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Abstract— In this paper we consider the problem of searching
for a node or an object (i.e., piece of data, file, etc.) in a lae
network. Applications of this problem include searching fo a
destination node in a mobile ad hoc network, querying for a
piece of desired data in a wireless sensor network, and se#iag
for a shared file in an unstructured peer-to-peer network.
We consider the class of controlled flooding search strategs
where query/search packets are broadcast and propagated ithe
network until a preset TTL (time-to-live) value carried in the
packet expires. Every unsuccessful search attempt, sigréfl by a
timeout at the origin of the search, results in an increased TL
value (i.e., larger search area) and the same process is rejed
until the object is found. The primary goal of this study is to find
search strategies (i.e., sequences of TTL values) that willinimize
the cost of such searches associated with packet transmisss.
Assuming that the probability distribution of the object lo cation
is not known a priori, we derive search strategies that minimize
the search cost in the worst-case, via a performance measuie
the form of the competitive ratio between the average searchost
of a strategy and that of an omniscient observer. This ratio $
shown in prior work to be asymptotically (as the network size
grows to infinity) lower bounded by 4 among all deterministic
search strategies. In this paper we show that by using randoined
strategies (i.e., successive TTL values are chosen from tan
probability distributions rather than deterministic valu es), this
ratio is asymptotically lower bounded by e. We derive an
optimal strategy that achieves this lower bound, and discisits
performance under other criteria. We further introduce a class of
randomized strategies that are sub-optimal but potentialy more
useful in practice.

Index Terms—Query and search, TTL, controlled flooding
search, wireless networks, randomized strategy, best wdrsase
performance, competitive ratio

I. INTRODUCTION

the group (e.g., [3]), and locating one or multiple serversab
node requesting distributed services (e.g., [4]). Seadiso
widely used in peer-to-peer (P2P) networks.

A variety of mechanisms may be used to locate a node in
a large network. For instance, a centralized directoryiserv
which is periodically updated, can be established from tvhic
location information may be obtained. One can also use the
decentralized random walk based search, where the querier
sends out a query packet to be forwarded in some random
fashion, e.g., random walks or controlled walks such that th
propagation of the packet follows a consistent directiattilu
it hits the search target [1].

In this paper we focus on a widely used search mechanism
known as the TTL-based controlled flooding of query packets.
Under this scheme the query/search packet is broadcast and
propagated in the network. A preset TTL (time-to-live) w&alu
is carried in the packet and every time the packet is relayed t
TTL value is decremented. This continues until TTL reaches
zero and the propagation stops. Therefore the extent/atka o
search is controlled by the TTL value. If the target is lodate
within this area, it will reply with the queried information
Otherwise, the origin of the search will eventually time and
initiate another round of search covering a bigger areagusin
a larger TTL value. This continues until either the object is
found or the querier gives up. Consequently the performance
of a search strategy is determined by the sequence of TTL
values used.

Our primary goal is to derive controlled flooding search
strategies, i.e., sequences of TTL values, that minimize th
cost of such searches in terms of energy consumption (i.e.,
the amount of packet transmission/reception)e will mainly

In this paper we considgr the problem'of searching for|@nit our analysis to the case of searching for a single targe
node or an object (e.g., piece of data, file, etc.) in a largghich is assumed to exist in the network. It will be seen later
wireless network. A prime example is data query in a wireleggat our results apply to the more general case of searching
sensor network, where different sensing data is distrébutg,r myltiple objects. For the rest of our discussion we will
among a large number of sensor nodes [1]. Search has gjs@ the termobjectto indicate the target of a search, be it a
been extensively used in mobile ad hoc networks, includirpg)de’ a piece of data or a file. We measure the position of
searching for a destination node by a source node in the roif object by its distance to the source originating the $earc
establishment procedure of an ad hoc routing protocol,(€.gye will use the termiocation of an object to indicate both
[2]), searching for a multicast group by a node looking t®joithe actual position of the search target and the minimum TTL
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When the probability distribution of the object location is
known a priori, search strategies that minimize the expected
search cost can be obtained via a dynamic programming
formulation [5]. When the distribution of the object loaati

Iwe will not explicitly consider the response time of a seasttategy in
this paper, as within the class of controlled flooding sedhehfastest search
is to flood the entire network.



is not knowna priori, one may evaluate the effectiveness; < u;4+1 for 1 <i < N — 1. For randomized strategies, we
of a strategy by its worst case performance. In [6] suchassume all realizations are increasing sequences. Iniqggact
criterion, in the form of the competitive ratio (or worstsea it is natural to consider discrete (or integer-valued) gie§.
cost ratio) between the expected cost of a given strateggwever, considering real-valued sequences can ofteralreve
and that of an omniscient observer, was used. It was shofumdamental properties that are helpful in deriving optima
under a linear cost model (to be precisely defined in the nérteger-valued strategies. In addition, real-valued tsgias
section) that the best worst-case search strategy amongnadly also have practical applications, e.g., in ad hoc nddsvor
fixed strategiess the California Split search algorithm, whichthat use position information, flooding may be done within a
achieves a competitive ratio of 4 (also the lower bound on a#al-valued physical distance (determined by the TTL) adou
fixed strategies). In [5] we showed that to minimize thisaati the source. We therefore also consider continuous (or real-
the best strategies amandomizedstrategies that consist ofvalued) strategies, denoted by wherev = [v1, va, -+ , vn],
sequence of random variables instead of deterministicegaluand v; is either a fixed or continuous random variable that
In particular, [5] introduced a class ofiformly randomized takes any real value ofi, o0), for 1 <i < L.

strategiesand showed that within this class the best strategy A strategy is admissibleif it locates any object of fi-
achieves a competitive ratio of approximatel9142. nite location with probability 1. For a fixed strategy this

In this paper we show that for a much more general classiofplies uxy = L, and for a random strategy, this implies
cost models, the best worst-case strategy among all fixed afcu; = L for some 1 < ¢ < N) = 1. In the asymptotic
random strategies achieves a competitive ratie.0f/le derive case asL — oo, a strategyu is admissible ifV = >
an optimal randomized strategy that attains this ratio andPr (u, > x for some n € Z%) = 1.
discuss how it can be adjusted to account for alternativieper We let V' denote the set of all real-valued admissible
mance criteria. We also establish an equivalence reldtipnsstrategies (random or fixed).? denotes the set of all admis-
between TTL sequences under different cost functions. Thible real-valued deterministic strategids. denotes the set
allows us to derive good randomized strategies for genemmlall integer-valued admissible strategies (random ordfixe
cost functions based on the optimal uniformly randomizeeinally, U¢ denotes the set of all admissible integer-valued
strategy derived for linear cost functions. These are sutteterministic strategies. Note that it is always true #atcC
optimal strategies, but are simple to implement and of pract U C V, and similarlyU? c V¢ c V.
value. In a practical system, a variety of techniques may be used to

The rest of the paper is organized as follows. Sectiongduce the number of query packets flowing in the network and
Il and Il present the network model and the performande alleviate thebroadcast stormproblem [7]. In our analysis
objectives under consideration. In Section IV we derive thee will assume that a search with a TTL valuekofvill reach
optimal strategy among all random and non-random strategigll neighbors that aré hops away from the originating node,
We examine a few alternative performance measures in Sectéimd that the cost associated with this search is a functién of
V. We establish a mapping between linear and more genetlahoted byC'(k). This cost may include the total number of
cost functions in Section VI. Using this result in Sectiorl,VI transmissions, receptions, etc. THUg) is the abstraction of
we investigate a number of sub-optimal search strategiestle nature of the underlying network and the specific brosidca
the interest that these may be more practical and easiers@iiemes used.
implement in many cases. Section VIII concludes the paper. It is important to note that in general a node receiving the
search query will be unaware whether the object is found
at another node in the same round (except perhaps when
the object is found at one of its neighbors). Thus this node

Within the context of TTL-based controlled flooding searchwill continue decrementing the TTL value and passing on
the distance between two nodes is measured in numberttoé search query. We can therefore regard the search cost as
hops assuming that the network is connected. Two nodeging paid in advancei.e., the search cost for each round
being one hop away means they can reach each other in @ealetermined by the TTL value and not by whether the
transmission. We will assume that a query with TTL valuebject is located in that round. Two example cost functions
k will reach all nodes withink hops of the originating node are the linear cost and quadratic cost, defined'és) = ak
before the next round of search starts. This is a simplificati and C(k) = ak?, respectively, for some constant > 0.
but nevertheless allows us to reveal fundamental featuresVdhen cost measures the number of transmissions, the first is
the problem and obtain insights. We denote/bthe minimum a good model in a linear network with constant node density.
TTL value required to search every node within the networKhe latter is a more reasonable model for a two-dimensional
and will also refer td. as thedimensioror sizeof the network. network, as the number of nodes reached (as well as the
Since we have assumed that the object exists, using a TAalmber of transmissions) ik hops has been shown to be
value of L will locate the object with probability 1. on the order of:2 [5], [6].

A search strategyr is a TTL sequence of certain length For real-valued sequences, we require that the cost functio
N, u = [uy,uz, - ,un]. It can be either fixed/deterministicC'(v) be defined for allv € [1, c0), while for integer-valued
whereu;,i = 1,--- , N, are deterministic values, or randonsequences we only require that the cost function be defined
whereu; are drawn from probability distributions. For a fixedfor positive integers. When the cost function is invertje
strategy we assume that is an increasing sequence, i.e.use C~!(-) to denote its inverse. We will adopt the natural

II. NETWORK MODEL



assumption tha€'(v1) > C(ve) if v1 > vs. minimize this ratio, with the best worst-case discretetegga
Both [6] and [5] considered only the linear cost functiomlenoted byu*:

scenario where it is assumed th@tk) = ak for come Ju

constanta. In this paper we will consider a much broader p* = inf p* = inf sup ——a—— . 4)

class of cost functions defined as follows. uet Ul (px (o)} BIO(X)]

Definition 1: The functionC' : [1,00) — [C(1),00) be-  The worst-case cost ratip" can also be viewed as the
longs to the clas€ if 0 < C(1) < oo, C(v) is increasing and competitive ratiowith respect to aroblivious adversanys]
differentiable (hence continuous), afith, ... C(v) = . who knows the search strategy. We will use these two

We will use X to denote the minimum TTL value requiretierms interchangeably. It should be mentioned that thetijyian
to locate the object. We will also refer t& as the object o* has a slightly different meaning for deterministic and
location As a result, an object location is an integer (reghndomized strategies. Whanis a fixed sequencel% is a
number) when discrete (continuous) strategies are camslde single expectation with respect 36 as seen in (3). In this case,
We denote the cumulative distribution &f by F'(z), where  for any given location the search cost of using/¥, is always
F(z) = Pr(X < x). Similarly, the tail distribution ofX is  ithin a factorp" of the omniscient observer's cost. On the
denoted byF(z) = 1 — F(x) = Pr(X > z). In the more qiher hand, whem is random, thep® only provides an upper
general case of searching forout of n objects, we can leX'  pound on theaveragesearch cost but does not necessarily
denote the location of thkth furthest object from the source.ypper bound any particular realization of this cost. In tise,

In this case the search process proceeds in exactly the s§g the expectedsearch cost ofx that is always withinp®

way as if searching for a single object with locatiGhand  of the cost of an omniscient observer. In Section V, we will
terminates when alk: objects have been found. Note that alhresent other performance measures in order to account for
k — 1 objects located closer to the source get a “free ridegese differences.

i.e., they are automatically found either before or at theesa g, any continuous strategy; € V, the worst-case cost
time thekth furthest one is found. Therefore, without loss of ;i is defined similarly to (1)p" = sup{ s, (2} _Ix
n x(2)} E[C(X)]’

generality we can assume there exists exactly one objepein tuhere {fx(x)} denotes the set of all probability density
network even though our results directly apply to searcfang functions for X such thatE[C(X)] < oc. The best worst-

a subset of multiple objects. case strategy is defined similarly to (4) wiftfx(z)} andV
replacing{px (z)} andU, respectively.

I1l. PROBLEM FORMULATION AND PRELIMINARIES The following lemmas are critical in our subsequent analy-
We adopt the following worst-case performance measure Y& )
generalization of the one used in [6]): Lemma 1: For any search strategy € V,
J , N
uw_ o 7 1 SUP o = SUP (5)
7" ey EIOX)] W vt BIOO] i) C(w)

where J& denotes the expected search cost of using strateypere Jy is the expected search cost using TTL sequence
u for object locationX; E[C(X)] is the expected searchwhen object location” has probability densityfy (y), and
cost of an ideal omniscient observer who knows precisely tHg is the expected search cost using TTL sequensghen
location (i.e., realization of{). The ratio between these two’(Y = y) = 1, i.e., a single fixed point.
terms for a givenX will be referred to as the (averagedst Proof: We begin by noting that for every € [1,0),
ratio. Meanwhile,{px (z)} denotes the set of all probabilitythere corresponds a singleton probability dengfify(y’) =
mass functions o such thatE[C(X)] < co. We will only d(y" —y) so thatP(Y = y) = 1, and thereforeE[C(Y)] =
consider the case where the random veatoand X are C(y) andJy = J;. We thus have the following inequality
mutually independent, as the distribution &f is not known

. . . . JV JY
a priori. Let j% denote the search cost (a random variable in sup —X— > sup —L
general) of using strategy when object location isY. This (v EICY)] ™ yepnioo) C)
can be written as:

(6)

since the left-hand side is a supremum over a larger set.
Jv

j% = Z Cu)I(X > ui_1) , (2) On the other hand, setting = sup,c(; ) z(;; We have
uiu % < Aforall y € [1,00). ThusJy < AC(y). Then for
ThenJ% can be calculated as follows: any random variabl@” denoting object location, we can use
this inequality along with the independence betweesndY
‘u to obtain:
J¥ = BulBx X)) = Bu | 3 Cu)Pr(X > wia)| 5 (3
u;€u Jy _ f[l,oo) J;’fY(y) dy
where ug = 0 is assumed for allu. Note that if u is E[CY)] i CWfy(y) dy
deterministic thew'y} is a single expectation with respectXg f[lm) AC () fy (y) dy B

whereas ifu is random thew'} is the average over botk and

< 7
u. The corresponding objective is to find search strategis th Ji00) €Wy (y) dy



Equation (7) implies that]% < A = supyep o0 %Yy) In what follows we will first derive a tight lower bound
Since this inequality holds for all possible random varmasbl on the worst-case cost ratio for continuous strategies. We
Y, we have: then introduce a particular randomized continuous styettesf

achieves the lower bound, therefore proving that this esgrat

JY JY _ : .
sup ——2—— < sup v_. (8) is optimal in the worst-case. We then repeat the process for
(v EICY)] ™ yepro) CY) the discrete case.
Equations (6) and (8) collectively imply the equality in (5)
and we have proven Lemma 1. ® A. A Lower Bound on the Worst-Case Cost Ratio
Lemma 2: For any search strategy € U, . i )
" " In deriving a tight lower bound on the worst-case cost ratio,
Pt = sup Jx = sup Ja ’ 9) Wwe use Yao’s minimax principle [8] and Lemma 2 to obtain
x@) PICX)] ez C(2) the following inequality.

where J2 denotes the expected search cost using TTL se-Lemma 3: We have

guenceu when Pr(X = x) = 1, andZ™ denotes the set of
natural numbers and represents all possible singletorcobje

u u

J J
inf ——2_— < inf Lo 10
WP wlts BOX)] = uth MR Oy 1Y

{px (x)
locations. Proof: For any given object location distribution,
The proof of this lemma is essentially the same as that tife optimal strategy is deterministic. Hence we have
. . JY . JY
Lemma 1 and is not repeated. SUP{, . (2)} IMfucya E[Ci)((x)] = SUP{p, (o)} fucv BT

In words, these two lemmas imply that for any TTLWe also have the following in interchanging the supremum
sequence, the worst case scenario is when the object Incatiad infimum, see for example [9]:
is a constant, i.e., with a singleton probability distribat We a a
will also subsequently refer to such a single-valued lorati sup inf ) S inf sup ——2— .
as apoint Note that this constant (i.e., worst case) may not  {px ()} *€V E[C(X)] ™ uel tpy @)y EIC(X)]

singleton-valuedX and equivalently redefine the minimum_eqmma 2 establishes (10). u
worst-case cost ratip” in equation (4) ap” = infucu p" = The corresponding continuous version of Lemma 3 is straight
infuer sup,ez+ &gy and similarly for the continuous strate-forward with a similar proof.
gies. _ _ ~ Lemma 4:

It has been shown in [6] that under the linear cost function Jv Jv
C(u) = au, as the network size increases the minimum sup inf —=2—— < inf sup —2- (11)

{fx(z)} veVH E[C(X)] - VEV 2e[l,00) C(.%') ’ .
We now use the above results to first derive a lower
bound on the minimum worst-case cost ratio under continuous

C, the real-valued California Split strategy can be defined agtrategies. Us_mg (11),_we note t_hat any '°V_Vef bound can
sequence satisfyingC(v1) € [1,2) andC(v;) = 21~ 1C(v1) be _fo_und by f|rs_t selecting g_lo_cauon dIStI’IbutI(fﬁr_(f_E) _and

for all i € Z*. That is,v is a sequence with costs growingder'v'”g_ the optlmgl dgtermmsuc stratggy that miningzbe
geometrically by a factor of. In the next section we derive cost ratio under this distribution. We will assume that thetc

randomized strategies that are optimal amafigadmissible functionC(-) € C.

strategies. Whereas [6] and [5] derive strategies undeatin CONSider an object Loacation distributigiven by F(x) =
cost functions, our optimal strategy achieves a much smalleér(X > z) = (%) for all x > 1 and some constant

worst-case cost ratio over all deterministic integer-gdlu
sequences is 4, achieved by the California Split search
{2i-1:ieZT} =[1,2,4,8,..]. For any cost functiod’(-) €

worst-case cost ratia, for any cost functiorC(-) € C. o > 1. For any deterministic TTL sequense= [vy, vy, ...],
the corresponding expected search cost is given by the fol-
IV. OPTIMAL WORSTCASE STRATEGIES lowing expression, wherey = 1 is assumed for simplicity of

In this section, we derive asymptotically optimal contingo notation:

and discrete strategies in the limit as the network dimemsio v > _ C(vi_1
approacheso. Consequently we will consider TTL sequences Ix = Z Clvj)F(vj-1) = Z C(vj) <%>
of infinite length that are admissible as outlined earlidre T =1 =1

asymptotic case is studied as we are particularly intedest€herefore the optimal strategy must satisfy the following
in the performance of flooding search in a large network. partial differential equation:

addition, it is difficult if at all possible to obtain a genlaranv aC(v;)
strategy that is optimal for all finite-dimension networke-b =X —2(C(1)"
cause the optimal TTL sequence often depends on the specFﬂTéj 9v;

value of L. In this sense, an asymptotically optimal strategy =0, 12)
may provide much more insight into the intrinsic structure

of the problem. We will see that asymptotically optimal TTL “A special case of this distribution where c@st:) is linear, also known
P ymp y op as the Zipf distribution, was studied in [6] for which the iopal deterministic

S_equences C_an also perform very well in a network of arly'tra‘gtrategy was computed. Here we generalize the method to astyfunction
finite dimension. in C to derive the class of optimal strategies.

oo

= [Cvj-1)™" = aCl(v;41)C(v;) "]



for all ; > 1. Since both the derivative of the cost functiomherefore using (11) we have obtained a lower bound on the
andC(1) are strictly positive, for a given fixed, the optimal worst-case cost ratio, given by the next lemma.
strategy is to recursively choose that satisfies the following Lemma 6: For anyC(-) € C, the worst-case cost ratio of

equation for allj > 1: any continuous strategy is lower-boundeddyy.e.:
_C) [ Clv)) “ inf  su Ty >e. 17
Cl) =T (F25) . ey 2 ) a4

_ _ o _ This result implies that if we can obtain a TTL sequence whose
Note that this optimal sequence satisfies the following:  \orst-case ratio ig, then it must be an optimal worst-case

- _( Cvy) C(v;)C(1)” strategy. We derive such a strategy in the next two subgectio
(UJ) (UJJrl)_ C(U 1) O[C(’U‘)a
T ! B. A Class of Jointly Defined Randomized Strategies
_ O CO) _p (C) g, 2 _
= —\a (vj—1)——= . (14) Definition 2: Assume that the cost functiafi(-) € C. Let
Cvj—1)" « !

_ _ . , v[r, Fy, (z)] denote a jointly defined sequenee= [vy, va, ...]
Summing both sides of (14) fromh = 1 to j = oo and wjth a configurable parameter generated as follows:

multiplying by o gives: (J.1) The first TTL valuey; is a continuous random variable

- o taking values in the interval1,C~!(rC(1))), with
ad  Fu)C(vjp1) =Y F(vj-1) its cdf given by some nondecreasing, right-continuous
= j=1 function F,, (z) = Pr(v; < z). Note that this means
< < F, (1)=0andF,, (C7*(rC(1))) = 1.
= 04( F(vj)C(vjt1) C(”l)) = F;-1)C(vj) - (3.2) The kth TTL value v, is defined by v, —
=0 =1 C~! (r*=1C(vy)) for all positive integers:.

Substituting this in the definition of/} gives: aJY} — From (J.1) and (J.2), it can be seen thand £, () uniquely
aC(v) = J¥, and thusJY, =1 = C(v;). On the other hand, define the TTL strategy. Note that successivevy,) form a
the mean of the object Iocat|on is as follows, noting tikat geometric sequence with power

takes values offil, c): Lemma 7: Consider any strategy|r, F,, (z)] constructed
using steps(J.1) and (J.2) above. Assum€(-) € C. Let
/ Pr(C > ) dx F,, (y) = 1— F,,(y). Then the worst-case cost ratio is given
by:
=C(1)+ F(C () dx “u Jy “u { r h(r)+ (r—1)h(z) _rh’(z)}
ow i reline) Cl@) 12ae, lr—1 20(0) c()
> [CC @) a _— .
=C(1)+ —on dr=——=C(1).  wherel'(z) denotes the derivative df with respect toz, and
cw h(z) is defined as follows foit < z < r:
The above imply that for a sequence defined by a given 2c(1)
and following recursion (13), the cost ratio is h(z) = C(1) +/ Fm((j—l(y)) dy . (18)
o . Je) . :
Jx _ nla-1) Cu) The proof is given in the appendix. This lemma reduces the

ElC(X)] “Xac@) — C1)° (15) space over which the supremum is taken in order to calculate
the worst-case cost ratio.

This means that for a givem, the sequence that generates the
smallest cost ratio will follow the recursion (13) and use th
smallest possible value af;,. However, not all values of;

lead to an increasing sequencén fact, we have the following For 1 < z < r and a given strategy|r, F,, (z)], define

C. An Optimal Continuous Strategy

result: ®(z) as follows:
Lemma 5: Consider any infinite length sequence = rh(r) + (r— 1)h(z) B (2)
[v1,v2,..], Wherev, is some positive constant ang, k > 2, (z) = p—] 2O O (19)

is generated by the recursion given by (13). Thens an

increasing sequence if and only if the following conditioffi"0M Lemma 7, the worst-case cost ratiovdb the supremum
holds: of ®(z) over the rangel < z < r. The following four

C(v1) o (SR e _ 2k (16) boundary conditions are true for any functibfx) as defined
cm = et by (18): h(1) = C(1), h(r) = E[C(n)], ¥'(1) = C(1), and
The proof of this lemma can be found in the Appendix.  h/(r) =
Therefore we can achieve a minimum cost ratio value of Theorem 1: AssumeC(-) € C. We have

QT T by usmg aTTL sequence defined by recursion (13) and Jv
vy such that (“1) isaa1. Whena > 1, a5 is a decreasing vlrelf/ sup C(T) =e. (20)
function Ofa W|th its maximum achieved as approaches 2€[l,00)

1 from above. In addition we havéim, ,;+ as-1 = e, Moreover, this worst-case cost ratio is obtained by stsateg
which follows from the definition of the exponential congdtanv*[e, ( ;]. In other words, the optimal strategy is defined




C(z)

y forl <z < Proof: BecauseC(xz + 1) > ¢C(x) for all z, we have

as follows: v} has the cdfF,: (z) =

N oa
C=H(eC(1)), and v} = C~'(e5=1C (w)) for all positive C(Xa +1) > C(Xq) wp. 1. Hence, Zgtietil > ¢ for
integersk. all a. Hence to complete the proof, we need to show that for
Proof: Consider strategw* as described. Note thatanye > 0, there existsy such that% < g+eforall
becausé’,: (z) = In gEB andr = e, we have: 1 < a < a. To begin, fixe > 0. SinceC(-) € C,, there exists
0 x* such thatcg”(j)l) < q+ § forall z > z*. Let I(-) denote
h(z) = C(1) +/ Fur (C7Yy)) dy the indicator function such that(A) = 1 if A is true and O
c() ! otherwise. We have:
2C(1) * € *
- o)+ / (1 i C%) dy B[C(Xa+ DI(Xa > )] < (¢4 5) EIC(X)I(Xa > *)]
C(1) €
= C)[z—z(nz—1)—1=C(1)[22 — zlnz—1] . < (q+§) E[C(Xa)] (21)

Note thath(e) = C(1) (e —1) and #'(z) = C(1)[1 —Inz]. Atthe same time we also have:

Thus we have fol < z < r: . ElC(Xq+ 1)I( X, < z*)] ] (z*+1)
im < lm ——-===0,
oy ¢ CO-D+(-DCW)R2z—zlnz—1 otF EC(Xa)] a—1+ E[C(X4)]
() = e—1 2C(1) since C(z* + 1) < oo and E[C(X,)] = Z%. Hence,
eC(1)(1 —1Inz) there exists amx such that for alll < o« < & we have
- () =€ E[C(Xq+1)I(X, < 2%)] < 5 - E[C(X4)]. Combining this

o with (21) gives forl < o < &:
Hence it is clear from Lemma 7 that the worst-case cost ratio hg

of this sequence ig. Combine this with Lemma 6 which E[C(X4 +1)]
showed the worst-case cost ratio of any continuous strategy = E[C(X,, + 1)[(X, > 2*)] + E[C(Xs + 1)I(Xa < z¥)]
lower bounded by, we complete the proof. ] € €
As an example, when the cost is linear, &) = = for < (q Tyt 5) E[C(Xa)] = (¢ + ) E[C(Xa)] ,
all z, the optimal strategy™ = [v],v3, ...] is as follows. The \hich completes the proof.

first TTL value is a random variable; with cdf Fx(2) = u
Inz fo; 11 < z < e. Successive TTL values are defined aghis result can be used to obtain the following lemma.
vp = ey Lemma 9: ForC(-) € C,, the best worst-case cost ratio is
The above optimal strategy belongs to the family of stratgsver-bounded byinfucr sup, ezt %;‘) > e
. . C(z : u & r) — ’
gies given byv[r, - In %], indexed by the parametet Proof: Fix someu € U'. For any inte(éen: S I _
with » = e being the optimal strategy. There is an inter- . ' . =7 C@)

z—14e u

esting interpretation of this family of strategies. Speailly, lime—.o 15 = SUPye(r—1,4) % , because/;! |, =
if Z denotes a random variable uniformly distributed in thé" for all 0 < ¢ < 1, andC(-) is increasing. Hence:
interval [0, 1), then this strategy has costs satisfyifigui.) = u u "
C(1)rk=1rZ for all k > 1. This interpretation is used in sup —2— = Sup{']_l, sup Jir} (22)
Section V. zeZt C(x) C(l) z€[1,00) C(.T + )

Note that the minimum cost-ratio derived in Theorem 1 i, order to find a lower-bound to the above worst-case ratéo, w
the same for all cost functions i@i. The reason for this will first examine all Strategiesg V\_] It can be shown, SimJ”Va”y to

become clearer in Section VI when we show an equivalencgmma 1 thatsup —Jx = qup e
result between different cost functions. Thus similarly to {ngré)r(r%él ﬁ%fgﬁgve: #€lloo) ClatD
D. An Optimal Di S sup inf X < inf sup o (23)
. An Optimal Discrete Strate 3 oY L] = > a1
ptimal Di 9 (fx@pvevet E[C(X +1)] 7 veVoepio) Cla +1)

For the discrete case, the minimum worst-case cost appears . . N
to have a stronger dependence on the specific cost functi’g‘lny lower bound can be found by first selecting a distribution

n: . ) :
We therefore limit attention to the following subclass@f ? x(2) a_nd deriving the opt_lmal fixed st_rategy. .
Definition 3: A function C(-) € C belongs to the clasg, Consider the random variahlé, as defined earlier for some

. " - fixed 1. It was shown in Section IV-A that for object
for someq > 1 if limy, . $&FY = ¢ and €&+ > 4 for o= : AN S )

I ) C(a) C(x) location X, the optimal cost ratio is’=—1, which approaches
all z € 1, 00). _ _ _ e asa — 17. Hence using Lemma 8 we have:
Note thatC; contains all polynomial cost functions. The

case ofg > 1 includes for example exponential cost functions lim inf IX,

of the formg®. Therefore this definition remains quite general a1t vevd E[C(Xq +1)]

even though it is a subclass ©f We first derive a lower-bound — lm E[C(X4)] f JX., _e
on the best worst-case cost ratio, by utilizing the next lemm a1t B[C(Xo +1)] veve E[C(Xa)] ¢

Let X, denote the random variable with tail distributiorUSmg this result in (23) an@ C V' gives us:
Pr(X, > z) = [C(z)/C(1)]“ for all x > 1 and some Ju v
«a > 1. Then: inf sup —%— > inf sup —=%— >

Lemma 8: If C(-) € C,, thenlim,_,1+ El0Xa+1)] €l sefl,00) CT +1) 7 VeV 4ei0) Oz +1)

¢
Eoxa] ¢ 1



From (22), the left-hand side is less than or equal to .
infuer supgezt % thus completing the proof. [ | il

This result says that if we can find a discrete strategy whose ssflin )
worst-case cost ratio is/q for C(-) € C,, then this strategy o
must be optimal among all strategies ih Unfortunately it oy
appears difficult to find strategies matching this lower lbun
for all C(-) € C,. The reason appears to be that for lagge
the cost function value grows very rapidly and thus it become
harder to find strategies that match this bound. It is, howeve (T
possible to do so for the special caseqof 1, as shown in 2
the next theorem.

Theorem 2: For C() € (Cla we have: 5 560 1060 1500 zdoo 25;00 3060 3560 4000

u Object Location

w

Cost Ratio

inf sup —"—
uel yez+ C’(a:) Fig. 1. Cost ratio as a function of object location for theimat discrete

. L . sequencaxr™ described in Theorem 2, and California Split search defined b
Moreover, this worst-case cost ratio is obtainable by efjat | " "5k—1 o all £. Cost is assumed to be linear.

u*, which is constructed as follows. Consider the continuous
strategyv* [e,Iln %} and setu; = |v; ] for all k& to obtain
the discrete strategy” = [uf, us, ...]. ~ sequence while randomization essentially has dkeraging
Proof: Consider strategiesa”™ and v.as described in effect that “smooths out” the cost ratio across neighboring
the theorem. Lemma 9 impliesip,.c;+ % > e. Thus, to locations/points. In fact the curve of the optimal contingo
u” trategy does not have local minima or maxima. One may
complete the proof we need to she I <. s " o : )
Fis n %Jr Note thats . “ﬁwerfg Cr%f) it c ,  Vview this as the built-imobustnes®f a randomized policy for
anyz € Z*. Note thatz > |vf] if and only if 2 > o, 4 underlying criterion of worst-case performance. Alsten
that the worst-case cost ratds reached asymptotically from

since z is an integer. Therefore for ak, I(z > |v}]|) =
I(z > vj) wp. 1. In addition,C'() being increasing implies below asL. — oo, and hence the cost ratio at any finite object
location is less than the worst-case cost ratio.

C(|vg]) < C(v§) w.p.1. Therefore,

w s . . The optimal randomized strategy*[e, In g(‘fg] is essen-
T =E > I(@> v, ))C(|vi)) tially the best among the following family of strategies ttha
k=1 achieve a simil(a)r flat cost ratio curve as shown above, given
- . by v[r, - In %] It is not difficult to show that the worst-
< * * = JV < Y Inr cQa . . . : i
<E ; I > vi_)C(vr) Jo <eCla) case cost ratio of this family of strategiess., which occurs

i ) as the object location goes to infinity. By differentiatingda
where the last inequality holds because the worst-case cQgfing convexity, = ¢ minimizes the worst-case cost ratio,

ratio for v* is e as proven in Theorem 1. Since this result 4 the minimum is:
. o .
holds for all integers, we havesup,c;+ oty S e .
Since C; includes all increasing polynomials, the optimaB. Other Performance Measures
strategy given in Theorem 2 can be used when the cost isN ¢ di it i f f
given by or can be approximated by a polynomial function, ext we discuss alternative performance measures for an-

which is not a very restrictive assumption. alyzing randomized sgarcr_] strateg|es. We will again assume
that C(-) € C, and begin with continuous strategies.
V. PERFORMANCE COMPARISON AND DISCUSSION The performance measure we have been using is the worst-

. . ) case cost ratio with respect to an oblivious adversary, who
In this section we first compare the performance of thg,, s the strategy but not the realization of the strategy. A

optimal rando_mized strategy with the optimal non—r_ando inted out in Section IIl, the lower boundon the worst-
strategy and illustrate the fundamental reason behind WYqe ost ratio does not necessarily bound the cost ratalfor
randomized strategies result in lower worst-case C0S0.rallqsizations ofX and strategy. This leads us to consider the
We then consider other pe'rformance measures for evaluatH?ﬂnpetitive ratio with respect to adaptive offline adversary
randomized search strategies. [8] who knows therealizationof the real-valued strategy for
every search. Let theorst-realization cost ratid'y, denote
A. A Comparison between Randomized and Deterministite maximum (over all realizations of strategy cost ratio
Strategies for strategyv when the object location is a random variable
In Figure 1 we compare the cost ratio of the optimak. Specifically,['y, = supgeqv % whereYV denotes
discrete strategy given by Theorem 2 to that of the nothe set of all possible realizations of strategy Then the
random TTL sequence given by the California Split seargierformance of a search strategy against an adaptive offline
up, = 2F=1 for all k& under the linear cost functio@(k) = adversary can be measured by the following competitive rati
k. We see that the cost ratio oscillates for the fixed TTivhich is theworst-case worst-realization cost ratidenoted



by I'V:

»
o

I'V= sup I'\ = sup I'Y. (24)
{fx (=)} z€[1,00)

IS

w
o

The second equality can be shown in a manner similar to
the proof of Lemma 1. To distinguish, we will refer {&
discussed in the previous sections as wwst-case average
cost ratia

As discussed in [8], the minimum obtainable competitive
ratio with respect to an adaptive offline adversary is the
same as the minimum worst-case average cost ratio of all
deterministic strategies. The latter und@f-) € C can be
shown to be4, same as in the linear cost function case
Therefore, we have thahf,cy I'V = 4.

Similarly, let vy and~Y denote thebest-realization cost
ratio of strategyv when object location is a random variable 551 7
X or a single pointz € [1, 00), respectively. These definitions 5 T
for best and worst realizations are easily extendable egenrt 45K T
valued strategies1 € U by replacing the possible set of
locations|1, co) with Z*. Finally, let AY denote the variance
of the search cost of strategy with fixed object location

w

% ‘
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=
»
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[

o
o

o

0 500 1000 1500 2000
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€ [1,00). Therefore,AY/C(z)? (which we refer to as the 2s] ~
cost ratio variancgis the variance of the ratigy /C(z) when A4 ool
object location isz. Lsl e~

In the following proposition, we list these quantities foet . ‘ T
class of jointly defined continuous strategigs, F,,, ()] given A

by Definition 2, and in particular whef,, (z) = - In gg;

Proposition 1: For any real-valued randomlzed strateg¥ig- 2. (TOP): Performance of the optimal continuous sywt@heorem 1)
[7“ F,, ( )] glven by Definition 2V < ( ) _ asa function of object location cost. Worst and best retidizecost ratio (top

y and bottom dashed lines), average cost ratio (solid), aedage cost ratio
lnlr In gg; we havelV = . Under thIS d|5tr|but|on, the +/[ one standard deviation (dotted) are shown. (BOTTOM): Perémce of
Pkl v|r

, 1 In g(m) as a function ofr. Worst-case average cost ratio (solid),
nr (1

best-case realization cost ratlo is glven W " asymptotic worst and best realization cost ratio (dashed)l worst-case
Finally, the asymptotic cost ratio varlance of the strateggle average cost-/— standard deviation (dotted) are shown.

this distribution is given bylim, C(T)z =

7‘2

Inr)2"

i T%ese calculations are derived in the appendix. The ¢
ratio, underC(-) € C, of the optimal continuous strategy i
depicted in Figure 2 (TOP) as a function of object locatio
cost.

Performance of strategies of the typér, F,,, (x)] where
F, (z) = =In gg; are shown in Figure 2 (BOTTOM) as
functions ofr. As can be seen, we can appropriately select t
value ofr depending on whether the goal is to minimize the,

similar to its continuous version with respect to the perfor

worst-case expected cost or the worst-case worst- reainzatm nee m res di din thi tion and is therefore n
cost. As we have mentioned earlier, an interpretation of thi ance measures discusse S section and 1S theretbre no
shown separately due to space limitations.

family of random strategies is that their costs satiSfy;) =
C(1)rk=1rZ, where Z is a random variable uniformly dis-
tributed in intervall0, 1). Thus for fixedr, every realization of C. Comparison with Optimal Average Cost Strategies

v is a nonrandom sequence with costs increasing geomeyricall The worst-case cost ratio we have been using so far is in
by a factor ofr. Therefore, the asymptotic worst and besjeneral a conservative/pessimistic performance meagdure.
realization cost ratios ot match that of the correspondingmentioned earlier, if the probability distribution of thechtion
deterministic geometric strategies. In particular, weeniiat of the object is knowr priori, then we can derive the optimal

by usingr = 2, we can obtain a worst-case worst-realizatiogtrategy that achieves the lowest average cost for the given
cost ratio of4. This is precisely because any realization of thigbject distribution, using a dynamic programming formiaiat

v1

2(Inr )(: 0z

slrategy is simply the deterministic California Split serdr

t the same time, this random strategy obtains a worst-
pase average cost ratio of approximatelg854. Therefore
this particular strategy strictly outperforms the detetistic
California Split search.

Similar analysis can be carried out for discrete strategies
gge calculations are rather tedious and do not provide any
more insight. The performance of the discrete strategy iig ve

3In Section VI we establish an equivalence relationship betwlinear “We note, however, the worst-realization cost ratio of 4 héoes not
and general cost functions, which can be used to show 4hiat also the depend on the random variablebeing uniform. It can be seen that regardless
minimum worst-case cost ratio among deterministic stiategnder general of Z, the costsC(vg) will be a geometric sequence of fact®ras long as
cost functions. r=2.



[5]. On the other hand, the optimal average-cost strategy ca 150

potentially be highly sensitive to small disturbances to ou ——DP(), a=0 o
. . . . . . RAND,a =0
knowledge about the object location distribution, whilerste A DPO), a=1 FEN
case strategies may be more robust. 4 RAND,a =1 a4
. . O DP(0), a=-1 A N
We compare the two under the following example scenarios. 1001 5 RAND,a = -1 N

Consider a network of finite dimensian and the linear cost
function C'(k) = k. We examine what happens when there
are errors in our estimate of the location distribution. €idar
when the object location has probability mass funcitftk’ =

x) = pz® for all 1 < x < L, where the constant defines the
distribution andg is a normalizing constant. Note that= 0
corresponds to uniform location distribution. We let BP( 0
denote the optimal (deterministic) average-cost strawgy

rived using dynamic programming when assuming- o’ in - ‘
the distribution of X. We then compute the expected search P——
cost of DP() and DP{2.5) when the location distribution s
is in fact defined by some other, for —10 < a < 10. 0
Similarly, we calculate the average search cost under these
distributions when using the optimal worst-case (randeuwt)jz
strategy, RAND.

These results are shown in Figure 3. In Figure 3 (TOP),
the average cost of DB and RAND strategies are shown as
functions of L for « = —1, 0, and1. In Figure 3 (BOTTOM) SO X0 X XX X X X X x X X
the performance of these two strategies and -BP{) are
plotted for L = 100 as functions ofx. As can be seen, DB\ o
is more robust (less sensitive in the changevrthan RAND, o N
while for DP(—2.5) the opposite is true. For small (negative)

a, RAND outperforms DRY) and in some cases the averagée=ig. 3. (TOP): Comparison between DP(0) and RAND for varyingnd
cost of DP() is 38 times larger. On the other hand, for |ar9§'\,\(,ESnTzO:beg erformance of DP(0), DP(-2.5) and RAND as fimwes of
(positive) «r, DP() is better, but the average-cost of RAND is ’

greater only by a factor of 1.3. Thus we see that the dynamic

programming strategy should only be used if we are fairly

certain about the object location distribution. VI. AN EQUIVALENCE RESULT BETWEENLINEAR AND

This quantitative relationship obviously varies with the GENERAL COSTFUNCTIONS
underlying assumptions on the location distribution ane th
errors introduced. This specific example nonethelesgridtes
the general trade-off between search cost and robustness.

Average Cost

a1
=)

100

1501

1001

Average Cost

In this section, we present a mapping that establishes
o the equivalency between real-valued TTL sequences under
D.T:otentlaItL|mt|.tat|or:c " imal i 4 di ?ifferent cost functions.

e construction of the optimal continuous and discrete ) w .l .
strategies derived in the previous section depends on O'tl}_emma 18' Let Jp" der;]ote Lhe sear;:h C.OSt .ofliusmg
ability to define and invert a cost function that is defineddibr S rateg)_/w i, [w.l’w?"“] when the cost unctlon_ls inear

and object location is for somexz € [1,00). Consider any

€ [1, 00). While conceptually and fundamentally appealingC : .
. : . : ost functionC(-) € C. Let v denote the strategy that is con-
this construction may pose a problem in practice. If thedear tructed asv = C—1 (w - C(1)), i.e..vp = O (wg - C(1))

cost is only known for integer TTL values, then in order t I ftive int %. Let JV9 denote th h t of
obtain the optimal discrete search strategy given in Thaore & POSIVE m_eger - L€ ffh err:o eb' € slearc. cost o
2, we would need to interpolate and create an increasirfg?l%;teritzgﬁ ;)[12632£Hé] cvgsterf]u:]c?ioon Jig:gx)ocﬁﬁgrr: \I/?e
differentiable, and continuous cost function defined over thave the foIIOV\;ing' '

positive real line. Such a process is not always easy to carty '

through.

Motivated by this, in Section VIl we discuss strategies gl v
that are sub-optimal with respect to our performance measur sup = — = sup —2 (25)
but still outperform deterministic strategies and that Idou z€ll,o0) ¥ velleo) C(Y)

be easier to derive and implement than those introduced in Proof: Fix any y € [1,00). We are given that for
Section IV. We first establish in the next section an equivede all k, C(v;) = wg-C(1) w.p.1. Combining this withC(-)
relationship between the linear cost function and a genebming positive and strictly increasing, we halig > vy) =
cost function. With this result our later discussion is @isea I (C(y)/C(1) > wy) w.p.1 for all k. Therefore, by letting
simplified. z = C(y)/C(1) and noting thatr € [1,00), we have the
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following: integers. Following this definition, for each nonrandom TTL
sequence, there exists a corresponding uniformly randaimiz
I(y > vkl)C(vk)] version.

JY9=F
! Theorem 3: (From [5]) Let U’ denote the set of all non-

>
I
—

e

o C(y) random and uniformly randomized TTL sequences. Then:
=F ZI(W >wk;_1> ’LUkC(l) Ju 3
k=1 inf p" = inf sup == == +V2~29142.  (28)
) uey’ uel’ Leg+ & 2
=C)E|Y Iz >wp)wy| = C1)L" S : .
e Furthermore, this ratio is achieved by the uniformly random

Thus we have that for all € [1,00), 3 = € [1,50) such ized strategy defined by the boundary sequence: |~ 1|

JVv9 _ C(I)J:”l . J:v,l, N . W|th T = \/§+ 1.
that d = o) = & Since this result holds for all v paye analogous results when extending the set of
y € [1,00), (25) fc;'llowi. f dor i B sdmissible strategies 5.
Lemma 10 implies that for any strategy under linear cost  ngnition 5: For any infinite, increasing fixed sequence

there correspond_s a strategythat has the same performance _ [b1,b2,..] in which the elementsy, are positive real

under_ cost funcuon_:ﬁ(-) € C. Hence this reSL_JIt helps t0 \umbers and; > by > 1 for all j > k, a uniformly

explain why the minimum worst-case cost ratio derived 'F}:‘ndomizedcontinuous-valued TTL sequense= [v1, vs, ...

Theorem 1 is the same for all cost functions in this general - cated by assigning the following probability densfty
to each TTL random variable,:

class. Note that this mapping in its precise form only apytie
continuous strategies. For discrete strategies, appaiionms
can be made to obtain similar strategies as described in the ﬁ if br <y <bit1
i e (y) = e : : (29)

next section. k 0 otherwise

As an application of this mapping, consider a continuous can be shown that for such uniformly randomized
strategyw (under linear cost) in which the TTL random varicontinuous-valued TTL sequences, we have the following
ables are continuous and tleth TTL value has probability result which is similar to Theorem 3.
density functionf,, (x) defined for allz € [1,00). From  Theorem 4: Let V' denote the set of all nonrandom

Lemma 10, the strategy = C~'(w-C(1)) has the same and uniformly randomized continuous-valued TTL sequences
worst-case cost ratio under cost functiélf-) € C. The k- Then:

th TTL random variablev, therefore has probability density . ] Jy 3 N
function f,, defined as follows for aly € [1, c0): vléléf mg[lllzo) — 97" V229142 (30)

Sore W) = fus (C(y)) . dCly) 1 . (26) Furthermore, this ratio is achieved by the uniformly random
c@) dy C(1) ized continuous strategy defined by the boundary sequence

Whenv;'s are mutually independent, (26) for alluniquely p, = %=1 wherer = v/2 + 1.
defines the strategy. The proof of Theorem 4 is very similar to that of Theorem
3. The latter can be found in [5].

Using Lemma 10 we can obtain a discrete strategyhich

In [5] we introduced a class ofiniformly randomized performs similarly (under any increasing cost function}tees
strategies We derived the optimal strategy within this clasgptimal uniformly randomized sequence under the lineat cos
under the linear cost function assumption, and showed thghction. We first show an example when the cost is quadratic,
the best worst-case cost ratio 2s9142. Below we bl’IEﬂy ie., C(IL) = az?. To begin, consider the optimal continuous

summarize these results and extend them to more general ¢@fformly randomized TTL strategw with boundary values

VII. UNIFORM RANDOMIZATION

functions. given by b = 51 with » = /2 + 1, and construct
a uniformly randomized strategyv with boundary values

A. Results on Uniform Randomization b¥ = |r"= |2. To create the corresponding strategyinder
Definition 4: For any infinite, increasing sequente = the quadratic cost function, we use equation (26) to determi
[b1,b2,...] In which the elementd, are positive integers the probability distribution of each TTL random variable. |

andb; > by for all j > k, a uniformly randomizedTTL particular:

sequenca = [uy, ug, ...| is created by assigning the following %

probability distribution to each TTL random variablg: for(y) = ] if by <y <bggr1, (31)
—L _f b <l <bpi1—1 b b
Pr(uy=1) = { S o (27) - ko1
0 otherwise whereb, = /b¥ = [r"= | with » = v/2 + 1. Note that
wherel is any positive integer. these are integer boundary values, which is the reason for

Essentially the elements in the nonrandom sequdmce: considering the modified strategy instead of the original
[b1,b2,...] serve as the boundaries of a sequence of now- From this continuous-valued sequence, we construct the
overlapping ranges over which each random variahles uni- integer-valuedliscretizedversionu = [uq, us, ...] by concen-
formly distributed. These ranges collectively cover alsipige trating the probability density of, onto integer points, i.e.,
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settinguy, = |vi| for all k. This discretization assigns the

N

The cost ratio foru under the quadratic cost function is ““j” .
depicted in Figure 4 (TOP). Note that this plot is numericall " s 100 1500 2000 250 3000 3500 4000
very similar to that of optimal uniformly randomized strgye Object Location
under linear cost. In both cases, the randomized sequebees o
tain an asymptotic maximum worst-case cost of approximatel ;
2.9142. On the other hand, if the uniform randomization of o
Definition 4 is applied directly to this boundary sequence
under the quadratic cost function, then we obtain the dotted °
curve in Figure 4 (TOP) which exhibits oscillations, and
obtains a maximum cost ratio of roughdy06.

Similar methods can be used to obtain strategies for other
cost functions. In particular, i(-) € C, one can create a LA S B
continuous uniformly randomized strategy with the k-th o/ 2t =TT
boundary value equal t& (|C~!(r*~1C(1))]) /C(1). The
performance of this strategy under linear cost functior el 0 500 1000 1500 2000 2500 3000 3500 4000 4500
similar to the optimal uniformly randomized strategy. Then Object Location
the mappmg_ of (26) can be us.ed to. crc_aate a strgtegy_lder ig. 4. (TOP): Under a quadratic cost function, the cosbrasi a function of

tCC?St ?élg bt:rl}]altll}llé a(?gg;:;e S‘:;Zi;;;zatlﬁgr:if}g};btid_llgl_wz bject location for a nonrandom TTL sequence (dashed) byitk= \_T‘%J,

v i [ LW -

r = /2 + 1, its uniformly randomized version (dotted), and its randmd
random variable will have the following distribution fég, < version (solid) corresponding to (33). (BOTTOM): Performoe of uniformly

1<b _1 randomized California Split rule under a linear cost fumatiWorst and best
= Yk+1 : realization cost ratio (dotted), average cost ratio (3plaverage cost ratio
C(l + 1) — C(l) +/— one standard deviation (dashed).

Clonss) — Clbr) (34)

whereb, = |C~!(r*~1C(1))]. Note that while the interme- : o L
: : : the previous TTL values, so some inefficient realizatiores ar
diate step (mapping fron& to v) requiresC(:) € C, the . " .
. e e : ossible. For example, it is possible for theh TTL value
final distribution in (34) does not. Therefore this method c & &
) . ) . 0 be 2¥ — 1 and the(k + 1)-th to be 2%. On the other
be applied when the search cost is only defined for integer . . .
21 ket ) ' and, if successive TTL values are non-independent, then
values (wherC~*(r*~-C(1)) is also not defined;, can take P o h
A . such inefficient realizations may be removed. Figure 5 (TOP)
approximate values). As a result, this method may be mate . o 2
: ; : . dépicts one example of how the probability distribution of
practical than the optimal strategy presented in Sectiomhé . I .
oo ! ) the TTL random variables can be jointly defined to decrease
extent of the similarity between this derived strategy urdst o ; . L
. : . the worst-case worst-realization cost ratio while notéasing
C(z) and the optimal uniformly randomized strategy und(?[1 ) 2
. . e worst-case expected cost ratio. Under the randomieatio
linear cost will depend orC(z), due to the fact that we e . o
adjusted our boundary values earlier when creafing proposed by this f_|gure, if the-th TTL value takes realization
2k=14 5 for some integed < § < 2¥~! — 1, then thek+1)th
TTL value will be either2® + 2§ with probability py, 541, or
it will be 2% + 26 + 1 with probability 1 — py 541.
We can calculate the best and worst realization cost ratio,Figure 5 (BOTTOM) depicts the cost ratio for this non-
as well as the cost ratio variance, of uniformly randomizeddependent randomization by setting; = % for all ¢ andj.
strategies in a similar way to that presented in Section IWote that this randomization does not decrease the wosst-ca
Figure 4 (BOTTOM) depicts the performance of the uniformlgost ratio; however, it does reduce the cost ratio at any non-
randomized California Split algorithm under the linear tcodoundary point (i.e. whem # 2% for all integersk). We see
function with respect to these metrics. It can be seen fratmat the worst-case worst-realization cost ratio of thiategy
the figure that the worst-case worst-realization cost rigtiq  is 4, compared to 7 for the uniformly randomized version. In
much higher than the lower bound &f This is because the addition, by comparing Figures 4 (TOP) and 5 (BOTTOM),
k-th TTL value is uniformly distributed among all integerst can be seen that the cost ratio for the tree constructien ha
between2¢~1 and 2* — 1, independent of the selection ofless deviation from its mean value.

X - . T * )
following probability mass function to eaaty,: 4 M “‘ ?‘ - " "
L1 IR A
’ oy n [ \
Priug=0)= | fole)de if b <I<bea—1 (32) ‘:p R
e ||:1\\‘\“ :1 :\\ : \\ ! \\ Co
Using this with our strategy in (31) gives the following with g s "‘y:wl‘w\ IR S Lo
k—1 — | | \ | 1
be=(vV2+1)77 J: A S
(A ‘\ oL \ ‘ N
21l 1 25 “‘MH\‘ vy ! N ‘ \
Pr(u, =1) = % if b <1<bpsr—1. (33) N A \
bk+1 — bk I | | :
| : |
| l

Cost Ratio

Pr(ug =1) =

B. Discussion
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Py, 1 1-py successive TTL values can be expressed in tern3(of) as
/ \ follows for any integerj > 1:

2 3 ’
V WJ y Kpﬂ Cluir1) _ (~sizhar) (Clvn) ” (35)
. c ¢ ] C(vy) ( ) ( c() )

Consider any positive finitg. If (16) holds then we have by
using (35):

] Clvir) ==ty (a@z‘;la—k))“j

3v5’w‘r“‘\/\v/'\~/’\\g//’ Sae T Se ] C(’UJ)

> (0= Thoe) (0@l ™) =1

AT S T ] which holds for all integersj. Hence, (16) is a sufficient
' ' 1 condition forv to be increasing.

15) l Now supposer is increasing. Then for any positive integer
j we have by rearranging (35) and usi6gv;,1) > C(v;):

Cost Ratio

L L L L
0 2000 4000 6000 8000 10000

Object Location a™’
) C(Ul) B |:C(Uj+1) ( Z_z‘;l ak):|
= &=k=0
Fig. 5. (TOP): Example of how a binary tree can be used to ooctsa TTL c() C(vj)

sequence. In particular, first TTL valuelisWith probabilityp; 1, the second SN Y T S

TTL value will either be2 (with probability p1,1) or 3 (with probability

1 —p1,1), and so on. (BOTTOM): Performance of randomization ilatsid . L L. i ) .

in (TOP) figure forp; ; =  for all i and j, under a linear cost function. Taking the limit of this inequality ag approachesc gives:
Best and worst realization cost ratio (dotted), average @i® (solid) line, () > ((ZiZi07") — (ol thereby proving that (16) is

and average cost rati¢/— one standard deviation (dashed). ¢(1) " . .
also a necessary condition for an increasing sequeniie.

Note that the California Split algorithm was chosen for thg  proof of Lemma 7
tree algorithm only for demonstrative purposes. In faatafioy _
uniformly randomized strategy, it is possible to use a medifi First note that from (J.2), we have th@vy) = r*~'C(v)
version of the tree construction given by Figure 5 (TOP) f@F all k > 1. Let Sy = C(v1)+C(v2)+....+-C(uy) for k > 1.
obtain the same value of worst-case cost ratio but with low&he expected value df, can be calculated as follows:
worst-case worst-realization cost ratio. The tree cootitn . L
is modified by adjusting the number of nodes in each level of _ N j—1
the tree, and modifying the transition probabilities froodes ElSd =E Z; Clo)| = ;T o)
in successive levels. - -

k=1 k1
:ZTJE[C(M)]:E[C(M)] 1
§=0

(36)
VIII. CONCLUSION

In this paper we studied the class of TTL-based controlled addition, the conditional expectation @¥(v;) can be
flooding search methods used to locate an object/node i8¢ 1ated as follows. fot < I < C-1(r-C(1))
large network. When the object location distribution is not ’ -
known and adopting a worst-case performance measure, wi <l — / > <
showed thatrandomizedsearch strategies outperform fixed (O <1)= 0 Pr(Cv) >yl <1) dy
strategies. We derived an asymptotically optimal strategy O o« pr (C'_l(y) < < l)

(1) + / —

- c(1) P’f’(’l]l < l)

whose search cost is always within a factor ofof the =
cost of an omniscient observer. We also studied the optimal

strateg d | i 1 e B
y under alternative performance measures. Weefurth _ (1) / [F (0_1(y)) _F (m dy]
provided a mapping between TTL sequences under different Fo, (D) | Jeq v “
cost functions, and investigated the class of uniformly-ran 1 o) B
domized strategies. These results are directly applidattiee = E.0 { <m) —C(l) - by, (l)] : (37)

design of practical algorithms.
We will use the following notation.7Y|,, -, denotes the
APPENDIX conditional expected search cost of using strategyhen the
object location ist, given thatv,, > x. Similarly, JY|,, <z IS
A. Proof of Lemma 5 the conditional expected search cost given thaK z.
First note that becaus€(-) € C, vj1; > v; if and only Now consider any real number > 1; there must exist a
if C(vj+1) > C(vj). From (13), the ratio between cost ofpositive integem such that"~1C(1) < C(z) < r"C(1), or
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equivalentlyC—! (r"~1C(1)) <z < C~' (r"C(1)). Thenby C. Proof of Proposition 1

using (36), the expected search cdgtcan be calculated: First we examine the worst-case realization cost ratio

v for general strategies of the typer, F,, (z)]. Fix the ob-
va>a P (Un > @) + S o, <o Pr (09 < 7) ject locationz. There must exist exactly onk such that
= E[Sa|vn > 2] Pr(vn > ) + E[Snia|on < 2] Pr(v, <) o-1 (#4-10(1)) < z < C~'(r*C(1)). Note that the

T =Jy

= E[Sn] + E[C(vn41)|vn < z]Pr(v, < x) particular realization of the sequeneeis uniquely defined
rv 1 by the realization of the first TTL random variabig. Let
B EC(v1)] Vv = [0, 02, ...] denote a realization of. The worst-realization

rn—l This is true because at these values, bt TTL value is
slightly less thanz and hence thek(+ 1)-th TTL value will

be needed to complete the search. The worst-realization cos
ratio is thus upper bounded by:

R {C(v oy < o1 (C(x)” 7 <01 <C(x))) cost ratio is whens; approaches”—* (ﬁ(ff) from below.
1 1> v

Using (37), we obtain the following:

v =1
xr = r— 1 [C(’Ul)] kil
n C(]}) C(]}) R —1 C(]}) F; S hm ZT’] 10 ’U1
o (5Em) - (e AL
rn x) rktl 1 r? — r’k“
r—1[[(“” (r ( COJ} S — (41)
—rC(x)F,, <C‘1 (&)) [C(vl Bl . (38) This bound increases asincreases, and it easily follows that:
rn— r
7,2 _ rkarl 7,.2
Letting z = —<Z)__ we obtain the following expression for M= wlgrolo < klggo r—1 r—1’ (42)

rn=1C(1) 7T . )
the cost ratio by pfugging into (38): The inequality above becomes equality when the probability

JY r h(r)+ (r — 1)h(z) W (z) density function forv; is strictly positive in the interval

C(x) 1 2C(1) - r(j(1) (39) Cct C(r)g e, C1 C(r) , for somee > 0. This is true
h(r) because if the density function fOf is positive in this interval,
C (r=Dzr1C(1) (40)  then there is a nonzero probability that is arbitrarily close

to C~' (5%)). Then all of the inequalities in (41) and (42)
where we have used the fact thatr) = E[C(v1)] (by the pecome equalities. This condition on the density functien i

relationship between expectation and tail distributiom)d gatisfied wherF,, (z) = L In gg’f;,and hence strategies with
W(2) = Fy, (C7'(2-C(1))) - C(1) from basic calculus. this family of cdf have worst-case worst-realization cata

For simplicity of notation, defineb, () as equal to the value ofr2/(r — 1).

right-hand side of (39) and (40), so tl}@tn(z) is simply  Similarly, the best-realization cost ratio of these typés o
the cost ratio at object location = C~ (ZT"C(l)?]-V The strategies can be calculated for object location where
following is true for anyz andy = C~1(rC(z)): ooy < CTH(rFte@) < < ¢ (rRC(1)). It can be easily
C‘] . This statement holds because the two terms on the righflown that the best-case realization occurs whets such

hand side of (39) are the same ferand y, and the term in that C(t1) = C(z)/r*~ 1-k|n thllsc(gase the cost ratio can
(40) increases with mcreasmg In addition, whenz ranges be calculated asyy = == I(ZI(T) P S rf::’l““ . which
from C~1(r"~1C(1)) to C~1(r"C(1)), then z takes values approaches’; asz — oo. B

betweenl andr. Hence, we haved, (z) < ®,41(z) forall  We now examine the cost ratio variance of strategy

n and z. Finally, note that the limit as1 — oo of @, (2)  v[r, F, () where F,,(z) = (InC(z)/C(1))/Inr. Let
is simply ®(z), where®(z) is the function defined earlier in fu, (xz|v1 < y) denote the pdf of; given thatv, is less than
(19). Hence, the following is true, whese, = C~'(r"C(1)): . Then forl < y < C~! (rC(1)),

v v dFyl T |v <
i _ sup sup /i Joo (@|vn <y) = %
[1,00) C( ) neZt | zn-1<z<zn C({E) dC(z)/da i
-] twmicwom T olsr<y

= sup | sup &, = sup ¢ sup ¢, (2) 0 otherwise

nezt (1<z<r 1<z<r (nezZ+
= sup { lim &, (z)} = sup {®(2)} Then we have:

1<z<y {720 1<z<r |: 2‘ :| {E)Q dC({E)

rh(r)+(r—1h(z)  N(z) E|\C (o) |n <y|= / e

= g — C )1 C(1 d

o { R e 2[00 s

_ — )

2
= Sy — o) (43)
which completes the proof of the lemmall 21ﬂ[ (y)/C(1)]



cw?

Inr

—1
2

T

g

On the other hand, since C(vl)ﬂ

}, then
we obtain the following:

E [C(v1)2’ v > y}
E[C(v1)?] - E [C(vl)z‘ vy < y} Pr(vi <y)
Pr(vi > y)
C(1)*r? - C(y)*

2(Inr —In[C(y)/C(1)])
Now fix any x; there must exist a positive integérsuch
that C~! (r*=1C(1)) < = < C7'1(rkC(1)). As defined
earlier, we letjY

of using strategyv when object location isc. Note that
JY = E[jY]. For notation, letF,, (r) = Pr(v; < x) and

F,, () = Pr(v, > x) for any integerk and locationz. Also,

(44)

let 2, = C~Y(C(x)/r*=1). The second moment of the search’

cost can be calculated as follows by using (43) and (44):

k+1 2
2] -1
El)] =F Z Clon) | |oe < | Fop (@)

2

k
+E| (D rTCw) | ok = 2| Fyy (@)
=1

rkJrl -1

2
— ) E[C(v1)?|v1 < mp—1] Fo, (2p-1)

(

k_q 2 )
" <7; -1 > E[C@)* o1 2 @p-1] Py (@5-1)
__AC@p?
RECGIGESE (45)
where A is defined as follows:
_ C(1)?
—(rktl _ 1)2 2k4+2
A=t P - e
Cc(1)? _
k _ 1)2 2 —2k+2
+ 0t —1) [C(x)Q }
rC(z)-Cc1)

In addition, it can be easily shown thafl = o

The cost ratio variance at locatianis simply the difference
between (45) and.JY)?, divided by C(x)%. Hence we have
after combining terms:

2
v a4 [
C(z)2  2(lnr)(r —1)2 Inr

Note that ast approachesc (so thatC(x) also approaches
infinity), the cost ratio variance becomes:

lim —2%—
s250 O(x)?

K+l _ )2 [p—2642] _ (pk _ 1)2p—2k+2 9
:Hm(r ) [r G )°r _(L)
k=00 2(Inr)(r —1)2 Inr

B A2 2
- 2(In7)(r — 12 (In7r)2

be a random variable denoting the cost
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