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Abstract— In this paper we consider the problem of searching
for a node or an object (i.e., piece of data, file, etc.) in a large
network. Applications of this problem include searching for a
destination node in a mobile ad hoc network, querying for a
piece of desired data in a wireless sensor network, and searching
for a shared file in an unstructured peer-to-peer network.
We consider the class of controlled flooding search strategies
where query/search packets are broadcast and propagated inthe
network until a preset TTL (time-to-live) value carried in t he
packet expires. Every unsuccessful search attempt, signified by a
timeout at the origin of the search, results in an increased TTL
value (i.e., larger search area) and the same process is repeated
until the object is found. The primary goal of this study is to find
search strategies (i.e., sequences of TTL values) that willminimize
the cost of such searches associated with packet transmissions.
Assuming that the probability distribution of the object lo cation
is not known a priori, we derive search strategies that minimize
the search cost in the worst-case, via a performance measurein
the form of the competitive ratio between the average searchcost
of a strategy and that of an omniscient observer. This ratio is
shown in prior work to be asymptotically (as the network size
grows to infinity) lower bounded by 4 among all deterministic
search strategies. In this paper we show that by using randomized
strategies (i.e., successive TTL values are chosen from certain
probability distributions rather than deterministic valu es), this
ratio is asymptotically lower bounded by e. We derive an
optimal strategy that achieves this lower bound, and discuss its
performance under other criteria. We further introduce a class of
randomized strategies that are sub-optimal but potentially more
useful in practice.

Index Terms— Query and search, TTL, controlled flooding
search, wireless networks, randomized strategy, best worst-case
performance, competitive ratio

I. I NTRODUCTION

In this paper we consider the problem of searching for a
node or an object (e.g., piece of data, file, etc.) in a large
wireless network. A prime example is data query in a wireless
sensor network, where different sensing data is distributed
among a large number of sensor nodes [1]. Search has also
been extensively used in mobile ad hoc networks, including
searching for a destination node by a source node in the route
establishment procedure of an ad hoc routing protocol (e.g.,
[2]), searching for a multicast group by a node looking to join
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the group (e.g., [3]), and locating one or multiple servers by a
node requesting distributed services (e.g., [4]). Search is also
widely used in peer-to-peer (P2P) networks.

A variety of mechanisms may be used to locate a node in
a large network. For instance, a centralized directory service,
which is periodically updated, can be established from which
location information may be obtained. One can also use the
decentralized random walk based search, where the querier
sends out a query packet to be forwarded in some random
fashion, e.g., random walks or controlled walks such that the
propagation of the packet follows a consistent direction, until
it hits the search target [1].

In this paper we focus on a widely used search mechanism
known as the TTL-based controlled flooding of query packets.
Under this scheme the query/search packet is broadcast and
propagated in the network. A preset TTL (time-to-live) value
is carried in the packet and every time the packet is relayed the
TTL value is decremented. This continues until TTL reaches
zero and the propagation stops. Therefore the extent/area of the
search is controlled by the TTL value. If the target is located
within this area, it will reply with the queried information.
Otherwise, the origin of the search will eventually time outand
initiate another round of search covering a bigger area using
a larger TTL value. This continues until either the object is
found or the querier gives up. Consequently the performance
of a search strategy is determined by the sequence of TTL
values used.

Our primary goal is to derive controlled flooding search
strategies, i.e., sequences of TTL values, that minimize the
cost of such searches in terms of energy consumption (i.e.,
the amount of packet transmission/reception)1. We will mainly
limit our analysis to the case of searching for a single target,
which is assumed to exist in the network. It will be seen later
that our results apply to the more general case of searching
for multiple objects. For the rest of our discussion we will
use the termobject to indicate the target of a search, be it a
node, a piece of data or a file. We measure the position of
an object by its distance to the source originating the search.
We will use the termlocation of an object to indicate both
the actual position of the search target and the minimum TTL
value required to locate this object.

When the probability distribution of the object location is
known a priori, search strategies that minimize the expected
search cost can be obtained via a dynamic programming
formulation [5]. When the distribution of the object location

1We will not explicitly consider the response time of a searchstrategy in
this paper, as within the class of controlled flooding searchthe fastest search
is to flood the entire network.
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is not known a priori, one may evaluate the effectiveness
of a strategy by its worst case performance. In [6] such a
criterion, in the form of the competitive ratio (or worst-case
cost ratio) between the expected cost of a given strategy
and that of an omniscient observer, was used. It was shown
under a linear cost model (to be precisely defined in the next
section) that the best worst-case search strategy among all
fixed strategiesis the California Split search algorithm, which
achieves a competitive ratio of 4 (also the lower bound on all
fixed strategies). In [5] we showed that to minimize this ratio,
the best strategies arerandomizedstrategies that consist of
sequence of random variables instead of deterministic values.
In particular, [5] introduced a class ofuniformly randomized
strategiesand showed that within this class the best strategy
achieves a competitive ratio of approximately2.9142.

In this paper we show that for a much more general class of
cost models, the best worst-case strategy among all fixed and
random strategies achieves a competitive ratio ofe. We derive
an optimal randomized strategy that attains this ratio and
discuss how it can be adjusted to account for alternative perfor-
mance criteria. We also establish an equivalence relationship
between TTL sequences under different cost functions. This
allows us to derive good randomized strategies for general
cost functions based on the optimal uniformly randomized
strategy derived for linear cost functions. These are sub-
optimal strategies, but are simple to implement and of practical
value.

The rest of the paper is organized as follows. Sections
II and III present the network model and the performance
objectives under consideration. In Section IV we derive the
optimal strategy among all random and non-random strategies.
We examine a few alternative performance measures in Section
V. We establish a mapping between linear and more general
cost functions in Section VI. Using this result in Section VII,
we investigate a number of sub-optimal search strategies in
the interest that these may be more practical and easier to
implement in many cases. Section VIII concludes the paper.

II. N ETWORK MODEL

Within the context of TTL-based controlled flooding search,
the distance between two nodes is measured in number of
hops, assuming that the network is connected. Two nodes
being one hop away means they can reach each other in one
transmission. We will assume that a query with TTL value
k will reach all nodes withink hops of the originating node
before the next round of search starts. This is a simplification,
but nevertheless allows us to reveal fundamental features of
the problem and obtain insights. We denote byL the minimum
TTL value required to search every node within the network,
and will also refer toL as thedimensionor sizeof the network.
Since we have assumed that the object exists, using a TTL
value ofL will locate the object with probability 1.

A search strategyu is a TTL sequence of certain length
N , u = [u1, u2, · · · , uN ]. It can be either fixed/deterministic
whereui, i = 1, · · · , N, are deterministic values, or random
whereui are drawn from probability distributions. For a fixed
strategy we assume thatu is an increasing sequence, i.e.,

ui < ui+1 for 1 ≤ i ≤ N − 1. For randomized strategies, we
assume all realizations are increasing sequences. In practice,
it is natural to consider discrete (or integer-valued) policies.
However, considering real-valued sequences can often reveal
fundamental properties that are helpful in deriving optimal
integer-valued strategies. In addition, real-valued strategies
may also have practical applications, e.g., in ad hoc networks
that use position information, flooding may be done within a
real-valued physical distance (determined by the TTL) around
the source. We therefore also consider continuous (or real-
valued) strategies, denoted byv, wherev = [v1, v2, · · · , vN ],
and vi is either a fixed or continuous random variable that
takes any real value on[1,∞), for 1 ≤ i ≤ L.

A strategy is admissible if it locates any object of fi-
nite location with probability 1. For a fixed strategy this
implies uN = L, and for a random strategy, this implies
Pr(ui = L for some 1 ≤ i ≤ N) = 1. In the asymptotic
case asL → ∞, a strategyu is admissible if ∀ x ≥
1, P r (un ≥ x for some n ∈ Z

+) = 1.
We let V denote the set of all real-valued admissible

strategies (random or fixed).V d denotes the set of all admis-
sible real-valued deterministic strategies.U denotes the set
of all integer-valued admissible strategies (random or fixed).
Finally, Ud denotes the set of all admissible integer-valued
deterministic strategies. Note that it is always true thatUd ⊂
U ⊂ V , and similarlyUd ⊂ V d ⊂ V .

In a practical system, a variety of techniques may be used to
reduce the number of query packets flowing in the network and
to alleviate thebroadcast stormproblem [7]. In our analysis
we will assume that a search with a TTL value ofk will reach
all neighbors that arek hops away from the originating node,
and that the cost associated with this search is a function ofk,
denoted byC(k). This cost may include the total number of
transmissions, receptions, etc. ThusC(k) is the abstraction of
the nature of the underlying network and the specific broadcast
schemes used.

It is important to note that in general a node receiving the
search query will be unaware whether the object is found
at another node in the same round (except perhaps when
the object is found at one of its neighbors). Thus this node
will continue decrementing the TTL value and passing on
the search query. We can therefore regard the search cost as
being paid in advance, i.e., the search cost for each round
is determined by the TTL value and not by whether the
object is located in that round. Two example cost functions
are the linear cost and quadratic cost, defined asC(k) = αk
and C(k) = αk2, respectively, for some constantα > 0.
When cost measures the number of transmissions, the first is
a good model in a linear network with constant node density.
The latter is a more reasonable model for a two-dimensional
network, as the number of nodes reached (as well as the
number of transmissions) ink hops has been shown to be
on the order ofk2 [5], [6].

For real-valued sequences, we require that the cost function
C(v) be defined for allv ∈ [1,∞), while for integer-valued
sequences we only require that the cost function be defined
for positive integers. When the cost function is invertible, we
use C−1(·) to denote its inverse. We will adopt the natural
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assumption thatC(v1) > C(v2) if v1 > v2.
Both [6] and [5] considered only the linear cost function

scenario where it is assumed thatC(k) = αk for come
constantα. In this paper we will consider a much broader
class of cost functions defined as follows.

Definition 1: The functionC : [1,∞) → [C(1),∞) be-
longs to the classC if 0 < C(1) < ∞, C(v) is increasing and
differentiable (hence continuous), andlimv→∞ C(v) = ∞.

We will useX to denote the minimum TTL value required
to locate the object. We will also refer toX as the object
location. As a result, an object location is an integer (real
number) when discrete (continuous) strategies are considered.
We denote the cumulative distribution ofX by F (x), where
F (x) = Pr(X ≤ x). Similarly, the tail distribution ofX is
denoted byF̄ (x) = 1 − F (x) = Pr(X > x). In the more
general case of searching fork out of n objects, we can letX
denote the location of thekth furthest object from the source.
In this case the search process proceeds in exactly the same
way as if searching for a single object with locationX and
terminates when allk objects have been found. Note that all
k − 1 objects located closer to the source get a “free ride”,
i.e., they are automatically found either before or at the same
time thekth furthest one is found. Therefore, without loss of
generality we can assume there exists exactly one object in the
network even though our results directly apply to searchingfor
a subset of multiple objects.

III. PROBLEM FORMULATION AND PRELIMINARIES

We adopt the following worst-case performance measure (a
generalization of the one used in [6]):

ρu = sup
{pX(x)}

Ju

X

E[C(X)]
, (1)

whereJu

X denotes the expected search cost of using strategy
u for object locationX ; E[C(X)] is the expected search
cost of an ideal omniscient observer who knows precisely the
location (i.e., realization ofX). The ratio between these two
terms for a givenX will be referred to as the (average)cost
ratio. Meanwhile,{pX(x)} denotes the set of all probability
mass functions ofX such thatE[C(X)] < ∞. We will only
consider the case where the random vectoru and X are
mutually independent, as the distribution ofX is not known
a priori. Let ju

X denote the search cost (a random variable in
general) of using strategyu when object location isX . This
can be written as:

ju

X =
∑

ui∈u

C(ui)I(X > ui−1) , (2)

ThenJu

X can be calculated as follows:

Ju

X = Eu [EX [ju

X ]] = Eu

[

∑

ui∈u

C(ui)Pr(X > ui−1)

]

, (3)

where u0 = 0 is assumed for allu. Note that if u is
deterministic thenJu

X is a single expectation with respect toX ,
whereas ifu is random thenJu

X is the average over bothX and
u. The corresponding objective is to find search strategies that

minimize this ratio, with the best worst-case discrete strategy
denoted byu∗:

ρ∗ = inf
u∈U

ρu = inf
u∈U

sup
{pX (x)}

Ju

X

E[C(X)]
. (4)

The worst-case cost ratioρu can also be viewed as the
competitive ratiowith respect to anoblivious adversary[8]
who knows the search strategyu. We will use these two
terms interchangeably. It should be mentioned that the quantity
ρu has a slightly different meaning for deterministic and
randomized strategies. Whenu is a fixed sequence,Ju

X is a
single expectation with respect toX as seen in (3). In this case,
for any given location the search cost of usingu, Ju

X , is always
within a factorρu of the omniscient observer’s cost. On the
other hand, whenu is random, thenρu only provides an upper
bound on theaveragesearch cost but does not necessarily
upper bound any particular realization of this cost. In thiscase,
it is the expectedsearch cost ofu that is always withinρu

of the cost of an omniscient observer. In Section V, we will
present other performance measures in order to account for
these differences.

For any continuous strategy,v ∈ V , the worst-case cost
ratio is defined similarly to (1):ρv = sup{fX (x)}

Jv

X

E[C(X)] ,
where {fX(x)} denotes the set of all probability density
functions for X such thatE[C(X)] < ∞. The best worst-
case strategy is defined similarly to (4) with{fX(x)} andV
replacing{pX(x)} andU , respectively.

The following lemmas are critical in our subsequent analy-
sis.

Lemma 1: For any search strategyv ∈ V ,

sup
{fY (y)}

Jv

Y

E[C(Y )]
= sup

y∈[1,∞)

Jv

y

C(y)
, (5)

whereJv

Y is the expected search cost using TTL sequencev

when object locationY has probability densityfY (y), and
Jv

y is the expected search cost using TTL sequencev when
P (Y = y) = 1, i.e., a single fixed point.

Proof: We begin by noting that for everyy ∈ [1,∞),
there corresponds a singleton probability densityfY (y′) =
δ(y′ − y) so thatP (Y = y) = 1, and thereforeE[C(Y )] =
C(y) andJv

Y = Jv
y . We thus have the following inequality

sup
{fY (y)}

Jv

Y

E[C(Y )]
≥ sup

y∈[1,∞)

Jv

y

C(y)
, (6)

since the left-hand side is a supremum over a larger set.

On the other hand, settingA = supy∈[1,∞)
Jv

y

C(y) we have
Jv

y

C(y) ≤ A for all y ∈ [1,∞). Thus Jv
y ≤ AC(y). Then for

any random variableY denoting object location, we can use
this inequality along with the independence betweenv andY
to obtain:

Jv

Y

E[C(Y )]
=

∫

[1,∞) Jv
y fY (y) dy

∫

[1,∞) C(y)fY (y) dy

≤
∫

[1,∞) AC(y)fY (y) dy
∫

[1,∞) C(y)fY (y) dy
= A . (7)
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Equation (7) implies that Jv

Y

E[C(Y )] ≤ A = supy∈[1,∞)
Jv

y

C(y) .
Since this inequality holds for all possible random variables
Y , we have:

sup
{fY (y)}

Jv

Y

E[C(Y )]
≤ sup

y∈[1,∞)

Jv

y

C(y)
. (8)

Equations (6) and (8) collectively imply the equality in (5),
and we have proven Lemma 1.

Lemma 2: For any search strategyu ∈ U ,

ρu = sup
{pX(x)}

Ju

X

E[C(X)]
= sup

x∈Z+

Ju

x

C(x)
, (9)

where Ju
x denotes the expected search cost using TTL se-

quenceu when Pr(X = x) = 1, andZ+ denotes the set of
natural numbers and represents all possible singleton object
locations.
The proof of this lemma is essentially the same as that of
Lemma 1 and is not repeated.

In words, these two lemmas imply that for any TTL
sequence, the worst case scenario is when the object location
is a constant, i.e., with a singleton probability distribution. We
will also subsequently refer to such a single-valued location
as apoint. Note that this constant (i.e., worst case) may not
be unique. This result allows us to limit our attention to
singleton-valuedX and equivalently redefine the minimum
worst-case cost ratioρ∗ in equation (4) asρ∗ = infu∈U ρu =

infu∈U supx∈Z+
Ju

x

C(x) , and similarly for the continuous strate-
gies.

It has been shown in [6] that under the linear cost function
C(u) = αu, as the network size increases the minimum
worst-case cost ratio over all deterministic integer-valued
sequences is 4, achieved by the California Split searchū =
{

2i−1 : i ∈ Z+
}

= [1, 2, 4, 8, ...]. For any cost functionC(·) ∈
C, the real-valued California Split strategy can be defined asa
sequencev satisfyingC(v1) ∈ [1, 2) andC(vi) = 2i−1C(v1)
for all i ∈ Z+. That is,v is a sequence with costs growing
geometrically by a factor of2. In the next section we derive
randomized strategies that are optimal amongall admissible
strategies. Whereas [6] and [5] derive strategies under linear
cost functions, our optimal strategy achieves a much smaller
worst-case cost ratio,e, for any cost functionC(·) ∈ C.

IV. OPTIMAL WORST-CASE STRATEGIES

In this section, we derive asymptotically optimal continuous
and discrete strategies in the limit as the network dimension L
approaches∞. Consequently we will consider TTL sequences
of infinite length that are admissible as outlined earlier. The
asymptotic case is studied as we are particularly interested
in the performance of flooding search in a large network. In
addition, it is difficult if at all possible to obtain a general
strategy that is optimal for all finite-dimension networks be-
cause the optimal TTL sequence often depends on the specific
value of L. In this sense, an asymptotically optimal strategy
may provide much more insight into the intrinsic structure
of the problem. We will see that asymptotically optimal TTL
sequences can also perform very well in a network of arbitrary
finite dimension.

In what follows we will first derive a tight lower bound
on the worst-case cost ratio for continuous strategies. We
then introduce a particular randomized continuous strategy that
achieves the lower bound, therefore proving that this strategy
is optimal in the worst-case. We then repeat the process for
the discrete case.

A. A Lower Bound on the Worst-Case Cost Ratio

In deriving a tight lower bound on the worst-case cost ratio,
we use Yao’s minimax principle [8] and Lemma 2 to obtain
the following inequality.

Lemma 3: We have

sup
{pX(x)}

inf
u∈Ud

Ju

X

E[C(X)]
≤ inf

u∈U
sup

x∈Z+

Ju

x

C(x)
. (10)

Proof: For any given object location distribution,
the optimal strategy is deterministic. Hence we have
sup{pX (x)} infu∈Ud

Ju

X

E[C(X)] = sup{pX (x)} infu∈U
Ju

X

E[C(X)] .
We also have the following in interchanging the supremum
and infimum, see for example [9]:

sup
{pX (x)}

inf
u∈U

Ju

X

E[C(X)]
≤ inf

u∈U
sup

{pX (x)}

Ju

X

E[C(X)]
.

Combining the above equality and inequality, and using
Lemma 2 establishes (10).
The corresponding continuous version of Lemma 3 is straight-
forward with a similar proof.

Lemma 4:

sup
{fX (x)}

inf
v∈V d

Jv

X

E[C(X)]
≤ inf

v∈V
sup

x∈[1,∞)

Jv

x

C(x)
. (11)

We now use the above results to first derive a lower
bound on the minimum worst-case cost ratio under continuous
strategies. Using (11), we note that any lower bound can
be found by first selecting a location distributionfX(x) and
deriving the optimal deterministic strategy that minimizes the
cost ratio under this distribution. We will assume that the cost
function C(·) ∈ C.

Consider an object location distribution2 given by F̄ (x) =

Pr(X > x) =
(

C(x)
C(1)

)−α

for all x ≥ 1 and some constant

α > 1. For any deterministic TTL sequencev = [v1, v2, ...],
the corresponding expected search cost is given by the fol-
lowing expression, wherev0 = 1 is assumed for simplicity of
notation:

Jv

X =

∞
∑

j=1

C(vj)F̄ (vj−1) =

∞
∑

j=1

C(vj)

(

C(vj−1)

C(1)

)−α

.

Therefore the optimal strategy must satisfy the following
partial differential equation:

∂Jv

X

∂vj
= [C(vj−1)

−α − αC(vj+1)C(vj)
−α−1]

∂C(vj)

∂vj
(C(1))

α

= 0 , (12)

2A special case of this distribution where costC(·) is linear, also known
as the Zipf distribution, was studied in [6] for which the optimal deterministic
strategy was computed. Here we generalize the method to any cost function
in C to derive the class of optimal strategies.
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for all j ≥ 1. Since both the derivative of the cost function
andC(1) are strictly positive, for a given fixedv1 the optimal
strategy is to recursively choosevj that satisfies the following
equation for allj ≥ 1:

C(vj+1) =
C(vj)

α

(

C(vj)

C(vj−1)

)α

. (13)

Note that this optimal sequence satisfies the following:

F̄ (vj)C(vj+1) =

(

C(vj)

C(vj−1)

)α
C(vj)C(1)α

αC(vj)
α

=
C(1)α

C(vj−1)
α

C(vj)

α
= F̄ (vj−1)

C(vj)

α
. (14)

Summing both sides of (14) fromj = 1 to j = ∞ and
multiplying by α gives:

α

∞
∑

j=1

F̄ (vj)C(vj+1) =

∞
∑

j=1

F̄ (vj−1)C(vj)

=⇒ α

(

∞
∑

i=0

F̄ (vj)C(vj+1) − C(v1)

)

=

∞
∑

j=1

F̄ (vj−1)C(vj) .

Substituting this in the definition ofJv

X gives: αJv

X −
αC(v1) = Jv

X , and thusJv

X
α−1

α = C(v1). On the other hand,
the mean of the object location is as follows, noting thatX
takes values on[1,∞):

E [C(X)] =

∫ ∞

0

Pr (C (X) > x) dx

= C(1) +

∫ ∞

C(1)

F̄ (C−1(x)) dx

= C(1) +

∫ ∞

C(1)

[

C(C−1(x))

C(1)

]−α

dx =
α

α − 1
C(1) .

The above imply that for a sequence defined by a givenv1

and following recursion (13), the cost ratio is

Jv

X

E [C (X)]
= Jv

X

(α − 1)

αC(1)
=

C(v1)

C(1)
. (15)

This means that for a givenα, the sequence that generates the
smallest cost ratio will follow the recursion (13) and use the
smallest possible value ofv1. However, not all values ofv1

lead to an increasing sequencev. In fact, we have the following
result:

Lemma 5: Consider any infinite length sequencev =
[v1, v2, ..], wherev1 is some positive constant andvk, k ≥ 2,
is generated by the recursion given by (13). Thenv is an
increasing sequence if and only if the following condition
holds:

C(v1)

C(1)
≥ α(

P

∞

k=1 α−k) = α
1

α−1 . (16)

The proof of this lemma can be found in the Appendix.
Therefore we can achieve a minimum cost ratio value of

α
1

α−1 by using a TTL sequence defined by recursion (13) and
v1 such thatC(v1)

C(1) is α
1

α−1 . Whenα > 1, α
1

α−1 is a decreasing
function of α, with its maximum achieved asα approaches
1 from above. In addition we havelimα→1+ α

1
α−1 = e,

which follows from the definition of the exponential constant.

Therefore using (11) we have obtained a lower bound on the
worst-case cost ratio, given by the next lemma.

Lemma 6: For anyC(·) ∈ C, the worst-case cost ratio of
any continuous strategy is lower-bounded bye, i.e.:

inf
v∈V

sup
x∈[1,∞)

Jv
x

C(x)
≥ e . (17)

This result implies that if we can obtain a TTL sequence whose
worst-case ratio ise, then it must be an optimal worst-case
strategy. We derive such a strategy in the next two subsections.

B. A Class of Jointly Defined Randomized Strategies

Definition 2: Assume that the cost functionC(·) ∈ C. Let
v[r, Fv1 (x)] denote a jointly defined sequencev = [v1, v2, ...]
with a configurable parameterr, generated as follows:
(J.1) The first TTL valuev1 is a continuous random variable

taking values in the interval
[

1, C−1(rC(1))
)

, with
its cdf given by some nondecreasing, right-continuous
function Fv1(x) = Pr(v1 ≤ x). Note that this means
Fv1 (1) = 0 andFv1

(

C−1(rC(1))
)

= 1.
(J.2) The k-th TTL value vk is defined by vk =

C−1
(

rk−1C(v1)
)

for all positive integersk.
From (J.1) and (J.2), it can be seen thatr andFv1(x) uniquely
define the TTL strategy. Note that successiveC(vk) form a
geometric sequence with powerr.

Lemma 7: Consider any strategyv[r, Fv1 (x)] constructed
using steps(J.1) and (J.2) above. AssumeC(·) ∈ C. Let
F̄v1(y) = 1 − Fv1(y). Then the worst-case cost ratio is given
by:

sup
x∈[1,∞)

Jv

x

C(x)
= sup

1≤z<r

{

r

r − 1

h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)

C(1)

}

whereh′(z) denotes the derivative ofh with respect toz, and
h(z) is defined as follows for1 ≤ z < r:

h(z) = C(1) +

∫ zC(1)

C(1)

F̄v1(C
−1(y)) dy . (18)

The proof is given in the appendix. This lemma reduces the
space over which the supremum is taken in order to calculate
the worst-case cost ratio.

C. An Optimal Continuous Strategy

For 1 ≤ z ≤ r and a given strategyv[r, Fv1 (x)], define
Φ(z) as follows:

Φ(z) =
r

r − 1

h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)

C(1)
. (19)

From Lemma 7, the worst-case cost ratio ofv is the supremum
of Φ(z) over the range1 ≤ z < r. The following four
boundary conditions are true for any functionh(z) as defined
by (18): h(1) = C(1), h(r) = E[C(v1)], h′(1) = C(1), and
h′(r) = 0.

Theorem 1: AssumeC(·) ∈ C. We have

inf
v∈V

sup
x∈[1,∞)

Jv

x

C(x)
= e . (20)

Moreover, this worst-case cost ratio is obtained by strategy
v
∗[e, ln C(x)

C(1) ]. In other words, the optimal strategy is defined
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as follows: v∗1 has the cdfFv∗

1
(x) = ln C(x)

C(1) for 1 ≤ x <

C−1(eC(1)), and v∗k = C−1
(

ek−1C (v1)
)

for all positive
integersk.

Proof: Consider strategyv∗ as described. Note that
becauseFv∗

1
(x) = ln C(x)

C(1) andr = e, we have:

h(z) = C(1) +

∫ zC(1)

C(1)

F̄v∗

1

(

C−1(y)
)

dy

= C(1) +

∫ zC(1)

C(1)

(

1 − ln
y

C(1)

)

dy

= C(1) [z − z(ln z − 1) − 1] = C(1) [2z − z ln z − 1] .

Note thath(e) = C(1) (e − 1) and h′(z) = C(1) [1 − ln z].
Thus we have for1 ≤ z < r:

Φ(z) =
e

e − 1

C(1)(e − 1) + (e − 1)C(1) [2z − z ln z − 1]

zC(1)

− eC(1)(1 − ln z)

C(1)
= e .

Hence it is clear from Lemma 7 that the worst-case cost ratio
of this sequence ise. Combine this with Lemma 6 which
showed the worst-case cost ratio of any continuous strategyis
lower bounded bye, we complete the proof.

As an example, when the cost is linear, i.e.C(x) = x for
all x, the optimal strategyv∗ = [v∗1 , v∗2 , ...] is as follows. The
first TTL value is a random variablev∗1 with cdf Fv∗

1
(z) =

ln z for 1 ≤ z < e. Successive TTL values are defined as
v∗k = ek−1v∗1 .

The above optimal strategy belongs to the family of strate-
gies given byv[r, 1

ln r ln C(x)
C(1) ], indexed by the parameterr,

with r = e being the optimal strategy. There is an inter-
esting interpretation of this family of strategies. Specifically,
if Z denotes a random variable uniformly distributed in the
interval [0, 1), then this strategy has costs satisfyingC(vk) =
C(1)rk−1rZ for all k ≥ 1. This interpretation is used in
Section V.

Note that the minimum cost-ratio derived in Theorem 1 is
the same for all cost functions inC. The reason for this will
become clearer in Section VI when we show an equivalence
result between different cost functions.

D. An Optimal Discrete Strategy

For the discrete case, the minimum worst-case cost appears
to have a stronger dependence on the specific cost function.
We therefore limit attention to the following subclass ofC.

Definition 3: A function C(·) ∈ C belongs to the classCq

for someq ≥ 1 if limx→∞
C(x+1)

C(x) = q and C(x+1)
C(x) ≥ q for

all x ∈ [1,∞).
Note thatC1 contains all polynomial cost functions. The

case ofq > 1 includes for example exponential cost functions
of the formqx. Therefore this definition remains quite general
even though it is a subclass ofC. We first derive a lower-bound
on the best worst-case cost ratio, by utilizing the next lemma.
Let Xα denote the random variable with tail distribution
Pr(Xα > x) = [C(x)/C(1)]−α for all x ≥ 1 and some
α > 1. Then:

Lemma 8: If C(·) ∈ Cq, then limα→1+
E[C(Xα+1)]

E[C(Xα)] = q.

Proof: BecauseC(x + 1) ≥ qC(x) for all x, we have
C(Xα + 1) ≥ qC(Xα) w.p. 1. Hence,E[C(Xα+1)]

E[C(Xα)] ≥ q for
all α. Hence to complete the proof, we need to show that for
any ǫ > 0, there exists̄α such thatE[C(Xα+1)]

E[C(Xα)] < q + ǫ for all
1 < α < ᾱ. To begin, fixǫ > 0. SinceC(·) ∈ Cq, there exists
x∗ such thatC(x+1)

C(x) < q + ǫ
2 for all x > x∗. Let I(·) denote

the indicator function such thatI(A) = 1 if A is true and 0
otherwise. We have:

E[C(Xα + 1)I(Xα > x∗)] <
(

q +
ǫ

2

)

E[C(Xα)I(Xα > x∗)]

≤
(

q +
ǫ

2

)

E[C(Xα)] (21)

At the same time we also have:

lim
α→1+

E[C(Xα + 1)I(Xα ≤ x∗)]

E[C(Xα)]
≤ lim

α→1+

C(x∗ + 1)

E[C(Xα)]
= 0 ,

since C(x∗ + 1) < ∞ and E[C(Xα)] = α
α−1 . Hence,

there exists an̄α such that for all1 < α < ᾱ we have
E[C(Xα + 1)I(Xα ≤ x∗)] < ǫ

2 · E[C(Xα)]. Combining this
with (21) gives for1 < α < ᾱ:

E[C(Xα + 1)]

= E[C(Xα + 1)I(Xα > x∗)] + E[C(Xα + 1)I(Xα ≤ x∗)]

<
(

q +
ǫ

2
+

ǫ

2

)

E[C(Xα)] = (q + ǫ)E[C(Xα)] ,

which completes the proof.

This result can be used to obtain the following lemma.
Lemma 9: For C(·) ∈ Cq, the best worst-case cost ratio is

lower-bounded byinfu∈U supx∈Z+
Ju

x

C(x) ≥ e
q .

Proof: Fix someu ∈ U . For any integerx ≥ 2, Ju

x

C(x) =

limǫ→0
Ju

x−1+ǫ

C(x+ǫ) = supy∈[x−1,x)
Ju

y

C(y+1) , becauseJu

x−1+ǫ =

Ju
x for all 0 < ǫ ≤ 1, andC(·) is increasing. Hence:

sup
x∈Z+

Ju

x

C(x)
= sup

{

Ju

1

C(1)
, sup
x∈[1,∞)

Ju

x

C(x + 1)

}

(22)

In order to find a lower-bound to the above worst-case ratio, we
first examine all strategiesv ∈ V . It can be shown, similarly to
Lemma 1 thatsup{fX (X)}

Jv

X

E[C(X+1)] = supx∈[1,∞)
Jv

x

C(x+1) .
Thus similarly to Lemma 4, we have:

sup
{fX (x)}

inf
v∈V d

Jv

X

E[C(X + 1)]
≤ inf

v∈V
sup

x∈[1,∞)

Jv
x

C(x + 1)
. (23)

Any lower bound can be found by first selecting a distribution
fX(x) and deriving the optimal fixed strategy.

Consider the random variableXα as defined earlier for some
fixed α > 1. It was shown in Section IV-A that for object
locationXα, the optimal cost ratio isα

1
α−1 , which approaches

e asα → 1+. Hence using Lemma 8 we have:

lim
α→1+

inf
v∈V d

Jv

Xα

E[C(Xα + 1)]

= lim
α→1+

E[C(Xα)]

E[C(Xα + 1)]
inf

v∈V d

Jv

Xα

E[C(Xα)]
=

e

q
.

Using this result in (23) andU ⊂ V gives us:

inf
u∈U

sup
x∈[1,∞)

Ju

x

C(x + 1)
≥ inf

v∈V
sup

x∈[1,∞)

Jv

x

C(x + 1)
≥ e

q



7

From (22), the left-hand side is less than or equal to
infu∈U supx∈Z+

Ju

x

C(x) , thus completing the proof.
This result says that if we can find a discrete strategy whose

worst-case cost ratio ise/q for C(·) ∈ Cq, then this strategy
must be optimal among all strategies inU . Unfortunately it
appears difficult to find strategies matching this lower bound
for all C(·) ∈ Cq. The reason appears to be that for largeq,
the cost function value grows very rapidly and thus it becomes
harder to find strategies that match this bound. It is, however,
possible to do so for the special case ofq = 1, as shown in
the next theorem.

Theorem 2: For C(·) ∈ C1, we have:

inf
u∈U

sup
x∈Z+

Ju

x

C(x)
= e .

Moreover, this worst-case cost ratio is obtainable by strategy
u
∗, which is constructed as follows. Consider the continuous

strategyv∗[e, ln C(x)
C(1) ], and setu∗

k = ⌊v∗k⌋ for all k to obtain
the discrete strategyu∗ = [u∗

1, u
∗
2, ...].

Proof: Consider strategiesu∗ and v
∗ as described in

the theorem. Lemma 9 impliessupx∈Z+
Ju

∗

x

C(x) ≥ e. Thus, to

complete the proof we need to showsupx∈Z+
Ju

∗

x

C(x) ≤ e.
Fix anyx ∈ Z+. Note thatx > ⌊v∗k⌋ if and only if x > v∗k,

since x is an integer. Therefore for allk, I(x > ⌊v∗k⌋) =
I(x > v∗k) w.p. 1. In addition,C(·) being increasing implies
C(⌊v∗k⌋) ≤ C(v∗k) w.p.1. Therefore,

Ju
∗

x = E

[

∞
∑

k=1

I(x > ⌊v∗k−1⌋)C(⌊v∗k⌋)
]

≤ E

[

∞
∑

k=1

I(x > v∗k−1)C(v∗k)

]

= Jv
∗

x ≤ eC(x) ,

where the last inequality holds because the worst-case cost
ratio for v

∗ is e as proven in Theorem 1. Since this result

holds for all integersx, we havesupx∈Z+
Ju

∗

x

C(x) ≤ e.

SinceC1 includes all increasing polynomials, the optimal
strategy given in Theorem 2 can be used when the cost is
given by or can be approximated by a polynomial function,
which is not a very restrictive assumption.

V. PERFORMANCECOMPARISON AND DISCUSSION

In this section we first compare the performance of the
optimal randomized strategy with the optimal non-random
strategy and illustrate the fundamental reason behind why
randomized strategies result in lower worst-case cost ratio.
We then consider other performance measures for evaluating
randomized search strategies.

A. A Comparison between Randomized and Deterministic
Strategies

In Figure 1 we compare the cost ratio of the optimal
discrete strategy given by Theorem 2 to that of the non-
random TTL sequence given by the California Split search
uk = 2k−1 for all k under the linear cost functionC(k) =
k. We see that the cost ratio oscillates for the fixed TTL
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Fig. 1. Cost ratio as a function of object location for the optimal discrete
sequenceu∗ described in Theorem 2, and California Split search defined by
uk = 2k−1 for all k. Cost is assumed to be linear.

sequence while randomization essentially has theaveraging
effect that “smooths out” the cost ratio across neighboring
locations/points. In fact the curve of the optimal continuous
strategy does not have local minima or maxima. One may
view this as the built-inrobustnessof a randomized policy for
the underlying criterion of worst-case performance. Also note
that the worst-case cost ratioe is reached asymptotically from
below asL → ∞, and hence the cost ratio at any finite object
location is less than the worst-case cost ratio.

The optimal randomized strategyv∗[e, ln C(x)
C(1) ] is essen-

tially the best among the following family of strategies that
achieve a similar flat cost ratio curve as shown above, given
by v[r, 1

ln r ln C(x)
C(1) ]. It is not difficult to show that the worst-

case cost ratio of this family of strategies isrln r , which occurs
as the object location goes to infinity. By differentiating and
noting convexity,r = e minimizes the worst-case cost ratio,
and the minimum ise.

B. Other Performance Measures

Next we discuss alternative performance measures for an-
alyzing randomized search strategies. We will again assume
that C(·) ∈ C, and begin with continuous strategies.

The performance measure we have been using is the worst-
case cost ratio with respect to an oblivious adversary, who
knows the strategy but not the realization of the strategy. As
pointed out in Section III, the lower bounde on the worst-
case cost ratio does not necessarily bound the cost ratio forall
realizations ofX and strategyv. This leads us to consider the
competitive ratio with respect to anadaptive offline adversary
[8] who knows therealizationof the real-valued strategyv for
every search. Let theworst-realization cost ratioΓv

X denote
the maximum (over all realizations of strategyv) cost ratio
for strategyv when the object location is a random variable
X . Specifically,Γv

X = sup
ṽ∈Υv

J ṽ

X

E[C(X)] , whereΥv denotes
the set of all possible realizations of strategyv. Then the
performance of a search strategy against an adaptive offline
adversary can be measured by the following competitive ratio,
which is theworst-case worst-realization cost ratio, denoted
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by Γv:

Γv = sup
{fX (x)}

Γv

X = sup
x∈[1,∞)

Γv

x . (24)

The second equality can be shown in a manner similar to
the proof of Lemma 1. To distinguish, we will refer toρv

discussed in the previous sections as theworst-case average
cost ratio.

As discussed in [8], the minimum obtainable competitive
ratio with respect to an adaptive offline adversary is the
same as the minimum worst-case average cost ratio of all
deterministic strategies. The latter underC(·) ∈ C can be
shown to be4, same as in the linear cost function case3.
Therefore, we have thatinfv∈V Γv = 4.

Similarly, let γv

X and γv
x denote thebest-realization cost

ratio of strategyv when object location is a random variable
X or a single pointx ∈ [1,∞), respectively. These definitions
for best and worst realizations are easily extendable to integer-
valued strategiesu ∈ U by replacing the possible set of
locations[1,∞) with Z+. Finally, let Λv

x denote the variance
of the search cost of strategyv with fixed object location
x ∈ [1,∞). Therefore,Λv

x/C(x)2 (which we refer to as the
cost ratio variance) is the variance of the ratiojv

x /C(x) when
object location isx.

In the following proposition, we list these quantities for the
class of jointly defined continuous strategiesv[r, Fv1 (x)] given
by Definition 2, and in particular whenFv1(x) = 1

ln r ln C(x)
C(1) .

Proposition 1: For any real-valued randomized strategy
v[r, Fv1 (x)] given by Definition 2,Γv ≤ r2

r−1 . WhenFv1(x) =
1

ln r ln C(x)
C(1) , we haveΓv = r2

r−1 . Under this distribution, the

best-case realization cost ratio is given by:γv
x = r−r−k+1

r−1 .
Finally, the asymptotic cost ratio variance of the strategyunder
this distribution is given by:limx→∞

Λv

x

C(x)2 = r4−r2

2(ln r)(r−1)2 −
r2

(ln r)2 .
These calculations are derived in the appendix. The cost

ratio, underC(·) ∈ C, of the optimal continuous strategy is
depicted in Figure 2 (TOP) as a function of object location
cost.

Performance of strategies of the typev[r, Fv1 (x)] where
Fv1(x) = 1

ln r ln C(x)
C(1) are shown in Figure 2 (BOTTOM) as

functions ofr. As can be seen, we can appropriately select the
value ofr depending on whether the goal is to minimize the
worst-case expected cost or the worst-case worst-realization
cost. As we have mentioned earlier, an interpretation of this
family of random strategies is that their costs satisfyC(vk) =
C(1)rk−1rZ , whereZ is a random variable uniformly dis-
tributed in interval[0, 1). Thus for fixedr, every realization of
v is a nonrandom sequence with costs increasing geometrically
by a factor of r. Therefore, the asymptotic worst and best
realization cost ratios ofv match that of the corresponding
deterministic geometric strategies. In particular, we note that
by usingr = 2, we can obtain a worst-case worst-realization
cost ratio of4. This is precisely because any realization of this

3In Section VI we establish an equivalence relationship between linear
and general cost functions, which can be used to show that4 is also the
minimum worst-case cost ratio among deterministic strategies under general
cost functions.
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Fig. 2. (TOP): Performance of the optimal continuous strategy (Theorem 1)
as a function of object location cost. Worst and best realization cost ratio (top
and bottom dashed lines), average cost ratio (solid), and average cost ratio
+/− one standard deviation (dotted) are shown. (BOTTOM): Performance of

v

h

r, 1
ln r

ln C(x)
C(1)

i

as a function ofr. Worst-case average cost ratio (solid),
asymptotic worst and best realization cost ratio (dashed),and worst-case
average cost+/− standard deviation (dotted) are shown.

strategy is simply the deterministic California Split search4.
At the same time, this random strategy obtains a worst-
case average cost ratio of approximately2.8854. Therefore
this particular strategy strictly outperforms the deterministic
California Split search.

Similar analysis can be carried out for discrete strategies.
The calculations are rather tedious and do not provide any
more insight. The performance of the discrete strategy is very
similar to its continuous version with respect to the perfor-
mance measures discussed in this section and is therefore not
shown separately due to space limitations.

C. Comparison with Optimal Average Cost Strategies

The worst-case cost ratio we have been using so far is in
general a conservative/pessimistic performance measure.As
mentioned earlier, if the probability distribution of the location
of the object is knowna priori, then we can derive the optimal
strategy that achieves the lowest average cost for the given
object distribution, using a dynamic programming formulation

4We note, however, the worst-realization cost ratio of 4 heredoes not
depend on the random variableZ being uniform. It can be seen that regardless
of Z, the costsC(vk) will be a geometric sequence of factor2 as long as
r = 2.
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[5]. On the other hand, the optimal average-cost strategy can
potentially be highly sensitive to small disturbances to our
knowledge about the object location distribution, while worst-
case strategies may be more robust.

We compare the two under the following example scenarios.
Consider a network of finite dimensionL and the linear cost
function C(k) = k. We examine what happens when there
are errors in our estimate of the location distribution. Consider
when the object location has probability mass functionP (X =
x) = βxα for all 1 ≤ x ≤ L, where the constantα defines the
distribution andβ is a normalizing constant. Note thatα = 0
corresponds to uniform location distribution. We let DP(α′)
denote the optimal (deterministic) average-cost strategyde-
rived using dynamic programming when assumingα = α′ in
the distribution ofX . We then compute the expected search
cost of DP(0) and DP(−2.5) when the location distribution
is in fact defined by some otherα, for −10 ≤ α ≤ 10.
Similarly, we calculate the average search cost under these
distributions when using the optimal worst-case (randomized)
strategy, RAND.

These results are shown in Figure 3. In Figure 3 (TOP),
the average cost of DP(0) and RAND strategies are shown as
functions ofL for α = −1, 0, and1. In Figure 3 (BOTTOM)
the performance of these two strategies and DP(−2.5) are
plotted forL = 100 as functions ofα. As can be seen, DP(0)
is more robust (less sensitive in the change inα) than RAND,
while for DP(−2.5) the opposite is true. For small (negative)
α, RAND outperforms DP(0) and in some cases the average-
cost of DP(0) is 38 times larger. On the other hand, for large
(positive)α, DP(0) is better, but the average-cost of RAND is
greater only by a factor of 1.3. Thus we see that the dynamic
programming strategy should only be used if we are fairly
certain about the object location distribution.

This quantitative relationship obviously varies with the
underlying assumptions on the location distribution and the
errors introduced. This specific example nonetheless illustrates
the general trade-off between search cost and robustness.

D. Potential Limitation

The construction of the optimal continuous and discrete
strategies derived in the previous section depends on our
ability to define and invert a cost function that is defined forall
x ∈ [1,∞). While conceptually and fundamentally appealing,
this construction may pose a problem in practice. If the search
cost is only known for integer TTL values, then in order to
obtain the optimal discrete search strategy given in Theorem
2, we would need to interpolate and create an increasing,
differentiable, and continuous cost function defined over the
positive real line. Such a process is not always easy to carry
through.

Motivated by this, in Section VII we discuss strategies
that are sub-optimal with respect to our performance measure
but still outperform deterministic strategies and that could
be easier to derive and implement than those introduced in
Section IV. We first establish in the next section an equivalence
relationship between the linear cost function and a general
cost function. With this result our later discussion is greatly
simplified.
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Fig. 3. (TOP): Comparison between DP(0) and RAND for varyingL and
α. (BOTTOM): Performance of DP(0), DP(-2.5) and RAND as functions of
α whenL = 100.

VI. A N EQUIVALENCE RESULT BETWEENL INEAR AND

GENERAL COST FUNCTIONS

In this section, we present a mapping that establishes
the equivalency between real-valued TTL sequences under
different cost functions.

Lemma 10: Let Jw,l
x denote the search cost of using

strategyw = [w1, w2, ...] when the cost function is linear
and object location isx for somex ∈ [1,∞). Consider any
cost functionC(·) ∈ C. Let v denote the strategy that is con-
structed asv = C−1 (w · C(1)), i.e., vk = C−1 (wk · C(1))
for all positive integersk. Let Jv,g

x denote the search cost of
using strategyv = [v1, v2, ...] when the object location isx
for somex ∈ [1,∞) and the cost function isC(x). Then we
have the following:

sup
x∈[1,∞)

Jw,l
x

x
= sup

y∈[1,∞)

Jv,g
y

C(y)
(25)

Proof: Fix any y ∈ [1,∞). We are given that for
all k, C(vk) = wk·C(1) w.p.1. Combining this withC(·)
being positive and strictly increasing, we haveI(y > vk) =
I (C(y)/C(1) > wk) w.p.1 for all k. Therefore, by letting
x = C(y)/C(1) and noting thatx ∈ [1,∞), we have the
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following:

Jv,g
y = E

[

∞
∑

k=1

I(y > vk−1)C(vk)

]

= E

[

∞
∑

k=1

I

(

C(y)

C(1)
> wk−1

)

wk · C(1)

]

= C(1)·E
[

∞
∑

k=1

I(x > wk−1)wk

]

= C(1)Jw,l
x

Thus we have that for ally ∈ [1,∞), ∃ x ∈ [1,∞) such

that
Jv,g

y

C(y) =
C(1)Jw,l

x

C(y) =
Jw,l

x

x . Since this result holds for all
y ∈ [1,∞), (25) follows.

Lemma 10 implies that for any strategyw under linear cost
there corresponds a strategyv that has the same performance
under cost functionsC(·) ∈ C. Hence this result helps to
explain why the minimum worst-case cost ratio derived in
Theorem 1 is the same for all cost functions in this general
class. Note that this mapping in its precise form only applies to
continuous strategies. For discrete strategies, approximations
can be made to obtain similar strategies as described in the
next section.

As an application of this mapping, consider a continuous
strategyw (under linear cost) in which the TTL random vari-
ables are continuous and thek-th TTL value has probability
density functionfwk

(x) defined for all x ∈ [1,∞). From
Lemma 10, the strategyv = C−1 (w·C(1)) has the same
worst-case cost ratio under cost functionC(·) ∈ C. The k-
th TTL random variablevk therefore has probability density
function fvk

defined as follows for ally ∈ [1,∞):

fvk
(y) = fwk

(

C(y)

C(1)

)

· dC(y)

dy

1

C(1)
. (26)

Whenvk ’s are mutually independent, (26) for allk uniquely
defines the strategyv.

VII. U NIFORM RANDOMIZATION

In [5] we introduced a class ofuniformly randomized
strategies. We derived the optimal strategy within this class
under the linear cost function assumption, and showed that
the best worst-case cost ratio is2.9142. Below we briefly
summarize these results and extend them to more general cost
functions.

A. Results on Uniform Randomization

Definition 4: For any infinite, increasing sequenceb =
[b1, b2, ...] in which the elementsbk are positive integers
and bj > bk for all j > k, a uniformly randomizedTTL
sequenceu = [u1, u2, ...] is created by assigning the following
probability distribution to each TTL random variableuk:

Pr(uk = l) =

{ 1
bk+1−bk

if bk ≤ l ≤ bk+1 − 1

0 otherwise
(27)

wherel is any positive integer.
Essentially the elements in the nonrandom sequenceb =
[b1, b2, ...] serve as the boundaries of a sequence of non-
overlapping ranges over which each random variableuk is uni-
formly distributed. These ranges collectively cover all positive

integers. Following this definition, for each nonrandom TTL
sequence, there exists a corresponding uniformly randomized
version.

Theorem 3: (From [5]) Let U ′ denote the set of all non-
random and uniformly randomized TTL sequences. Then:

inf
u∈U ′

ρu = inf
u∈U ′

sup
x∈Z+

Ju

x

x
=

3

2
+
√

2 ≈ 2.9142 . (28)

Furthermore, this ratio is achieved by the uniformly random-
ized strategy defined by the boundary sequencebk = ⌊rk−1⌋
with r =

√
2 + 1.

We have analogous results when extending the set of
admissible strategies toV .

Definition 5: For any infinite, increasing fixed sequence
b = [b1, b2, ...] in which the elementsbk are positive real
numbers andbj > bk ≥ 1 for all j > k, a uniformly
randomizedcontinuous-valued TTL sequencev = [v1, v2, ...]
is created by assigning the following probability densityfvk

to each TTL random variablevk:

fvk
(y) =

{ 1
bk+1−bk

if bk ≤ y < bk+1

0 otherwise
. (29)

It can be shown that for such uniformly randomized
continuous-valued TTL sequences, we have the following
result which is similar to Theorem 3.

Theorem 4: Let V ′ denote the set of all nonrandom
and uniformly randomized continuous-valued TTL sequences.
Then:

inf
v∈V ′

sup
x∈[1,∞)

Jv

x

x
=

3

2
+
√

2 ≈ 2.9142 . (30)

Furthermore, this ratio is achieved by the uniformly random-
ized continuous strategy defined by the boundary sequence
bk = rk−1 wherer =

√
2 + 1.

The proof of Theorem 4 is very similar to that of Theorem
3. The latter can be found in [5].

Using Lemma 10 we can obtain a discrete strategyu which
performs similarly (under any increasing cost function) asthe
optimal uniformly randomized sequence under the linear cost
function. We first show an example when the cost is quadratic,
i.e., C(x) = αx2. To begin, consider the optimal continuous
uniformly randomized TTL strategyw with boundary values
given by bwk = rk−1 with r =

√
2 + 1, and construct

a uniformly randomized strategŷw with boundary values
bŵk = ⌊r k−1

2 ⌋2. To create the corresponding strategyv under
the quadratic cost function, we use equation (26) to determine
the probability distribution of each TTL random variable. In
particular:

fvk
(y) =

2y

b2
k+1 − b2

k

if bk ≤ y < bk+1 , (31)

where bk =
√

bŵk = ⌊r k−1
2 ⌋ with r =

√
2 + 1. Note that

these are integer boundary values, which is the reason for
considering the modified strategŷw instead of the original
w. From this continuous-valued sequence, we construct the
integer-valueddiscretizedversionu = [u1, u2, ...] by concen-
trating the probability density ofvk onto integer points, i.e.,
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setting uk = ⌊vk⌋ for all k. This discretization assigns the
following probability mass function to eachuk:

Pr(uk = l) =

∫ l+1

l

fvk
(x) dx if bk ≤ l ≤ bk+1 − 1 (32)

Using this with our strategyv in (31) gives the following with
bk = ⌊(

√
2 + 1)

k−1
2 ⌋:

Pr(uk = l) =
2l + 1

bk+1
2 − bk

2 if bk ≤ l ≤ bk+1 − 1 . (33)

The cost ratio foru under the quadratic cost function is
depicted in Figure 4 (TOP). Note that this plot is numerically
very similar to that of optimal uniformly randomized strategy
under linear cost. In both cases, the randomized sequences ob-
tain an asymptotic maximum worst-case cost of approximately
2.9142. On the other hand, if the uniform randomization of
Definition 4 is applied directly to this boundary sequence
under the quadratic cost function, then we obtain the dotted
curve in Figure 4 (TOP) which exhibits oscillations, and
obtains a maximum cost ratio of roughly3.06.

Similar methods can be used to obtain strategies for other
cost functions. In particular, ifC(·) ∈ C, one can create a
continuous uniformly randomized strategŷw with the k-th
boundary value equal toC

(⌊

C−1(rk−1C(1))
⌋)

/C(1). The
performance of this strategy under linear cost function will be
similar to the optimal uniformly randomized strategy. Then
the mapping of (26) can be used to create a strategyv under
cost C(x). Finally, apply the discretization described in (32)
to v to obtain the discrete strategyu, where thek-th TTL
random variable will have the following distribution forbk ≤
l ≤ bk+1 − 1:

Pr(uk = l) =
C(l + 1) − C(l)

C(bk+1) − C(bk)
(34)

wherebk =
⌊

C−1(rk−1C(1))
⌋

. Note that while the interme-
diate step (mapping from̂w to v) requiresC(·) ∈ C, the
final distribution in (34) does not. Therefore this method can
be applied when the search cost is only defined for integer
values (whenC−1(rk−1C(1)) is also not defined,bk can take
approximate values). As a result, this method may be more
practical than the optimal strategy presented in Section IV. The
extent of the similarity between this derived strategy under cost
C(x) and the optimal uniformly randomized strategy under
linear cost will depend onC(x), due to the fact that we
adjusted our boundary values earlier when creatingŵ.

B. Discussion

We can calculate the best and worst realization cost ratio,
as well as the cost ratio variance, of uniformly randomized
strategies in a similar way to that presented in Section IV.
Figure 4 (BOTTOM) depicts the performance of the uniformly
randomized California Split algorithm under the linear cost
function with respect to these metrics. It can be seen from
the figure that the worst-case worst-realization cost ratiois 7,
much higher than the lower bound of4. This is because the
k-th TTL value is uniformly distributed among all integers
between2k−1 and 2k − 1, independent of the selection of
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Fig. 4. (TOP): Under a quadratic cost function, the cost ratio as a function of

object location for a nonrandom TTL sequence (dashed) withbk = ⌊r
k−1
2 ⌋,

r =
√

2 + 1, its uniformly randomized version (dotted), and its randomized
version (solid) corresponding to (33). (BOTTOM): Performance of uniformly
randomized California Split rule under a linear cost function. Worst and best
realization cost ratio (dotted), average cost ratio (solid), average cost ratio
+/− one standard deviation (dashed).

the previous TTL values, so some inefficient realizations are
possible. For example, it is possible for thek-th TTL value
to be 2k − 1 and the (k + 1)-th to be 2k. On the other
hand, if successive TTL values are non-independent, then
such inefficient realizations may be removed. Figure 5 (TOP)
depicts one example of how the probability distribution of
the TTL random variables can be jointly defined to decrease
the worst-case worst-realization cost ratio while not increasing
the worst-case expected cost ratio. Under the randomization
proposed by this figure, if thek-th TTL value takes realization
2k−1+δ for some integer0 ≤ δ ≤ 2k−1 − 1, then the(k+1)th
TTL value will be either2k + 2δ with probability pk,δ+1, or
it will be 2k + 2δ + 1 with probability1 − pk,δ+1.

Figure 5 (BOTTOM) depicts the cost ratio for this non-
independent randomization by settingpi,j = 1

2 for all i andj.
Note that this randomization does not decrease the worst-case
cost ratio; however, it does reduce the cost ratio at any non-
boundary point (i.e. whenx 6= 2k for all integersk). We see
that the worst-case worst-realization cost ratio of this strategy
is 4, compared to 7 for the uniformly randomized version. In
addition, by comparing Figures 4 (TOP) and 5 (BOTTOM),
it can be seen that the cost ratio for the tree construction has
less deviation from its mean value.
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Fig. 5. (TOP): Example of how a binary tree can be used to construct a TTL
sequence. In particular, first TTL value is1. With probabilityp1,1, the second
TTL value will either be2 (with probability p1,1) or 3 (with probability
1 − p1,1), and so on. (BOTTOM): Performance of randomization illustrated
in (TOP) figure forpi,j = 1

2
for all i and j, under a linear cost function.

Best and worst realization cost ratio (dotted), average cost ratio (solid) line,
and average cost ratio+/− one standard deviation (dashed).

Note that the California Split algorithm was chosen for the
tree algorithm only for demonstrative purposes. In fact, for any
uniformly randomized strategy, it is possible to use a modified
version of the tree construction given by Figure 5 (TOP) to
obtain the same value of worst-case cost ratio but with lower
worst-case worst-realization cost ratio. The tree construction
is modified by adjusting the number of nodes in each level of
the tree, and modifying the transition probabilities from nodes
in successive levels.

VIII. C ONCLUSION

In this paper we studied the class of TTL-based controlled
flooding search methods used to locate an object/node in a
large network. When the object location distribution is not
known and adopting a worst-case performance measure, we
showed thatrandomizedsearch strategies outperform fixed
strategies. We derived an asymptotically optimal strategy
whose search cost is always within a factor ofe of the
cost of an omniscient observer. We also studied the optimal
strategy under alternative performance measures. We further
provided a mapping between TTL sequences under different
cost functions, and investigated the class of uniformly ran-
domized strategies. These results are directly applicableto the
design of practical algorithms.

APPENDIX

A. Proof of Lemma 5

First note that becauseC(·) ∈ C, vj+1 > vj if and only
if C(vj+1) > C(vj). From (13), the ratio between cost of

successive TTL values can be expressed in terms ofC(v1) as
follows for any integerj ≥ 1:

C(vj+1)

C(vj)
=
(

α−
Pj−1

k=0 αk
)

(

C(v1)

C(1)

)αj

(35)

Consider any positive finitej. If (16) holds then we have by
using (35):

C(vj+1)

C(vj)
≥
(

α−
Pj−1

k=0 αk
)(

α(
P

∞

k=1 α−k)
)αj

>
(

α−
Pj−1

k=0 αk
)(

α(
Pj

k=1 α−k)
)αj

= 1 ,

which holds for all integersj. Hence, (16) is a sufficient
condition forv to be increasing.

Now supposev is increasing. Then for any positive integer
j we have by rearranging (35) and usingC(vj+1) > C(vj):

C(v1)

C(1)
=

[

C(vj+1)

C(vj)

(

α
Pj−1

k=0 αk
)

]α−j

> αα−j
Pj−1

k=0 αk

= α
Pj

k=1 α−k

Taking the limit of this inequality asj approaches∞ gives:
C(v1)
C(1) ≥ α(

P

∞

k=1 α−k) = α
1

α−1 , thereby proving that (16) is
also a necessary condition for an increasing sequence.

B. Proof of Lemma 7

First note that from (J.2), we have thatC(vk) = rk−1C(v1)
for all k ≥ 1. Let Sk = C(v1)+C(v2)+....+C(vk) for k ≥ 1.
The expected value ofSk can be calculated as follows:

E [Sk] = E





k
∑

j=1

C(vj)



 = E





k
∑

j=1

rj−1C(v1)





=

k−1
∑

j=0

rjE [C(v1)] = E [C(v1)]
rk − 1

r − 1
(36)

In addition, the conditional expectation ofC(v1) can be
calculated as follows, for1 ≤ l < C−1(r · C(1)):

E [C(v1)|v1 ≤ l] =

∫ ∞

0

Pr (C(v1) > y|v1 ≤ l) dy

= C(1) +

∫ ∞

C(1)

Pr
(

C−1(y) < v1 ≤ l
)

Pr(v1 ≤ l)
dy

= C(1) +
1

Fv1(l)

[

∫ C(l)

C(1)

[

F̄v1(C
−1(y)) − F̄v1(l)

]

dy

]

=
1

Fv1 (l)

[

h

(

C(l)

C(1)

)

− C(l) · F̄v1(l)

]

. (37)

We will use the following notation.Jv

x |vn>x denotes the
conditional expected search cost of using strategyv when the
object location isx, given thatvn > x. Similarly, Jv

x |vn≤x is
the conditional expected search cost given thatvn ≤ x.

Now consider any real numberx ≥ 1; there must exist a
positive integern such thatrn−1C(1) ≤ C(x) < rnC(1), or
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equivalentlyC−1
(

rn−1C(1)
)

≤ x < C−1 (rnC(1)). Then by
using (36), the expected search costJv

x can be calculated:

Jv

x = Jv

x |vn>xPr (vn > x) + Jv

x |vn≤xPr (vn ≤ x)

= E [Sn|vn > x] Pr (vn > x) + E [Sn+1|vn ≤ x] Pr (vn ≤ x)

= E[Sn] + E[C(vn+1)|vn ≤ x]Pr(vn ≤ x)

=
rn − 1

r − 1
E [C(v1)]

+ rnE

[

C(v1)

∣

∣

∣

∣

v1 ≤ C−1

(

C(x)

rn−1

)]

Fv1

(

C−1

(

C(x)

rn−1

))

.

Using (37), we obtain the following:

Jv

x =
rn − 1

r − 1
E [C(v1)]

+ rn

[

h

(

C(x)

rn−1C(1)

)

− C(x)

rn−1
F̄v1

(

C−1

(

C(x)

rn−1

))]

=
rn

r − 1

[

E [C(v1)] + (r − 1)h

(

C(x)

rn−1C(1)

)]

− rC(x)F̄v1

(

C−1

(

C(x)

rn−1

))

− E [C(v1)]

r − 1
. (38)

Letting z = C(x)
rn−1C(1) , we obtain the following expression for

the cost ratio by plugging into (38):

Jv

x

C(x)
=

r

r − 1

h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)

C(1)
(39)

− h(r)

(r − 1)zrn−1C(1)
, (40)

where we have used the fact thath(r) = E [C(v1)] (by the
relationship between expectation and tail distribution),and
h′(z) = F̄v1

(

C−1(z · C(1))
)

· C(1) from basic calculus.
For simplicity of notation, defineΦn(z) as equal to the

right-hand side of (39) and (40), so thatΦn(z) is simply
the cost ratio at object locationx = C−1 (zrnC(1)). The
following is true for anyx and y = C−1(rC(x)): Jv

x

C(x) <
Jv

y

C(y) . This statement holds because the two terms on the right-
hand side of (39) are the same forx and y, and the term in
(40) increases with increasingx. In addition, whenx ranges
from C−1(rn−1C(1)) to C−1(rnC(1)), then z takes values
between1 and r. Hence, we haveΦn(z) < Φn+1(z) for all
n and z. Finally, note that the limit asn → ∞ of Φn(z)
is simply Φ(z), whereΦ(z) is the function defined earlier in
(19). Hence, the following is true, wherexn = C−1(rnC(1)):

sup
x∈[1,∞)

Jv

x

C(x)
= sup

n∈Z+

{

sup
xn−1≤x<xn

Jv

x

C(x)

}

= sup
n∈Z+

{

sup
1≤z<r

Φn (z)

}

= sup
1≤z<r

{

sup
n∈Z+

Φn (z)

}

= sup
1≤z<r

{

lim
n→∞

Φn (z)
}

= sup
1≤z<r

{Φ(z)}

= sup
1≤z<r

{

r

r − 1

h(r) + (r − 1)h(z)

zC(1)
− r

h′(z)

C(1)

}

,

which completes the proof of the lemma.

C. Proof of Proposition 1

First we examine the worst-case realization cost ratio
for general strategies of the typev[r, Fv1 (x)]. Fix the ob-
ject location x. There must exist exactly onek such that
C−1

(

rk−1C(1)
)

≤ x < C−1
(

rkC(1)
)

. Note that the
particular realization of the sequencev is uniquely defined
by the realization of the first TTL random variablev1. Let
ṽ = [ṽ1, ṽ2, ...] denote a realization ofv. The worst-realization

cost ratio is wheñv1 approachesC−1
(

C(x)
rk−1

)

from below.
This is true because at these values, thek-th TTL value is
slightly less thanx and hence the (k + 1)-th TTL value will
be needed to complete the search. The worst-realization cost
ratio is thus upper bounded by:

Γv

x ≤ lim
ṽ1→(C−1( C(x)

rk−1 ))
−







1

C(x)

k+1
∑

j=1

rj−1C (ṽ1)







=
rk+1 − 1

(r − 1)rk−1
=

r2 − r−k+1

r − 1
. (41)

This bound increases asx increases, and it easily follows that:

Γv ≤ lim
x→∞

Γv

x ≤ lim
k→∞

r2 − r−k+1

r − 1
=

r2

r − 1
, (42)

The inequality above becomes equality when the probability
density function forv1 is strictly positive in the interval
[

C−1
(

C(x)
rk−1

)

− ǫ, C−1
(

C(x)
rk−1

))

, for someǫ > 0. This is true
because if the density function forv1 is positive in this interval,
then there is a nonzero probability thatv1 is arbitrarily close
to C−1

(

C(x)
rk−1

)

. Then all of the inequalities in (41) and (42)
become equalities. This condition on the density function is
satisfied whenFv1(x) = 1

ln r ln C(x)
C(1) , and hence strategies with

this family of cdf have worst-case worst-realization cost ratio
value ofr2/(r − 1).

Similarly, the best-realization cost ratio of these types of
strategies can be calculated for object locationx, where
C−1

(

rk−1C(1)
)

≤ x < C−1
(

rkC(1)
)

. It can be easily
shown that the best-case realization occurs whenṽ1 is such
that C(ṽ1) = C(x)/rk−1 . In this case, the cost ratio can

be calculated as:γv

x =
P

k
j=1 rj−1 C(x)

rk−1

C(x) = r−r−k+1

r−1 , which
approaches r

r−1 asx → ∞.
We now examine the cost ratio variance of strategy

v[r, Fv1(x)] where Fv1(x) = (lnC(x)/C(1))/ln r. Let
fv1 (x |v1 < y ) denote the pdf ofv1 given thatv1 is less than
y. Then for1 ≤ y < C−1 (rC(1)),

fv1 (x |v1 < y ) =
dFv1 (x |v1 < y )

dx

=

{

dC(x)/dx
C(x) ln [C(y)/C(1)] if 1 ≤ x < y

0 otherwise

Then we have:

E
[

C (v1)
2
∣

∣

∣ v1 < y
]

=

∫ y

1

C(x)2

C(x) ln [C(y)/C(1)]

dC(x)

dx
dx

=
C(y)2 − C(1)2

2 ln [C(y)/C(1)]
(43)
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On the other hand, sinceE
[

C (v1)
2
]

= C(1)2

ln r

[

r2−1
2

]

, then
we obtain the following:

E
[

C (v1)
2
∣

∣

∣ v1 ≥ y
]

=
E
[

C(v1)
2
]

− E
[

C (v1)
2
∣

∣

∣ v1 < y
]

Pr (v1 < y)

Pr(v1 ≥ y)

=
C(1)2r2 − C(y)2

2 (ln r − ln [C(y)/C(1)])
(44)

Now fix any x; there must exist a positive integerk such
that C−1

(

rk−1C(1)
)

< x ≤ C−1
(

rkC(1)
)

. As defined
earlier, we letjv

x be a random variable denoting the cost
of using strategyv when object location isx. Note that
Jv

x = E [jv

x ]. For notation, letFvk
(x) = Pr(vk < x) and

F̄vk
(x) = Pr(vk ≥ x) for any integerk and locationx. Also,

let xk = C−1(C(x)/rk−1). The second moment of the search
cost can be calculated as follows by using (43) and (44):

E
[

(jv

x )2
]

= E





(

k+1
∑

l=1

rl−1C(v1)

)2
∣

∣

∣

∣

∣

∣

vk < x



Fvk
(x)

+ E





(

k
∑

l=1

rl−1C(v1)

)2
∣

∣

∣

∣

∣

∣

vk ≥ x



 F̄vk
(x)

=

(

rk+1 − 1

r − 1

)2

E
[

C(v1)
2 |v1 < xk−1

]

Fv1 (xk−1)

+

(

rk − 1

r − 1

)2

E
[

C(v1)
2 |v1 ≥ xk−1

]

F̄v1 (xk−1)

=
A · C(x)2

2(ln r)(r − 1)2
, (45)

whereA is defined as follows:

A =(rk+1 − 1)2
[

r−2k+2 − C(1)2

C(x)2

]

+ (rk − 1)2
[

C(1)2

C(x)2
r2 − r−2k+2

]

.

In addition, it can be easily shown thatJv
x = rC(x)−C(1)

ln r .
The cost ratio variance at locationx is simply the difference
between (45) and(Jv

x )2, divided by C(x)2. Hence we have
after combining terms:

Λv
x

C(x)2
=

A

2(ln r)(r − 1)2
−





r − C(1)
C(x)

ln r





2

.

Note that asx approaches∞ (so thatC(x) also approaches
infinity), the cost ratio variance becomes:

lim
x→∞

Λv

x

C(x)2

= lim
k→∞

(rk+1 − 1)2
[

r−2k+2
]

− (rk − 1)2r−2k+2

2(ln r)(r − 1)2
−
( r

ln r

)2

=
r4 − r2

2(ln r)(r − 1)2
− r2

(ln r)2
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