(C2+δe)2 δe.
We can easily prove that I(p1, p2−x) is increasing in x; so

the lower bound is again be bounded by setting x = 0 that is
by setting p′1 = p2. Combine above analysis we know we can
achieve a lower bound as log tD2(t).


