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Abstract—The knowledge of channel statistics can be very helpful in making sound opportunistic spectrum access decisions.
It is therefore desirable to be able to efficiently and accurately estimate channel statistics. In this paper we study the problem
of optimally placing sensing/sampling times over a time window so as to get the best estimate on the parameters of an on-
off renewal channel. We are particularly interested in a sparse sensing regime with a small number of samples relative to
the time window size. Using Fisher information as a measure, we analytically derive the best and worst sensing sequences
under a sparsity condition. We also present a way to derive the best/worst sequences without this condition using a dynamic
programming approach. In both cases the worst turns out to be the uniform sensing sequence, where sensing times are evenly
spaced within the window. Interestingly the best sequence is also uniform but with a much smaller sensing interval that requires
a priori knowledge of the channel parameters. With these results we argue that without a priori knowledge, a robust sensing
strategy should be a randomized strategy. We then compare different random schemes using a family of distributions generated
by the circular β ensemble, and propose an adaptive sensing scheme to effectively track time-varying channel parameters. We
further discuss the applicability of compressive sensing for this problem.

Index Terms—Spectrum sensing, channel estimation, Fisher information, random sensing, sparse sensing, uniform sensing.
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1 INTRODUCTION

R ECENT advances in software defined radio and
cognitive radio [1] have given wireless devices

greater ability and opportunity to dynamically access
spectrum, thereby potentially significantly improving
spectrum efficiency and user performance [2], [3]. A
key enabling ingredient is thus high quality chan-
nel sensing that allows the user to obtain accurate
real-time information on the condition of wireless
channels. Spectrum sensing is often studied in two
contexts: at the physical layer and at the MAC layer.
Physical layer spectrum sensing typically focuses on
the detection of instantaneous primary user signals.
Examples like matched filter detection, energy detec-
tion and feature detection have been proposed for
cognitive radios [4]. MAC layer spectrum sensing [5],
[6] is more of a resource allocation issue, where we
are concerned with the scheduling problem of when to
sense the channel and the estimation problem of ex-
tracting statistical properties of the random variation
in the channel.
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In this paper we focus on the scheduling of channel
sensing and study the effect different scheduling algo-
rithms have on the accuracy of the resulting estimate
we obtain on channel parameters. In particular, we are
interested in a sparse sensing/sampling regime where
we can use only a limited number of measurements
over a given period of time. The goal is to decide
how these limited number of measurements should
be scheduled so as to minimize the estimation er-
ror within the maximum likelihood (ML) estimator
framework. Throughout the paper the terms sensing
and sampling will be used interchangeably.

MAC layer channel estimation has been studied in
recent years. Below we review those most relevant to
the present paper. In [5] an ML estimator was intro-
duced for renewal channels using a uniform sampling
scheme. A more accurate but much more computa-
tionally costly Bayesian estimator was introduced in
[7], again based on uniform sensing. [8] analyzed the
relationship between estimation accuracy, number of
samples taken and the channel state transition prob-
abilities by using the framework of [5]. [9] proposed
a Hidden Markov Model (HMM) based channel sta-
tus predictor using reinforcement learning techniques.
[10] presented a channel estimation technique based
on wavelet transform followed by filtering.

In most of the above cited work, the focus is on the
estimation problem given (sufficiently dense) uniform
sampling of the channel, i.e., with equal time periods
between successive samples. This scheme will be re-
ferred to as uniform sensing in the remainder of this
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paper. We observe that due to constraints on time,
energy, memory and other resources, a user may wish
to perform channel sensing at much lower frequencies
while still hoping for good estimates. This could be
relevant for instance in cases where a user wants to
track the channel condition in between active data
communication, or where a user needs to track a
large number of different channels. It is this sparse
sampling scenario that we will focus on in this study,
and the goal is to judiciously schedule these limited
number of samples.

Our main contributions are summarized as follows.

• We demonstrate that when sampling is done
sparsely, random sensing significantly outperforms
uniform sensing.

• In the special case of exponentially distributed
on/off durations, we obtain the best and worst
possible sampling schemes measured by the
Fisher information. We show that uniform sens-
ing is the worst; any deviation from it improves
the estimation accuracy. Interestingly, the best
sensing sequence is also uniform, but with a
much smaller sampling interval that requires the
knowledge of the underlying channel parameter,
thus unimplementable.

• We present an adaptive random sensing scheme that
can very effectively track time-varying channel
parameters, and is shown to outperform its coun-
terpart using uniform sensing.

The remainder of this paper is organized as follows:
Section 2 presents the channel models and Section 3
gives the detail of the ML estimator. In Section 4 we
present how the sampling scheme affects the estima-
tion performance. In Section 5 we use the circular
β ensemble to examine different random sampling
schemes. Section 6 presents an adaptive random sens-
ing scheme, and Section 7 concludes the paper.

2 THE CHANNEL MODEL

The channel state perceived by a secondary user is
modeled as a binary random variable. This is com-
monly used in a large volume of literature, from chan-
nel estimation (e.g., [5], [8]) to opportunistic spectrum
access (e.g., [6]) to spectrum measurement (e.g., [11]).
Specifically, let Z(t) denote the state of the channel
at time t, such that Z(t) = 1 if the channel is sensed
busy at time t, and Z(t) = 0 otherwise.

In this paper our focus is on extracting and estimat-
ing essential statistics given a sequence of measured
channel states (0s and 1s) rather than the binary
detection of channel state (deciding between 0 and 1
given the energy reading). For this purpose, we will
assume that the channel state measurements are error-
free throughout our analysis. Random detection errors
are examined in Section 5.5.

The channel state process Z(t) is assumed to be
a continuous-time alternating renewal process. Typ-
ically, it is assumed that a secondary user can utilize

the channel only when it is sensed to be in the off
states. When the channel state transitions to the on
state, the secondary user is required to vacate the
channel so as not to interfere with the primary user.

This random process is completely defined by two
probability density functions f1(t) and f0(t), t > 0, i.e.,
that of the sojourn times of the on periods (denoted by
the random variable T1) and the off periods (denoted
by the random variable T0), respectively. The channel
utilization u is defined as

u =
E[T1]

E[T1] + E[T0]
, (1)

the average fraction of time the channel is occupied
or busy. By the definition of a renewal process, T1

and T0 are independent and all on (off) periods are
independently and identically distributed.

Fig. 1. Channel model: alternating renewal process
with on and off states

3 MAXIMUM LIKELIHOOD ESTIMATION

We proceed to describe the maximum likelihood (ML)
estimator [12] we will use to estimate channel param-
eters from a sequence of channel state observations.

An alternative renewal process is completely char-
acterized by the set of conditional probabilities
Pij(∆t), i, j ∈ {0, 1}, ∆t ≥ 0, defined as the probability
that given i was observed ∆t time units ago, j is
now observed. This quantity is also commonly known
as the semi-Markov kernel of an alternating renewal
process [13]. Assuming the process is in equilibrium,
standard results from renewal theory [13] suggest the
following Laplace transforms of the above transition
probabilities:

P ∗
00(s) =

1

s
− {1 − f∗

1 (s)} {1 − f∗
0 (s)}

E[T0]s2 {1 − f∗
1 (s)f∗

0 (s)} ,

P ∗
01(s) =

{1 − f∗
1 (s)} {1 − f∗

0 (s)}
E[T0]s2 {1 − f∗

1 (s)f∗
0 (s)} ,

P ∗
10(s) =

{1 − f∗
1 (s)} {1 − f∗

0 (s)}
E[T1]s2 {1 − f∗

1 (s)f∗
0 (s)} ,

P ∗
11(s) =

1

s
− {1 − f∗

1 (s)} {1 − f∗
0 (s)}

E[T1]s2 {1 − f∗
1 (s)f∗

0 (s)} ,

(2)

where f∗
1 (s) and f∗

0 (s) are the Laplace transforms of
f1(t) and f0(t), respectively. We see that these are com-
pletely defined by the probability density functions
f1(t) and f0(t). The above set of equations are very
useful in recovering the time-domain expressions of
the semi-Markov kernel (often times this is the only
viable method). For example, in the special case where
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the channel has exponentially distributed on/off pe-
riods, we have

{

f1(t) = θ1e
−θ1t

f0(t) = θ0e
−θ0t .

(3)

Their corresponding Laplace transforms and expecta-
tions are
{

f∗
1 (s) = θ1/(s + θ1)

f∗
0 (s) = θ0/(s + θ0) ,

{

E[T1] = 1/θ1

E[T0] = 1/θ0 .

Substituting the above expressions into (2) followed
by an inverse Laplace transform we get the state
transition probability as follows:

Pij(∆t) = uj(1−u)1−j+(−1)j+iu1−i(1−u)ie−(θ0+θ1)∆t ,
(4)

where u = E[T1]
E[T1]+E[T0]

, as defined earlier.
The relevant estimation problem is stated as fol-

lows. Assume that the on/off periods are given by
certain known distribution functions f0(t) and f1(t)
but with unknown parameters. Suppose we obtain
m samples [z1, z2, · · · , zm], taken at sampling times
[t1, t2, · · · , tm], respectively. We wish to use these sam-
ples to estimate the unknown parameters.

First note that the channel utilization factor u can
be estimated through the sample mean of the m
measurements as follows

û =
1

m

m
∑

i=1

zi . (5)

Let θ be the unknown parameters of the on/off
distributions: θ = [θ1, θ0]. Note that in general θ1

and θ0 are vectors themselves. Then the likelihood
function is given by

L(θ) = Pr{Z; θ}
= Pr{Ztm = zm, Ztm−1

= zm−1,

Ztm−2
= zm−2, . . . , Zt1 = z1; θ} . (6)

The idea of ML estimation is to find the value of
θ that maximizes the log likelihood function lnL(θ).
This method has been used extensively in the lit-
erature [14]–[18]. For a fixed set of data and un-
derlying probability model, the ML estimator se-
lects the parameter value that makes the data “most
likely” among all possible choices. Under certain
(fairly weak) regularity conditions the ML estimator
is asymptotically optimal [19].

The question we wish to investigate is what im-
pact the selection of the sampling time sequence
[t1, t2, · · · , tm] has on the performance of this estima-
tor, given a limited number of samples m. For the
remainder of our analysis we will limit our attention
to the case where the channel on/off durations are
given by exponential distributions. This is for both
mathematical tractability and simplicity of presenta-
tion. Other distributions are explored in our numerical
experiments. It’s worth noting that the exponential
distribution assumption is adopted widely in channel

models [5]–[7]; spectrum measurement studies have
also found it to be a good approximation of real
channel vacancy durations [11], [20].

Since the exponential distribution is defined by a
single parameter, we have now θ = [θ1, θ0], where θ1

and θ0 are the two unknown scalar parameters of the
on and off exponential distributions, respectively. Us-
ing the memoryless property, the likelihood function
is given by (7) where ∆ti = ti−ti−1. The first quantity
on the right is taken to be

Pr{zt1 = z1; θ} = uz1(1 − u)1−z1 , (8)

the steady state probability of finding the channel in
a particular state. This is justified by assuming that
the channel is in equilibrium.

The second quantity Pzi−1zi(∆ti; θ) is given in Eqn
(4). Combining these two quantities, we have

L(θ0, θ1) = L(θ)

= uz1(1 − u)1−z1

m
∏

i=2

(

uzi(1 − u)1−zi

+ (−1)zi+zi−1u1−zi−1(1 − u)zi−1e−(θ0+θ1)∆ti
)

.(9)

The estimates for the parameters are found by solving

(θ̂1, θ̂0) = arg max
θ1,θ0

lnL(θ0, θ1) . (10)

The above joint optimization proves to be computa-
tionally complex and analytically intractable. Instead,
we adopt the following sub-optimal estimation pro-
cedure, also used in [5]. We first estimate u using Eqn

(5), and take θ1 = (1−u)θ0

u . Due to the exponential
assumption, it can be shown that this estimate of
u is unbiased regardless of the sequence [t1, · · · , tm]
as long as it is determined offline. The likelihood
function (9) can then be re-written as

L(θ0) = uz1(1 − u)1−z1

m
∏

i=2

(

uzi(1 − u)1−zi

+(−1)zi+zi−1u1−zi−1(1 − u)zi−1e−θ0∆ti/u
)

. (11)

The estimation of θ0 is then derived by solving
maxθ0

lnL(θ0)
In our analysis, we will use this procedure by

treating u as a known constant and solely focus on
the estimation of θ0, with the understanding that u
is separately and unbiasedly estimated, and once we
have the estimate for θ0 we have the estimate for θ1.
It has to be noted that this procedure is in general
not equivalent to solving (10). However, this is a
reasonable approach, computationally feasible, and
much more amenable to analysis.

4 BEST AND WORST SENSING SEQUENCES

The goal of this study is to judiciously schedule a
very limited number of sampling times so that the
estimation accuracy is least affected. We first argue
intuitively why the commonly used uniform sampling
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L(θ) = Pr{Z; θ} = Pr{Zt1 = z1; θ}
m
∏

i=2

Pr{Zti = zi|Zti−1
= zi−1; θ} = Pr{Zt1 = z1; θ}

m
∏

i=2

Pzi−1zi(∆ti; θ) . (7)

does not perform well when the number of samples
allowed is limited. We then present a precise analysis
through the use of Fisher information in the case
of exponential on/off distributions. We show that
using this measure, under a certain sparsity condition
uniform sensing is the worst schedule in terms of
estimation accuracy. We also derive an upper bound
on the Fisher information as well as the sampling
sequence achieving this upper bound. These provide
us with useful benchmarks to assess any arbitrary
sampling sequence.

4.1 An intuitive explanation

We begin this section by presenting a comparison
between sensing periodically (i.e., uniform sensing)
and sensing randomly when the average sensing
frequency is low. Uniform sensing is an easy-to-
implement, and easy-to-analyze scheme. With the
on/off durations being exponential the likelihood
function has a particularly simple form; there is also
a closed-form solution to the maximization of the log
likelihood function, see e.g., [5]. Figure 2 shows a
comparison between these two sensing schemes. In
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Fig. 2. Estimation accuracy on θ0: uniform sensing vs.
random sensing

this comparison the sampling times of the random
sensing scheme are randomly placed using a uniform
distribution1 within a window of 5000 time units. The
on/off periods are exponentially distributed with pa-
rameters E[T0] = 2, E[T1] = 1 time units, respectively.
The figure shows the estimated value of E[T0] as a
function of the number of samples taken within the

1. Here uniform distribution refers to the sampling times being
randomly placed within the window following a uniform distri-
bution, not to be confused with uniform sensing where sampling
intervals are a constant.

window of 5000. We see that random sensing outper-
forms uniform sensing, and significantly so when m
is small.

To understand the reasons behind this performance
difference, we first note that since there is no varia-
tion across sampling intervals under uniform sensing,
the uniform interval in general needs to be upper-
bounded in order to catch potential channel state
changes that occur over small intervals. This bound
cannot be guaranteed under sparse sensing. If sensing
is done randomly, then even if the average sampling
interval is large, there can be significant probability
for sufficiently small sampling intervals to exist in any
realization.

Furthermore, consider the transition probabilities
Pij(∆t), i, j ∈ {0, 1}, which completely define the like-
lihood function. They approach the stationary proba-

bilities as ∆t increases: P01(∆t) → E[T1]
E[T1]+E[T0]

= u

as ∆t → ∞. This stationary quantity represents the
average fraction of time the channel is busy, but
contains little direct information on the average length
of a busy period, the parameter we are trying to
estimate. Depending on the mixing time of the under-
lying Markov chain, this convergence can occur rather
quickly. Therefore, under sparse uniform sensing,
these transition probabilities will become constant-
like. This in turn causes the likelihood function to be
constant-like, making it difficult for the ML estima-
tor to produce accurate estimates [12]. It should be
noted however that for our estimation problem high
variability can also be introduced in a deterministic
sampling sequence. In this sense a sequence does
not have to be randomly generated; as long as it
contains sufficient variability, estimation accuracy can
be improved.

4.2 Fisher information and preliminaries

We now analyze this notion of information content
more formally via a measure known as the Fisher
information [21]. For the likelihood function given in
Eqn (11), the Fisher information is defined as:

I(θ0) = −E[
∂2 lnL(θ0)

∂θ2
0

] . (12)

This is a measure of the amount of information an ob-
servable random variable conveys about an unknown
parameter. This measure of information is particularly
useful when comparing two observation methods of
random processes (see e.g., [22]). The precision to
which we can estimate θ0 is fundamentally limited by
the Fisher information of the likelihood function. Note
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that in (12) we have suppressed u from the argument
as u is estimated separately and taken as a constant
in our subsequent analysis.

Due to the product form of the likelihood function,
we have

I(θ0) = −E
[

m
∑

i=2

∂2 ln[αi + βie
−θ0∆ti/u]

∂θ2
0

]

=

m
∑

i=2

∆t2i
u2

E
[ −αiβie

−θ0∆ti/u

(αi + βie−θ0∆ti/u)2
]

, (13)

where αi = uzi(1 − u)1−zi and βi =
(−1)zi+zi−1u1−zi−1(1 − u)zi−1 . Define:

g(θ0; ∆ti) =
∆t2i
u2

E
[ −αiβie

−θ0∆ti/u

(αi + βie−θ0∆ti/u)2
]

, (14)

so that the Fisher information can be simply written
as I(θ0) =

∑m
i=2 g(θ0; ∆ti). The function g() will be re-

ferred to as the Fisher function in our discussion. Note
that g() is a function of both ∆ti and θ0. However,
we will suppress θ0 from the argument and write it
simply as g(∆t). This is because our analysis focuses
on how this function behaves as we select different
∆t (the sampling interval) while holding θ0 constant.
Note that the first term in Eqn (11) does not appear
in the above expression. This is because this first
term is only a function of u (see Eqn (8)), which is
separately estimated using Eqn (5) and not viewed as
a function of θ0. Therefore the term disappears after
the differentiation.

The expectation on the RHS of (13) can be calcu-
lated by considering all four possibilities for the pair
(zi−1, zi), i.e., (0, 0), (0, 1), (1, 0), and (1, 1). Using Eqn
(4), we obtain the transition probability of each case
to be (1 − u)P00(∆t), (1 − u)P01(∆t), uP10(∆t) and
uP11(∆t), respectively. We can therefore calculate the
Fisher function as in Eqn (15). Below we show that un-
der a certain sparsity condition on the sampling rate,
the Fisher function is strictly convex and the Fisher
information is minimized under uniform sampling.

Condition 1: (Sparsity condition) Let α = max{2 +√
2, ln(1−u

u ), ln( u
1−u )}. This condition requires that

∆t > αu/θ0.
Lemma 1: The Fisher function g(∆t) given in Eqn

(15) is strictly convex under Condition 1.
The proof of this lemma can be found in the Ap-

pendix. Using this lemma we next derive tight lower
and upper bounds of the Fisher information.

4.3 A tight lower bound on the Fisher information

Lemma 2: For any n ∈ N, n ≥ 1, T ∈ R, T > (n +
1)αu/θ0, and αu/θ0 < ∆t < T − nαu/θ0, the function
G(∆t) = ng(T−∆t

n ) + g(∆t) has a minimum of (n +
1)g( T

n+1 ) attained at ∆t = T
n+1 .

Proof: Setting the first derivative of G to zero
and solving for ∆t results in solving the equation
g

′

(∆t) = g
′

(T−∆t
n ). Since the arguments on both

side satisfy Condition 1, by the assumption of the
lemma, g is strictly convex according to Lemma 1
and g

′

is a strictly monotonic function. Therefore
there exists a unique solution within the range of
(αu/θ0, T − nαu/θ0) to this equation at ∆t = T

n+1 .
Next we calculate the second derivative of G at this

point. Since G
′′

(∆t) = g
′′

(∆t) + 1
ng

′′

(T−∆t
n ), we have

G
′′

( T
n+1 ) = (1+ 1

n )g
′′

( T
n+1 ). Since T > (n+1)αu/θ0, g is

convex at this stationary point by Lemma 1. Hence G
is convex at this point and it is thus a global minimum
within the range (αu/θ0, T − nαu/θ0); the minimum
value is (n + 1)g( T

n+1 ), completing the proof.
Theorem 1: Consider a period of time [0, T ], in

which we wish to schedule m ≥ 3 sampling points,
including one at time 0 and one at time T . Denote the
sequence of time spacings between these samples as
∆t = [∆t2, ∆t3, · · · , ∆tm], where

∑m
i=2 ∆ti = T . For a

given sequence ∆t, define the Fisher information I(θ0)
as in Eqn (13) and rewrite it as I(θ0; ∆t) to emphasize
its dependence on ∆t. Assuming T > (m − 1)αu/θ0,
then we have

min
∆t∈Am

I(θ0; ∆t) = (m − 1)g(
T

m − 1
),

where Am = {∆ti :
∑m

i=2 ∆ti = T, ∆ti > αu/θ0, i =
2, · · · , m}, and with the minimum achieved at ∆ti =

T
m−1 , i = 2, · · · , m.

Proof: We prove this by induction on m.
Induction basis: For m = 3,

I(θ0; ∆t) = g(∆t2) + g(∆t3).

Using Lemma 1 in the special case of n = 1 the result
follows.

Induction step: Suppose the result holds for
3, 4, . . .m, we want to show it also holds for m + 1
for T > mαu/θ0. Note that in this case ∆t ∈ Am+1

implies that αu/θ0 < ∆tm+1 < T − (m − 1)αu/θ0,
which will be denoted as ∆tm+1 ∈ Am+1 below for
convenience. We thus have

min
∆t∈Am+1

{I(θ0; ∆t)}

= min
∆t∈Am+1

{

m
∑

i=2

g(∆ti) + g(∆tm+1)

}

= min
∆tm+1∈Am+1

{

min
∑

∆ti=T−∆tm+1

{

m
∑

i=2

g(∆ti)

}

+g(∆tm+1)

}

= min
∆tm+1∈Am+1

{

(m − 1)g(
T − ∆tm+1

m − 1
)

+g(∆tm+1)

}

= mg(
T

m
) ,

where the third equality is due to the induction hy-
pothesis and the first term on the RHS is obtained
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g(∆t) =
∆t2

u2
e−θ0∆t/u

[ u2(1 − u)

u − ue−θ0∆t/u
+

u(1 − u)2

(1 − u) − (1 − u)e−θ0∆t/u
− u(1 − u)2

(1 − u) + ue−θ0∆t/u
− u2(1 − u)

u + (1 − u)e−θ0∆t/u

]

.

(15)

at ∆ti = T−∆tm+1

m−1 , i = 2, . . . , m. The last equality
invokes Lemma 2 in the special case of n = m − 1,
and is obtained at ∆tm+1 = T

m . Combining these we
conclude that the minimum value of Fisher informa-
tion is mg( T

m ), when ∆ti = T
m , i = 2, . . . , m + 1. Thus

the case m + 1 also holds, completing the proof.
Theorem 1 states that given the total sensing period

T and the total number of samples m, provided
that the sampling is done sparsely (per Condition
1), the Fisher information attains its minimum when
all sampling intervals are the same, i.e a uniform
sensing schedule. In this sense uniform sensing is
the worst possible sensing scheme; any deviation from
it, while keeping the same average sampling interval
T/(m − 1), can only increase the Fisher information.
As we have seen in Figure 2, this increase in Fisher
information becomes more significant when sampling
gets sparser, i.e., when m decreases.

4.4 A tight upper bound on the Fisher information

The derivation of the upper bound follows very sim-
ilar steps as those for the lower bound.

Lemma 3: For any T ∈ R, T > 2αu/θ0, and αu/θ0 <
∆t < T − αu/θ0, the function F (∆t) = g(T − ∆t) +
g(∆t) has a maximum of g(αu/θ0) + g(T − αu/θ0)
attained at ∆t = αu/θ0 or ∆t = T − αu/θ0.

Proof: We first prove that F is convex under the
stated conditions. We have F

′

(∆t) = g
′

(∆t) − g
′

(T −
∆t). Since g is strictly convex under the stated condi-
tions, by Lemma 1 g

′

is monotonic increasing. Thus
F

′

is also monotonic increasing, hence F is convex. It
follows that the maximum of F (∆t) is attained at one
and/or the other extreme point of ∆t. In either case
we have

F (αu/θ0) = F (T −αu/θ0) = g(αu/θ0)+ g(T −αu/θ0).

Theorem 2: Consider a period of time [0, T ], in
which we wish to schedule m ≥ 3 sampling points,
including one at time 0 and one at time T . Denote
the sequence of time spacings between these samples
as ∆t = [∆t2, ∆t3, · · · , ∆tm], where

∑m
i=2 ∆ti = T .

Assuming T > (m − 1)αu/θ0, then we have

max
∆t∈Am

I(θ0; ∆t) = (m − 2)g(αu/θ0)

+g(T − (m − 2)αu/θ0),

where Am = {∆ti :
∑m

i=2 ∆ti = T, ∆ti > αu/θ0, i =
2, · · · , m}, and with the maximum achieved at ∆ti =
αu/θ0, i = 2, · · · , m− 1 and ∆tm = T − (m− 2)αu/θ0.

Proof: We prove this by induction on m.

Induction basis: For m = 3, I(θ0; ∆t) = g(∆t2) +
g(∆t3). Using Lemma 3 the result immediately fol-
lows.

Induction step: Suppose the result holds for
3, 4, . . .m, we want to show it also holds for m+1 for
T > mαu/θ0. Again in this case ∆t ∈ Am+1 implies
that αu/θ0 < ∆tm+1 < T−(m−1)αu/θ0, which will be
denoted as ∆tm+1 ∈ Am+1 for convenience. We thus
have

max
∆t∈Am+1

{I(θ0; ∆t)}

= max
∆t∈Am+1

{

m
∑

i=2

g(∆ti) + g(∆tm+1)

}

= max
∆tm+1∈Am+1

{

max
∑

∆ti=T−∆tm+1

{

m
∑

i=2

g(∆ti)

}

+g(∆tm+1)

}

= max
∆tm+1∈Am+1

{

(m − 2)g(αu/θ0)

+g(T − ∆tm+1 − (m − 2)αu/θ0) + g(∆tm+1)

}

= (m − 1)g(αu/θ0) + g(T − (m − 1)αu/θ0) ,

where the third equality is due to the induction hy-
pothesis and the first term on the RHS is obtained at
∆ti = αu/θ0, i = 2, . . . , m−1 and ∆tm = T −∆tm+1−
(m − 2)αu/θ0. The last equality invokes Lemma 3,
and is obtained at ∆tm+1 = T − (m − 1)αu/θ0 or
∆tm+1 = αu/θ0. Thus the case m + 1 also holds,
completing the proof.

We see from this theorem that under the sparsity
condition, the best sensing sequence is to sample at
the smallest interval that the condition would allow,
till we use all the m−2 samples we have the freedom
of placing. This produces a pseudo uniform sequence of
sampling times; it forms a uniform sequence except
for the last sampling interval. It can be shown that
if we remove the constraint of having a window
of T , but rather seek to optimally place m points
subject to the sparsity condition, then the optimal
sequence would be exactly uniform with the interval
∆ti = αu/θ0. However, it should be emphasized that
since θ0 is the very thing we are trying to estimate,
it would be unreasonable to suggest that this optimal
interval is known a priori. Thus this optimal sequence
is not implementable. It nevertheless sheds light on
the nature of the sequence that maximizes the Fisher
information.
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4.5 Best and worst sampling schemes without the
sparsity condition

We next show how to obtain the best and worst sens-
ing sequences in a more general setting, without the
requirement of Condition 1, via the use of dynamic
programming. While this result is more general com-
pared to those derived under the sparsity condition,
structurally they are not as easy to identify and are
thus given in a numerical form. We also note that
these sequences are not practically implementable as
they assume a priori knowledge of the parameters
to be estimated. They are derived only to serve as
benchmarks.

Denote by π a sampling policy given by the time
sequence [t1, t1, · · · , tm]. Then the optimal sampling
policy is given by

π∗ = arg max
π∈Π

I(θ0) , (16)

where the set of admissible policies Π = {ti : t1 =
0, tm = T, 0 < t2 < · · · < tm−1 < T }.

The maximum I(θ0) can be recursively solved
through the set of dynamic programming equations
given below:

V (1, t) = g(T − t), ∀ 0 ≤ t < T ;

V (k, t) = max
t<x<T

[g(x − t) + V (k − 1, x)],

∀ 0 ≤ t < T, k = 2, 3, · · · , m − 1 ,(17)

and

max I(θ0) = max
0<t<T

[g(t) + V (m − 1, t)] . (18)

Here the value function V (k, t) denotes the maximum
achievable Fisher information given we last sampled
at time t, with k points remaining to be placed be-
tween (t, T ].

Note that since t is continuous, the pair (k, t) has
an uncountable state space. In computing the DP
equation (17) we discretize t and T into small steps
and require that both be integer multiples of this small
quantity. The resulting DP has a finite state space and
is solved backwards in time [23].

It is straightforward to see the exact same pro-
cedure can be used to find the sampling sequence
that minimizes the Fisher information, thus giving the
worst sampling sequence. It turns out that the worst
sampling sequence in this case coincides with the
worst sequence derived under the sparsity condition,
i.e., it is also the uniform sequence.

4.6 A comparison

We now compare the different sensing sequences we
obtained in this section using an example. They are
illustrated in Figure 3(a). In this example the channel
parameters are E[T0] = 5 and E[T1] = 3 time units,
respectively. The time window is set to be 40 time
units, and the channel can only be sensed 5 times.

Shown in the figure are the uniform sensing sequence,
the best/worst sensing sequences derived under the
sparsity condition, and the best/worst sequences de-
rived using dynamic programming. As mentioned
earlier, the worst obtained via dynamic programming
coincides with the uniform sampling sequence. The
worst under the sparsity condition also coincides with
the uniform sequence, a fact proven in Theorem 1, as
the sparsity condition holds in this case. In Figure
3(b), we compared the performance of these sam-
pling strategies, by setting the time window to 5000
time units. The estimated value under each strategy
is shown as a function of the number of samples
taken. The true value is also shown for comparison.
These are used as benchmarks in the next section in
evaluating random sensing schemes.

(a) Illustration of different sampling sequences
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(b) Performance comparison

Fig. 3. Comparison of different sampling sequence

As we can see from Figure 3(a), the best sensing
sequence produced by dynamic programming with-
out the sparsity condition also appears to be pseudo
uniform, as in the case with the best sequence under
the sparsity condition2. The difference is that the
former uses a smaller interval value that violates the
sparsity condition. As mentioned earlier, if we were
to remove the requirement that one sample be placed
at time T , then the optimal sequence of m would
appear to be uniform (again, this conclusion is drawn
empirically in the case of no sparsity requirement, and

2. Note however that this conclusion is drawn empirically from a
large amount of numerical experiment in the case of not requiring
sparsity. By contrast, under the sparsity condition the conclusion is
drawn analytically in Theorem 2.
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precisely and analytically in the case of sparsity), with
the optimal interval being the value that maximizes
(15). Interestingly, the worst sequence is also uniform
with or without the sparsity condition.

What this result suggests is that in the ideal case if
we have a priori knowledge of the channel parame-
ters, to maximize the Fisher information the best thing
to do is indeed to sense uniformly. The difficulty of
course is that without this knowledge we have no way
of deciding what the optimal interval should be, and
uniform sensing would be a bad decision as it could
turn out to be the worst with an unfortunate choice
of the sampling interval.

In such cases, the robust thing to do is simply to
sense randomly, so that with some probability we will
have sampling intervals close to the actual optimum.
This is investigated in the next section.

5 RANDOM SENSING

Under a random sensing scheme, the sampling in-
tervals ∆ti are generated according to some distri-
bution f(∆t) (this may be done independently or
jointly). Below we first analyze how the resulting
Fisher information is affected, and then use a family
of distributions generated by the circular β ensemble
to examine the performance of different distributions.

5.1 Effect on the Fisher information

We begin by examining the expectation of the Fisher
function, averaged over randomly generated sam-
pling intervals, calculated as (19), where the Taylor
expansion is around the expected sampling interval
µo = E[∆t], or T/(m − 1) for given window T and
m number of samples taken, and µn =

∫ ∞

0
(∆t −

µo)
nf(∆t)d∆t is the nth order central moment of ∆t.

In order to have a fair comparison we will assume
T and m are fixed, thus fixing the average sampling
interval µo under different sampling schemes. Also
note that the value g(n)(µo) is completely determined
by the channel statistics and not the sampling se-
quence. Consequently the expected value of the Fisher
function is affected by the selection of a sampling
scheme only through the higher order central mo-
ments of the distribution f(). Note that the expecta-
tion of the Fisher function under uniform sampling
with constant sampling interval µo is simply g(µo)
(i.e., only the first term on the right hand side re-
mains). Therefore any random scheme would improve
upon this if it results in a positive sum over the
higher order terms. While the above equation does
not immediately lead to an optimal selection of a
random scheme, it is possible to seek one from a
family of distribution functions through optimization
over common parameters.

Before we proceed with this in the next subsection,
we compare the normal, uniform and exponential
random sampling schemes using the above analysis.

In Table 1 we list the higher order central moments
of normal, uniform and exponential distributions 3.
It can be easily concluded that among these three
choices the Fisher function has the largest expectation
under the exponential distribution.

TABLE 1
Higher central moments

Normal Uniform Exponential

n is even n!σn

( n
2

)!2
n
2

µn
o

n+1

n is odd 0 0
µn

o

∑n

k=0

(−1)kn!
k!

We further compare their performance in Fig. 4
as we increase the number of samples m over a
window of T = 5000 time units. Our simulation is
done in Matlab and uses a discrete time model; all
time quantities are in the same time units. All values
presented here are the averages over 100 independent
runs. The maximum number of samples is 5000; this is
because the on/off periods are integers, so there is no
reason to sample faster than once per unit of time.
The sampling intervals under the uniform sensing
are ⌊T/(m − 1)⌋. The sampling times under random
schemes are generated as follows. We fix the window
T and take m to be the average number of sam-
ples4. We place the first and the last sampling times
at time 0 and T , respectively. We then sequentially
generate ∆t2, ∆t3, · · · according to the given pdf f()
with parameters normalized such that it has a mean
(sampling interval) of T/(m − 1). For each ∆ti we
generate we place a sampling point at time

∑i
k=2 ∆tk.

This process stops when this quantity exceeds T . Note
that under this procedure the last sampling interval
will not be exactly according to f() since we have
placed a sampling point at time T . However, this
approximation seems unavoidable. Alternatively we
can allow T to be different from one trial to another
while maintaining the same average. As long as T
is sufficiently large this procedure does not affect
the accuracy or the fairness of the comparison. For
each value of m, the result shown on the figure
is the average of 100 randomly generated sensing
schedules. We see that exponential random sampling
outperforms the other two; this is consistent with our
earlier analysis on the Fisher information.

5.2 Circular β ensemble

We now use the circular β ensemble [24] to study a
family of distributions. The advantage of using this

3. For normal distribution the probability distribution function is
cut off at zero and then renormalized.

4. The reason m is only an average and not an exact requirement
is because we cannot guarantee to have exactly m samples within a
window of T if we generate sampling intervals randomly according
to a given pdf. By allowing m to be an average we can simply
require the pdf to have a mean of T/(m − 1).
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E[g(∆t)] =

∫ ∞

0

g(∆t)f(∆t)d∆t =

∫ ∞

0

[g(µo) + g′(µo)(∆t − µo) + · · · + g(n)(µo)(∆t − µo)
n

n!
+ · · · ]f(∆t)d∆t

= g(µo) + g′(µo)µ1 + · · · + g(n)(µo)µn

n!
+ · · · (19)
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Fig. 4. Performance comparison of random sensing

ensemble is that with a single tunable parameter we
can approximate a wide range of different distribu-
tions while keeping the same average sampling rate.

The circular β ensemble may be viewed as given
by n eigenvalues, denoted as λj = eiφj , j = 1, · · · , n.
These eigenvalues have a joint probability density
function proportional to the following:

∏

1≤k<l≤n

|eiφk − eiφl |β , −π < φj ≤ π, j, k, l = 1, · · · , n,

where β > 0 is a model parameter. In the special
cases β = 1, 2 and 4, this ensemble describes the joint
probability density of the eigenvalues of random or-
thogonal, unitary and sympletic matrices, respectively
[24].

We use the set of eigenvalues generated from the
above joint pdf to determine the placement of sample
points in the interval [0, T ] in the following manner.
In [25] a procedure is introduced to generate a set
of values φj , j = 1, 2, · · · , n that follow the above
joint pdf. Setting n = m, these n eigenvalues are
then placed along a unit circle (each at the position
given by φj), which are subsequently mapped onto
the line segment [0, 1]. Scaling this segment to [0, T ]
gives us the m sampling times. The intervals between
these points now follow a certain joint distribution
indexed by β. Below we will refer to this method
of generating sample points/intervals as using the
circular β ensemble.

In Fig. 5 we give the pdfs of intervals generated
by the circular ensemble with different β. For each
value of β, we obtain 200 random variables in [0,
1], then scale them to be in [0, 5000]. The successive
intervals between neighboring points are collected
with the their pdf shown in the figure. We see that as β

approaches 0+ the pdf becomes exponential-like and
as β approaches +∞, the pdf becomes deterministic;
these are well known facts about circular ensembles.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

f(
t)

T=5000   Sample number=200

 

 

0 20 40
0

0.05

0.1

0.15

 

 

β=10−6

β=1

β=2

β=4

β=106

Fig. 5. Probability distribution function of intervals
generated by the circular β ensemble

5.3 A comparison between different random
sensing schemes

In Fig. 6 we show the Fisher information with sam-
pling intervals generated by the circular β ensemble.
The corresponding estimation performance compari-
son is given in Fig. 7. The performance of the best
and worst sequences with and without the sparsity
condition are also shown for comparison. Note that
when β = 106, the sampling sequence coincide with
the worst obtained via dynamic programming, the
worst under sparsity condition and uniform sensing,
therefore their performances are the same. We see
again that exponentially generated sampling intervals
performs the best. This may be due to the fact that the
on/off durations are also exponentially distributed,
thereby creating a good “match” between the fisher
function g() and the pdf f() that results in a larger
value of the expected Fisher function value (see Eqn.
(19)).

5.4 Discussions on other channel models

We now examine a channel model with on/off dura-
tions following the gamma distribution, given by







f1(t) = tk1−1 e−t/λ1

λ
k1
1

Γ(k1)

f0(t) = tk0−1 e−t/λ0

λ
k0
0

Γ(k0)
.

(20)

They are each parameterized by a shape parameter
k and a scale parameter λ, both positive. In this
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case, the Laplace transforms of f0(t) and f1(t) are
(1 + λ0s)

−k0 and (1 + λ1s)
−k1 , respectively, and the

expectation of the on/off periods are E[T1] = k1λ1

and E[T0] = k0λ0. In the following simulation both k1

and k0 are set to 2, with a simulated time of 5000 time
units. The sampling intervals are randomly generated
by the circular β ensemble. We see in Fig. 8 that
random sensing again outperforms uniform sensing
using such a channel model.
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Fig. 8. Performance of random sampling using circular
β ensemble for a gamma channel

Obtaining similar result for other channel distribu-
tions becomes computationally prohibitive. There are
two reasons. Firstly, for most distributions the Laplace
transform is complex, resulting in the complexity in
obtaining the corresponding time domain expressions.
Secondly, with the exception of the exponential dis-
tribution, without the memoryless property the like-
lihood function also becomes intractable.

We next examine a 3-state Markov channel model
recently proposed in [26] as an alternative to the
commonly used 2-state Markov model (the so-called
Gilbert-Elliot model, which is also the exponential
on/off model analyzed in this paper). This 3-state
Markov chain produces higher variance of the on/off
durations and is shown to better match spectrum
measurement data. Under this model, the state “0”
denotes an off state, while states “1” and “2” are
both on states. Each state i has a probability 1 − pi

of remaining in the same state, i = 0, 1, 2. From state
“0” the chain visits states “1” and “2” with transition
probabilities αp0 and (1 − α)p0, respectively, while
from states “1” and “2” the transition probabilities to
state “0” are p1 and p2, respectively.

The results of applying our sensing algorithms to
traces generated by this 3-state Markovian model are
shown in Fig. 9, by using α = 0.7, p0 = 0.49, p1 =
0.91, p2 = 0.06 (taken from [26]). In performing esti-
mation we treated the channel as if it were a memory-
less on/off channel which is not the case here due to
the two distinct on states. We see that random sensing
again outperforms uniform sensing.
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Fig. 9. Performance under a 3-state Markov model

5.5 Effect of channel state detection error

So far we have assumed that the channel state pro-
cess Z(t) is perfectly detected. Fig. 10 shows the
estimation performance in the presence of detection
error. We inserted random detection errors into the 0-
1 sequence with varying probabilities, and performed
estimation using the revised sequence. The actual
mean value refers to the sequence before error inser-
tion. We see that random sampling is very robust to



11

random detection errors and consistently outperforms
the uniform sampling method. Our explanation is
that since sampling is sparsely done, when detection
error probability is not very high (the highest shown
is 20%) the chance of taking a sample that happens
to be an error is even lower. Note that when using
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Fig. 10. Estimation accuracy on θ0 with imperfect
channel detection: uniform sensing vs. random sensing

uniform sampling the estimation performance first
improves with the increasing sampling rate, but then
(around 100 samples) it starts to deteriorate. This is
because as the sampling rate increases the number of
errors in the sampled sequence also increases. Similar
phenomenon also exists for random sampling, but
occurs at a much higher sampling rate beyond the
sparse sampling regime. It is interesting to note that
under uniform sampling the estimate starts to deviate
before it could converge to the actual value.

6 ADAPTIVE RANDOM SENSING FOR PA-
RAMETER TRACKING

Using insights we have obtained on uniform sensing
and random sensing, we now present a method of
estimating and tracking a time-varying parameter.
The overall sensing duration T is divided into win-
dows of lengths Tw. In each window samples are
taken and an estimate produced at the end of that
window. This estimate is then used to determine the
optimal number of samples to be taken in the next
window. This will be referred to as the adaptive random
sensing scheme; the adaptive nature lies in adjusting
the number of samples taken in each window based
on past estimates.

Specifically, at the end of the i-th window of Tw,

we obtain the ML estimate θ̂
(i)
0 and û(i) based on

samples collected during that window. Now assuming
that we will use uniform sensing in the (i + 1)th
window with a sampling interval ∆tp, and assuming

that θ̂
(i)
0 and û(i) are the true parameter values in

the (i + 1)th window, we can obtain the expectation

of the next estimate, denoted as θ̃
(i+1)
0 , as a function

of (Tw, ∆tp, û
(i), θ̂

(i)
0 ). The optimal sampling interval

∆t
(i+1)
p for the (i + 1)th window is then calculated as

follows:

∆t(i+1)
p = arg min

∆tp

∣

∣

∣

∣

|θ̃(i+1)
0 − θ̂

(i)
0 | − ε

∣

∣

∣

∣

, (21)

where ε is an error factor introduced to lower bound
the minimizing interval ∆t

(i+1)
p . Without this factor

the interval will end up being very small, i.e., requir-
ing a large number of samples for the next window.
The intuition behind the above formula is that assum-
ing the channel parameters are relatively slow varying

in time, the estimate from the previous window θ̂
(i)
0

may be viewed as true. So for the next window we
would like to find the sampling interval that allows
us to get as close as possible to this value subject to
an error.

Note that the above calculation relies on the avail-
ability of θ̃

(i+1)
0 , a quantity obtained assuming uni-

form sampling will be used in the next window. In
the actual execution of the algorithm, we simply use

this to obtain ∆t
(i+1)
p as shown above. This gives us

the desired number of samples to be taken in the

next window: M (i+1) = ⌈Tw/∆t
(i+1)
p ⌉. Following this,

random sensing is used to generate M (i+1) random
sampling times within the next window. An estimate
is then made and this process repeats.

It remains to show how θ̃
(i+1)
0 is obtained. As

mentioned earlier, when the on/off periods are ex-
ponentially distributed there is a simple closed-form
solution to the ML estimator. This was calculated
in [5] and we will use that result directly below.
Specifically, with M = ⌈Tw/∆tp⌉ samples uniformly
taken, the estimate of channel utilization u is given

by û = 1
M

∑M
i=1 zi. The estimate of θ0 is given by

θ̂0 = − u

∆tp
ln[

−B +
√

B2 − 4AC

2A
], (22)

where






A = (u − u2)(M − 1)
B = −2A + (M − 1) − (1 − u)n0 − un3

C = A − un0 − (1 − u)n3

. (23)

Here n0/n1/n2/n3 denotes the number of (0 →
0)/(0 → 1)/(1 → 0)/(1 → 1) transitions out of the
total (M −1) transitions. Their respective expectations
are given by

E[n0] = M(1 − u)P00(∆tp; θ0),
E[n2] = MuP10(∆tp; θ0),
E[n1] = M(1 − u)P01(∆tp; θ0),
E[n3] = MuP11(∆tp; θ0).

(24)

Taking these quantities into (23) and (22), we obtain
the expectation of θ̂0, θ̃0, which is a function of

(Tw, ∆tp, u, θ0). Replacing u with û(i), θ0 with θ̂
(i)
0 , and

θ̃0 with θ̃
(i+1)
0 we obtain the desired result.

Figure 11 shows the tracking performance of the
adaptive random sensing algorithm, where within
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each moving window the sampling times are ran-
domly place following a uniform distribution. In the
simulation the size of the time window is set to be
3500 time units and the error factor ε is set at 1.
In Figure 11(a) the channel parameter E[T0] varies
as a step function: starting from 6 time units, it is
increased by 5 every 30000 time units, while E[T1] is
set to E[T0]/2. In Figure 11(b) the channel parameter
changes more smoothly as shown. The dashed line
represents the actual channel parameter. The adaptive
uniform sensing scheme follows the exact same pro-
cedure as the adaptive random sensing scheme , with
the only difference that in the i-th window uniform
sensing is used, instead of random sensing, with a

constant sampling interval of ∆t
(i)
p as calculated in

(21). We see that the estimation under adaptive ran-
dom sensing (RS) can closely track the time-varying
channel, and clearly outperforms adaptive uniform
sensing (US) at short on/off periods.

The number of samples taken in each window (or
estimation cycle), for the two channel models shown
in Figure 11, following this adaptive scheme is given
in Figures 12(a) and 12(b), respectively. We see that
as the on/off periods vary, the sampling rate is auto-
matically adjusted as an outcome of the tracking. For
instance, the decrease in the sample number shown
in Figure 12(a) corresponds to the consistent increase
in the average off durations, while the large peak
in Figure 12(b) corresponds to the valley of small
average off durations shown in Figure 11(b).

7 CONCLUSION AND FUTURE WORK

In this paper we studied sensing schemes for a chan-
nel estimation problem under a sparsity condition.
Using Fisher information as a performance measure,
we derived the best and worst sensing sequences both
with and without the sparsity condition. An adaptive
random sensing scheme was also proposed to effec-
tively track time-varying channel parameters. Recent
advances in compressive sensing theory [27], [28], [29]
allow us to represent sparse signals with significantly
fewer samples than required by the Nyquist sampling
theorem. It is thus tempting to examine whether
this technique brings any advantage for our channel
estimation problem. The idea is to randomly sample
the channel state, use compressive sensing techniques
to reconstruct the entire sequence of channel state
evolution, and then use the ML estimator to determine
the channel parameter. So far we have not found
this method to work well. The main obstacle lies in
finding a good basis matrix that can both sparsify
the channel signal vector and at the same time be
sufficiently incoherent with the measurement matrix.
A similar difficulty was noted in [30] in trying to use
compressive sensing for a data gathering problem.
This remains an interesting direction of future work.
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Fig. 11. Estimation performance of time-varying chan-
nel
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APPENDIX A
PROOF OF LEMMA 1

Proof: For simplicity in presentation, we first write
g(∆t) = ho(∆t)h(∆t), where

ho(∆t) =
∆t2

u2
e−θ0∆t/u,

h(∆t) = h1(∆t) + h2(∆t) + h3(∆t) ,

h1(∆t) =
2u(1 − u)

1 − e−θ0∆t/u
,

h2(∆t) = − u(1 − u)2

(1 − u) + ue−θ0∆t/u
,

h3(∆t) = − u2(1 − u)

u + (1 − u)e−θ0∆t/u
.

We proceed to show that each of the above func-
tions is convex under Condition 1.

We first show that ho(∆t) is strictly convex for ∆t >
(2+

√
2)u/θ0. Under this condition and noting 0 < u <
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1 and θ0 > 0 we have

h
′

o(∆t) =
∆t

u2
e−θ0∆t/u(2 − θ0∆t

u
) < 0,

h
′′

o (∆t) =
e−θ0∆t/u

u2
[(

θ0∆t

u
− 2)2 − 2] > 0.

Therefore for θ0∆t
u > 2+

√
2, ho(∆t) is strictly convex.

That h1(∆t) is strictly convex is straightforward. Since
0 < u < 1 and θ0 > 0, we have:

h
′

1(∆t) =
−2(1 − u)θ0e

−θ0∆t/u

(1 − e−θ0∆t/u)2
< 0,

h
′′

1 (∆t) =
2(1 − u)θ2

0e
−θ0∆t/u(1 + e−θ0∆t/u)

u(1 − e−θ0∆t/u)3
> 0.

Next we show that h2(∆t) is strictly convex for
∆t > u

θ0
ln( u

1−u ). This condition is equivalent to

ue−θ0∆t/u < 1 − u. Under this condition and again
noting 0 < u < 1 and θ0 > 0, we have

h
′

2(∆t) =
−u(1 − u)2θ0e

−θ0∆t/u

[(1 − u) + ue−θ0∆t/u]2
< 0,

h
′′

2 (∆t) =
(1 − u)2θ2

0e
−θ0∆t/u[(1 − u) − ue−θ0∆t/u]

[(1 − u) + ue−θ0∆t/u]3

> 0.

Similarly, h3(∆t) is strictly convex under the condi-
tion ∆t > u

θ0
ln(1−u

u ), since

h
′

3(∆t) =
−u(1 − u)2θe−θ0∆t/u

[u + (1 − u)e−θ0∆t/u]2
< 0,

h
′′

3 (∆t) =
(1 − u)2θ2e−θ0∆t/u[u − (1 − u)e−θ0∆t/u]

[u + (1 − u)e−θ0∆t/u]3

> 0.

Therefore under the condition ∆t > αu/θ0, h1,
h2 and h3 are all monotonically decreasing convex
functions. It follows that h = h1 + h2 + h3 is also
monotonically decreasing and convex. Furthermore,
for any ∆t > 0, ho(∆t) > 0, and h(∆t) > h(+∞) = 0.
We can now show that g is strictly convex under this
condition:

g
′′

(∆t) = (ho(∆t)h(∆t))
′′

= h
′′

o (∆t)h(∆t) + 2h
′

o(∆t)h
′

(∆t)

+ho(∆t)h
′′

(∆t) > 0 , (25)

where the inequality holds because every term on the
right hand side is positive under the condition ∆t >
αu/θ0 as summarized above.
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