
1

Sufficient Conditions on the Optimality of Myopic
Sensing in Opportunistic Channel Access:

A Unifying Framework
Yang Liu, Mingyan Liu and Sahand Haji Ali Ahmad

Abstract—This paper considers a widely studied stochastic
control problem arising from opportunistic spectrum access
(OSA) in a multi-channel system, with the goal of providing
a unifying analytical framework whereby a number of prior
results may be viewed as special cases. Specifically, we consider
a single wireless transceiver/user with access to N channels, each
modeled as an iid discrete-time two-state Markov chain. In each
time step the user is allowed to sense k ≤ N channels, and
subsequently use up to m ≤ k channels out of those sensed
to be available. Channel sensing is assumed to be perfect, and
for each channel used in each time step the user gets a unit
reward. The user’s objective is to maximize its total discounted
or average reward over a finite or infinite horizon. This problem
has previously been studied in various special cases including
k = 1 and m = k ≤ N , often cast as a restless bandit problem,
with optimality results derived for a myopic policy that seeks
to maximize the immediate one-step reward when the two-state
Markov chain model is positively correlated. In this paper we
study the general problem with 1 ≤ m ≤ k ≤ N , and derive
sufficient conditions under which the myopic policy is optimal
for the finite and infinite horizon reward criteria, respectively. It
is shown that these results reduce to those derived in prior studies
under the corresponding special cases, and thus may be viewed
as a set of unifying optimality conditions. Numerical examples
are also presented to highlight how and why an optimal policy
may deviate from the otherwise-optimal myopic sensing given
additional exploration opportunities, i.e., when m < k.

Index Terms—Opportunistic Spectrum Access (OSA), POMDP,
restless bandits, index policy, myopic policy, sufficient condition

I. INTRODUCTION

We consider the following stochastic control problem: There
are N uncontrolled, independent and identically distributed,
two-state discrete-time Markov chains, with the two states de-
noted “1” and “0” respectively, and the transition probabilities
given by pij , i, j = 0, 1. The system evolves in discrete time.
In each time instance, a user selects exactly k out of the N
processes and is allowed to observe their states. The user is
allowed to receive a unit reward from a process observed to be
in state 1, but the total reward is limited at m,m ≤ k, at each
step. The processes that the user does not select do not reveal
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their true states. The objective is to derive a selection strategy
for the user so that its total expected discounted or average
reward over a finite or infinite horizon is maximized. This is
a partially observed MDP (POMDP) problem [1], [2] due to
the fact that the states of the underlying Markov processes are
not fully observed at all times; as a consequence the system
state as perceived by the user is in the form of a probability
distribution, commonly referred to as the information state or
belief state of the system [3]. More specifically, this problem is
an instance of the restless bandit problem with multiple plays
[4], [5], [6].

The above problem abstraction and a number of its vari-
ations have been quite extensively studied in the past few
years in the context of multichannel opportunistic spectrum
access (OSA), including [7], [8], [9], [10], [11]. Within this
application, each Markov process represents a wireless channel
in a discrete time setting, whose state transitions reflect
dynamic changes in channel conditions caused by fading,
interference, and so on, with state 1 denoting a “good” or
available state, and state 0 the “bad” or unavailable state, in
which communication may succeed and fail, respectively. A
user wishing to transmit must first sense the state of a channel
at the beginning of a time step, and can only transmit in that
channel if it is sensed to be in the “good” state. The user
cannot sense more than k channels, nor can it transmit in more
than m at a time. Such constraints come from both hardware,
e.g., the number of antennas available, and from performance
requirements, e.g., channel sensing takes time so a stringent
delay requirement can limit the amount of sensing allowed.
Finally, if all k selected channels are in the “bad” state, the
user has to wait till the beginning of the next time step to
repeat the selection process. While this model captures some
of the essential features of multichannel opportunistic access,
it has the following limitations: the simplicity of the iid two-
state channel model, and the implicit assumption that channel
sensing is perfect and the lack of penalty if the user transmits
in a bad channel due to imperfect sensing. Nevertheless, this
model allows us to obtain analytical insights into the problem,
and more importantly, insights into the more general problem
of restless bandits with multiple plays.

Prior work investigated various special cases of the model
outlined above, henceforth referred to as the (k,m) model.
Specifically, authors derived sufficient conditions for guar-
anteeing the optimality of a greedy/myopic sensing for the
(1, 1) case, i.e., k = m = 1 with N = 2 in [12], with
positively correlated channel model. [7] further proved the
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performance bounds of a greedy/myopic policy for this case
(as well as negatively correlated channels) and [13] proved the
same for the (N − 1, N − 1) case, while [9], [10] looked for
provably good approximation algorithms for a similar prob-
lem but relaxing the requirement that all Markov chains are
identically distributed. The assumption of perfect sensing was
relaxed in [14] with results regarding greedy/myopic sensing’s
performance bounds. Our own prior work [8] established the
optimality of the greedy policy for the (1, 1) case for arbitrary
N under the condition p11 ≥ p01, i.e., when a channel’s state
transitions are positively correlated. This result was further
generalized in [11] to the case of (k, k), i.e., m = k ≤ N
with arbitrary N .

In view of the above existing work, the main contribution
of this paper is the study of the more general (k,m) problem
with 1 ≤ m ≤ k ≤ N . For this problem we derive sufficient
conditions under which the myopic policy is optimal for
the finite and infinite horizon reward criteria, respectively,
for both the positively correlated and negatively correlated
channel models. Furthermore, we show that they reduce to
those derived in prior studies under the corresponding special
cases, and thus may be viewed as a set of unifying optimality
conditions. Our main results, a set of sufficient conditions for
the optimality of the myopic policy, are summarized in Table
I, where 0 < β < 1 is the discount factor and R and R are
two constants that depend on parameters m and k.

The sufficient condition for the finite horizon problem is
on β, and is derived using a sample path argument we first
introduced in [11]. The sufficient condition for the infinite
horizon average reward problem is on p11 and p01, and is
based on a few bounding techniques and the one-step deviation
principle. Both bounds apply to the infinite horizon discounted
reward problem. Indeed the bound on p11 and p01 also applies
to the finite horizon problem, but the bound on β does not
apply to the infinite horizon average reward problem as we
detail in subsequent sections.

It should be noted that similar results from a parallel
development have recently addressed the case of positively
correlated channels over a finite horizon for m = 1, k > 1
(in [15]) and for 1 ≤ m ≤ k (in [16]), respectively. They
correspond to the upper left entry in Table I, and rely on
the same sample path argument introduced in [11]. Paper
[17] considers the additional relaxation to independent but
non-identical channels (positively correlated and over a finite
horizon). However, due to this generality the results obtained
in [17] are weaker, i.e., their sufficient condition does not
reduce to that in the special case of IID channels. By contrast,
all sufficient conditions given in Table I reduce precisely to the
best known results given in prior studies in respective special
cases, thereby providing a unifying set of conditions.

The remainder of this paper is organized as follows. Section
II presents the problem along with preliminary results. Sec-
tions III and IV derive the optimality conditions for the finite
horizon problem with positively and negatively correlated
channels, respectively. Sections V and VI are similarly orga-
nized for the infinite horizon problem. Discussion and related
work are given in Section VII and Section VIII concludes the
paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

Denote the set of channels by N = {1, 2, ..., N}. The
system operates in discrete time t = 1, 2, .... In each step
t, the channel state transitions at t−, followed by channel
sensing at t. The user is limited to sensing at most k channels
each time, thus its observation of the system when making
decision at time t is imperfect. A sufficient statistic for optimal
decision making, or the information state of the system [3],
is given by the conditional probabilities of the state each
channel is in given all past observations and actions. Since
each channel can be in one of two states, we denote this
information state at time t by ω̄(t) := [ω1(t), ω2(t), ..., ωN (t)],
where ωi(t) is the conditional probability that channel i is
in state 1 at time t1. The user’s sensing strategy is denoted
by π1:T = [π(1), π(2), ..., π(T )], where π(t) : ω(t) → Ωk,
Ωk ⊂ N denoting a set of k channels. π(t) will be referred to
as a policy, and Π denotes the set of all admissible policies,
while Π̄ denotes the set of all admissible T -step policies.
Due to the Markovian nature of the channel model, future
information state is only a function of the current information
state and the current action. It follows that the information
state of the system evolves as follows. Given ω̄(t) and action
π(t), there are three possible state updates: (1) ωi(t+1) = p11

if i ∈ π(t) and it is observed in state 1; (2) ωi(t + 1) = p01

if i ∈ π(t) and it is observed in state 0; (3) if i 6∈ π(t)
then ωi(t + 1) = τ(ωi(t)), where τ(·) : [0, 1] → [0, 1] is the
updating function defined as

τ(ω) = ω · p11 + (1− ω) · p01, 0 ≤ ω ≤ 1 . (1)

If a channel is sensed to be in state 1 and the user decides
to use it for transmission, then it gets a unit reward for that
time step. The immediate one-step reward under state ω̄ and
sensing action π is denoted by Rk,mπ (ω̄), 1 ≤ m ≤ k.

Example 1. The one-step reward of the (k, 1) model (sensing
k ≥ 1 channels but using no more than one for data
transmission) given policy π ∈ Π is

E[Rk,1π (ω̄)] = 1−
∏
i∈π

(1− ωi), 1 ≤ k ≤ N . (2)

Example 2. The one-step reward of the (k, k) model given
π ∈ Π is

E[Rk,kπ (ω̄)] =
∑
i∈π

ωi, 1 ≤ k ≤ N . (3)

The objective for the finite horizon problem is to maximize
the total expected discounted reward over T time steps, with
a discount factor 0 < β ≤ 1, given an initial state ω̄:

(P1): J π
T (ω̄) = max

π∈Π
Eπ[

T∑
t=1

βt−1Rk,mπ(t)(ω̄(t))|ω(1) = ω̄]

1Note that it is a standard way of turning a POMDP problem into a classic
MDP problem by means of the information state, the main implication being
that the state space is now uncountable.
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Channel model Finite horizon Infinite horizon discounted reward Infinite horizon average reward

p11 ≥ p01 β ≤ R/R ⇒ Both sides apply. ⇐ p11−p01
1−(p11−p01)

< R/R

p11 < p01 β ≤ R/(R+R) ⇒ Both sides apply. ⇐ min{p01 − p11,
1

2(p00+p11)
} ≤ R/R

TABLE I
SUMMARY OF RESULTS

The objective for the infinite horizon problem is to maximize
the total expected discounted reward (with 0 < β < 1) or the
average reward:

(P2): J π
β (ω̄) = max

π∈Π
Eπ[

∞∑
t=1

βt−1Rk,mπ(t)(ω̄(t))|ω̄(1) = ω̄]

(P3): J π
∞(ω̄) = max

π∈Π

Eπ[ lim
T→∞

∑T
t=1R

k,m
π(t)(ω̄(t))

T
|ω̄(1) = ω̄]

As we shall see a main technical challenge posed by the
general (k,m) problem is the non-additive nature of the reward
function, see e.g., (2), as opposed to the additive reward in the
special case (k, k) as shown in (3), in addition to the usual
difficulties in seeking structural solutions to restless bandit
problems. As in previous works, we will focus on a simple
myopic policy that aims at maximizing the immediate, one-
step reward at each time step, and investigate under what con-
ditions this policy is optimal. In the remainder of this section
we present a number of properties of the above non-additive
reward function and the operation of the myopic policy in
the context of the dynamic programming representation of the
above optimization problems.

B. Properties of the expected reward E[Rk,mπ (ω̄)]

For convenience of notation, the vector ω̄ will be frequently
written as (ωi, ω−i) to emphasize the i-th element and the rest
of the vector, or as (ω1, · · · , ωi, · · · , ωN ). The first property
below suggests that the order in which these elements appear
does not matter. For this reason later we will sort them in
descending order.

Proposition 1 (Symmetric). Under any admissible policy π,
∀i, j ∈ N and ωi = ωj we have

E[Rk,mπ (ω1, ..., ωi, ..., ωj , ..., ωN )]

= E[Rk,mπ (ω1, ..., ωj , ..., ωi, ..., ωN )] . (4)

The above property is quite self-evident and its proof is thus
omitted.

Proposition 2 (Increasing). For ω
′

i > ωi we have

E[Rk,mπ (ω
′

i, ω−i)] ≥ E[Rk,mπ (ωi, ω−i)] . (5)

Proof. If i 6∈ π, then the two sides must be equal because all
other elements are the same. Consider the case i ∈ π. The

immediate one-step reward can be expressed in the following
sequential form:

E[Rk,mπ (ωi, ω−i)] = ωi · (E[Rk−1,m−1
π−i

(ω−i)] + 1)

+ (1− ωi)E[Rk−1,m
π−i

(ω−i)] , (6)

where π−i denotes the same set of channels in π but excluding
i. This is because since all available channels generate the
same reward, we may consider two possibilities of obtaining
the total reward: either channel i is available or not. Under the
former, we receive the unit reward plus the reward from the
remaining k−1 channels in π, using up to m−1 of them; under
the latter, the total reward now comes from the remaining k−1
channels in π, using up to m of them. Applying (6) to both
sides of (2), in order to show the inequality in (2) it suffices
to show that

E[Rk−1,m−1
π−i

(ω−i)] + 1 > E[Rk−1,m
π−i

(ω−i)] . (7)

Next we show this is true. Let Pπ−i
(l) denote the probability

that out of k − 1 channels in π−i, exactly l are sensed to be
good under state ω. We have

E[Rk−1,m−1
π−i

(ω−i)] + 1 =

m−2∑
l=0

Pπ−i
(l) · l

+

k−1∑
l=m−1

Pπ−i
(l) · (m− 1) + 1

>

m−2∑
l=0

Pπ−i
(l) · l + Pπ−i

(m− 1) · (m− 1)

+

k−1∑
l=m

Pπ−i
(l) · [(m− 1) + 1]

=

m−2∑
l=0

Pπ−i
(l) · l + Pπ−i

(m− 1) · (m− 1)

+

k−1∑
l=m

Pπ−i(l) ·m

= E[Rk−1,m
π−i

(ω−i)] . (8)

�

The fact that (6) is an affine function of ωi also leads to the
next result.

Proposition 3 (Affine). E[R
(k,m)
π (ω̄)] is an affine function
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w.r.t. each ωi,∀i ∈ π, i.e.,

E[Rk,mπ (ωi = x, ω−i)]− E[Rk,mπ (ωi = y, ω−i)]

= (x− y) · {E[Rk,mπ (ωi = 1, ω−i)]− E[Rk,mπ (ωi = 0, ω−i)]}
(9)

C. Dynamic programming representation

Throughout this paper we will consider the general (k,m)
case, and for simplicity will use Rπ(ω̄) thereafter instead of
Rk,mπ (ω̄) whenever there is no confusion. The optimization
problem (P1) can be solved using dynamic programming:

VT (ω̄) = max
π∈Π

E[Rπ(ω̄)] , (10)

Vt(ω̄) = max
π∈Π

E[Rπ(ω̄)] + β ·
∑

li∈{0,1},i∈π

∏
i∈π

(ωlii (1− ωi)1−li)

· Vt+1(p11[
∑
i∈π

li], .., τ(ωN−π), .., p01[k −
∑
i∈π

li]) ,

(11)

where we have adopted the following notation for simplicity:
• p01[x]: a vector [p01, p01, ..., p01] of length x.
• p11[x]: a vector [p11, p11, ..., p11] of length x.
• N − π : set of channels not in the sensing strategy π.
• li : binary variables indicating channel i’s state.

In (11), the state vector in Vt+1(·) consists of three parts:
channels in π and sensed to be good (their next state is p11);
channels in π and sensed to be bad (their next state is p01);
and channels not sensed (their next state is τ(ωj)).

D. The myopic/greedy sensing policy

The myopic/greedy sensing policy selects a set of channels
so as to maximize the one-step immediate reward. If we sort an
information state ω̄(t) in descending order such that ω1(t) ≥
ω2(t) ≥ ... ≥ ωN (t), then myopic sensing, denoted by πg , is
one that selects the first k channels (highest probabilities of
being good), i.e, πg = {1, 2, ..., k} for a descending ordered
ω̄. Note however πg can be applied to an arbitrarily ordered
ω̄; it will simply selects the first k channels. As detailed in [7],
[11] the implementation of the myopic strategy is particularly
simple: it only requires the knowledge of the ordering of
the initial information state and the ordering of {p11, p01}.
Since this feature is repeatedly used in our analysis, below we
elaborate on this to make the paper self-contained.

For the case when p11 ≥ p01, the updating function
τ(ωi) is monotonically non-decreasing, i.e., τ(ω1) ≥ τ(ω2)
if ω1 ≥ ω2, implying that the ordering of channels not sensed
is preserved. The states of sensed channels are updated to
either p11 (if sensed good) or p01 (if sensed bad), noting
that p01 ≤ τ(x) ≤ p11,∀x ∈ [0, 1]. It follows that we
have the following simple implementation of the myopic
policy: Starting from a descending-ordered list of channels, the
policy selects the first k channels. Upon learning the sensing
outcome, those sensed to be good are placed at the front of
the list, those sensed to be bad at the end of the list, and those
not sensed are in the middle in their original order. By the
above observation, this new list is again in descending order,

and thus the policy again selects the first k channels for the
next time step, and the same process is repeated.

For the case with p11 < p01 we also have monotonicity
but in the opposite direction, i.e., τ(ω1) ≥ τ(ω2) if ω1 ≤ ω2.
Thus the ordering those not sensed is reversed at each time
step. Meanwhile p11 ≤ τ(x) ≤ p01,∀x ∈ [0, 1]. A similar
implementation thus follows: at each time step we place the
channels sensed as good to the end of the list, those sensed bad
at the front of the list, and those not sensed in the middle with
their ordering reversed. This produces a descending ordered
list so that at the next time step the policy again selects the
first k channels.

While both the expected one-step reward and the value
functions are invariant w.r.t. the ordering of ω̄, for simplicity
of presentation we will take ω̄ to be an ordered vector
for the remainder of this paper. Accordingly, the notation
(ωi, ω−i) is used to represent the following ordered vector:
(ωi, ω1, · · · , ωi−1, ωi+1, · · · , ωN ).

III. FINITE HORIZON, p11 ≥ p01

A. Optimality of myopic sensing

We begin by introducing the following two quantities:

R = max
ω−i∈[p01,p11]k−1

{E[Rπg (1, ω−i)]− E[Rπg (0, ω−i)]}

R = min
ω−i∈[p01,p11]k−1

{E[Rπg (1, ω−i)]− E[Rπg (0, ω−i)]}

R,R can be easily characterized for some commonly used
cases; some examples are shown below.

Example 3. (k,m) = (k, k), 1 ≤ k ≤ N In this case we
can sense up to k channels and use all those sensed to be
available. The one-step reward under πg is thus E[Rπg (ω̄)] =∑
i∈πg ωi =

∑k
i=1 ωi, and thus R = R = 1.

Example 4. (k,m) = (k, 1). Since we can use no more
than 1 channel, the one-step reward under πg is given by
E[Rπg (ω̄)] = 1 −

∏k
i=1(1 − ωi), and thus R = (1 −

p01)k−1,R = (1− p11)k−1.

We now present the main result of this section.

Theorem 1 (Optimality of Myopic Sensing). The myopic
sensing policy πg is optimal for (P1) under the condition 0 ≤
β ≤ R/R and for belief state ω̄ s. t. p01 ≤ ωi ≤ p11,∀ωi ∈ ω̄.

Remark 1. Note that the condition on ω̄ in the above theorem
is not overly restrictive, as p01 ≤ τ(ωi) ≤ p11 for any ωi,
implying that even if the initial belief ω̄ at time t = 1 does
not satisfy this condition, the theorem is applicable starting
from time t = 2.

To prove this theorem, we next introduce a number of lem-
mas. Define T N -variable functions Wt(·), t = 1, 2, · · · , T ,
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recursively as follows:

WT (ω̄) = E[Rπg (ω̄)]

Wt(ω̄) = E[Rπg (ω̄)] + β ·
∑

l̄∈{0,1}k
q(l̄; ω̄) ·Wt+1(

p11[

k∑
i=1

li], τ(ωk+1), .., τ(ωN ), p01[k −
k∑
i=1

li]),

(12)

where l̄ = {l1, · · · , lk}, and q(l̄; ω̄) :=
∏k
i=1(ωlii (1 −

ωi)
1−li), l1, l2, ..., lk ∈ {0, 1}.

Remark 2. A few remarks are in order on these functions
Wt(·), t = 1, 2, ..., T :

i) If ω̄ is in descending order, then applying πg at time
t is myopic. Moreover, the state vector within Wt+1(·)
retains the same descending order. This is because τ(ωi)
is increasing in ωi and p11 ≥ τ(ωi) ≥ p01 for any ωi.
Thus if ωk+1 ≥ · · · ≥ ωN , then p11 ≥ τ(ωk+1) ≥
· · · ≥ τ(ωN ) ≥ p01. This implies that selecting the first
k channels at t+ 1, i.e., πg would again be myopic.

ii) When ω̄ is in descending order of its components, Wt(ω̄)
is the expected discounted total reward starting from
state ω̄(t) at time t by following the myopic policy at
each time step. This is because Wt(·) takes on the same
recursive form as the value function, and at each time
step the myopic policy is used due to the descending
order of the state vector as noted above.

iii) When ω̄ is not in descending order, Wt(ω̄) as given
above represents the expected discounted total reward
of the following policy: It selects the first k channels
as listed in the vector ω̄ at time t; it then orders the
next state vector as follows: those channel sensed to be
good are listed first, followed by those not sensed at all,
in their original order in ω̄, followed finally by those
sensed to be bad. This process is then repeated.

iv) When j ∈ πg (1 ≤ j ≤ k), we can also conveniently
write Wt(ω̄) in the following form by singling out com-
ponent ωj and calculating the expected future reward
conditioned on the outcome of sensing channel j; this
expression is frequently used in our proofs:

Wt(ω̄) = E[Rπg (ωj , ω−j)] + ωjβ ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)Wt+1(p11[
∑
i6=j

li + 1], τ(ωk+1),

.., τ(ωN ), p01[k −
∑
i 6=j

li − 1]) +

(1− ωj)β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)Wt+1(p11[
∑
i 6=j

li]

, τ(ωk+1), .., τ(ωN ), p01[k −
∑
i6=j

li]), (13)

where l̄−j = {l1, · · · , lj−1, lj+1, · · · , lk}.

Key properties of the functions Wt(·), t = 1, 2, · · · , T are
presented below.

Lemma 1 (Monotonicity). Wt(ω̄
′
) ≥ Wt(ω̄), t = 1, 2, ..., T ,

for ω̄
′ � ω̄, with � denoting component wise larger than or

equal to.

Lemma 2 (Affine). Wt(ω̄), t = 1, 2, · · · , T , is an affine
function of each element of ω̄.

Proof. We prove this by induction on t. Consider WT (ω̄) and
an element ωj . If j /∈ πg , then WT (ω̄) is not a function of
ωj . If j ∈ πg , then E[Rπg (ω̄)] is an affine function of ωj by
Proposition 9. In either case the induction basis is established.
Suppose the lemma holds for all times t+ 1, t+ 2, · · · , T .

Now consider Wt(ω̄), and the case j /∈ πg . By the induction
hypothesis, the Wt+1(·) term in (12) is an affine function of
τ(ωj), which in turn is a linear in ωj . Since Wt(ω̄) only
depends on ωj through this Wt+1(·) function, by the definition
in (12), it follows that Wt(ω̄) is affine in ωj .

Consider the case j ∈ πg . In this case E[Rπg (ω̄)] and q(l̄; ω̄)
are both affine functions of ωj (by Proposition 9 and definition
of q(·), respectively). Meanwhile the Wt+1(·) term in (12)
does not depend on ωj as j ∈ πg . Thus Wt(ω̄) is again affine
in ωi. �

The next lemma provides two key inequalities that lead to
the proof of the main theorem in this section.

Lemma 3. For p11 ≥ ω1 ≥ ω2 ≥ ... ≥ ωN ≥ p01 and for all
t = 1, 2, · · · , T 2 , under the condition β ≤ R/R and x, y we
have:

(L1): R+Wt(ωN , ω1, ..., ωN−1) ≥Wt(ω1, ..., ωN ) , (14)
(L2): Wt(ω1, ..., ωj−1, x, y, ωj+2, · · · , ωN )

≥Wt(ω1, · · · , ωj−1, y, x, · · · , ωj+2, · · · , ωN ) .
(15)

Proof of Theorem 1: We prove the theorem by induction on
t.

Induction basis: That πg is optimal at time T is obvious due
to the increasing property of the expected one-step reward,
Proposition 2. Assume the myopic policy πg is optimal for
any given state vector ω̄ for times t+ 1, · · · , T .

Induction step: Suppose the optimal policy at time t under
state ω̄ is π∗ 6= πg . Accordingly, we can write the state vector
as (ω̂∗, ω̂−∗), where ω̂∗ := {ωj , j ∈ π∗} contains the proba-
bilities of those channels selected by π∗ and ω̂−∗ := ω̄ − ω̂∗,
sorted in descending order, contains those not selected by π∗.
Since the myopic policy is optimal starting from t+ 1 by the
induction hypothesis, the expected discounted reward of using
policy π∗ at time t followed by the myopic policy thereafter
is essentially given by V π

∗

t (ω̄) = Wt(ω̂∗, ω̂−∗), where ω̄ is in
descending order. However, by repeated use of L2 in Lemma 3,
sorting one element at a time, we have Wt(ω̄) ≥Wt(ω̂∗, ω̂−∗),
contradicting the claim. Therefore the myopic policy is also
optimal at time t. �

2The assumption of bounding ω̄ between p01 and p11 is in fact a rather
weak one. To see this it is easy to verify p01 ≤ τ(x) ≤ p11,∀x ∈ [0, 1];
thus if the initial belief falls between [p01, p11] (for example taking the initial
belief as the steady state distribution p01

p01+p11
, p11
p01+p11

), the assumption
holds immediately for any t.
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B. Special cases

We next interpret the result obtained above in a number of
special cases. Specifically, in the first four cases we show that
the condition derived above is sufficient but not necessary;
indeed in all these cases the myopic sensing policy is optimal
without any restriction on β. In the last case we show a
family of cases where a condition may be required on β for
the myopic sensing policy to be optimal, but is likely less
restrictive then that presented above.

Case 1: (k,m) = (k, k). As shown earlier in Example 3 we
have R = R = 1. Thus in this case the optimality condition
reduces to β ≤ 1 which is always true, i.e., it is not binding.

Case 2: (k,m) = (k, 1). As shown earlier in Example 4 we
have R = (1−p01)k−1 and R = (1−p11)k−1. It follows that
R/R < 1, except for the trivial case of p11 = p01. This means
that in the case of sensing multiple channels while limiting
access to one channel, the myopic policy is not always optimal,
and the optimality condition β ≤ R/R becomes binding.

Case 3: k = N,m ≤ k. This case is trivial as only a
single action is available at each time, which coincides with
the myopic policy for k = N . It is therefore optimal without
requiring any conditions.

Case 4: k = N − 1,m ≤ k. It can be shown that in this
case the myopic policy is optimal without any condition on
β or ω̄. The proof follows the same argument used in the
preceding subsection. In particular, we note that the condition
on β arise from the induction step of proving L2 in Lemma
3. However, it can be easily verified that when k = N−1 this
step holds for all 0 ≤ β ≤ 1. On the other hand, if we were to
apply the sufficient condition on β, in this case it reduces to
β ≤ (1−p11)N−2

(1−p01)N−2 ; the RHS is strictly less than 1 for p11 > p01,
thus this condition is sufficient but not necessary in this case.

Case 5: a case of (k,m,N) = (2, 1, 4). In this example
we have 4 channels and are limited to sensing 2 at a time
and using up to 1 that’s sensed available. Let horizon T = 3,
transition probabilities p11 = 0.9, p01 = 0.1, and initial belief
[0.9, 0.8, 0.7, 0.7]. Numerically we can show that in this case
myopic sensing is optimal. Examples like this one are not
always easy to verify due to the complexity in solving dynamic
programs.

Case 6: small horizon T . It is not difficult to see that
with small T values, the condition on β to ensure optimality
becomes more relaxed than the one presented earlier in this
section. This is because with fewer number of steps to go, we
can bound the difference in future rewards between different
actions with less restrictive conditions on β. In the extreme
case when T = 1, myopic sensing is optimal because with
only one time step to go the immediate future reward is the
total reward.

C. A counter example

The following numerical example highlights how myopic
sensing my not be optimal when the sufficient condition on β
is not satisfied.

The example is given by the following parameter values:
N = 5, k = 2,m = 1, β = 0.8, T = 5, p11 = 0.9, p01 = 0.1,
with an initial information state ω̄ = {0.99, 0.95, 0.9, 0.9, 0.9}.

Denote by W {1,2}1 the expected reward of sensing myopically
(channels ordered {1, 2}) in each time step, and by W {1,3}1 the
expected reward of sensing channels {1, 3} at t = 1 followed
by sensing myopically thereafter. Numerically solving the
example shows that W {1,2}1 = 3.3279 and W {1,3}1 = 3.3283,
thus in this case myopic sensing is not optimal.

What this counter example shows is that when the top chan-
nel (the one with highest information state) has a sufficiently
high belief, i.e. we have high confidence that in the next step
this channel will be available, it may make more sense to
take this opportunity to explore by updating our belief on a
lower channel (number 3 in this case) rather than selecting the
second highest channel to further improve our chance (which
is already very high by virtue of the top channel’s state) of
getting at least one good channel in the next time step.

It is worth noting that counter examples like the one given
above are generally only found in extreme cases, i.e., with
information state close to 1, or with high p11 and low p01. In
particular, in the above example both conditions of optimality
are violated: ω̄ is out of the range [p01, p11] while β is
also out of the bound. Unfortunately we were not able to
find a counter example with only the condition on β being
violated for small values of k, N and T ; for larger values
of these parameters the computational complexity become
prohibitive in searching for such an example. This difficulty
in finding counter examples, however, suggests near-optimal
performance of the myopic sensing policy even when the
sufficient conditions on optimality are not satisfied.

IV. FINITE HORIZON, p11 < p01

A. Optimality of myopic sensing

Theorem 2 (Optimality of Myopic Sensing). The myopic
sensing strategy πg is optimal for (P1) under the condition
0 ≤ β ≤ R

R+R and for belief state ω̄ s. t. p11 ≤ ωi ≤
p01,∀ωi ∈ ω̄.

We will reuse the same set of notations introduced in the
case of p11 ≥ p01 in this section. To prove the above theorem,
we will similarly need a number of lemmas. We begin with
a similar definition on the T N -variable functions Wt(·), t =
1, 2, · · · , T , recursively as follows.

WT (ω̄) = E[Rπg (ω̄)]

Wt(ω̄) = E[Rπg (ω̄)] + β ·
∑

l̄∈{0,1}k
q(l̄; ω̄) ·Wt+1(p01

[k −
k∑
i=1

li], τ(ωN ), · · · , τ(ωk+1), p11[

k∑
i=1

li])

(16)

Remark 3. Compared to the definition given in the previous
section, the difference here is in the re-ordering of the beliefs in
Wt+1(·), i.e., p01’s followed by τ(ωN ), · · · , followed by p11’s.
This is because, as p01 > p11, this re-ordering sorts the belief
vector in descending order. In doing so we can continue to use
the same greedy policy πg which selects the first k channels.

Lemma 4. Wt(ω̄), t = 1, 2, · · · , T , is an affine function of
each element of ω̄.
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The proofs of the above lemma is essentially the same as
that in the case of p11 ≥ p01 (Lemma 2), and is thus omitted.

Lemma 5. For p01 ≥ ω1 ≥ ω2 ≥ ... ≥ ωN ≥ p11 and under
the condition β ≤ R

R+R and x ≥ y, we have the following
inequalities for all t = 1, 2, ..., T :

(L3): γ +Wt(ω2, ω3, ..., ωN , ω1) ≥Wt(ω1, ..., ωN ) (17)
(L4): γ +Wt(ωN , ω1, ..., ωN−1) ≥Wt(ω1, ..., ωN ) (18)
(L5): Wt(ω1, · · · , ωj−1, x, y, ωj+2, · · · , ωN )

≥Wt(ω1, · · · , ωj−1, y, x, ωj+2, · · · , ωN ) , (19)

where γ = R
1−β .

Proof of Theorem 2: The proof follows essentially the same
inductive argument used in the proof of Theorem 1 through
repeated use of L5 in the preceding lemma, and is thus omitted.
�

Remark 4. Compare to the positively correlated case, (L4)
is similar to (L1), while (L3) is an additional requirement
in proving the theorem. The introduction of (L3) results in a
different bound on β.

B. Special cases

Case 1: (k,m) = (k, k). As shown earlier, in this case we
have R = R = 1, and thus the sufficient condition for the
optimality of the myopic policy becomes β ≤ R

R+R = 1
2 .

Note that the same condition β ≤ 1
2 was previously proven

for the special case k = 1 in [8].
Case 2: k = N − 1,m ≤ k. It can be shown in this case

that the myopic policy is optimal without any condition on β
and ω̄ following the same argument used in Section III-B.

V. INFINITE HORIZON: p11 ≥ p01

In this and the next sections we will consider the infinite
horizon problems (P2) and (P3). As shown in [8], the optimal-
ity of a policy under (P1) is readily extended to its optimality
under (P2); it is more complicated for (P3): a policy is optimal
for (P3) if it is optimal for (P2) for any 0 < β < 13. As a
result, while the optimality conditions on the myopic policy
we have obtained so far applies to (P2), the same cannot be
said for (P3) since these conditions restrict the values that
the discount factor β can take. For this reason, in these two
sections we seek alternative sufficient conditions that do not
require the restriction on β, which will then allow us to first
establish the optimality of the myopic policy for (P2) and then
extend it to (P3).

A. One-step deviation

For the rest of this section we will use the notation W∞(ω̄)
defined similarly as in (12) for the case of p11 ≥ p01 but with
an infinite horizon, i.e., with the recursion in (12) continuing

3In [8] this argument is made specifically for the case (k,m) = (1, 1), but
it is more generally applicable with a simple extension.

indefinitely without the end at time T . To be specific we have
the following recursive equations.

W∞t (ω̄) = E[Rπg (ω̄)] + β ·
∑

Pg(ω̄
′
|ω̄) ·W∞t+1(ω̄

′
) , (20)

But notice here the output of the value functions do not depend
on time t due to the infinite horizon. We keep the time index
mainly for clarity of later analysis.

Definition 1 (One-step deviation). Consider a policy πd :
N → Ωk, πd 6= πg . Its one-step deviation from the myopic
policy under information state ω is defined as the immediate
reward under πd plus the discounted future reward by follow-
ing πg in future time steps. Formally, the value function of πd,
denoted by V d,∞t (ω), is given by

V d,∞t (ω̄) = E[Rπd(ω̄)] + β ·
∑

Pd(ω̄
′
|ω̄) ·W∞t (ω̄

′
) , (21)

where ω
′

is the descending ordered information state vector of
the system at the next time step under policy πd. If V d,∞t (ω) >
W∞t (ω) for some ω and t, then we say that πd is a profitable
one-step deviation. If such a πd cannot be found, then we say
there exists no profitable one-step deviation.

Lemma 6 (One-step deviation principle). The myopic policy
πg is optimal for (P2) for any 0 < β < 1 if and only if there
exists no profitable one-step deviation.

Proof. (Only if) That there is no one-step profitable devia-
tion is a necessary condition for the optimality of πg is obvious
because otherwise we have found a policy that returns higher
reward than πg under some state ω, which contradicts the
optimality of πg .

(If) We next show that if there exists a policy π∗ : N → Nk
that has strictly higher discounted reward than πg over an in-
finite horizon, then there exists a one-step profitable deviation
policy constructed from π∗. Denote the total reward under π∗

starting at time t as V ∗,∞t , and denote by ε = V ∗,∞1 −W∞1 .
By assumption we have ε > 0. Define time t∗ as

t∗ := min{t : βt · m

1− β
≤ ε

2
} , (22)

i.e., this is the first time that the total future discounted reward
of an ideal policy (that collects the highest reward m in each
step) falls below ε/2. The existence of such a t∗ is guaranteed
by the finiteness of m and the fact that β < 1. By the above
definition, after time t∗ the reward under either π∗ or πg cannot
exceed ε/2, thus the difference in the two rewards after time t∗

is no more than ε/2. Since the total difference between the two
rewards (starting at time t = 1) is ε, the difference between
π∗ and πg up to and including time t∗ must be at least ε/2.
We thus construct the following policy, π+, which follows π∗

up to and including time t∗, and then switch to πg thereafter,
with a total discounted reward denoted by V +,∞

1 (·). Following
the above discussion, we must have V +,∞

1 (ω̄) > W∞1 (ω̄) for
any initial condition ω.

Consider now the policy π+. At time t∗ we com-
pare V +,∞

t∗ (ω̄) with W∞t∗ (ω̄), ∀ω̄. Note that in this case
V +,∞
t∗ (ω̄) = V ∗,∞t∗ (ω̄) since under π+ at time t∗ policy π∗ is

used followed by πg . If V +,∞
t∗ (ω̄) > W∞t∗ (ω̄) for some ω̄, then

we have found a profitable one-step deviation. If V +,∞
t∗ (ω) ≤
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W∞t∗ (ω), ∀ω, then we modify policy π+ by replacing π∗ with
πg at time t∗. Again denote this modified policy by π+; it
follows that we continue to have V +,∞

1 (ω̄) > W∞1 (ω̄) for
any initial condition ω̄, since the modified π+ has even higher
total discounted rewards than the original π+.

We next examine at t∗ − 1, how V ∗,∞t∗−1(ω̄) compares with
W∞t∗−1(ω̄) and repeat the above process. Due to the finiteness
of t∗ we are guaranteed to find a profitable one-step deviation,
for otherwise it contradicts the assumption that π∗ is a superior
policy to πg . �

Remark 5. The above lemma is not conditioned on the values
of p11, p01, and is thus reused in the next section in the case
p11 < p01.

B. Optimality of myopic sensing

We begin by introducing a bound on the value function,
which is then used in proving the optimality condition. Denote
δ := p11 − p01 and notice under this section we have δ ≥ 0;
and we will use W∞(·) to denote W∞t (·), t = 1, 2, ... for
simplicity.

Lemma 7 (Boundedness). Consider the finite horizon problem
(P1) with horizon T . For 1 ≤ t ≤ T , x ≥ y, and ∆t =
R ·
∑T−t
i=0 (β · δ)i, we have

0 ≤Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN )

−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN ) ≤ (x− y) ·∆t .
(23)

Remark 6. A direct consequence of the above result is the
following extension to infinite horizon.

W∞(ω1, ..., x, ..., ωN )−W∞(ω1, ..., y, ...ωN )

= lim
T→∞

{W1(ω1, ..., x, ..., ωN )−W1(ω1, ..., y, ..., ωN )}

≤ lim
T→∞

R ·
T−1∑
i=0

(β · δ)i =
(x− y) · R

1− β · δ
= (x− y)∆∞ . (24)

Lemma 8. When δ satisfies the following condition

δ

1− δ
< R/R, (25)

there is no profitable one-step deviation for (P2) for any 0 <
β < 1.

The above result appears to suggest that the closer the two
values p11 and p01, the easier it is for the greedy policy
to be optimal (though the two quantities R and R are also
functions of p11 and p01). The reason is that for a non-
greedy policy to outperform the greedy policy, the former
must have higher future discounted reward as the latter by
definition has higher immediate reward. This, however, is
made more difficult when δ is small, as it has the effect of
damping the difference between the two policies. To illustrate,
consider two information states differing in only one element,
x vs. y. The difference in the immediate reward is a function
of x − y; however, when propagated to the next time step,
the corresponding elements in the information states become

τ(x) and τ(y), and the difference in the corresponding value
functions is now a function of τ(x)− τ(y) = δ(x− y). Thus
if δ is sufficiently small, the difference in future reward will
be limited, guaranteeing the optimality of the greedy policy.
The details are shown in the proof given in the appendix.

Theorem 3. Myopic sensing is optimal for (P2) and (P3)
under condition (25).

Proof. Lemma 8 combined with Lemma 6 immediately
imply that myopic sensing is optimal for (P2). Since this result
holds for any choice of 0 < β < 1, the optimality is also true
for (P3). �

C. A numerical study

We next show some numerical results to give a sense of the
range of (p11, p01) pairs, p11 ≥ p01, that would guarantee the
optimality of myopic sensing. These results are for the case
of (k,m) = (2, 1), i.e., while sensing 2 channels we only
use 1 for transmission. From Fig.1 we can see when p11 is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
01

p 11

 

 

Guaranteed Optimality Region

Fig. 1. Guaranteed optimality region : case with p11 ≥ p01

small ( < 0.5), almost all pairs of (p01, p11) would satisfy the
optimality condition. On the other hand, as p11 increases, the
choice of p01 becomes more limited.

VI. INFINITE HORIZON : p11 < p01

In this section we analyze the infinite horizon problems with
negatively correlated channels, i.e., with parameters p11 < p01.
The basic idea is same as in the case of p11 ≥ p01, but the
technical details differ; as we show later the difficulties arise
mainly from the loss of monotonicity of the value functions
with negatively correlated channels.

We start similarly with a lemma regarding the boundedness
of the value functions.

Lemma 9. Consider the finite horizon problem (P1) with
horizon T , and ∀1 ≤ j ≤ N, 1 ≤ t ≤ T . Denoting
δ := p01 − p11, we have

(x− y)·∆t ≤Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN )

−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN ) ≤ (x− y) ·∆t

(26)

where ∆t,∆t are defined as

∆t =

{
1−(β·δ)T−t+3

1−(β·δ)2 · η, η < 0

0, η ≥ 0.
(27)
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∆t =

{
R− 1−(β·δ)T−t+3

1−(β·δ)2 · η, η < 0

R, η ≥ 0.
(28)

Here η := R− β · (p10 − p11) · R.

Remark 7. For ∆1,∆1 when T goes to infinity we have

∆∞1 = min{ η

1− (β · δ)2
, 0} (29)

∆
∞
1 = max{R − (β · δ) · η

1− (β · δ)2
,R} . (30)

We next establish the optimality condition for the case
p11 < p01. The argument is similar to that used for the case
p11 ≥ p01, i.e., we bound the difference between immediate
rewards and future rewards respectively and compare. The
detailed proof of this lemma is thus omitted for brevity.

Lemma 10. Denote by δ = p01−p11. When the pair (p11, p01)
satisfies the following condition

min{δ, 1

2(1− δ)
} ≤ R/R , (31)

then there is no profitable one-step deviation for (P2) for any
0 < β < 1.

Theorem 4. Myopic sensing is optimal for (P2) and (P3) when
the condition in Lemma 10 is satisfied.

Proof. The proof follows immediately from the one-step
deviation principle. �

Remark 8. The peculiar form of the bound given above
primarily arises from the loss of monotonicity in this case.
As detailed in the proof, this loss of monotonicity means the
lower bound on the difference between two value functions
is no longer 0, but rather depends on all model parameters.
In other words, with a strictly larger information state, the
value function does not necessarily increase as in the previous
case, a property that played an important role in the bounding
process shown in the previous section.

We end this section with similar numerical results on the
range of (p11, p01) pairs, p11 < p01, that would guarantee the
optimality of myopic sensing according to Lemma 10. Again
we use the case of (k,m) = (2, 1). This picture appears to be a
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Fig. 2. Guaranteed optimality region : case with p11 < p01

mirror image (w.r.t. the diagonal p11 = p01) of the earlier one.
When p01 is small (< 0.5), most pairs of (p01, p11) satisfy our
optimality condition. When p01 increases, the choice of p11

becomes more limited.

VII. DISCUSSION

In deriving the set of sufficient conditions we have used
two different methods: an induction and sample path based
argument for the finite horizon problem and a set of bounds
for the infinite horizon problems; the first set of conditions
is on β, while the second set on p11 and p01, and note
that these two sets of conditions do not imply each other.
The reason for adopting two different methods, as mentioned
earlier, arises from the fact that we are dealing with three
different problems (P1-P3). In particular, the second method
is developed because we wish to keep β free of constraints, so
that the optimality of a policy under (P3) may be established
(under some other condition, in this case on p11 and p01) by
virtue of its optimality under (P2). It should be noted that
were we not concerned with (P3), the first method (as well as
the sufficient condition on β) applies to (P2), and there would
not be need for a second method or set of conditions. It is
however interesting to point out that the bounding techniques
introduced in the second method combined with the one-step
deviation principle can be applied to (P1) to obtain alternate
sufficient conditions for the finite horizon problem. The detail
is omitted as it follows a similar argument and process as used
in the infinite horizon problem.

We next discuss how our analysis applies when sensing
errors are present. Myopic sensing with sensing errors has
been investigated previously in [18], [19]. Specifically, [18]
examined a two-channel (N = 2, k = m = 1) special case and
showed that myopic sensing is optimal under certain constraint
on the sensing errors. In [19] a more general framework
was presented along with a set of properties on the reward
functions. However, both [18], [19] take the view that a
transmitter is unable to differentiate between a channel sensed
unavailable (correctly or incorrectly) and one falsely sensed
available and subsequently used unsuccessfully, which leads
to a simplified information state updating process. In addition,
there is a lack of penalty on the transmitter in these models for
transmitting in a channel falsely sensed to be available, thereby
causing interference or collision. If a transmitter can use up
to m ≤ k channels, without such a penalty it should simply
always use m channels, regardless of whether they have all
been sensed available to maximize its reward. Its absence is
understandable because the addition of this penalty term in the
objective function will make the problem very different and
much more challenging.

In our discussion below we present a two-step state up-
dating procedure, where the transmitter updates its belief
state following sensing observations, and updates it again
following feedback from transmission outcomes. This model
is very different from those used in [18], [19] and captures
the case where the transmitter and receiver pair is able to
detect transmission outcome. We will also explicitly define
what a myopic sensing policy means in this setting, and show
how the preceding analysis may be extended in this case.
As in previous works, we will not consider penalty for the
reason cited above. We will limit our discussion to the finite
horizon problem with positively correlated channel, but similar
analysis can be used in the other cases.
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Denote by α1 and α2 the false positive and false negative
error probabilities in sensing, respectively; these are assumed
to be constants. Fig.3 depicts the two-step information state

Transmission Feedback
Decision 

 makingSensing

First update Second update

State transition

Fig. 3. Illustration of two step information state update

updating process. Step one occurs right after sensing results
are observed and before access decisions are made, while
the second step occurs after the transmission outcomes are
observed.

Denote by Pi(ŝ|obs = s) the conditional probability of
channel i in state ŝ given it is observed to be in state s, Pi(s)
the probability of channel i in state s and Pi(obs = s) the
probability of channel i observed in state s. We thus have the
following update at the first step, where we have used (t)+ to
denote the first step in time slot (t+ 1).

1. If i ∈ π(t) and is observed in state 1 we have

s1(ωi(t)) := p11Pi(1|obs = 1) + p01Pi(0|obs = 1)

= p11
Pi(obs = 1|1)Pi(1)

Pi(obs = 1)

+ p01
Pi(obs = 1|0)Pi(0)

Pi(obs = 1)

=
p11(1− α2)ωi(t) + p01α1(1− ωi(t))

(1− α2)ωi(t) + α1(1− ωi(t))

2. If i ∈ π(t) and is observed in state 0 we have

s0(ωi(t)) := p11Pi(1|obs = 0) + p01Pi(0|obs = 0)

= p11
Pi(obs = 0|1)Pi(1)

Pi(obs = 0)

+ p01
Pi(obs = 0|0)Pi(0)

Pi(obs = 0)

=
p11α2ωi(t) + p01(1− α1)(1− ωi(t))

α2ωi(t) + (1− α1)(1− ωi(t))

3. If i 6∈ π(t), then s∗(ωi(t)) := τ(ωi(t)).

Upon feedback on the transmission outcome, we have the
following update at the second step: (1) ωi(t + 1) = p11 if
i ∈ π(t) and transmission is successful; (2) ωi(t + 1) = p01

if i ∈ π(t) and transmission is unsuccessful; (3) if i 6∈ π(t)
or if i is not selected for use, then ωi(t+ 1) = τ(ωi(t)) stays
unchanged.

The myopic sensing policy in this case is precisely defined
as follows for given parameters m ≤ k ≤ N . The policy
selects the top k channels (those with the highest ωi(t)) to
sense at the beginning of time slot t. Denote by ns the number
of channels sensed available. If ns ≤ m, then use all of them
for transmission; if ns > m, then select among these the top
m channels (those with the highest ωi(t)) for transmission.

It is easy to see why ωi(t) is used to determine the set of
channels to use: we have

Pi(1|obs = 1) =
(1− α2)ωi(t)

(1− α2)ωi(t) + α1(1− ωi(t))
, (32)

which is increasing in ωi(t). This means that among multiple
channels sensed available, their relative likelihood of being
truly available is still given by ωi(t).

For this myopic sensing policy to be optimal, we need
the (somewhat trivial condition) that the sensing errors are
sufficiently small. This ensures that the following condition
holds:

Pi(1|obs = 1) ≥ Pj(1|obs = 0), ∀i, j. (33)

which is equivalently given by
1− α1

α2
(

1

p11
− 1) >

α1

α2
(

1

p01
− 1) , (34)

i.e., at any time the posterior probability of a channel being in
state 1 is always larger when conditioned on being observed
in state 1 than conditioned on being observed in state 0. In
order to retain the monotonicity of information state update
following channel sensing (step one) we need the following
to be true.

s1(ωi(t)) ≥ τ(x),∀x, ωi(t) ∈ [p01, p11] (35)
s0(ωi(t)) ≤ τ(x),∀x, ωi(t) ∈ [p01, p11] . (36)

Denoting by τ := maxx∈[p01,p11] τ(x), τ :=
minx∈[p01,p11] τ(x), we obtain the following conditions
that will ensure the above monotonicity property:

(τ − τ · p01 + p2
01)α1 ≤ p01(p11 − τ)(1− α2) (37)

(1− α1)(τ − p01)(1− p11) ≥ p11(p11 − τ)α2 . (38)

Again (and quite intuitively), when sensing errors α1, α2 are
sufficiently small, the monotonicity property is retained, and
our earlier proofs (especially the sample path argument in
Lemma 3) will hold and our major results in Table 1 will also
hold with the following substitution for the reward differences:

R = max
ω−i∈[s0(p01),s1(p11)]k−1

E[Rπg (1, ω−i)]− E[Rπg (0, ω−i)]

R = min
ω−i∈[s0(p01),s1(p11)]k−1

E[Rπg (1, ω−i)]− E[Rπg (0, ω−i)]

It however should be noted that the reward function itself
is now much more difficult to evaluate than before, due
to sensing errors: there will be 0 rewards from channels
falsely sensed available, and missed rewards from those falsely
sensed unavailable. We illustrate with a simple example of
k = 2,m = 1, in which case we have

R = (1− α2)

[
1− (1− α1 − α2)s0(p01)

]
(39)

R = (1− α2)

[
1− (1− α1 − α2)s1(p11)

]
(40)

Note that 1 − α1 − α2 ≥ 0 due to the condition in (38).
Subsequently the sufficient condition on β is given by

β ≤ R/R =
1− (1− α1 − α2)s0(p01)

1− (1− α1 − α2)s1(p11)
. (41)
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Interestingly, the above condition reduces to the error-free
version by setting α1 = α2 = 0. We again note as before that
conditions such as this one are sufficient but not in general
necessary.

VIII. CONCLUSION

This paper we considered a widely studied stochastic control
problem arising from opportunistic spectrum access in a multi-
channel system, where a single wireless transceiver/user with
access to N channels, each modeled as an iid discrete-time
two-state Markov chain. In each time step the user is allowed
to sense k ≤ N channels, and subsequently use up to m ≤ k
channels out of those sensed to be available. This problem
has previously been studied in various special cases including
m = k = 1 and m = k ≤ N ; it is often cast as a restless bandit
problem, with optimality results derived for a myopic policy
that seeks to maximize the immediate one-step reward when
the two-state Markov chain model is positively correlated. We
derived sufficient conditions under which the myopic policy
is optimal for the finite and infinite horizon reward criteria,
respectively. It is shown that these results reduce to those
derived in prior studies under the corresponding special cases,
and thus may be viewed as a set of unifying optimality
conditions.
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APPENDIX

A. Proof of Lemma 1

We prove this by induction on t. Denote by ω̄+ ⊂ ω̄
′

the
subset of components that are strictly larger in ω̄′ than in ω̄,
i.e., ω̄+ = {ω′i, i = 1, · · · , N, s. t. ω

′

i > ωi}.

Induction basis: When t = T , the lemma holds due to the
increasing property of the one-step expected reward given in
Proposition 2.

Induction step: Assume the lemma holds for t+ 1, · · · , T ,
and consider time t. There are two cases:

Case 1. ω̄+ ∩ ω̄(πg) = ∅. In this case since the elements
strictly larger in ω

′
are not used, the expected one-step rewards

under ω̄
′

and under ω̄ are the same. The future reward under ω̄
′

is no smaller than that under ω̄ due to the induction hypothesis
and the monotonicity of τ(·), i.e., τ(ω

′

j) > τ(ωj) for ω
′

j > ωj .

Case 2. ω̄+ ∩ ω̄(πg) 6= ∅. Consider some j ∈ ω̄+ ∩ ω̄(πg),
and the state vector (ω

′

j , ω−j); it differs from ω by only one
element ω

′

j . Using the alternate expression given in (13) we
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have

Wt(ω
′

j , ω−j) = E[Rπg (ω
′

j , ω−j)] +

ω
′

jβ ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)

Wt+1(p11[
∑
i6=j

li + 1], τ(ωk+1), .τ(ωN ), p01[k −
∑
i6=j

li − 1])︸ ︷︷ ︸
R1

+(1− ω
′

j)β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j

Wt+1(p11[
∑
i6=j

li], τ(ωk+1), .., τ(ωN ), p01[k −
∑
i 6=j

li])︸ ︷︷ ︸
R2

≥ E[Rπg (ωj , ω−j)] +

ωjβ ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)

Wt+1(p11[
∑
i6=j

li + 1], τ(ωk+1), .., τ(ωN ), p01[k −
∑
i 6=j

li − 1])︸ ︷︷ ︸
R1

+(1− ωj)β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)

Wt+1(p11[
∑
i6=j

li], τ(ωk+1), .., τ(ωN ), p01[k −
∑
i 6=j

li])︸ ︷︷ ︸
R2

= Wt(ω̄) , (42)

where the inequality holds because (1) E[Rπg (ω
′

j , ω−j)] ≥
E[Rπg (ωj , ω−j)] by Proposition 2, and (2) ω

′

j ·R1 +(1−ω′j) ·
R2 ≥ ωj · R1 + (1 − ωj) · R2 since ω

′

j > ωj and R1 ≥ R2

due to the induction hypothesis. We can now repeat the above
process by introducing another element k ∈ ω̄+ ∩ ω̄(πg), k 6=
j, and obtain similarly, Wt(ω

′

k, ω
′

j , ω−j,−k) ≥Wt(ω
′

j , ω−j) ≥
Wt(ω̄). When all elements in ω̄+ ∩ ω̄(πg), k 6= j have been
exhausted we obtain Wt(ω̄

′
) ≥Wt(ω̄). The induction steps is

thus completed.

B. Proof of Lemma 3

The two inequalities L1 and L2 will be shown together using
an induction on t.

Induction basis: For t = T , L1 holds because in this case

WT (ωN , ω1, ..., ωN−1)−WT (ω1, ..., ωN )

= E[Rπg (ωN , ω1, ..., ωN−1)]− E[Rπg (ω1, ..., ωN )]

≤ E[Rπg (ωN = p11, ω1, ..., ωN−1)]−
E[Rπg (ω1, ..., ωk = p01, ..., ωN )]

≤ E[Rπg (ωN = p11, ω1, ..., ωN−1)]−
E[Rπg (ωk = p01, ω1, ..., ωN )] ≤ R , (43)

using the increasing property, Proposition 2, of the expected
one-step reward. L2 holds at T due to the same reason.
Assume both L1 and L2 hold for times t+ 1, · · · , T .

Induction step: We will employ a sample path argument
by calculating the quantities on the LHS (RHS) of these two

inequalities conditioned on the outcome of sensing specific
channels. Consider first L1. At time t, the LHS selects
channels {N, 1, · · · , k − 1} while the RHS selects channels
{1, · · · , k}. Thus the two sides differ only in channels {k,N}.
For simplicity we denote by LHS|i,j (resp. RHS|i,j) the value
of the LHS (resp. RHS) of L1 conditioned on the realizations
of channels k and N being i and j, respectively, where
i, j ∈ {0, 1}. Denote by πgk−1 := {1, 2, · · · , k − 1}; this is
the common set of channels sensed by both sides. Also recall
the notation l̄−k = {l1, · · · , lk−1}.

Case 1. (k,N) = (′′1′′, ′′0′′): channel k has state realiza-
tion ′′1′′ and channel N ′′0′′. In this case we have

LHS|1,0 = R+ E[Rπg (0, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k)Wt+1(p11[

k−1∑
i=1

li], τ(ωk) = p11,

· · · , τ(ωN−1), p01[k −
k−1∑
i=1

li]) (44)

RHS|1,0 = E[Rπg (1, ω2, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li], τ(ωk) = p11,

· · · , τ(ωN−1), τ(ωN ) = p01,

p01[k − 1−
k−1∑
i=1

li]) . (45)

By the definition of R we have R+E[Rπg (0, ω1, ..., ωN−1)]−
E[Rπg (1, ω2, ..., ωN )] ≥ 0, thus LHS|1,0 ≥ RHS|1,0.

Case 2. (k,N) = (′′1′′, ′′1′′): both channels k and N have
state realizations ′′1′′. In this case

LHS|1,1 = R+ E[Rπg (1, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li + 1], τ(ωk) = p11,

· · · , τ(ωN−1), p01[k − 1−
k−1∑
i=1

li]) (46)

RHS|1,1 = E[Rπg (1, ω2, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li + 1], τ(ωk+1),

· · · , τ(ωN ) = p11, p01[k − 1−
k−1∑
i=1

li]) . (47)

LHS|1,0 ≥ RHS|1,0 because (1) R ≥ 0, (2)
E[Rπg (1, ω1, ..., ωN−1)] = E[Rπg (1, ω2, ..., ωN )], and
(3) by repeatedly using the induction hypothesis of L2
(successively moving τ(ωk) = p11 to the right or down the
ordered list).
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Case 3. (k,N) = (′′0′′, ′′0′′): both channels k and N have
state realizations ′′0′′. We have

LHS|0,0 = R+ E[Rπg (0, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

·

q(l̄−k;ω−k)Wt+1(p11[

k−1∑
i=1

li], τ(ωk) = p01,

· · · , τ(ωN−1), p01[k −
k−1∑
i=1

li])

RHS|0,0 = E[Rπg (0, ω1, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li], τ(ωk+1),

· · · , τ(ωN−1), τ(ωN ) = p01, p01[k −
k−1∑
i=1

li]) . (48)

Using the induction hypothesis of both L1 and L2 we have

LHS|0,0 ≥ E[Rπg (0, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) · (R+Wt+1(p11[

k−1∑
i=1

li], τ(ωk) = p01,

· · · , τ(ωN−1), p01[k −
k−1∑
i=1

li]))

≥ E[Rπg (0, ω1, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(R+Wt+1(τ(ωk) = p01, p11[

k−1∑
i=1

li], τ(ωk+1),

· · · , τ(ωN−1), p01[k −
k−1∑
i=1

li]))

≥ E[Rπg (0, ω1, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li], τ(ωk+1),

· · · , τ(ωN−1), p01[k −
k−1∑
i=1

li], τ(ωk) = p01)

= LHS|0,0 , (49)

where the first inequality is due to the fact that q(·) forms a
probability distribution and βR < R, the second due to the
induction hypothesis of L2, and the third due to the induction
hypothesis of L1.

Case 4. (k,N) = (′′0′′, ′′1′′): channels k and N have state

realizations ′′0′′ and ′′1′′, respectively. We have

LHS|0,1 = R+ E[Rπg (1, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li + 1], τ(ωk) = p01,

· · · , τ(ωN−1), p01[k − 1−
k−1∑
i=1

li]) (50)

RHS|0,1 = E[Rπg (0, ω1, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li], τ(ωk+1),

· · · , τ(ωN−1), τ(ωN ) = p11, p01[k −
k−1∑
i=1

li]) . (51)

LHS|0,1 ≥ E[Rπg (1, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) · (R+Wt+1(p11[

k−1∑
i=1

li + 1],

τ(ωk) = p01, · · · , τ(ωN−1), p01[k − 1−
k−1∑
i=1

li]))

≥ E[Rπg (0, ω1, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k
q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑
i=1

li + 1], τ(ωk+1), · · · , τ(ωN−1),

p01[k − 1−
k−1∑
i=1

li], τ(ωk) = p01)

≥ E[Rπg (0, ω1, ..., ωN )] + β ·
∑

l̄−k∈{0,1}k

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑
i=1

li], τ(ωk+1),

· · · , τ(ωN−1), p11, p01[k −
k−1∑
i=1

li])

= LHS|0,0 , (52)

where the first inequality is due to Proposition 2, the second
due to induction hypothesis of L2 (moving τ(ωk) = p01 to
the front/left of the list, following by induction hypothesis of
L1 (moving τ(ωk) = p01 to the end/right of the list), and the
third due to the induction hypothesis of L2.

We have now established the induction step of L1, thus
proving L1. Next we consider L2 at time t. In the case when
j ≤ k−1, both x and y are used by both sides, so LHS = RHS.
In the case when j ≥ k+1, neither channel j nor j+1 is used.
Thus both sides will return the same one-step reward. The
difference between x and y propagates to the future reward
term Wt+1(·). However, due to the fact that τ(x) ≥ τ(y),
using the induction hypothesis of L2 we conclude LHS ≥
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RHS. It remains to check the case j = k. In this case we
single out both x and y:

LHS = E[Rπg (x, ω1, ..., ωk+1, ..., ωN )]

+β{x · y ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li+1],

p11,τ(ωk+2),··· ,τ(ωN ),p01[k−1−
∑k−1

i=1 li])︸ ︷︷ ︸
R1

+(1− x) · y ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li],

p11,τ(ωk+2),··· ,τ(ωN ),p01[k−
∑k−1

i=1 li])︸ ︷︷ ︸
R2

+x · (1− y) ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li+1],

p01,τ(ωk+2),··· ,τ(ωN ),p01[k−1−
∑k−1

i=1 li])︸ ︷︷ ︸
R3

+(1− x) · (1− y) ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li],

p01,τ(ωk+2),··· ,τ(ωN ),p01[k−
∑k−1

i=1 li])︸ ︷︷ ︸
R4

}

Similarly

RHS = E[Rπg (y, ω1, ..., ωk, ..., ωN )]

+β{x · y ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li+1],

p11,τ(ωk+2),··· ,τ(ωN ),p01[k−1−
∑k−1

i=1 li])︸ ︷︷ ︸
R1

+(1− x) · y ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li+1],

p01,τ(ωk+2),··· ,τ(ωN ),p01[k−1−
∑k−1

i=1 li])︸ ︷︷ ︸
R3

+x · (1− y) ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li],

p11,τ(ωk+2),··· ,τ(ωN ),p01[k−
∑k−1

i=1 li])︸ ︷︷ ︸
R2

+(1− x) · (1− y) ·
∑

l̄−k∈{0,1}k−1 q(l̄−k;ω−k)·Wt+1(p11[
∑k−1

k=1 li],

p01,τ(ωk+2),··· ,τ(ωN ),p01[k−
∑k−1

i=1 li])︸ ︷︷ ︸
R4

}

Thus we have

LHS− RHS
= E[Rπg (x, ω−k)]− E[Rπg (y, ω−k)]

+ β(x− y)(R3−R2)

= (x− y)(E[Rπg (1, ω−k)]− E[Rπg (0, ω−k)])

+ β(x− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(
Wt+1(p11[

k−1∑
k=1

li + 1], p01, τ(ωk+2), · · · , τ(ωN ),

p01[k − 1−
k−1∑
i=1

li]−Wt+1(p11[

k−1∑
k=1

li], p11,

τ(ωk+2), · · · , τ(ωN ), p01[k −
k−1∑
i=1

li])

)
≥ (x− y)R+ β(x− y)

∑
l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(
Wt+1(p01, p11[

k−1∑
k=1

li + 1], τ(ωk+2), · · · , τ(ωN ),

p01[k − 1−
k−1∑
i=1

li])−Wt+1(p11[

k−1∑
k=1

li], p11, τ(ωk+2),

· · · , τ(ωN ), p01[k −
k−1∑
i=1

li])

)
≥ (x− y)R− β(x− y)R ,

where the first inequality is due to the definition of R and
the use of the induction hypothesis of L2, and the second
inequality due to the induction hypothesis of L1.

Therefore if β ≤ R/R, then we will have LHS ≥ RHS,
completing the induction step of L2.

C. Proof of Lemma 5

The three inequalities L3, L4 and L5 are shown together
using an induction on t.

Induction basis: At time T , L3 becomes
γ + E[Rπg (ω1, · · · , ωN , ω1)] ≥ E[Rπg (ω1, · · · , ωN )].
This holds because

E[Rπg (ω1, · · · , ωN )]− E[Rπg (ω2, · · · , ωN , ω1)]

≤ E[Rπg (ω1 = 1, · · · , ωN )]

− E[Rπg (ω2, · · · , ωk+1 = 0, ωN , ω1)]

≤ R ≤ R
1− β

= γ. (53)

Similarly, L4 holds at time T because

E[Rπg (ω1, · · · , ωN )]− E[Rπg (ωN , ω1, · · · , ωN−1)]

≤ E[Rπg (ω1, · · · , ωk = 1, · · · , ωN )]

− E[Rπg (ωN = 0, ω1, · · · , ωN−1)]

≤ R ≤ R
1− β

= γ. (54)
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L5 holds at T due to the increasing property (Proposition 2)
of the expected one-step reward. Assume L3, L4 and L5 hold
for times t+ 1, · · · , T .

Induction step: We will again employ a sample-path argu-
ment conditioned on the outcome of sensing specific chan-
nels. Consider first L3. At time t, the LHS selects channels
{2, 3, · · · , k+ 1} while the RHS selects channels {1, · · · , k}.
Thus the two sides differ only in channels {1, k + 1}.

Case 1. (1, k+1) = (′′0′′, ′′0′′): both channels 1 and k+1
have state realization ′′0′′. In this case

LHS|0,0 = γ + E[Rπg (0, ω2, · · · , ωk, ωk+1, · · · , ωN , ω1)]

+ β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·Wt+1(p01[k −
k∑
i=2

li],

τ(ω1) = p01, τ(ωN ), · · · , τ(ωk+2), p11[

k∑
i=2

li])

(55)

RHS|0,0 = E[Rπg (0, ω2, ..., ωN )] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k −
k∑
i=2

li], τ(ωN ), · · · , τ(ωk+1),

τ(ωk+1) = p01, p11[

k∑
i=2

li]) (56)

By the induction hypothesis of L5 we have LHS ≥ RHS.

Case 2. (1, k + 1) = (′′1′′, ′′0′′): channel 1 has state
realization ′′1′′ and channel k + 1 ′′0′′. In this case

LHS|1,0 = γ + E[Rπg (0, ω2, ω3, ..., ω1)]

+ β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·Wt+1(p01[k −
k∑
i=2

li],

τ(ω1) = p11, τ(ωN ), ..., τ(ωk+2), p11[

k∑
i=2

li])

RHS|1,0 = E[Rπg (1, ω2, ..., ωN )]

+ β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·Wt+1(p01[k − 1−
k∑
i=2

li],

τ(ωN ), ..., τ(ωk+1) = p01, p11[

k∑
i=2

li + 1])

(57)

Since γ = 1
1−β · R = R+ β · γ, we have

LHS|1,0 = R+ E[Rπg (0, ω2, ω3, ..., ω1)]

+ β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·

(
γ +Wt+1(p01[k −

k∑
i=2

li], τ(ω1) = p11, ..., p11[

k∑
i=2

li])

)
≥ E[Rπg (1, ω2, ..., ωN )] + β ·

∑
l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·

(
γ +Wt+1(p11, p01[k − 1−

k∑
i=2

li], ..., p01, p11[

k∑
i=2

li])

)
≥ E[Rπg (1, ω2, ..., ωN )] + β ·

∑
l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·

Wt+1(p01[k − 1−
k∑
i=2

li], ..., p01, p11[

k∑
i=2

li + 1])

= RHS|1,0, (58)

where the first inequality is due to the definition of R and the
use of the induction hypothesis of L5 and the second inequality
is due to the induction hypothesis of L4. Notice this step is
the essential difference between the negative and positive cases
which causes the bounding constant γ and the final results to
be different.

Case 3. (1, k + 1) = (′′0′′, ′′1′′): channels 1 and k + 1
have realizations ′′0′′ and ′′1′′, respectively. We have

LHS|0,1 = γ + E[Rπg (1, ω2, ..., ωk, ωk+1, ..., ωN , ω1)]

+ β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·Wt+1(p01[k − 1−
k∑
i=2

li],

τ(ω1) = p01, τ(ωN ), ..., τ(ωk+2), p11[

k∑
i=2

li + 1])

RHS|0,1 = E[Rπg (0, ω2, ..., ωN )] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k −
k∑
i=2

li], τ(ωN ), ..., τ(ωk+1) = p11, p11[

k∑
i=2

li])

(59)

Since the second part of both LHS|0,1 and RHS|0,1 are
identical, we have LHS|0,1 ≥ RHS|0,1 using the definition
of γ and R.

Case 4. (1, k + 1) = (′′1′′, ′′1′′): both channels have state
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realization ′′1′′. In this case

LHS|1,1 = γ + E[Rπg (1, ω2, ..., ωk, ωk+1, ..., ωN , ω1)]

+ β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·Wt+1(p01[k − 1−
k∑
i=2

li],

τ(ω1) = p11, τ(ωN ), ..., τ(ωk+1), p11[

k∑
i=2

li + 1])

RHS|1,1 = E[Rπg (1, ω2, ..., ωN )] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k − 1−
k∑
i=2

li], τ(ωN ), ,

..., τ(ωk+1) = p11, p11[

k∑
i=2

li + 1]) (60)

Using a similar method as in Case 2, LHS|1,1 ≥ RHS|1,1 holds
because

γ +Wt+1(p01[k − 1−
k∑
i=2

li], τ(ω1) = p11, τ(ωN ), ...,

τ(ωk+2), p11[

k∑
i=2

li + 1])

≥ γ +Wt+1(τ(ω1) = p11, p01[k − 1−
k∑
i=2

li], τ(ωN ), ...,

τ(ωk+2), p11[

k∑
i=2

li + 1])

≥Wt+1(p01[k − 1−
k∑
i=2

li], τ(ωN ), ...,

τ(ωk+2), ω1 = p11, p11[

k∑
i=2

li]), (61)

using the induction hypothesis of L5 and L4, respectively. L3
is thus proven.

L4 can be shown in the same way L3 is proven above, while
L5 can be shown in the same way L2 was proven in Lemma
3; the details are thus omitted.

D. Proof of Lemma 7

The lower bound is trivial as for finite time horizon problem
the monotonicity is already proven in Lemma 3, L2 time
uniformly and we know it can be extended to the infinite
horizon problem by simply taking the limitation. We prove
the upper bound by induction on t. Before proceeding, we
note that by definition ∆T = R and ∆t = R(1 + β(p11 −
p01)

∑T−t−1
i=0 βi · (p11 − p01)i) = R+ β(p11 − p01)∆t+1.

At time T there are two cases.
Case 1. j > k. In this case

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN ) = Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN )

while ∆T ≥ 0, so the inequality holds.

Case 2. j ≤ k. In this case we have

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN )

−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN )

≤ (x− y) · R = (x− y) ·∆T . (62)

Now suppose the equalities hold for times t+ 1, ..., T − 1.
Consider time t. Again we have two cases.

Case 1. j > k. In this case the immediate reward does not
differ between the two belief states as under both the set of
sensed channels is identical; we thus have

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN )

−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN )

= β ·
∑

l̄∈{0,1}k
q(l̄;ω) ·

(
Wt+1(p11[

k∑
i=1

li],

..., τ(x), ..., p01[k −
k∑
i=1

li]

−Wt+1(p11[

k∑
i=1

li], ..., τ(y), ..., p01[k −
k∑
i=1

li])

)
≤ β · (τ(x)− τ(y)) ·∆t+1

= (x− y) · β · (p11 − p01) ·∆t+1

≤ (x− y)(∆t −R) ≤ (x− y)∆t . (63)

where the first inequality is due to the induction hypothesis.
Case 2. j ≤ k. In this case we have

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN )

−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN )

= E[Rπg (x, ω−j)]− E[Rπg (y, ω−j)]

+(x− y) · β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j) ·

Wt+1(p11[

k∑
i=1,i6=j

li], p11, ..., p01[k − 1−
k∑

i=1,i6=j

li])

+((1− x)− (1− y)) · β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j) ·

Wt+1(p11[

k∑
i=1,i6=j

li], ..., p01, p01[k − 1−
k∑

i=1,i6=j

li])

≤ (x− y)R+ (x− y) · β · (p11 − p01) ·∆t+1

= (x− y) ·∆t . (64)

This completes the induction step, thus proving the lemma.

E. Proof of Lemma 8

For a descending ordered belief vector ω =
(ω1, · · · , ωi, · · · , ωk, · · · , ωj , · · · , ωN ), the greedy policy
πg selects the first k elements/channels. Now consider the
following simple deviation policy πd that selects channels
1, · · · , i− 1, j, i+ 1, · · · , k, where j > k. In other words, πd

differs from πg in exactly one element: ωj instead of ωi. The
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one-step deviation produced by this policy is given by

V d,∞(ω) = W∞(ω1, · · · , ωi−1, ωj , ωi+1,

· · · , ωk, ωi, ωk+1, · · · , ωN ) (65)

since by the definition of W∞(·), the RHS operates in exactly
the same way as the LHS: it selects the set of channels
1, · · · , i − 1, j, i + 1, · · · , k, followed by selecting greed-
ily thereafter (note the set of unselected elements are now
descending-ordered).

Our first step is to show that under the stated sufficient
condition, we have

W∞(ω1, · · · , ωi−1, ωj , ωi+1, · · · , ωk, ωi, ωk+1, · · · , ωN )

≤ W∞(ω1, · · · , ωi−1, ωi, ωi+1,

· · · , ωk, ωk+1, · · · , ωj−1, ωj , ωj+1, · · · , ωN ) , (66)

i.e., πd is not a profitable one-step deviation. We then use
this result to show that deviations involving multiple different
selections are also not profitable under the same condition,
thus proving the lemma.

To show (66), it suffices to show each of the following chain
of (in)equalities under the stated condition:

W∞(ω1, · · · , ωi−1, ωj , ωi+1, · · · , ωk, ωi, ωk+1, · · · , ωN )
(1)
= W∞(ω1, · · · , ωi−1, ωi+1, · · · , ωk, ωj , ωi, ωk+1, · · · , ωN )
(2)
≤ W∞(ω1, · · · , ωi−1, ωi+1, · · · , ωk, ωi, ωj , ωk+1, · · · , ωN )

(1)
= W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωj , ωk+1, · · · , ωN )
(3)
≤ W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωk+1, ωj , · · · , ωN )

(3)
≤ ...

(3)
≤ W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωk+1,

· · · , ωj−1, ωj , ωj+1, · · · , ωN ) (67)

Note that in each step above the comparison is between
switching a neighboring pair of elements. More specifically,
there are three cases: Case 1 (equalities labeled (1)) involves
switching a pair both among the first k elements in the
ordered belief vector; Case 2 (inequality labeled (2)) involves
switching a pair at the kth and (k + 1)th positions; Case 3
(inequalities labeled (3)) involves switching a pair both outside
the first k positions. These three cases are shown separately
below.

Case 1. When both are within the first k elements, there
is no difference in either the immediate rewards (both are
selected) or the future rewards, so the equality holds trivially.

Case 2. For a given belief vector (not necessarily descending
ordered) ω = (ω1, · · · , ωk, ωk+1, · · · , ωN ) where ωk ≥ ωk+1,
we now compare the difference when switching the order

between ωk and ωk+1.

W∞(ω1, · · · , ωk, ωk+1, · · · , ωN )

= E[Rπg (ω1, ..., ωk−1, ωk, ωk+1, ..., ωN )]

+ ωk · ωk+1

∑
l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p11, p11, ..., p01[k − 1−
k−1∑
j=1

lj ])

+ ωk · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p11, p01, ..., p01[k − 1−
k−1∑
j=1

lj ])

+ (1− ωk) · ωk+1

∑
l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p11, ..., p01[k − 1−
k−1∑
j=1

lj ], p01)

+ (1− ωk) · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ]], p01, ..., p01[k − 1−
k−1∑
j=1

lj ]], p01)

and by switching we have

W∞(ω1, · · · , ωk+1, ωk, · · · , ωN )

= E[Rπg (ω1, ..., ωk−1, ωk+1, ωk, ..., ωN )]

+ ωk · ωk+1

∑
l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p11, p11, ..., p01[k − 1−
k−1∑
j=1

lj ])

+ ωk · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p11, ..., p01[k − 1−
k−1∑
j=1

lj ], p01)

+ (1− ωk) · ωk+1

∑
l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p11, p01, ..., p01[k − 1−
k−1∑
j=1

lj ])

+ (1− ωk) · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

W∞(p11[

k−1∑
j=1

lj ], p01, ..., p01[k − 1−
k−1∑
j=1

lj ], p01)

Taking the difference between the immediate rewards we get

E[Rπg (ω1, ..., ωk, ωk+1, ..., ωN )]

− E[Rπg (ω1, ..., ωk+1, ωk, ..., ωN )]

≥ (ωk − ωk+1)R . (68)
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The difference between the future rewards is given by

β · (ωk − ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(W∞(p11[

k−1∑
j=1

lj ], p11, p01, τ(ωk+2),

..., τ(ωN ), p01[k − 1−
k−1∑
j=1

lj ])

−W∞(p11[

k−1∑
j=1

lj ], p11, τ(ωk+2),

..., τ(ωN ), p01[k − 1−
k−1∑
j=1

lj ], p01))

≥ β · (ωk − ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(W∞(p11[

k−1∑
j=1

lj ], p11, p01, τ(ωk+2),

..., τ(ωN ), p01[k − 1−
k−1∑
j=1

lj ])

−W∞(p11[

k−1∑
j=1

lj ], p11, p01, τ(ωk+3),

..., τ(ωN ), p01[k − 1−
k−1∑
j=1

lj ], p01)

− (τ(ωk+2)− p01)∆∞)

≥ −β · (ωk − ωk+1)(τ(ωk+2)− p01)∆∞ (69)

where the first inequality comes from the upper bound given
in (24) and the second from repeated use of the lower bound in
Lemma (7). Thus the total difference in rewards by switching
is given by (ωk − ωk+1)(R − β(τ(ωk+2) − p01)∆∞). Since
τ(ωk+1) ≤ p11, we have

R− β(τ(ωk+2)− p01)∆∞

≥ R− β(p11 − p01)
R

1− βδ

≥ R− δ R
1− δ

≥ 0 (70)

under the stated condition on δ.

Remark 9. Note in the special case of k = N − 1, the
difference in future rewards by switching is zero, therefore
the total difference is always positive without any sufficient
condition. This is consistent with previous results in [7] on
the optimality of myopic sensing for a two channel case.

Case 3. When both elements are outside the first k, switch-
ing ωi with ωi+1, ωi ≥ ωi+1 results in no difference in the im-
mediate rewards. Their propagated version, (τ(ωi), τ(ωi+1)),
or (τ(ωi+1), τ(ωi)) under switching, show up in the future
rewards. As the process continues, this pair will gradually
move toward the front of the list, and the movement is exactly
the same along each sample path with or without switching.

If the pair continues to be outside the first k, the immediate
rewards remains the same. If the pair both moves into the first
k, then the comparison of the future rewards fall within Case
1 examined above. If the pair moves right into the boundary of
the first k, with i now at the kth position and i+ 1 now at the
k + 1th position (or the other way round under the switched
case), then the comparison falls under Case 2 examined above.
Thus this switching under Case 3 is again not profitable.

We have therefore shown that there is no profitable single-
element simple deviation under the stated sufficient condition.
For a deviation πd with multiple different elements, a sequence
of single-element deviation steps can be easily constructed
connecting πg to πd, with two successive deviations differing
in only one element. The same argument as above can be
used to show that no step can be profitable under the stated
condition, thus proving the lemma.

F. Proof of Lemma 9

We prove this by induction. At time T , when j ≤ k we
have

(x− y) · R ≤WT (ω1, ..., x, ..., ωN )

−WT (ω1, ..., y, ..., ωN ) ≤ (x− y) · R . (71)

When j > k, we have WT (ω1, ..., x, ..., ωN ) −
WT (ω1, ..., y, ..., ωN ) = 0. Also it is easily verified
that

∆T ≤ min{R, 0}, ∆T ≥ R . (72)

The induction basis is thus established.
Now assume the lemma holds for times t + 1, ..., T − 1.

Consider time t and again the following cases.
Case 1. j ≤ k
We have

Wt(ω1, ..., x, ..., ωN )−Wt(ω1, ..., y, ..., ωN )

= (x− y)(E[Rπg (1, ω−j)]− E[Rπg (0, ω−j)])

− (x− y) · β{
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)(Wt+1(p01

[k − 1−
k∑

i=1,i6=j

li], p01, τ(ωN ), ..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li], p11))} (73)

Clearly for the immediate rewards we have R ≤
E[Rπg (1, ω−j)] − E[Rπg (0, ω−j)] ≤ R. Now consider the
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future rewards. First note

Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], p01, τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li], p11)

= Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], p01, τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ), τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

+Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ), τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ), τ(ωN−1), τ(ωN−1),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

· · ·

+Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ),

..., τ(ωk+1), τ(ωk+1), p11[

k∑
i=1,i6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li], p11) (74)

Applying the induction hypothesis to each pair of the Wt+1

terms above results in

(x− y) · β · (p01 − τ(ωN ) + τ(ωN )− τ(ωN−1)

+ · · · − p11) ·∆t+1

≤ (x− y)β

{
Wt+1(p01[k − 1−

k∑
i=1,i6=j

li], p01, τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i6=j

li], τ(ωN ),

..., τ(ωk+1), p11[

k∑
i=1,i6=j

li], p11)

}
≤ (x− y) · β · (p01 − τ(ωN ) + τ(ωN )− τ(ωN−1) +

· · · − p11) ·∆t+1 (75)

Therefore

(x− y) · {R − βδ ·∆t+1}
≤ Wt(ω1, ..., x, ..., ωN )−Wt(ω1, ..., y, ..., ωN )

≤ (x− y) · {R − βδ ·∆t+1} (76)

If η < 0 we have

R− βδ ·∆t+1

≥ R− β · δR+ βδ
1− (β · δ)T−t+3

1− (β · δ)2
· η

≥ 1− (β · δ)T−t+3

1− (β · δ)2
· η = ∆t (77)

R− βδ ·∆t+1

≤ R− βδ · η

≤ R− 1− (β · δ)T−t+3

1− (β · δ)2
· η = ∆t (78)

If η ≥ 0 we have

R− βδ ·∆t+1 = R− βδ · R = η ≥ 0 (79)

R− βδ ·∆t+1 = R (80)

In either case the induction step is completed.

Remark 10. Since the lower bound is not trivially 0 anymore,
we essentially need more efforts in bounding the upper region.
Specifically we need a coupled proof of lower and upper bound
at the same time. Also from the above steps we can clearly
see the role lower bounds plays in the induction steps.

Case 2. j > k. We have

Wt(ω1, ..., x, ..., ωN )−Wt(ω1, ..., y, ..., ωN ) = β ·
∑

l̄∈{0,1}k
q(l̄; ω̄)

· (Wt+1(p01[k −
k∑
i=1

li], ..., τ(x), ..., p11[

k∑
i=1

li])

−Wt+1(p01[k −
k∑
i=1

li], ..., τ(y), ..., p11[

k∑
i=1

li])) . (81)
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Thus

β · (x− y) · δ ·∆t+1

≤Wt(ω1, ..., x, ..., ωN )−Wt(ω1, ..., y, ..., ωN )

≤ β · (x− y) · δ ·∆t+1 (82)

It can be easily verified that ∆t ≤ βδ∆t+1 and βδ∆t+1 ≤ ∆t,
completing the induction step.
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