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Constrained Sequential Resource Allocation
and Guessing Games

Nicholas B. Chang and Mingyan Liu, Member, IEEE

Abstract—In this paper, we consider a constrained sequential
resource allocation problem where an individual needs to accom-
plish a task by repeatedly guessing/investing a sufficient level of ef-
fort/input. If the investment falls short of a minimum required level
that is unknown to the individual, she fails; with each unsuccessful
attempt, the individual then increases the input and tries again
until she succeeds. The objective is to complete the task with as little
resources/cost as possible subject to a delay constraint. The optimal
strategy lies in the proper balance between 1) selecting a level (far)
below the minimum required and therefore having to try again,
thus wasting resources, and 2) selecting a level (far) above the min-
imum required, and therefore, overshooting and wasting resources.
A number of motivating applications arising from communication
networks are provided. Assuming that the individual has no knowl-
edge on the distribution of the minimum effort required to com-
plete the task, we adopt a worst-case cost measure and a worst-case
delay measure to formulate the above constrained optimization
problem. We derive a class of optimal strategies, shown to be ran-
domized, and obtain their performance as a function of the con-
straint.

Index Terms—Competitive analysis, constrained optimization,
data query and search, exponential functions, minimax problems,
online algorithms, randomized algorithms, stochastic analysis.

I. INTRODUCTION

I N this paper, we consider a sequential resource allocation
problem where an individual needs to accomplish a task by

repeatedly guessing/investing a sufficient level of effort/input. If
the investment falls short of a minimum required level, which is
unknown to the individual and which may be random, she fails;
with each unsuccessful attempt, the individual then increases
the input and tries again until she succeeds. In general, the more
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resources she commits, the more likely she is to succeed. In de-
ciding how much resources to commit in each attempt, the indi-
vidual needs to balance between consuming minimal resources
and increasing her chances of success. This is because if she se-
lects a level (far) below the minimum required, she would have
to try again, thus wasting resources; on the other hand, if she se-
lects a level (far) above the minimum required, she overshoots
and ends up wasting resources.

The above problem is motivated by a number of applications
in communications and networks. The first is that of power con-
trol, where in order to find a nearby radio receiver, a transmitter
gradually increases its transmission power until the signal is suc-
cessfully received/decoded by the receiver [1]. The transmitter
does not know a priori the minimum power needed to reach
the receiver. Each failed transmission wastes resources, while
transmission using more power than necessary is also a waste.
Therefore, it has to choose the sequence of transmission powers
carefully to balance these two factors. A second example is that
of searching for a node (or a piece of data) in a wireless network
using flooding techniques [2], [3]. In this application, the source
node looking for the target broadcasts a query packet and pre-
specifies how many times it will be relayed (which determines
how far it travels within the network). If the target is found
within that range, then the search is complete; otherwise, the
source node times out and has to broadcast a second query spec-
ifying a bigger range. This continues until the target is found.
Each broadcast incurs a certain amount of transmissions and re-
ceptions, thus consuming energy. A third example is that of reli-
able point-to-point communication using automatic retransmis-
sion request (ARQ) [4], where a sender strengthens the encoding
in a packet (in the form of increased redundancy or number of
bits sent, e.g., using parity check code [1]) with each failed re-
ception. More motivating scenarios may be found in other areas
besides communications. For instance, in performing a certain
computation task, one may not know ahead of time the correct
step size to use to achieve a desired accuracy. Setting the step
size too large may cause the task to fail while setting it too small
may cause the computation to run for an excessively long time.

Note that in most, if not all, of the examples mentioned above,
the resources are committed in advance regardless of the out-
come of the attempt. Also note that in many cases, resources
expended in a failed attempt are completely wasted as the next
attempt has to start from scratch. In other cases, we may be able
to resume/continue from the point of failure and commit addi-
tional resources for the next attempt rather than starting anew.
A final note is that for most of these applications, an increase
in resources committed is accompanied by an increase in the
time it takes to process the task. For example, this is reflected in
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the increased size of the network to be searched in the flooding
application, and in the increased packet size in the ARQ appli-
cation.

In this paper, we formulate the above problem as a con-
strained sequential resource allocation problem. The successive
amount of resources committed by the individual form a
strategy, which determines the total cost paid and time ex-
pended in accomplishing the task. The primary goal of this
paper is to derive strategies that minimize a cost measure
subject to a delay constraint. Specifically, assuming that the
individual has no knowledge of the minimum resource required
to complete the task (either its distribution or its realization), we
adopt a worst-case cost measure and a worst-case delay mea-
sure in the constrained optimization problem. These worst-case
measures are in the form of competitive ratios against an offline
adversary. Thus, this sequential resource allocation problem
also takes on the form of a guessing game against the adversary.
The solution to this problem results in strategies that minimize
the worst-case cost and successfully complete the task within
a specified worst-case delay constraint. We will show that the
dual problem of minimizing a delay measure subject to a cost
constraint is also solved by this framework.

Imposing a delay (or cost) constraint allows us to study the
tradeoff between cost and delay. This tradeoff can be seen by
considering the strategy of selecting the maximum amount of
resource possible. Such a strategy would most likely result in
a short delay, as the task is likely to be completed during the
first attempt. On the other hand, this strategy is likely not the
most cost effective [2], [3]. The unconstrained version becomes
a special case of this formulation.

We analyze the above problem for two cases. In the first case,
problem P1, one must begin the task from scratch after every
failed attempt. In the second case, problem P2, one is allowed
to continue from previous failed attempt. We first analyze P1
and then use a similar approach to derive optimal strategies for
P2.

It is worth noting the difference between the competitive anal-
ysis-based [5] approach used in this paper and the commonly
used stochastic optimization-base [6] approach. Under the com-
petitive analysis approach, no a priori knowledge is assumed on
the random processes underlying the system, and the objective
is to obtain the best worst-case performance over all possible
distributions. This is, in general, a pessimistic approach; how-
ever, using this method, one can provide a performance guar-
antee with respect to the best strategy (the adversary). Conse-
quently, the resulting solution is generally more robust to im-
perfect (or perturbation in) knowledge of the probability distri-
bution describing the system model. By contrast, the stochastic
optimization-based approach assumes a priori knowledge on
the random distributions underlying the system model. In this
case, the objective is to determine the strategy that minimizes
the average cost over all strategies given that assumption. An
important thing to note is that strategies obtained using this ap-
proach are optimal only with respect to the assumed a priori
stochastic description driving the system model, and they are
typically highly sensitive to changes in such assumptions. In this
sense, while these strategies may be optimal, they are, in gen-
eral, not very robust. Thus, one can view the two approaches as

complementary to each other; the preferred method to analyze a
problem may depend on the specific problem scenario and how
much information is known regarding the systems distribution.

The works most closely related to our mathematical abstrac-
tion in this paper are [7] and [8]. While these two papers also
use a competitive-analysis-based approach, there are some key
differences. In particular, both [7] and [8] consider a variant of
the sequential resource allocation problem of this paper where
the user can choose from among multiple tasks to attempt, but
the costs are not paid in advance for each attempt. Thus, the
cost is determined by whether there is success, whereas in our
model the cost depends on the resource level committed before
the attempt. Thus, the analysis of [7] and [8] does not apply to
the problem we consider here. Additionally, both these papers
consider a specific cost function, i.e., the cost of an input level
(IL) is equal to the IL. Our work, on the hand, is derived for a
more general class of cost and delay functions to be precisely
defined in Section II. Furthermore, [7] and [8] consider an un-
constrained problem where only a single performance measure
is adopted, i.e., minimizing the cost. By contrast, in this paper,
we seek to derive optimal strategies for a constrained optimiza-
tion problem where one must balance between two competing
performance measures, cost and delay. To the best of our knowl-
edge, our work represents one of the first studies that use com-
petitive analysis for a constrained optimization problem. Thus,
the proof techniques we use in this paper could potentially serve
as a framework for the analysis of other constrained worst-case
optimization problems. Due to the above differences, the op-
timal strategies of [7] and [8] are not optimal for our problem.
As will be seen, we derive a class of optimal strategies, which
can be tuned with respect to the delay (cost) constraint.

The main contributions of this paper are summarized as fol-
lows.

1) We provide an analytical framework within which the
delay and cost of strategies can be studied for P1 and
P2. An unconstrained version (simply minimizing a cost
measure) becomes a special case under this framework
when the delay constraint is not binding.

2) When a worst-case delay constraint is imposed for P1 and
P2, we derive a class of optimal strategies that minimize
a worst-case cost measure among all strategies that sat-
isfy the delay constraint. We show that randomized strate-
gies outperform deterministic strategies when a worst-case
delay constraint is imposed for both problems. Similarly,
when a worst-case cost constraint is imposed, we derive the
class of optimal strategies that minimize worst-case delay
measure among all strategies satisfying the cost constraint.

3) For both problems P1 and P2, we establish an under-
standing of the tradeoff between delay constraints and
corresponding optimal achievable cost and show specif-
ically how the two conflicting objectives can affect each
other.

The remainder of this paper is organized as follows. The first
part of the paper, Sections II–IV, focuses on problem P1. In
Section II, we describe the model and associated assumptions.
The formulation and main results are presented in Section III.
Optimal strategies satisfying a delay constraint for this problem
are derived in Section IV. We then formulate and solve problem
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P2 in Section V. Results on both problems are discussed in
Section VI. Section VII concludes this paper.

II. MODEL AND ASSUMPTIONS FOR PROBLEM P1

In this section, we outline the model and assumptions we will
use. Motivated by the applications described in the previous sec-
tion, we make the following assumptions.

1) There is a minimum level of resources/effort required to
accomplish the task. is a random variable (r.v.) whose
distribution may be unknown to the individual. Its realiza-
tion is not known in advance.

2) The individual may choose from a range of resources/ef-
fort levels she is willing to put in the task. If the individual
chooses a level , where denotes a real-
ization of , then she succeeds, in which case the process
terminates. Otherwise, if , the task fails.

3) Whenever the task fails, she must attempt the task from
scratch by using a higher resources/effort level to increase
her success probability. Thus, the process occurs in rounds
until the task is completed successfully.

4) When a level is chosen, the individual commits in ad-
vance to paying a cost , where is a function
whose properties will be described in more detail later.
Note that this cost only depends on and not on whether
she succeeds.

5) At the same time, with a level , the task takes a certain
amount of time to process (either with a success or a failure
outcome). This delay is given by when there is a
failure, and when there is a success. Both
and are functions to be described later.

We will use the term IL to describe the amount of effort/re-
sources that the individual applies to the task. Depending on the
particular problem of interest, the IL can have different mean-
ings. For example, it can denote how many times the query packet
should be forwarded in the search problem, while in the power
control problem, it may denote one of a finite number of power
levels the transmitter can use. The IL has two main effects on the
problem: it determines the probability of successful completion
and the amount of resources (e.g., cost or delay) incurred.

We let denote the maximum permissible IL. We will as-
sume that by applying an IL of , the user can complete the task
with probability . We will use the term task level, denoted by
random variable , to indicate the minimum IL required to suc-
cessfully complete the task. The tail distribution of the random
variable is denoted by .

In some scenarios, it is natural to only consider integer-valued
(discrete) policies. This corresponds to the scenario where only
a countable number of ILs are available to the user. In this case,
a strategy is a sequence of IL values of certain length ,

. It can be either fixed/deterministic where
, , are deterministic values, or random where

are drawn from probability distributions. For a fixed strategy, we
assume that is an increasing sequence. For randomized strate-
gies, we assume all realizations are increasing sequences. The
requirement for the sequence to be increasing is a natural one
under the assumption that using IL will always complete the
task if . Note that in a specific experiment we may

not need to use the entire sequence; the process stops whenever
the task is completed. When considering discrete strategies, IL
values are integers and the task level is assumed to be a pos-
itive integer taking values between and .

We will also consider the case where effort levels can take an
uncountable number of values and are described using real num-
bers. It will be seen that considering real-valued sequences also
proves to be helpful in deriving optimal integer-valued strate-
gies. We refer to strategies for this case as continuous (real-
valued) strategies, denoted by , where ,
and is either a fixed or continuous r.v. that takes real values.
In analyzing continuous strategies, is assumed to be a real
number in the interval .

A strategy is admissible if it completes the task with proba-
bility . For a fixed strategy, this implies . For a random
strategy, this implies for some .
In the asymptotic case as , a strategy is admissible if

, for some . This implies that
in the asymptotic case, is an infinite-length vector. We let
and denote the set of all real-valued and integer-valued ad-
missible strategies, respectively. These sets include all random
or fixed strategies.

We associate a cost with using IL value , i.e., the indi-
vidual’s cost in a single round is only dependent on the amount
of effort she applies and not whether her attempt is successful.
Meanwhile, we associate a delay with using IL value if
the user fails, and a delay of if she is successful. This as-
sumption is made for cases where, for example, the processing
ends more quickly in a round if it is successfully completed. We
will assume that these two functions are proportional to each
other, i.e., for some constant . We will
show in Section III-A that there is no loss of generality in as-
suming that .

For real-valued sequences, we require that the functions
, , and be defined for all , while

for integer-valued sequences, we only require that the cost
and delay functions be defined for positive integers. When
the cost function is invertible, we write to denote its
inverse. We will adopt the assumption that if , then

, , and .
This assumption implies that a higher IL correlates with more
resource consumption and may require more processing time.

We define the following class of cost functions for real-valued
sequences.

Definition 1: The function belongs
to the class if , is strictly increasing
and differentiable (hence continuous), and .
Note that for every , there exists exactly one

such that .

In Section III, we provide an explanation for only considering
strictly increasing cost functions.

When considering discrete strategies, we will restrict our re-
sults to the following subclass of .

Definition 2: A function belongs to the class
for some if: 1) and 2)
for all .
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Note that because is strictly increasing, when
condition 2) is automatically satisfied. The case also
contains all polynomial cost functions. The case includes,
for example, exponential cost functions of the form .

III. PROBLEM FORMULATION AND MAIN RESULTS ON P1

A. Problem Formulation

We will consider the performance in the asymptotic regime as
. This is because it is difficult, if at all possible, to obtain

a general strategy that is optimal for all problems with finite ,
as the optimal IL sequence often depends on the specific value of

. In this sense, an asymptotically optimal strategy may provide
much more insight into the intrinsic structure of the problem. It
will become evident that asymptotically optimal IL sequences
also perform very well for problems of arbitrary finite .

Let denote the expected cost of using strategy when the
task level is . This quantity can be calculated as follows:

(1)

where , , , and denote expectations with
respect to and , respectively, and denotes the indicator
function. The expectation and summation can be interchanged
due to the monotone convergence theorem [9]. We will drop the
variable from the subscript when it is clear which variable the
expectation is taken with respect to.

Similarly, let denote the expected delay induced by
strategy for . This quantity can be calculated as follows:

(2)

When the distribution of is known in advance, a natural
objective is to determine strategies that minimize subject to
some constraint on . In general, such computations are nu-
merical and the optimal solutions can be determined by standard
constrained optimization techniques [10], [11]. In Section IV-B,
we will derive the optimal strategy for a particular distribution
of and delay constraint under which the optimal strategy has
a very interesting structure.

On the other hand, when the distribution of is not known,
as is often the case, a different approach is required. In this
study, we adopt a worst-case performance measure. Consider
an omniscient observer (or genie) who knows the task level in
advance and thus uses an IL of , incurring an expected cost of

. We can then measure the performance of a strategy
by the following:

(3)

where denotes the set of all probability distributions
of such that . The term is an upper bound,
or worst-case measure, on the ratio between the cost of strategy

and the omniscient observer, over all . We will refer to
as the competitive ratio, or worst-case cost ratio, of . This type
of worst-case measure is commonly used in many online de-
cision and computation problems [5]. It was introduced in [3]
as a method of analyzing strategies for the controlled flooding
scheme described in the Introduction, and generalized in [2] to
study randomized strategies.

We apply a similar worst-case analysis to delay. The min-
imum expected delay is , obtainable by either an om-
niscient observer or a strategy that uses the highest IL (
as ). Hence, the worst-case delay ratio is defined as

(4)

where we note in this case is the set of all distribu-
tions such that . Note that the worst-case cost
and delay ratios are always strictly greater than for any ad-
missible strategy as it is impossible to equal or do better than
the omniscient observer.

We define the following set:

(5)

for some constant . This is the set of all strategies whose
delay is always within a factor of the delay of the omniscient
observer, regardless of . We will call the delay constraint.
Note that as , the delay constraint becomes less restric-
tive and the set approaches .

We seek a strategy that satisfies this delay constraint and has
the smallest worst-case cost ratio, i.e., achieves the minimum
worst-case cost ratio among all

(6)

This essentially constitutes our constrained optimization
problem P1, given as follows:

(7)

Note that the two suprema in P1, one in the objective and the
other in the constraint, are in general not achieved under the
same distribution . The intention for adopting such a
worst-case formulation is to place an upper bound on both the
delay and the cost over all possible distributions.

The above definitions also hold analogously for continuous
strategies, by simply replacing with , and replacing the set

with , which is the set of density functions
such that , or depending on
whether we consider worst-case cost or delay. We will thus de-
note by , , and the continuous versions of (3)–(5), re-
spectively. We will use the same notation to denote the min-
imum worst-case cost ratio achieved by continuous strategies
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satisfying a delay constraint ; the distinction should be clear
from the context. is defined as follows for any :

(8)

From the equations for and , we can now explain
the reason for examining strictly increasing, rather than pos-
sibly nondecreasing cost or delay functions in Definition 1. Sup-
pose the cost and delay functions are constant over some in-
terval . Then, one can see from the equations for and

that any optimal strategy would not use any IL where
; it cannot do worse by instead using level . Thus,

one can “remove” the intervals over which cost and delay are
constant to produce strictly increasing cost and delay functions
that belong to . Furthermore, if the cost function is strictly in-
creasing while the delay function is nonincreasing, then it can
easily be shown that the delay constraint in (7) becomes non-
binding and P1 reduces to an unconstrained problem of simply
minimizing a worst-case cost measure. The optimal strategy for
this unconstrained problem is given in Theorem 1.

As stated earlier, we assume that for some
. We now show that there is no loss of generality in as-

suming that . Let denote expected delay of strategy
for task level when these two functions are equal. Then, note
the following:

(9)

Hence, the delay ratio when is simply a
rescaling of the ratio when . Specifically, a strategy
satisfies if and only if

(10)

Therefore, the set that we defined for the case of
can easily be redefined for , by simply rescaling

the delay constraint . Note that this result holds in both the dis-
crete and continuous cases. Therefore, for the rest of the anal-
ysis, we will assume these two functions are equal while noting
that the results apply to the unequal case by scaling the constant

. We let for all . It follows that
using an IL will incur a delay of .

We will also consider the dual problem of P1, i.e., minimizing
delay subject to a constraint on cost. As in the previous problem,
we define the following set:

(11)

That is, is the set of strategies satisfying a worst-case cost
constraint. Then, the corresponding objective is to achieve the
following minimum:

(12)

Thus, the constrained optimization problem Q1, the dual of P1,
is given by

(13)

The analogous term is defined similarly to (11) by replacing
and with and , respectively.

B. Main Results for P1

Next we present our main results to be proven and discussed
in Section III-B1. We begin by examining optimal continuous
strategies for P1, i.e., finding the strategy in that achieves
minimum worst-case cost ratio. We define the following class
of continuous strategies.

Definition 3: Assume that the cost function . Let
denote a jointly defined sequence

with a configurable parameter , generated as follows.
J.1) The first IL is a continuous random variable

taking values in the interval ,
with its cumulative distribution function (cdf) given
by some nondecreasing, right-continuous function

. Note that this means
and .

J.2) The th IL is defined by for
all positive integers .

From J.1) and J.2), it can be seen that and uniquely
define the IL strategy, and that given the selection of , the cost
of successive IL values essentially forms a geometric sequence
of base , i.e., . More discussion on this
structure is given in Section VI.

Our main theorem regarding the class of continuous strategies
is as follows.

Theorem 1: When and for some
, we have the following.

1) For any fixed

(14)

Moreover, this minimum worst-case ratio is achieved by
using the strategy with .

2) For , we have

(15)

Moreover, this minimum worst-case ratio is achieved by
using the strategy with .
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Note that the optimal strategy of Theorem 1 can be adjusted
for different delay constraints by varying the parameter . For
discrete strategies, we have the following.

Theorem 2: When and for some
, we have the following.

1) For

(16)

2) For

(17)

Whether the upper bounds in Theorem 2 become equalities
appears to depend on the specific cost function . By re-
stricting our attention to cost functions , we have the
following result.

Theorem 3: Consider and for
some .

1) For

(18)

where this minimum worst-case ratio can be achieved
by the discrete strategy constructed as follows. Take
the strategy given by Definition
3, and set for all to obtain the discrete
strategy .

2) For , we have

(19)

Moreover, this minimum worst-case cost ratio is
achieved by the strategy , where denotes
the strategy .

This result shows that we can take the floor of the optimal con-
tinuous strategy to obtain a discrete strategy, which is optimal
when the cost is a subclass of .

These theorems for P1 lead to the following corresponding
results for Q1, the dual of P1.

Theorem 4: Suppose and for some
. For any , we have

(20)

where is the unique number in satisfying .
Moreover, this minimum worst-case ratio is achieved by using
the strategy . In addition, using the same
definition of , we have the following if the cost function be-
longs to :

(21)

where this minimum worst-case cost ratio is achieved by the
strategy .

C. Discussion of Main Results

The worst-case performance measures used to derive the
main results imply that for any task level, the optimal (for

) strategy of Theorem 1 has an expected
cost within times the expected cost of the omniscient
observer. Similarly, its expected delay is always within factor
of the delay incurred by an omniscient observer.

The differentiation between the two cases,
versus , in the first three theorems, is due to the
fact that P1 has an active/binding constraint in the former, and
an inactive/nonbinding constraint in the latter, as we show in
Section IV.

The main results rely on the relationship for
some , where the factor essentially describes the
relative rate at which the cost and delay functions grow with
respect to IL. Note that the constant positive factor simply
cancels out in the cost or delay ratio calculated in (3) and (4).
Hence, we can assume that without loss of generality.
The relationship is justified in many application
scenarios such as those mentioned earlier. For example, for the
flooding search problem, this relationship is very representative
of searching in a two-dimensional network where the search cost
is proportional to the number of transmissions incurred. In this
case, is well approximated by a quadratic function (see,
e.g., [2] and [3]) and can be chosen to be a linear function
of (implying ), or quadratic (implying ).

IV. P1: OPTIMAL STRATEGIES WITH DELAY CONSTRAINTS

In this section, we prove the results shown in the previous
Section III, i.e., the solution to problem P1. The solution to
Q1, the dual of P1, follows from these results as described in
part G of the Appendix.

The solution approach we take is outlined as follows. We first
(in Section IV-B) consider the continuous version of P1 and de-
rive a tight lower bound to the minimum worst-case cost under
the delay constraint. This is accomplished by interchanging the

and in (6), and introducing a constrained optimization
problem whose objective is to minimize the average cost subject
to a delay constraint. Then, in Section IV-C, we derive a class
of randomized continuous strategies whose worst-case cost ratio
matches this lower bound for all , proving that they are optimal.
These continuous strategies are then used in Section IV-D to de-
rive good discrete strategies whose performance is at least as
good in the worst-case. We will also prove that they are optimal
for the subclass .

Unless otherwise stated, all proofs can be found in the
Appendix.

A. Preliminaries

The following lemmas are critical in our subsequent analysis.
We will let and denote the expected cost and delay, re-
spectively, of using strategy when .
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Lemma 1: For any strategy and , we have

(22)

(23)

where denotes the set of natural numbers.

Proof of this lemma can be found in [12]. In other words, this
lemma states that the cost ratio is maximized when the task level
is a single point. We also have an analogous lemma for delay.

Lemma 2: For any strategy and

(24)

(25)

Proof: We begin by noting that for every , there
corresponds a singleton probability density ,
such that and . We thus have the
following inequality:

(26)

because the left-hand side is a supremum over a larger set.
On the other hand, setting , we have

for all . Thus, . Then, for
any random variable , we can use this inequality along with
the independence between and to obtain

(27)

Equation (27) implies that .
Because this inequality holds for all possible random variables

, we have

(28)

Inequalities (26) and (28) collectively imply the equality in (24).
Equation (25) can be proven using similar steps. Lemma 2 then
follows.

These two lemmas reduce the space over which the worst-
case cost or delay can occur, and thus are very useful in subse-
quent analysis.

B. A Tight Lower Bound

Consider any . To establish a tight lower bound to the
minimum worst-case cost ratio, we interchange infimum and
supremum [10] to obtain the following:

(29)

Any lower bound of the left-hand side of (29) can be found by
fixing some distribution and finding the strategy within
that minimizes the expected cost. Note that the strategy in
that minimizes the cost may be randomized, which makes the
minimization very difficult.

Therefore, we further lower bound the left-hand side by
considering a larger set of strategies than . In particular, let

denote the following set of strategies for some such
that

(30)

Clearly, for any because any strategy has
a delay ratio upper bounded by for all task levels. Therefore

(31)

because for any task level , the infimum on the right-hand side
is over a smaller set.

A valid lower bound of the left-hand side of (31) can be ob-
tained by choosing particular distributions for and , and
finding the strategy within that minimizes the expected
cost. To obtain a tight lower bound, we need to find a combi-
nation of and such that the optimal average cost strategy
under satisfying the delay constraint induced by has a high
expected cost ratio. It is important to note that it is not necessary
that and have the same distribution.

We consider the following problem, whose solution not only
provides a tight lower bound to (29) but also serves as an ex-
ample for deriving optimal average cost strategies subject to a
delay constraint.

Problem 1: Suppose . For some , let

, and

, for all . Consider the following
constrained optimization problem:

(32)

We solve the above problem for the following choice of .
1) If , choose to be such that

(33)

2) If , choose any .

The distinction between the two cases is that problem 1 under
the former has a binding constraint, and
reduces to an unconstrained problem under the latter .

Solution: The optimal strategy for this problem satisfies
for all . The value of depends on as

follows (details can be found in the Appendix).
If , then is

(34)
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Fig. 1. Summary of the results on optimal worst-case strategies under P1.

The optimal cost ratio for this case is given by

(35)

If , then and the optimal cost ratio is
.

Using this solution, we see that as approaches from above,
the optimal cost ratio for the case has the
following limit:

(36)

where the limit is reached from below. When , the
optimal cost ratio satisfies . Hence, the min-
imum cost ratio is lower bounded as follows.

Theorem 5: When for , then for
any , the best worst-case cost ratio is lower
bounded by the following:

Therefore, any strategy in that achieves a worst-case cost
ratio of must be optimal.

Similarly, when , we have

(37)

Therefore, any strategy in that achieves a worst-case cost
ratio of must be optimal.

C. Optimal Delay-Constrained Strategies

We proceed to find strategies that match the lower bounds
established in Section IV-B. For convenience, we summarize the
main results Fig. 1. In this and the next subsection, we will prove
these results. To do so, we will consider strategies of the form

given by Definition 3.

Lemma 3: Assume and for some
. Then, for any strategy , its worst-case

delay ratio is given by

where denotes the derivative of with respect to , and
is defined as follows for :

(38)

We also have an analogous result for the worst-case cost ratio
of these strategies.

Lemma 4: Suppose . For any strategy ,
the worst-case cost ratio is given by

where , for all , is defined similarly to by
replacing with in (38).

Considering the family of strategies of the form
, we have

(39)

and for all . Similarly, we have

(40)

and for all . Thus, we have the fol-
lowing results regarding this family of strategies.

1) The worst-case delay ratio of these strategies is .
This is easily verified by using Lemma 3.

2) The worst-case cost ratio of these strategies is . This
is also easily verified by using Lemma 4.

We consider two special cases of this family of strategies. The
first case is when for some . With the
above results, the worst-case delay ratio of this strategy is ex-
actly . Hence, this specific strategy belongs to . On the other
hand, its worst-case cost ratio is (plugging
into ), achieving the lower bound established in Theorem 5.

The second case is when . In this case, we achieve a
worst-case delay ratio of , and the worst-case cost ratio of
exactly . Hence, when , this strategy belongs to
and is optimal because it matches the lower bound established
in Theorem 5. If , then the delay constraint becomes
inactive/nonbinding under this strategy. Thus, for

, this is also the solution to the unconstrained problem. This
result was proven separately in [12] within the context of an
unconstrained optimization problem, which we have now shown
to be a special case of the more general result in this paper.
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Combining these two cases, we obtain Theorem 1. Therefore,
we have obtained the optimal worst-case continuous strategies
for any delay constraint .

D. Optimal Discrete Strategies

We now return to deriving robust integer-valued strate-
gies, i.e., finding achieving the minimum worst-case
cost ratio. For notation, we will let be the strategy

. We begin with the following lemma.

Lemma 5: For all , we have and
. That is, we can take the floor of any continuous strategy to

find a discrete strategy that performs just as well if the task level
is restricted to integers.

Using this result, we can prove Theorem 2. The proof is given
in part E of the Appendix. This theorem gives an upper bound
on the best worst-case discrete strategy, for all . It ap-
pears that the actual value of the minimum worst-case cost will
depend on the specific function . A general result is cur-
rently not available, but if we restrict ourselves to cost functions
of the simple polynomial form , then we can ob-
tain Theorem 3 presented earlier. This proof is provided in the
Appendix.

Below we provide a counter example to illustrate the reason
for limiting cost functions to the class . Suppose

for all integers and some constant . Furthermore,
suppose is very large so that the delay constraint for be-
comes nonbinding. Note from Definition 2 that . Con-
sider the strategy , i.e., a strategy that increases
the IL by after every unsuccessful attempt. It can easily be
seen that the cost ratio of such a strategy for any positive integer

is

(41)

which is increasing in . Taking the limit as , we see that
the worst-case cost ratio of is . Note that for very large
, this worst-case ratio approaches , which is the best possible

worst-case ratio. This example illustrates that if the cost function
increases very fast (very large in this case), then the best worst-
case cost ratio may be very small (close to ). Consequently, it
becomes very difficult if at all possible to lower bound this ratio
and derive the optimal strategy. This is the reason why we have
limited our results to the class .

V. PROBLEM P2

Problem P1 requires that the user starts the task from scratch
during each round and pays the full cost and delay of using an
IL. As mentioned in the Introduction, there are motivating sce-
narios where the user may be able to resume the task from a
previous attempt and thus pay only incremental cost and delays
associated with the increase in IL. One example illustrating this
difference is the ARQ application described in the introduction.
P1 corresponds to the scenario where the receiver discards all
previous reception failures (i.e., previously received copies that
could not be decoded correctly) and the transmitter completely
encodes the packet (with longer code) each time. P2, on the

other hand, corresponds to the scenario where the transmitter
encodes the packet with different parity bits each time instead
of increasing the number of parity bits. At the same time, the re-
ceiver saves all received copies, and although it may not be able
to decode the packet correctly in a single reception, it may be
able to decode successfully given a sufficient number of recep-
tions. In this case, the transmitter does not have to increase the
packet length each time. In this sense, each transmission pro-
vides the receiver with additional information about the packet,
and thus, the transmitter’s effort may be viewed as expended in-
crementally.

Motivated by this, in this section, we study problem P2 that
differs from P1 in this regard. It will be seen that the class of
optimal strategies for P2 are derived similarly and share many
similar properties to the optimal strategies for P1.

A. Problem Formulation

Consider the description of P1 given in Section II (points
1–5). P2 differs from P1 in the last two points, which we elab-
orate on below.
4) When the level is increased from to , the individual

commits to paying a cost , with the initial
level , and for notation. Whenever a level

successfully completes the task, there is an extra cost
incurred denoted by .

5) With a level on the th round, the task takes a certain
amount of time to process plus an extra time
depending on whether the outcome is success or failure,
e.g., time for verification or resumption. Specifically,
when the task completes successfully, this delay is given
by ; if it fails, then the delay is

.
Thus, the main differences between P2 and P1 are in the cost

and the delay. In particular, because the individual is allowed
to resume her previous attempt during each round, she does not
need to pay the full cost of using IL . Instead, she only needs
to pay the incremental cost incurred by in-
creasing her IL from to . We have also included an extra
cost , which models the extra cost needed for verification
purposes (e.g., the cost of sending a query reply in controlled
flooding or an ACK in ARQ). We will assume that these two
cost functions are proportional, i.e., for some

. Thus, we can set when there is no extra cost asso-
ciated with completing the task.

For the delay, we assume that is piecewise additive
so that for any constants

. We will also assume proportionality between the delay
functions, so that and for
some constants . We have assumed that the verification
delay is a function of rather than the last increment

in the process. This is because even though the task is
completed in incremental steps, the verification may require that
the user start from the beginning. For instance, in the controlled
flooding example, this verification means sending a suppression
message from the source node to all nodes within the range that
includes the target, and it is thus a function of the location of
the target. For some applications, this verification delay may be
more appropriately modeled as a function of the last task level
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increase step (or as a constant). Such a change in the model
makes the problem quite different from the one examined here
and is thus out of the scope of this paper.

We let denote the expected cost of using strategy for a
given task level . This can be calculated as follows:

Consider an omniscient observer that knows in advance, and
does not need to pay the verification cost . The expected
cost of this genie is . Thus, we can take the ratio be-
tween and to form a similar worst-case perfor-
mance measure analogous to the one used for P1. Notice that
even if the genie was required to pay upon completing
the task, this would simply change his expected cost to

. Thus, the worst-case performance measure in this
case would simply be a rescaling of the results when not paying
a verification cost.

Similarly, the expected delay is given by

, which can
be simplified as follows:

(42)

Meanwhile, the expected delay of the omniscient observer
is . We can thus define and
analogously to and of (5) and (8) by replacing
and with and , respectively. That is,
is the set of all admissible discrete strategies satisfying

. Similar to the steps taken in (9)
and (10) for P1, we can show that there is no loss of generality
in choosing particular values of and . For convenience,
we will assume . The results for this case can be
generalized to the case of by proper rescaling.

B. Optimal Strategies for P2

Using the formulation described in the previous section, we
have the following results.

Theorem 6: When , for some
, and for some , we have for any

fixed

(43)

This minimum worst-case ratio is achieved by using the strategy
with .

Theorem 7: Consider , for some
, and for some . Then, we have

for any fixed

(44)

where this minimum worst-case ratio can be achieved by
the discrete strategy , where denotes strategy

.

We can prove Theorem 6 similarly to the way we proved The-
orem 1 in Section IV. For brevity, the complete proof is omitted;
a sketch of the proof is provided as follows. First, it can be
shown that the following inequality holds for any random vari-
able :

(45)

where is the set of all admissible such that
.

To obtain a tight upper bound to the right-hand side, we con-
sider the following problem.

Problem 2: Suppose . Let

, and

, for some and for all . Consider
the following constrained optimization problem:

(46)

Solution: The optimal strategy for this problem satisfies
for all , where is

(47)

The optimal cost ratio is given by

The solution for problem 2 is proven similarly to problem 1.
Using this solution, we see that as approaches from above,
the optimal cost ratio has the following limit:

(48)

Thus, we have the following.

Lemma 6: When for , for any
, the best worst-case cost ratio is lower bounded

by the following:
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Therefore, any strategy in that achieves a worst-case cost
ratio of must be optimal. It can be shown

that strategy achieves this worst-case

cost ratio by using the following equation that relates and
for any :

Thus, by using similar steps to the proofs of Lemmas 3 and 4,
we have the following:

where and is the function defined in Lemma
4. Plugging (40) into this equation, we can thus show that the
worst-case ratio of is given by .

Finally, to show that belongs to , we note that if
for all , then by comparing (2) and (42)

under the assumptions , , and . Thus,
from Lemma 3 and (39), the worst-case delay ratio of is .
Thus, we have shown is in , therefore completing the proof
of Theorem 6.

The proof of Theorem 7 is also very similar to the proof for
Theorem 3, and therefore, only a sketch of the proof is provided
in part H of the Appendix.

VI. APPLICATIONS, EXAMPLES AND DISCUSSION

A. Cost-Delay Tradeoff for P1

Having derived optimal strategies for any delay constraint,
it is worth examining how the delay constraint affects the
minimum achievable worst-case cost ratio. Fig. 2 depicts the
tradeoff between optimal worst-case cost ratio as given by The-
orem 1 and the delay constraint when . The
dotted portion of each curve indicates when the delay constraint
is not binding, i.e., for , respectively. In
these cases, the optimal unconstrained strategy (using )
has a minimum worst-case cost ratio of . Note that the plot is
logarithmic. As approaches from above, the best worst-case
cost ratio approaches for all . Hence, as the constraint on
delay becomes tighter, the minimum worst-case cost increases
unboundedly.

For any fixed , as increases, the minimum worst-case
cost also increases. This can be understood by fixing some
delay function . As increases, the cost function

increases faster. For any given delay con-
straint, it then becomes more difficult to achieve a low cost
ratio.

B. Examples of P1

We present an example scenario where the delay function
grows linearly in the IL value used, while the cost function
grows quadratically. Specifically, consider for all

and so . As mentioned earlier, for the

Fig. 2. Logarithmic plot of the minimum worst-case cost ratio as a function of
the delay constraint , when . Dotted portions indicate when
the delay constraint is not binding and hence the unconstrained strategy of The-
orem 1, part 2) is optimal. For , the best worst-case cost ratio is for all
three curves.

Fig. 3. Plot of cost and delay ratios of optimal strategies under different delay
constraints, when cost is quadratic and delay is linear, i.e., for

. Note that the delay ratio and cost ratio curves approach their maximum
values very rapidly.

flooding search application, this could be a good representation
of a two-dimensional network, where transmissions are on the
order of , and the delay is proportional to number of hops.

From Theorem 1, the optimal strategy is
whenever . When , the optimal strategy
is . Fig. 3 depicts the cost and delay ratio curves,
with respect to task level, of the corresponding optimal strate-
gies when , and .

Note that both the delay and cost ratio curves approach their
maximum values very rapidly. Hence, the worst-case value of
the cost and the delay under asymptotic maximum permissible
IL (as ) can approximate the performance when is
finite. At the same time, the worst-case is approached asymp-
totically. Hence, the cost (delay) ratio at any finite task level is
less than the worst-case cost (delay) ratio. Also note that the cost
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and delay ratio curves are smooth and nearly flat with respect
to task level. Thus, the actual task level does not significantly
change the performance of these strategies. One can view this
as a built-in robustness for both the cost and delay criteria.

Similar results hold for other values of and , and other
functional forms of and . They are not repeated here.

C. Comparison of P1 Strategies

It was shown in [2] and [12] that when adopting a worst-case
cost measure, randomized strategies outperform deterministic
ones. The results of the previous sections show that randomized
strategies also perform better when delay constraints are added.
Here we illustrate this in more detail.

Note that both the optimal deterministic strategy for Problem
1 and the optimal randomized strategies of Section IV-C share
the property that the costs of the IL values grow geometrically.
That is, for any realization, for all . It
was shown in [3] that the unconstrained optimal deterministic
strategy under linear cost is also a geometric sequence:

for all .
Below we compare deterministic and randomized geo-

metric strategies to examine the effect of randomization.
For deterministic geometric strategies with parameter ,

for all . Consider when both the
cost and the delay are linear, so for all .
Then, for any and , where ,
we have

For each , this ratio is maximized by taking the limit as ap-
proaches from above. The maximum value of this ratio over
all is derived by letting , giving

(49)

which is strictly greater than for all values of . At the same
time, similar calculations show that the worst-case cost ratio for
such strategies is .

Now consider the randomized strategies ,
shown to be optimal in Theorem 1. Every realization of is
a geometric deterministic strategy with growth rate . For any

and , it was shown that the worst-case cost ratio of
is and the worst-case delay ratio is . In addition,

there is an interesting interpretation of these strategies. Specif-
ically, if denotes a random variable uniformly distributed in
the interval , then for any , the strategy has costs satis-
fying for all . Thus, the costs of
ILs grow geometrically.

In Fig. 4, we plot the worst-case cost and delay ratios, as
functions of , for the aforementioned geometric deterministic
and randomized strategies. Note that for any , the randomized
strategy achieves a lower worst-case cost and a lower worst-case
delay than its deterministic counterpart. Hence, randomization
has the effect of decreasing the worst-case cost and delay at the
same time.

Fig. 4. Comparison of deterministic and randomized strategies as a function of
, for the strategies discussed in Section VI-C. Note that for any , the random-

ization achieves lower worst-case cost ratio and delay ratio.

In addition, note that the worst-case delay ratio of the random-
ized strategies approaches as , but for the fixed strate-
gies, this limit is . In fact, for randomized geometric strategies
using , the worst-case delay ratio is always below . The
class of optimal randomized strategies in Theorem 1 used
for all values of . Therefore, even by arbitrarily increasing the
value of for deterministic geometric strategies, it is not pos-
sible to match the worst-case delay ratio of the optimal random-
ized geometric strategies that we have derived in this study.

By varying the cost/delay functions and , the curves in
Fig. 4 may change but the general relationship between random-
ized and deterministic strategies will still hold.

D. Comparison Between P1 and P2

As mentioned in Section V-A, problems P1 and P2 differ in
how the cost and the delay are applied. For P1, the user starts the
task from scratch during each round and thus pays the full cost
and delay of using an IL. By contrast, in P2, the user is allowed
to resume her previous attempts during each round and thus pays
the incremental cost and delay associated with increasing the IL.

In some applications, the user may have the option of
choosing between strategies that fit the description of P1
(which we call a P1 strategy) or those that fit the description of
P2 (P2 strategy). Thus, in this section, we provide a comparison
between the optimal P1 and P2 strategies.

We make the following assumptions for comparing a P1
strategy and a P2 strategy. First, we assume that the same cost
function describes the cost for both strategies. We will
assume that so that the time it takes for the user
to start from scratch (for both strategies) is the same. Finally,
recall that for P2 we assumed an extra cost for
the P2 strategy.

Note that the results we will obtain under the above assump-
tions can be generalized to the case when the costs and delay
functions for the P1 and P2 strategies are proportional, because
we showed earlier that relaxing this assumption simply scales
the delay constraints in P1 and P2. Thus, with these assump-
tions, we can use Theorems 1 and 6 to analyze the performance
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Fig. 5. Plot of the minimum worst-case cost ratio as a function of the delay
constraint for both P1 and P2 strategies, when and .

of each of these schemes. Fig. 5 depicts the minimum cost ratio
for the P1 and P2 schemes when (so

).
Note that for large , the P2 scheme performs better. This is be-

cause if the delay is not a factor, then the minimum cost strategy
is to increase IL by the smallest possible increment after every
round. Such a strategy incurs high delay, but only a minimal cost
is committed for every round. Thus, for larger delay tolerance,
the P2 strategy performs better because more low-cost strategies
are admissible. On the other hand, when is small, then the op-
posite is true. As is varied between and , the curve for the P2
strategy essentially shifts up and down, but the general relation-
ship described earlier between P1 and P2 still holds.

VII. CONCLUSION

In this paper, we studied a class of sequential constrained
resource allocation problems where an individual must decide
how much effort (IL) to apply for completing a task while con-
suming minimal resources. We presented a constrained opti-
mization framework in order to derive strategies that minimize
a worst-case cost measure subject to a worst-case delay con-
straint. Optimal strategies were obtained in the continuous as
well as discrete cases for ILs and their performance was studied.
These results were used to discuss the tradeoff between the cost
and the delay using this type of method.

APPENDIX

A. Solution to Problem 1
To begin, we calculate the mean of object location cost and

delay, noting that takes values on

(50)

(51)

Using (2) to evaluate the delay ratio for (deterministic)

(52)

By rearranging (52) and observing that only the numerator of
the cost ratio depends on , Problem 1 is equivalent to

Therefore, we define the Lagrangian for

A necessary condition [10] for optimality of is that the partial
derivative of with respect to is , for all . In other words

(53)

Because the derivative of the cost function is strictly positive and
, then (53) is satisfied if and only if the term inside

the brackets is equal to . Setting this term equal to , letting
for notational convenience, and rearranging

yields the following recursion for :

(54)

Hence, any optimal strategy must satisfy the recursion given by
(54). Let for all . This quantity indicates
the relative amount of cost increase after every unsuccessful at-
tempt. Then, (54) reduces to

(55)

Note that the value of uniquely defines the remaining values
for all . At the same time, the entire sequence
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uniquely defines the strategy. Hence, it remains to determine
values of that define optimal strategies.

Lemma 7: Fix . A necessary condition for optimality
is that for all , where is the unique solution to
the following equation:

(56)

Hence, any optimal strategy for Problem 1 will have costs in-
creasing geometrically by factor .

Proof: It should be noted for completeness that (56) has
a unique solution because the function is strictly in-
creasing in (this can be seen by differentiating with respect to

), is equal to when , is continuous, and increases
to as . At the same time, is a nonnegative
finite quantity.

Note that if , then for all . Hence, it
suffices to prove that is necessary for optimality. We
proceed by contradiction.

Case 1: .
Note that if for some , then we have the following:

where the last inequality follows from the fact that
is strictly increasing in , as noted earlier. Hence, we have the
following: if for some , then . This means
that because , then , and so on. Hence, by
induction, the form a strictly increasing sequence, where

for each ; so for each by rearranging the recursion
(55)

(57)

where the inequality holds because , and the last
equality holds from the definition of . The inequality becomes
strict when .

Note that for any , we have by the definition of that
. Hence, the expected cost of any such

strategy is given by

(58)

where the product is defined to be equal to if .

We have shown that if , then for all .
Hence, for any such strategy where , the expected cost is
lower bounded by

(59)

However, note that the right-hand side of (59) is simply the ex-
pected cost for a strategy such that for all [plug
into (58)]. Hence, from (59), any strategy where for all

has an expected cost strictly greater than using , and
these strategies cannot be optimal.

Case 2: .
Note that for any optimal strategy, for all , because

only strictly increasing IL sequences can be optimal. Hence,
the sequence is always lower bounded by . Note that if

for some , then we have the following:

Hence, if , then , and so on.
Because the are bounded, then the sequence converges

(since all monotonic bounded sequences converge). Let
. Because the are strictly less than and form a

decreasing sequence, then . On the other hand, we have

We defined as the unique number satisfying (56). Because we
have just shown that is bounded and also satisfies the same
equation, we have that . However, this contradicts the
fact that , which we showed earlier. Hence, it is not
possible to have if the are bounded.

Therefore, combining Case 1 and Case 2 proves that
for all is the only possibly optimal strategy for fixed .

For any strategy where , we have the following:
. Therefore, we have the

following geometric sum, which converges because (nec-
essary for increasing sequence) implies

(60)
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Using (60) into (52), we can see that it is possible to achieve a
delay ratio arbitrarily close to by choosing a sufficiently high
enough value of . Therefore, for every , there exists
a strategy achieving delay ratio below . Hence, the optimal
strategy for Problem 1 must satisfy the Kuhn–Tucker condition
(see [10] and [11])

(61)

Therefore, either or the delay constraint is satisfied
with equality. We use this to prove solutions for two cases, de-
pending on whether or .

Case 1: .
When , then and we have an unconstrained

optimization problem. In this case, from Lemma 7.
The summation in (60) is then equal to for this
value of . From (52), we know that dividing this summation by
(51) and then adding gives the delay ratio

From inequality (33) on , this delay ratio is thus strictly greater
than . Hence, this strategy does not meet the delay inequality
requirement.

Therefore, we seek solutions for which the delay con-
straint is met with equality, i.e., the term inside the brackets
of (61) is equal to . In this case, (60) needs to be equal to

, and solving for gives

(62)

From the earlier (56) relating and , we have that can be
calculated as

The cost ratio can be calculated by multiplying both sides of
(54) by and then summing over to give

The left-hand side sum is simply , so rearranging
and solving for gives

(63)

To evaluate this ratio, note that

(64)

Dividing by from (50) gives

(65)

Using (62), the corresponding , and (65) into (63) gives

(66)

Hence, (66) gives the optimal cost ratio when .
Case 2: .
As explained in Case 1, it follows from Lemma 7 that when

(the unconstrained case), then using is
optimal. Because this strategy is the optimal unconstrained
strategy, it achieves minimum average cost when it satisfies
the delay constraint. It was shown that the delay ratio for this
strategy is , which is always strictly less than

for all . Hence, for , the delay constraint
is not binding and the optimal strategy uses . From
(63), the optimal cost ratio is because .

B. Proof of Lemma 3

Because for all positive integers , then
. Let .

Then, for any

(67)

For any

(68)
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We use the following notation. Let denote the
expected delay of using strategy when . Similarly,

is the expected delay given that . Now consider
any real number . There must exist a positive integer

such that . Equivalently,
. Then, we have

(69)

Using (68), we obtain the following:

(70)

Letting , we obtain the following:

(71)

where we have used the fact that (by
the relationship between expectation and tail distribution),
and by the fundamental
theorem of calculus. Note that the following is true for any

and , where : . This
statement holds because all terms except for the last one in (71)
are the same for and , and the last term increases with in-
creasing . In addition, when ranges from
to , then takes values between and .

Hence, the following is true, where for
notation:

because only the last (rightmost) term in (71) depends on , and
as goes to , then this term goes to .

C. Proof of Lemma 4

First note from Definition 3 that for all
positive integers . Let for
any . Note that can be calculated from (67) when

, i.e., . Thus, .

Similarly, we can calculate from (68) using
.
We now use the following notation. Let denote the

expected cost of using strategy when . Similarly,
is the expected cost given that .

Now consider any real number . There must exist a
positive integer such that , or in
other words, . Then,
the expected cost can be calculated using the earlier equation
for

Comparing this to (69) for the case , which implies
, we have the following relationship between

and , with :

(72)

Thus, combining this relationship with (71) for , we
obtain the following:

(73)

Note the following is true for any and :
. This statement holds because the first two terms

for the cost ratio above are the same for and , and the last term
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increases with increasing . In addition, when ranges from
to , then takes values between

and . Hence, the following is true, where
for notation:

which completes the proof of the lemma.

D. Proof of Lemma 5

Fix any . Note that if and only if
, because is an integer. Therefore, for all ,

(with probability ). In addition,
, because the delay function is increasing. This

gives us

(74)

This proves the delay part of the lemma. Similarly, being
increasing implies . Therefore

(75)

which establishes the inequality on the expected cost.

E. Proof of Theorem 2

For , consider the strategy
of Theorem 1. Let .

From Lemma 5, we have that implies .
Also from Lemma 5, for all integers . From
Theorem 1, the worst-case ratio of is . Hence, the
worst-case cost ratio of over all integers is less than or equal
to , which establishes the theorem for .

For , similar steps can be applied to the floor of
to establish the theorem.

F. Proof of Theorem 3

Because , then from Theorem 2, the best worst-case
cost ratio is upper bounded as follows.

1) For

(76)

2) For

(77)

Hence, to prove the theorem, it suffices to prove that the min-
imum worst cost ratio is upper bounded by the above quantities.

Consider any . For any integer

(78)

because for all , and is strictly
increasing and continuous. Hence, we have

(79)

We can repeat the above steps for the delay to obtain for any

(80)

because .
Next, it can be shown similarly to Lemmas 1 and 2

(81)

(82)

Define similarly to in (8), but replacing with
. Also, define similarly to in (30) but

replacing with . In other words

(83)

(84)

Note that from (80) and , we have that . There-
fore, if we can prove a lower bound on the best cost ratio in ,
the same bound will also apply to . To proceed, we use the
following:

(85)

We will use this inequality to obtain a tight upper bound. In order
to do this, we use the following.
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Lemma 8: Let be the random variable with tail distri-

bution , and let be the random

variable with , for some
and for all . Then, we have for

(86)

(87)

Proof: Because for all , we have that

for all . Hence, to complete the proof, we
need to show that for any , there exists such that

for all .

Fix . Because , there exists a

such that for all . Let denote the
indicator function, so if is true; otherwise, it equals

. Thus, we have

(88)

At the same time, we have

because and , which ap-
proaches as goes to . Hence, there exists an such that
for all

(89)

Therefore, combining (88) and (89) gives for all

(90)

which completes the proof for the cost function.
Note that because and , then

. Hence, we can repeat the above steps, replacing
with and with to prove the delay portion of

the lemma.

By modifying Problem 1 and using the above lemma, we ob-
tain the following tight upper-bound.

Problem 3: Define and as in Lemma 8

Solution: Similar to Problem 1, the optimal cost ratio for this
problem satisfies the following.

1) For

(91)

where the limit is reached from below.
2) For , then

(92)

Proof: Because only the numerator of the cost ratio de-
pends on , then Problem 3 is equivalent to the following:

We note that for sufficiently close to , the above problem can
be solved by using the solution to Problem 1. To see this, define
the following:

(93)

Note that from Lemma 8.
If , then this implies

(94)

Hence, there must exist an such that for all , we
have . Rearranging this gives for all

(95)

which is equivalent to (33), with replacing . Note also that
implies . Hence, the above

problem is equivalent to part 1) of Problem 1, with replacing
, so using (66), we have the following for the optimal strategy:

(96)

Therefore, we have the following limit:

This establishes (91).
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If , then . Hence, we can use the
solution to part (2) of Problem 1, to obtain

which establishes (92).

Plugging this result into (85) gives that for

(97)

Finally, using the fact that gives

Combining this with Lemma 1 and Theorem 2 proves the the-
orem for .

Similar steps can be applied for the case .

G. Proof of Theorem 4

We note that Theorem 4 follows from Theorem 1 as follows.
Consider any , and let be the unique number in
satisfying . Recall that is the set of strategies whose
worst-case cost is less than . From Theorem 1, we can see that
the worst-case delay of any strategy in must be greater than

(otherwise, there is a contradiction). Thus, we have

(98)

Now consider strategy with . We
have shown earlier that this strategy has worst-case cost ratio of

and worst-case delay ratio of . Therefore,
this strategy is in and achieves the lower bound established
in (98), therefore proving the first half of Theorem 4.

The second half of Theorem 4 can be proven using similar
steps as the proof of Theorem 2.

H. Sketch of the Proof of Theorem 7

First, using the same steps for proving Lemma 5, we can show
that for any strategy , and any , we have
and . Thus, it follows from Theorem 6 (by applying
the same reasoning used to prove Theorem 2) that we have the
following bound on the optimal discrete strategy:

(99)

where strategy described by Theorem 7 has worst-case cost
matching the above bound. Thus, to complete the proof, we need
to show that the minimum worst-case ratio is upper bounded by
the above quantity.

Similar to (78) and (79), we have the following:

(100)

Furthermore, (80) also holds for any because for
all .

Define similarly to in (83), and similarly to
in (84), but replacing with in both definitions.

Note that from (80) and , we have that .
Therefore, if we can prove a lower bound on the best cost ratio
in , the same bound will also apply to . To proceed, we
use the following:

(101)

To use this inequality to obtain a tight upper bound, we con-
sider the following problem.

Problem 4: Define and as in Lemma 8

Solution: Similar to Problem 2, the optimal cost ratio for this
problem satisfies the following:

The derivation for this solution follows the same steps as the
solution to Problem 3, and is therefore not repeated.

Plugging this result into (101) gives

(102)

Finally, using the fact that gives
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